
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEM: SCALING TRANSFORMERS WITH EMBEDDING
MODULES

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-grained sparsity promises higher parametric capacity without proportional
per-token compute, but often suffers from training instability, load balancing, and
communication overhead. We introduce STEM (Scaling Transformers with Em-
bedding Modules), a static, token-indexed approach that replaces the FFN up-
projection with a layer-local embedding lookup while keeping the gate and down-
projection dense. This removes runtime routing, enables CPU offload with asyn-
chronous prefetch, and decouples capacity from both per-token FLOPs and cross-
device communication. Empirically, STEM trains stably despite extreme spar-
sity. It improves downstream performance over dense baselines while reducing
per-token FLOPs and parameter accesses (eliminating roughly one-third of FFN
parameters). STEM learns embedding spaces with large angular spread which
enhances its knowledge storage capacity. In addition, STEM strengthens long-
context performance: as sequence length grows, more distinct parameters are ac-
tivated, yielding practical test-time capacity scaling. Across 350M and 1B model
scales, STEM delivers up to∼3–4% improvements in average downstream perfor-
mance, with notable gains on knowledge and reasoning-heavy benchmarks (ARC-
Challenge, OpenBookQA, GSM8K, MMLU). Overall, STEM is an effective way
of scaling parametric memory while remaining simpler to train and deploy than
existing fine-grained sparse models.

1 INTRODUCTION

0.2 0.4 0.6 0.8 1.0
Tokens ×1012

12.75

13.00

13.25

13.50

13.75

14.00

14.25

14.50

Va
lid

at
io

n
PP

L

Model Architecture
dense
STEM (one-third)

(a) Validation PPL scores

10000 15000 20000 25000 30000
Context Length

45

50

55

60

65

70

Sc
or

e

Model Architecture
dense
STEM (one-third)

(b) Context Length Scalability

Gate Projection

Down Projection

eT2 SiLU

eT1

eT3

Up projection
(removed)

Prefetch

Element-wise
 Multiplication

GPU Memory
(active params + KV cache)

CPU Memory
(offload / embeddings)

(c) STEM layer

Figure 1: (a) Validation PPL vs. training tokens for 1B STEM vs. dense; (b) Needle-in-a-Haystack
at 8k/16k/32k; (c) STEM layer: embedding tables offloaded to CPU and token-indexed ones are
prefetched to GPU.

Sparse computation is a key mechanism for realizing the benefits predicted by parameter-scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) without proportionally increasing per-token com-
pute. In particular, Mixture-of-Experts (MoE) (Shazeer et al., 2017; Artetxe et al., 2022; Fedus et al.,
2022) models have been adopted in several frontier LLMs (Team, 2025b;a; Dai et al., 2024) because
they raise parametric capacity at roughly constant activated FLOPs by sparsely activating a small
subset of experts per token. Recent work (Boix-Adsera & Rigollet, 2025; He, 2024; Databricks,
2024; Dai et al., 2024) further advocate for finer-grained sparsity that employs large number of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

micro-experts to achieve better expressivity, enhanced knowledge storing capacity, and favorable
efficiency metrics.

However, finer granularity introduces nontrivial challenges in both optimization and systems. On
the training side, even large fraction of experts can remain under-trained (Huang et al., 2025) due
to a highly non-uniform routing and result in training instability. While load-balancing objectives
(Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2020) can address these issues, they may
interfere with the primary objective if not carefully tuned (Dai et al., 2024; Qiu et al., 2025; Go &
Mahajan, 2025). On the systems side, increasing the number of experts typically raises the number
of all-to-all messages while shrinking message sizes, degrading bandwidth utilization and ampli-
fying communication overhead (Huang et al., 2024; Li et al., 2025b). Finer granularity can also
reduce parameter-access locality and degrade kernel efficiency when expert subnetworks become
too small for dense linear-algebra kernels to reach high occupancy, yielding suboptimal end-to-end
performance. To harness the full potential of fine-grained sparsity, we require: (a) stable optimiza-
tion, (b) broad expert utilization (each micro-expert learns useful representations), and (c) negligible
expert-retrieval latency and communication overhead.

We identify static sparsity as a potential solution to achieve these desired properties. Static sparsity
keeps the compute path predictable (no runtime routing latency), enables prefetch and CPU offload-
ing (removing the need for inter-node communication). Recently, static sparsity via token-indexed
routing has emerged as a promising direction (Roller et al., 2021; Google DeepMind, 2024) with
strong performance guarantees. However, such token-based selection strategy lacks context adap-
tivity. If applied naively, it can reduce the expressivity of the model and degrade quality despite
more parameters. Our ablation study in sec. 4.4.3 highlights the criticality of selecting the suitable
module for sparsification.

Based on these observations, we introduce STEM, a static, token-indexed, fine-grained mechanism
that replaces only the up-projection in gated FFNs with a token-specific vector retrieved from a
layer-local embedding table. The gating and down-projection paths are preserved and shared across
tokens. We observe that STEM achieves the following:

Better Training Stability: Despite being extremely sparse, STEM does not exhibit any training in-
stability issues as usually seen in MoE models. Figure 3a shows that unlike MoE models, STEM
does not exhibit any loss spikes.

Improved Performance with Larger Knowledge Capacity: STEM learns a representation space for
the embeddings that is conducive to better information storage. The learned embeddings exhibit a
large angular spread (i.e., low pairwise cosine similarity), which reduces representational interfer-
ence and improves addressability of the parametric memory. As a result, it effectively increases
the distinct “slots” available for storing and retrieving information. In our downstream evaluation
benchmark, STEM consistently outperforms the dense baseline on knowledge-intensive tasks like,
ARC-Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018) by large margins
(∼9–10%).

Improved Long-context Inference: During long-context inference, STEM activates more distinct pa-
rameters as sequence length grows, yielding test-time capacity scaling. As shown in Figure 1b, the
benefits strengthen with context: on Needle-in-a-Haystack (NIAH) (Kamradt, 2024), the gap over
the dense baseline increases from 8.4% to 13%.

Training and Inference-time efficiency: STEM reduces both FLOPs as well as parameter loading
cost by eliminating one-third of the parameters in FFN layers. Consequently, it is strictly more
efficient during both computation-intensive training and prefilling, as well as in memory-intensive
decoding.

We benchmark STEM against the dense baseline with 350M MobileLLM (Liu et al., 2024) and
Llama3.2-1B (Meta AI, 2024) model variants. Additionally, we compare with Hash Layer MoEs
with the same total parameter count. We report results on standard downstream suites across pre-
training, mid-training, and context-length extension. STEM improves downstream accuracy by up
to ∼3–4% while reducing per-token FLOPs and parameter accesses by up to one-third. It also
strengthens knowledge retrieval and mathematical reasoning, with gains on GSM8K (Cobbe et al.,
2021) and MMLU (Hendrycks et al., 2021), and shows pronounced improvements on Needle-in-a-
Haystack (Kamradt, 2024) at longer contexts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Input x

SiLU(Wg(.))

⊗Wu(.)

Wd(·)

Output y

(a) SwiGLU FFN

Input x

Router r(x) (top-r)

Expert f2Expert f1 · · · fK

∑
Output y

(b) MoE FFN

Input x(T)

SiLU(Wg(.))

⊗

Wd(.)

Output y

CPU Embedding Table

uT uT

(c) STEM

Figure 2: Schematics of (a) SwiGLU FFN, (b) MoE FFN, and (c) STEM with a single prefetched
token embedding. In MoE FFN, the full FFN module is considered as one expert.

2 METHOD

2.1 BACKGROUND

Consider a decoder-only transformer with N layers, vocabulary size V , model width d, and feed-
forward width dff . For a given layer ℓ, the SwiGLU feed-forward block uses a gate projection
Wg

ℓ ∈ Rdff×d, an up projection Wu
ℓ ∈ Rdff×d, and a down projection Wd

ℓ ∈ Rd×dff . Consider,
t ∈ {1, . . . , V } denote the vocabulary id of the current token, and the corresponding input hidden
state of the ℓth FFN layer is given by xℓ∈Rd. Then the transformation in the FFN layer is

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙

(
Wu

ℓ xℓ

))
, (1)

where ⊙ denotes elementwise multiplication.

Mixture-of-Experts (MoE). In MoE, a dense FFN is replaced by K expert FFNs {fℓ,k}Kk=1 and a
router rℓ(xℓ) that selects Tℓ(xℓ) (top-r experts) with mixture weights πℓ,k(xℓ) (Artetxe et al., 2022;
Fedus et al., 2022). With SwiGLU experts,

fℓ,k(xℓ) := Wd
ℓ,k

(
SiLU

(
Wg

ℓ,kxℓ

)
⊙

(
Wu

ℓ,kxℓ

))
, Wd

ℓ,k ∈ Rd×dff ,

the layer output is

yℓ =
∑

k∈Tℓ(xℓ)

πℓ,k(xℓ) fℓ,k(xℓ) (2)

Token-indexed Mixture-of-Experts. To eliminate the routing parameters and auxiliary routing
loss functions, (Roller et al., 2021) fixed mapping from input token ids to experts based on random
and balanced hash functions. Consequently, the FFN output is computed as,

yℓ =
∑

k∈hash(t)

fℓ,k(xℓ) (3)

2.2 STEM

Unlike MoE alternatives, STEM only replaces the dense up-projection in the SwiGLU FFN with a
token-indexed vector looked up from a per-layer table. For layer ℓ, let Uℓ∈RV×dff be the embedding
table. Given input xℓ∈Rd, the STEM layer computes

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙ Uℓ[t]

)
, (4)

where Uℓ[t]∈Rdff is the row of Uℓ corresponding to token t and ⊙ denotes elementwise multipli-
cation. We provide a simple schematic diagram for dense baseline (SwiGLU FFN), MoE and STEM
in Fig 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Theoretical efficiency for each decoder FFN layer when replacing the FFN up-projection
with a token-indexed STEM embedding table. We assume SwiGLU, ignore biases, and count ele-
mentwise ops as O(DL).

FFN STEM Savings (∆)

Prefill / training (batch size B, sequence length L)
FLOPs B(3dffdL+ dffL) B(2dffdL+ dffL) B(ddffL)
Communication 0 uniq(BL)dff

Decoding (per step, batch size B)
Parameter loading cost 3ddff 2ddff ddff
Communication 0 Buniqdff

Notation: d: model width; D: FFN hidden size; L: context length; Luniq: number of unique tokens in the
L-token context; Buniq: number of unique tokens across the batch at a decode step (≤ B); uniq(BL): number
of unique tokens across the BL tokens in a training batch.
Notes: Training multiplies both FLOP counts by ≈ the usual forward+backward factor, but the saving
∆FLOPs = dDL remains. Communication doubles during training as gradients of the STEM embeddings are
transferred back to CPU for optimizer update.

2.3 STEM†

STEM uses strictly fewer active parameters, and FLOPs for each token. And because of the archi-
tectural bias, STEM is susceptible to some loss of contextual learning ability. We also introduce a
hybrid variant of STEM, which retains the up projection matrix in FFN, but complements with an
additive token-specific modulation. Concretely, the new variant STEM† computes the FFN output
as follows,

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙ (Wu

ℓ xℓ +Uℓ[t])
)
, (5)

3 ANALYSIS

3.1 EFFICIENCY

STEM improves both computation and memory access. During compute-intensive phases (train-
ing and prefill), replacing the FFN up-projection with token-indexed embeddings reduces the per-
layer FLOPs. During memory-intensive decoding, it lowers parameter traffic relative to a dense
up-projection. Table 1 summarizes the per-layer counts and the resulting savings. Below we present
a simple theoretical analysis of the training and inference efficiency for a single decoder layer.

Training efficiency. Consider a batch of B sequences with sequence length L, hidden width d, and
FFN hidden size dff . Ignoring elementwise ops and biases, the per-layer training FLOPs (forward +
backward + weight gradients) can be written as

F base
train = B

(
4Ld2 + 2L2d+ 3Lddff

)
,

F stem
train = B

(
4Ld2 + 2L2d︸ ︷︷ ︸

Attn

+2Lddff︸ ︷︷ ︸
MLP

)
.

The per-layer FLOPs reduction of STEM is therefore

∆Ftrain = F base
train − F stem

train = BLddff ,

and the corresponding saving fraction is

saving fraction =
∆Ftrain

F base
train

=
dff

4d+ 2L+ 3dff
.

Plugging in the architecture hyperparameters for each Qwen2.5 model yields saving fractions of
21.7% for Qwen2.5-1.5B, 22.8% for Qwen2.5-3B, 23.9% for Qwen2.5-7B, 19.7% for Qwen2.5-
14B, and 24.8% for Qwen2.5-32B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Inference efficiency. Prefill efficiency closely matches training efficiency because both are
compute-bound. In contrast, decoding is primarily memory-bound: the dominant cost is loading
parameters and KV cache rather than doing FLOPs. For a batch size B and context length L, we
can write the per-layer memory access cost as

M base
dec = B

(
4d2 + 2Ld+ 3d dff

)
,

M stem
dec = B

(
2Ld︸︷︷︸

KV cache

+ 4d2 + 2d dff︸ ︷︷ ︸
projection params

)
.

The reduction in parameter loading cost is
∆Mdec = M base

dec −M stem
dec = Bddff ,

so the saving fraction is

saving fraction =
∆Mdec

M base
dec

=
dff

4d+ 2L+ 3dff
,

which matches the FLOPs saving factor during training and prefill. As the batch size grows, the
linear layers become increasingly compute-bound, and STEM’s per-layer FLOPs reduction ensures
that this efficiency gain is sustained even in the high-throughput regime.

A key difference from MoE is how cost scales with batch size. In STEM, parameter traffic grows
mainly with the number of unique tokens seen. In contrast, MoE expert selection expands with batch
size and routing diversity; larger batches tend to light up more experts, quickly eroding the sparsity
benefit.

3.1.1 VRAM AND COMMUNICATION SAVINGS

MoE models use a lot of VRAM. The expert subnetworks must stay on the GPU, or be fetched
repeatedly. Expert parallelism also needs all-to-all communication, even when only a few experts
are active (Huang et al., 2024; Go & Mahajan, 2025). STEM avoids these costs. Its embeddings
are token-indexed and local to each layer, so the model can prefetch them without any routing logic.
These tables are separate from the matmul weights, so we can offload them to CPU memory. In
our setups, this frees up roughly one-third of the FFN parameter memory. We can also replicate the
embedding tables in CPU memory on every serving node. This eliminates cross-node expert traffic
and the synchronization overhead of expert parallelism.

Prefetching cost. The prefetching cost can be greatly reduced by deduplicating the STEM embed-
dings of the batched tokens. We can further cut traffic by caching the most frequently used STEM
embeddings, using the extra memory we save from removing the up-projection matrices. As the
model embedding size grows, compute cost increases quadratically, but prefetching cost grows only
linearly. This makes CPU-offloaded STEM increasingly attractive and scalable for larger model
sizes.

3.2 CONTEXT-LENGTH ADAPTIVE PARAMETER USAGE

Because STEM employs token-indexed, fine-grained sparsity, the number of distinct parameters
touched in a forward pass grows with the number of unique tokens in the window. Aside from the
shared projections in attention (Q/K/V/O) and the gated FFN’s gate/down projections, the STEM
module draws one vector per token ID per layer; repeated tokens reuse the same vector, while novel
tokens activate new ones. Let L be the context length and Luniq the count of unique token ids in
the sequence; with STEM applied at layers S and FFN width dff , the STEM-specific parameters
activated by a single sequence are

ParamsSTEM
act (L) = |S| dff Luniq.

In natural text Luniq typically grows sublinearly (Heaps-like), so longer contexts steadily engage
more parameters without increasing per-token FLOPs.

This yields test-time capacity scaling with predictable latency: active parameter count keeps on
growing with context length, and does not saturate quickly like in MoEs. The dense gating and
down-projection preserve contextual mixing, while the STEM path supplies additional capacity at
low overhead, supporting long-context tasks (multi-document RAG, CoT) with near-constant per-
token compute. 1b illustrates how STEM outperforms the dense baseline at longer context lengths.
Additional long-context evaluation on LongBench are provided in Appendix A.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Training hyperparameters by setting. Common: weight decay = 0.1, β1 = 0.9, β2 = 0.95,
LR warmup ratio = 0.01. Minimum LR is 0.1× peak LR. For 1B pretraining, we follow the OLMO
schedule for 5T tokens but stop early at 1T.

Configuration 350M Pretrain 1B Pretrain 1B Midtrain 1B Context-Extend

Peak LR 2e-3 4e-4 3.2e-4 1e-5
LR schedule cosine cosine linear cosine
Batch size 512 512 512 64
Max sequence length 2048 4096 4096 32768
Training steps 100,000 500,000 50,000 10,000
Cross-doc masking No No No Yes

4 EXPERIMENTS

We evaluate STEM against dense and MoE baselines on downstream tasks while controlling for
(i) training compute (activated FLOPs) and (ii) the number of training tokens. MoE variants are
configured to match STEM’s total parameter count, and their activated FLOPs are kept comparable
to the dense baseline. (Note: STEM uses strictly fewer per-token FLOPs than both baselines.)
We study two model scales — 350M and 1B, performing comprehensive ablations at 350M and
validating STEM at 1B under both pretraining-from-scratch and mid-training insertion. Finally, we
assess long-context behavior by further fine-tuning with extended context length. We evaluate the
Return on Investment (ROI)—defined here as the ratio of model accuracy to training FLOPs—to
determine the training efficiency of each model, as the economic value has become a major concern
of foundational models. Formally, we define it as:

Training ROI =
Model Accuracy (Avg)
Total Training FLOPs

4.1 EXPERIMENTAL SETTING

Datasets. For pretraining, we use OLMO-MIX-1124 (OLMo et al., 2025), a 3.9T-token cor-
pus built from DCLM (Li et al., 2025a) and Dolma 1.7 (Soldaini et al., 2024); we subsample
1T tokens for our runs. For mid-training, we mix OLMO-MIX-1124 (65%), NEMOTRON-CC-
MATH-V1 (5%) (Rabeeh Karimi Mahabadi, 2025), and NEMOTRON-PRETRAINING-CODE-V1
(30%) (NVIDIA et al., 2025). For context-length extension, we use PROLONG-DATA-64K (Gao
et al., 2024) (63% long-context / 37% short-context) and pack sequences up to 32,768 tokens with
cross-document attention masking.

Models. We use model architectures from MobileLLM-350M (Liu et al., 2024) and Llama3.2
-1B (Meta AI, 2024) for evaluations. In both the models, we do not share the input embeddings and
the language model head. Unless otherwise noted, one third of FFN layers are replaced at uniform
intervals by the sparse alternative. For STEM, the dense up-projection is replaced by an embedding
table of size V × dff in each layer. For Hash layer MoE design, we use top-1 routing and choose
the number of experts per layer to match STEM’s total parameter count, while keeping activated
FLOPs comparable to the dense baseline. We also report ablations that replace one half of FFN
layers with STEM, and an extreme setting that replaces all FFN layers except the first.

Evaluations. Pretrained checkpoints are evaluated zero-shot on eight common-sense reasoning
tasks: ARC-Easy, ARC-Challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al.,
2018), and WinoGrande (ai2, 2019). To assess advanced knowledge and mathematical reasoning
for mid-training checkpoints, we report MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
2021). For long-context behavior after context extension, we use Needle-in-a-Haystack (NIAH)
(Kamradt, 2024).

Training details. We pretrain the 350M models on 100B tokens and the 1B models on 1T tokens.
We use the AdamW optimizer with a cosine learning rate schedule, 10% warmup, and a minimum

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
Training tokens ×1011

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

 V
al

ue

Model Architecture
HashMoE (top-1/16)
dense
STEM (one-third)

(a) Sparse Architecture Comparison

0 1 2 3 4 5
FLOPs ×108

2.4

2.5

2.6

2.7

2.8

2.9

Lo
ss

 V
al

ue

Model Architecture
dense
STEM (full)
STEM (half)
STEM (one-third)

(b) STEM Layer Count Ablation Study

Figure 3: (a) Training Stability. Unlike Hash layer MoE, the 350M STEM model does not show
any training loss spikes. (b) Performance scaling with more STEM layers. With more STEM
layers, a lower training loss can be achieved at fewer training FLOPs.

learning rate of 0.1× the peak value. After pretraining, we run a midtraining stage on 100B tokens,
followed by a context-extension stage on 20B tokens. The full set of hyperparameters is listed in
Table 2.

4.2 EXPERIMENTAL RESULTS

STEM demonstrates the benefits of fine-grained sparse scaling by improving downstream perfor-
mance with fewer training FLOPs. Interestingly, STEM does not suffer from training instability
issues that is often the case for fine-grained MoE models (Databricks, 2024; Dai et al., 2024). In-
stead, the geometric properties of the STEM embedding spaces further help improve the training
convergence. Figure 3a demonstrates the training stability of STEM compared to token-indexed
Hash Layers MoE, where HashMoE has more bumpy jumps during the training. Moreover, we see
the STEM architecture has larger model capacity (lower training loss tendency) when we scale up
the training tokens as the loss curve of STEM crosses over the other two architectures when training
tokens increase. Furthermore, even with fewer training FLOPs STEM achieves lower training 3b
and validation 1a losses.

4.3 DOWNSTREAM EVALUATION RESULTS

We compare STEM with dense baseline as well as Hash layer MoE at 350M scale. On the other
hand, for 1B model, we compare STEM (with one-third of FFN replacement) with only the dense
baseline. In both cases 3, we observe substantial improvement in tasks requiring comparatively more
external knowledge such as, Arc-Challenge and OpenBookQA, while having modest improvements
on the rest of the tasks. Additionally, the improvements on the knowledge-intensive tasks are more
significant with increase in FFN replacement with STEM layers. Note all the STEM replacement
are replacing the up-projection component of original FFN unless specified in the table.

Upon midtraining 4, the 1B STEM model continues to outperform the dense baseline on the lan-
guage modeling downstream tasks. Additionally, STEM architecture exhibits improvements in rea-
soning and knowledge retrieval abilities through GSM8k and MMLU performances.

4.4 ABLATION STUDIES

4.4.1 IMPACT OF STEM LAYER COUNT

To identify the efficacy of STEM layers, we vary the number of FFN layers we replace with STEM
alternative. We place the STEM-based decoder layers at regular intervals, interleaved with regular

1ROI is normalized at each basline for better comparison.
2STEM defaults to replacing one third of FFN layers, also writes as STEM-1/3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Downstream accuracy of pretrained models at 350M and 1B scales. We report the total
number of parameters and the number of active parameters for each model variant. Baseline denotes
the dense SwiGLU FFN model. For 350M, in the first few rows, we compare sparse alternatives
under similar FLOPs: Hash-MoE (top-1/16 experts in 1/3 of FFN layers), STEM with 1/3 of FFN
layers replaced (including up projection replacement, gate projection replacement, and STEM† with
an additional up-projection). In the next set of rows, we compare STEM with varying up projection
layer replacement ratios (1/3, 1/2, full). For 1B, we report the dense baseline and STEM with 1/3 up
projection layer replacement.

Model #Total
Params (B)

#Active
Params (B) ARC-E ARC-C BoolQ PIQA SIQA HSwag OBQA Wino Avg #GFLOPs ROI1

350M (Pretraining)

Baseline 0.37 0.37 57.66 30.55 58.20 69.42 41.10 49.68 34.80 56.35 49.72 0.74 1x
Hash-MoE 1.22 0.37 58.88 36.33 55.44 70.21 43.55 47.56 39.26 53.44 50.58 0.74 1.02x
STEM 2 1.14 0.35 63.01 32.68 60.31 70.18 39.76 52.38 33.00 55.88 50.90 0.70 1.08x
STEM (gate-proj) 1.14 0.35 54.56 34.12 59.13 64.92 44.56 43.62 36.91 55.00 49.10 0.70 1.04x
STEM† 1.21 0.35 57.94 34.45 59.10 68.85 43.70 45.75 41.02 53.98 50.60 0.74 1.02x
STEM-1/2 1.85 0.34 62.95 40.00 62.02 70.94 43.70 51.49 46.68 55.78 54.20 0.67 1.20x
STEM-full 3.25 0.30 62.21 39.61 61.99 70.73 43.60 48.44 44.53 56.33 53.43 0.60 1.33x

1B (Pretraining)

Baseline 1.50 1.50 66.98 41.88 64.21 73.44 44.09 59.65 39.84 56.48 55.82 3.00 1x
STEM 6.75 1.41 65.95 42.03 61.66 75.00 44.78 60.37 45.90 57.34 56.63 2.83 1.08x

Table 4: Mid-trained model evaluations (1B).

Model ARC-E ARC-C BoolQ PIQA SIQA HellaSwag OBQA Winogrande Avg GSM8K MMLU

1B (Mid-training)

Baseline 70.78 42.11 65.84 72.95 47.13 60.39 42.97 57.81 57.50 44.2 29.92
STEM 69.78 44.22 68.54 74.69 45.65 61.90 45.70 57.42 58.49 46.4 32.38

FFN-based decoder blocks. Table 3 shows that increasing the number of replacement from one-third
to half improves the average downstream performance substantially. However, the improvement
slows down beyond that. Note that, with increasing number of replacements, the training FLOPs also
decrease, and therefore the overall training ROI still increases. We can see that the STEM (STEM-
1/3) achieves 1.08x training ROI of the baseline, while STEM-1/2 achieves 1.20x and STEM-full
achieves 1.33x of the baseline. Figure 3b presents the comparison of the three variants in terms of
loss vs training FLOPs.

4.4.2 IMPACT OF STEM PLACEMENT

Placement of STEM inside the gated FFN matters. To demonstrate this, we compare two op-
tions: replacing the up-projection vs. the gate-projection. As shown in Table 3, replacing the
gate underperforms even the dense baseline, while replacing the up-projection yields consistent
gains. In SwiGLU, the gate σ(W gx) should depend on the current hidden state x to modulate
ϕ(Wux) contextually. Swapping W gx for a token-indexed embedding et makes the gate largely
input-independent (σ(et)), weakening its context-aware selection. Moreover, the nonlinearity can
be effectively abstracted away by the learned embeddings, and consequently its role is weakened. In
contrast, applying STEM to the up-projection preserves contextual information in gate computation
path and proves to be an optimal fine-grained sparse design.

4.4.3 UP-PROJECTION WITH ADDITIVE EMBEDDING

To further study the optimality of STEM’s design, we implement STEM† 2.3, that retains up pro-
jection and additively modulates its output with the STEM embedding. Although it adds more
parameters and FLOPs, the downstream performance does not improve.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.05 0.01 0.04 0.08 0.12
Cosine Similarity

0

5

10

15

20

25

30

D
en

si
ty

STEM Layer ID
Layer 1 (P95 |cos| = 0.026)
Layer 7 (P95 |cos| = 0.030)
Layer 13 (P95 |cos| = 0.033)

(a) Pair-wise cosine similarity

0.0 0.2 0.4 0.6
Cosine Similarity

0

5

10

15

20

25

30

D
en

si
ty

Activation
Up projection outputs
STEM embeddings

(b) Layer 10

1.0 0.5 0.0 0.5 1.0
Cosine similarity

0

2

4

6

8

10

De
ns

ity

Layer 10 FF Features
Dense
STEM

(c) Layer 10

Figure 4: Geometry of STEM embeddings. (a) Distribution of pairwise cosine similarity of STEM
embeddings of sampled layers. (b) Pair-wise cosine similarity distributions of up-projection output
space and STEM embeddings. (c) Cosine similarities are computed between the input hidden states
of the down projection matrix. All the plots are provided from the 1B model.

5 STEM CHARACTERISTICS

In this section, we analyze some of the characteristics that STEM embeddings demonstrate. We
observe that in each layer the STEM embeddings of different tokens have very low pairwise co-
sine similarity which elicits some desirable properties regarding information storage capacity and
training convergence. Additionally, because of the clear mapping between the embeddings and the
tokens, STEM models are more interpretable.

5.1 LARGE ANGULAR SPREAD OF STEM EMBEDDINGS

Figure 4a shows that STEM embeddings exhibit very low pairwise cosine similarity—i.e., a large
angular spread. We hypothesize that this property improves the information–retrieval behavior of
FFN layers by reducing interference among stored items. Prior work (Geva et al., 2021; Meng et al.,
2022) models FFNs as key–value memories: each hidden unit is associated with a key given by a
row of the up-projection W (u) ∈ Rdff×dmodel and a value given by the corresponding column of the
down-projection W (d) ∈ Rdmodel×dff ; the gate projection provides context-dependent, multiplicative
modulation that creates a selective read. In this view, the pre-activation h = ϕ(W (u)x) induces a
soft address over memory slots (hidden units).

In contrast, STEM replaces the learned affine addressing with a direct, token-indexed address vector,
upon which the gate still applies context-dependent modulation. To quantify the geometry of these
address vectors, we report the distribution of pairwise cosine similarities between unit-normalized
vectors. A distribution concentrated near zero (as in Figure 4a and Figure 4b) indicates that most an-
gles are close to 90◦ and thus the angular spread between the vectors is reasonably large. This large
angular spread lowers cross-talk between slots and can thereby improve the effective information
storage capacity of the FFN memory at fixed width Donoho & Elad (2003); Tropp (2004). Figure
4c demonstrates the distribution of pairwise cosine similarities between the address vectors after the
modulation applied by the gate projection.

5.2 INTERPRETABILITY OF STEM MODELS

STEM exposes token-indexed, layer-local parameters that act as interpretable FFN addresses, en-
abling simple, reversible edits that causally steer factual predictions with high reliability and low
collateral change. Because each token t has a layer-specific STEM vector et,ℓ ∈Rdff , we can inter-
vene at inference time in a transparent way.

For example, Figure 5 shows that we can manually control the top next-token probabilities by per-
forming a swap at layer ℓ,

eSpain,ℓ ← eGermany,ℓ,

while leaving all other parameters unchanged. Under the original prompt containing “Spain”, the in-
tervened model’s top-k next-token distribution closely matches that of the control prompt containing
“Germany”, illustrating precise, token-indexed knowledge editing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

 Madrid the Barcelona a
0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

(a) Original:
The capital of Spain is

 Berlin called the located
0.0

0.2

0.4

0.6

0.8

(b) Target:
The capital of Germany is

 Berlin called the located
0.0

0.2

0.4

0.6

0.8

(c) Intervened:
The capital of Spain is

Figure 5: Knowledge edit. Top-4 next-token probabilities for the original prompt “The capital of
Spain is” (left), for the target prompt “The capital of Germany is” (middle), and for the intervened
model where we swap the STEM vector eSpain,ℓ with eGermany,ℓ at every STEM layer keeping the
original prompt the same(right). The swap shifts mass from Madrid to Berlin, demonstrating
token-indexed, layer-local, and reversible control of factual predictions.

6 RELATED WORKS

MoE (Shazeer et al., 2017; Fedus et al., 2022) introduced large parametric capacity for LLMs at
near-constant FLOPs through sparse computation. The success of MoE models hinges closely with
auxiliary loss function designs (Fedus et al., 2022; Rajbhandari et al., 2022; Qiu et al., 2025), and
system-level solutions (Huang et al., 2024; Go & Mahajan, 2025; Wang et al., 2024b) that ensure
load balance among expert networks, training stability, mitigation of representation collapse (Chi
et al., 2022), and tolerable communication overload during training and inference. To avoid the
interference of auxiliary routing losses with the training objective, recent works have proposed aux-
iliary loss-free approaches (Roller et al., 2021; Wang et al., 2024a) that inject fixed or dynamic
routing bias to the MoE model.

Conversely, PKM models (Lample et al., 2019) reserve a large key-value parametric memory with
efficient top-k selection through memory-efficient keys arranged in product space. PKM(Lample
et al., 2019; He, 2024) scales up the parametric memory compared to MoE, increases the granularity
of sparsity, and avoids the cross-device communication overhead, but at the cost of high memory
lookup cost during inference, and under-training issues of the large value memory. These challenges
require sophisticated architectural modifications (Huang et al., 2025) and advanced system-level
solutions (Berges et al., 2024) to be overcome.

Recently, Gemma-3n (Google DeepMind, 2024) proposed Per Layer Embeddings (PLE) for small
on-device models to complement their limited parametric capacity with token-indexed sparse para-
metric memory. However, they do not dispose of original FFN modules, and use a much lower-
dimensional PLE only to modulate the FFN output in each layer. These embedding tables are ac-
commodated in fast storage, outside GPU HBM memory to accommodate larger batch sizes and
enable fast prefetching.

7 CONCLUSION

This work introduced STEM, a static, token-indexed design that replaces the FFN up-projection
with a layer-local embedding lookup.This decouples parametric capacity from per-token compute
and cross-device communication, yielding lower per-token FLOPs and fewer parameter accesses,
and enabling CPU offload with asynchronous prefetch. Empirically, STEM trains stably despite
extreme sparsity (compared to fine-grained MoE variants), improves accuracy over dense baselines,
and exhibits higher effective memory capacity via a large-angular-spread embedding space. It also
strengthens long-context performance by activating more distinct parameters as sequence length
grows, providing practical test-time capacity scaling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work develops and empirically evaluates a novel large language model architecture. All training
and evaluation datasets are publicly available and widely used within the research community; no
new human-subject data were collected, and no sensitive or proprietary data sources were used.
Due to computational resource constraints, experiments were conducted on models with up to one
billion parameters and evaluated at pre-training and mid-training checkpoints, and the scope of the
conclusions should be interpreted accordingly. Future research in this direction should continue to
assess ethical considerations throughout model development, evaluation, and potential deployment.

9 REPRODUCIBILITY STATEMENT

This work follows the reproducibility recommendations of ICLR; details necessary to replicate re-
sults are referenced rather than repeated here. Section 4.1 documents the training datasets, model
architectures, training procedures, and evaluation datasets and protocols referenced throughout the
experiments. To facilitate independent verification, code and trained model checkpoints will be
released to support full reproducibility.

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui
Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo,
Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large
scale language modeling with mixtures of experts, 2022. URL https://arxiv.org/abs/
2112.10684.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Vincent-Pierre Berges, Barlas Oğuz, Daniel Haziza, Wen tau Yih, Luke Zettlemoyer, and Gargi
Ghosh. Memory layers at scale, 2024. URL https://arxiv.org/abs/2412.09764.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Enric Boix-Adsera and Philippe Rigollet. The power of fine-grained experts: Granularity boosts
expressivity in mixture of experts, 2025. URL https://arxiv.org/abs/2505.06839.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu Wei. On the representation col-
lapse of sparse mixture of experts, 2022. URL https://arxiv.org/abs/2204.09179.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

11

https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2112.10684
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2412.09764
https://arxiv.org/abs/2505.06839
https://arxiv.org/abs/2204.09179

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.
06066.

Databricks. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https://www.
databricks.com/blog/introducing-dbrx-new-state-art-open-llm. Ac-
cessed: 2025-09-04.

David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via 1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197–
2202, 2003. doi: 10.1073/pnas.0437847100. URL https://www.pnas.org/doi/10.
1073/pnas.0437847100.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. Enabling large language models to
generate text with citations. 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.

Seokjin Go and Divya Mahajan. Moetuner: Optimized mixture of expert serving with balanced
expert placement and token routing, 2025. URL https://arxiv.org/abs/2502.06643.

Google DeepMind. Gemma 3n documentation, 2024. URL https://ai.google.dev/
gemma/docs/gemma-3n. Accessed: 2025-09-04.

Xu Owen He. Mixture of a million experts, 2024. URL https://arxiv.org/abs/2407.
04153.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin S. Lee, Carole-
Jean Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=stXtBqyTWX.

Zihao Huang, Qiyang Min, Hongzhi Huang, Defa Zhu, Yutao Zeng, Ran Guo, and Xun Zhou. Ultra-
sparse memory network, 2025. URL https://arxiv.org/abs/2411.12364.

Greg Kamradt. Llmtest needleinahaystack. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack, 2024. GitHub repository; accessed 2025-09-24.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys, 2019. URL https://arxiv.org/abs/
1907.05242.

12

https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.pnas.org/doi/10.1073/pnas.0437847100
https://www.pnas.org/doi/10.1073/pnas.0437847100
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2502.06643
https://ai.google.dev/gemma/docs/gemma-3n
https://ai.google.dev/gemma/docs/gemma-3n
https://arxiv.org/abs/2407.04153
https://arxiv.org/abs/2407.04153
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=stXtBqyTWX
https://openreview.net/forum?id=stXtBqyTWX
https://arxiv.org/abs/2411.12364
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1907.05242
https://arxiv.org/abs/1907.05242

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Rein-
hard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Al-
balak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,
Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Il-
harco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao
Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Se-
woong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev,
Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kol-
lar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar.
Datacomp-lm: In search of the next generation of training sets for language models, 2025a. URL
https://arxiv.org/abs/2406.11794.

Yan Li, Pengfei Zheng, Shuang Chen, Zewei Xu, Yuanhao Lai, Yunfei Du, and Zhengang Wang.
Speculative moe: Communication efficient parallel moe inference with speculative token and
expert pre-scheduling, 2025b. URL https://arxiv.org/abs/2503.04398.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,
2024. URL https://arxiv.org/abs/2402.14905.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. Advances in Neural Information Processing Systems, 36, 2022. arXiv:2202.05262.

Meta AI. Llama 3.2 1b, 2024. URL https://huggingface.co/meta-llama/Llama-3.
2-1B. Accessed: 2025-09-04.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

NVIDIA, :, Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adithya Renduch-
intala, Aditya Malte, Akhiad Bercovich, Akshay Hazare, Alejandra Rico, Aleksander Ficek,
Alex Kondratenko, Alex Shaposhnikov, Alexander Bukharin, Ali Taghibakhshi, Amelia Bar-
ton, Ameya Sunil Mahabaleshwarkar, Amy Shen, Andrew Tao, Ann Guan, Anna Shors, Anub-
hav Mandarwal, Arham Mehta, Arun Venkatesan, Ashton Sharabiani, Ashwath Aithal, Ashwin
Poojary, Ayush Dattagupta, Balaram Buddharaju, Banghua Zhu, Barnaby Simkin, Bilal Kartal,
Bita Darvish Rouhani, Bobby Chen, Boris Ginsburg, Brandon Norick, Brian Yu, Bryan Catan-
zaro, Charles Wang, Charlie Truong, Chetan Mungekar, Chintan Patel, Chris Alexiuk, Christian
Munley, Christopher Parisien, Dan Su, Daniel Afrimi, Daniel Korzekwa, Daniel Rohrer, Daria
Gitman, David Mosallanezhad, Deepak Narayanan, Dima Rekesh, Dina Yared, Dmytro Pykhtar,
Dong Ahn, Duncan Riach, Eileen Long, Elliott Ning, Eric Chung, Erick Galinkin, Evelina Bakh-
turina, Gargi Prasad, Gerald Shen, Haifeng Qian, Haim Elisha, Harsh Sharma, Hayley Ross,
Helen Ngo, Herman Sahota, Hexin Wang, Hoo Chang Shin, Hua Huang, Iain Cunningham, Igor
Gitman, Ivan Moshkov, Jaehun Jung, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jian Zhang,
Jiaqi Zeng, Jimmy Zhang, Jinze Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jonathan
Cohen, Joseph Jennings, Julien Veron Vialard, Junkeun Yi, Jupinder Parmar, Kari Briski, Kather-
ine Cheung, Katherine Luna, Keith Wyss, Keshav Santhanam, Kezhi Kong, Krzysztof Pawelec,
Kumar Anik, Kunlun Li, Kushan Ahmadian, Lawrence McAfee, Laya Sleiman, Leon Derczyn-
ski, Luis Vega, Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski,
Mark Cai, Markus Kliegl, Marta Stepniewska-Dziubinska, Matvei Novikov, Mehrzad Samadi,
Meredith Price, Meriem Boubdir, Michael Boone, Michael Evans, Michal Bien, Michal Za-
walski, Miguel Martinez, Mike Chrzanowski, Mohammad Shoeybi, Mostofa Patwary, Namit
Dhameja, Nave Assaf, Negar Habibi, Nidhi Bhatia, Nikki Pope, Nima Tajbakhsh, Nirmal Ku-
mar Juluru, Oleg Rybakov, Oleksii Hrinchuk, Oleksii Kuchaiev, Oluwatobi Olabiyi, Pablo Rib-
alta, Padmavathy Subramanian, Parth Chadha, Pavlo Molchanov, Peter Dykas, Peter Jin, Piotr

13

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2503.04398
https://arxiv.org/abs/2402.14905
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Bialecki, Piotr Januszewski, Pradeep Thalasta, Prashant Gaikwad, Prasoon Varshney, Pritam Gun-
decha, Przemek Tredak, Rabeeh Karimi Mahabadi, Rajen Patel, Ran El-Yaniv, Ranjit Rajan, Ria
Cheruvu, Rima Shahbazyan, Ritika Borkar, Ritu Gala, Roger Waleffe, Ruoxi Zhang, Russell J.
Hewett, Ryan Prenger, Sahil Jain, Samuel Kriman, Sanjeev Satheesh, Saori Kaji, Sarah Yurick,
Saurav Muralidharan, Sean Narenthiran, Seonmyeong Bak, Sepehr Sameni, Seungju Han, Shan-
mugam Ramasamy, Shaona Ghosh, Sharath Turuvekere Sreenivas, Shelby Thomas, Shizhe Diao,
Shreya Gopal, Shrimai Prabhumoye, Shubham Toshniwal, Shuoyang Ding, Siddharth Singh, Sid-
dhartha Jain, Somshubra Majumdar, Soumye Singhal, Stefania Alborghetti, Syeda Nahida Akter,
Terry Kong, Tim Moon, Tomasz Hliwiak, Tomer Asida, Tony Wang, Tugrul Konuk, Twinkle
Vashishth, Tyler Poon, Udi Karpas, Vahid Noroozi, Venkat Srinivasan, Vijay Korthikanti, Vikram
Fugro, Vineeth Kalluru, Vitaly Kurin, Vitaly Lavrukhin, Wasi Uddin Ahmad, Wei Du, Wonmin
Byeon, Ximing Lu, Xin Dong, Yashaswi Karnati, Yejin Choi, Yian Zhang, Ying Lin, Yong-
gan Fu, Yoshi Suhara, Zhen Dong, Zhiyu Li, Zhongbo Zhu, and Zijia Chen. Nvidia nemotron
nano 2: An accurate and efficient hybrid mamba-transformer reasoning model, 2025. URL
https://arxiv.org/abs/2508.14444.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
olmo 2 furious, 2025. URL https://arxiv.org/abs/2501.00656.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss
for training specialized mixture-of-expert models, 2025. URL https://arxiv.org/abs/
2501.11873.

Shrimai Prabhumoye Mostofa Patwary Mohammad Shoeybi Bryan Catanzaro Rabeeh Karimi Ma-
habadi, Sanjeev Satheesh. Nemotron-cc-math: A 133 billion-token-scale high quality math pre-
training dataset. 2025. URL https://arxiv.org/abs/2508.15096.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-
experts inference and training to power next-generation AI scale. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 18332–18346. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/rajbhandari22a.html.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models, 2021. URL https://arxiv.org/abs/2106.04426.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.
09728.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and
Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,
2024. URL https://arxiv.org/abs/2402.00159.

14

https://arxiv.org/abs/2508.14444
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.11873
https://arxiv.org/abs/2501.11873
https://arxiv.org/abs/2508.15096
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2402.00159

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning, 2024. URL https://arxiv.org/abs/
2310.16049.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

Qwen Team. Qwen3-max: Just scale it, September 2025a.

Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.

J.A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on
Information Theory, 50(10):2231–2242, 2004. doi: 10.1109/TIT.2004.834793.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
balancing strategy for mixture-of-experts, 2024a. URL https://arxiv.org/abs/2408.
15664.

Wei Wang, Zhiquan Lai, Shengwei Li, Weijie Liu, Keshi Ge, Ao Shen, Huayou Su, and Dongsheng
Li. Pro-prophet: A systematic load balancing method for efficient parallel training of large-scale
moe models, 2024b. URL https://arxiv.org/abs/2411.10003.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

A APPENDIX

A.1 ADDITIONAL BENCHMARKS

Interestingly, our additional experiments on more contextual reasoning-heavy tasks show that
STEM’s contextual reasoning skill is better than that of the dense baseline. To directly probe reason-
ing beyond parametric knowledge, we evaluate 1B-scale baseline and STEM models on BIG-Bench
Hard (BBH) (Suzgun et al., 2022), MuSR(Sprague et al., 2024), and the LongBench(Bai et al., 2024)
multi-hop reasoning and code-understanding subsets. BBH is a collection of diverse, challenging
tasks designed to require multi-step and compositional reasoning. MuSR requires the model to track
entities and constraints over a long narrative before answering a question. The LongBench multi-
hop subset tests reasoning across multiple passages, while the code-understanding subset evaluates
comprehension of complex code snippets. As shown in Table 5, STEM consistently outperforms the
dense baseline on BBH, MuSR, and on LongBench multi-hop and code-understanding tasks across
all context-length ranges, indicating that STEM does not impair contextual reasoning and can in fact
improve it.

Table 5: Contextual reasoning benchmarks for 1B-scale models. LongBench scores are averaged
over tasks within each context-length range.

Model BBH MuSR LongBench Multi-hop LongBench Code
< 4k 4–8k ≥ 8k < 4k 4–8k ≥ 8k

Baseline 24.87 35.85 5.72 6.20 6.19 45.37 44.64 41.30
STEM 27.55 36.38 10.20 8.63 7.82 52.68 52.53 49.60

A.2 ADDITIONAL LONG-CONTEXT EVALUATION

Apart from the synthetic task Needle-in-a-haystack, we further evaluate STEM on LongBench, a
long-context benchmark that spans six task categories, including single- and multi-document ques-
tion answering, summarization, few-shot learning, synthetic tasks, and code completion. We group

15

https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2411.10003

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: LongBench results (average across tasks) for 1B models, grouped by context length.

Model 0–2k 2–4k 4–6k 6–8k 8–10k 10–12k 12k+

Base 24.0 23.8 22.1 22.3 21.9 21.1 23.5
STEM 27.6 27.6 24.4 22.7 23.0 21.7 24.2

test examples by context length and report the average scores in each regime. As shown in Ta-
ble 6, the 1B STEM model consistently matches or outperforms the 1B dense baseline across all
context-length ranges, indicating that its long-context capabilities extend beyond synthetic tasks.

16

	Introduction
	Method
	Background
	STEM
	STEM

	Analysis
	Efficiency
	VRAM and Communication Savings

	Context-length Adaptive Parameter Usage

	Experiments
	Experimental Setting
	Experimental Results
	Downstream Evaluation Results
	Ablation Studies
	Impact of STEM Layer Count
	Impact of STEM Placement
	Up-projection with additive embedding

	STEM Characteristics
	Large Angular Spread of STEM Embeddings
	Interpretability of STEM Models

	Related Works
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Additional Benchmarks
	Additional Long-context Evaluation

