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ABSTRACT

Fine-grained sparsity promises higher parametric capacity without proportional
per-token compute, but often suffers from training instability, load balancing, and
communication overhead. We introduce STEM (Scaling Transformers with Em-
bedding Modules), a static, token-indexed approach that replaces the FFN up-
projection with a layer-local embedding lookup while keeping the gate and down-
projection dense. This removes runtime routing, enables CPU offload with asyn-
chronous prefetch, and decouples capacity from both per-token FLOPs and cross-
device communication. Empirically, STEM trains stably despite extreme spar-
sity. It improves downstream performance over dense baselines while reducing
per-token FLOPs and parameter accesses (eliminating roughly one-third of FFN
parameters). STEM learns embedding spaces with large angular spread which
enhances its knowledge storage capacity. In addition, STEM strengthens long-
context performance: as sequence length grows, more distinct parameters are ac-
tivated, yielding practical test-time capacity scaling. Across 350M and 1B model
scales, STEM delivers up to∼3–4% improvements in average downstream perfor-
mance, with notable gains on knowledge and reasoning-heavy benchmarks (ARC-
Challenge, OpenBookQA, GSM8K, MMLU). Overall, STEM is an effective way
of scaling parametric memory while remaining simpler to train and deploy than
existing fine-grained sparse models.

1 INTRODUCTION
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Figure 1: (a) Validation PPL vs. training tokens for 1B STEM vs. dense; (b) Needle-in-a-Haystack
at 8k/16k/32k; (c) STEM layer: embedding tables offloaded to CPU and token-indexed ones are
prefetched to GPU.

Sparse computation is a key mechanism for realizing the benefits predicted by parameter-scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) without proportionally increasing per-token com-
pute. In particular, Mixture-of-Experts (MoE) (Shazeer et al., 2017; Artetxe et al., 2022; Fedus et al.,
2022) models have been adopted in several frontier LLMs (Team, 2025b;a; Dai et al., 2024) because
they raise parametric capacity at roughly constant activated FLOPs by sparsely activating a small
subset of experts per token. Recent work (Boix-Adsera & Rigollet, 2025; He, 2024; Databricks,
2024; Dai et al., 2024) further advocate for finer-grained sparsity that employs large number of
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micro-experts to achieve better expressivity, enhanced knowledge storing capacity, and favorable
efficiency metrics.

However, finer granularity introduces nontrivial challenges in both optimization and systems. On
the training side, even large fraction of experts can remain under-trained (Huang et al., 2025) due
to a highly non-uniform routing and result in training instability. While load-balancing objectives
(Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2020) can address these issues, they may
interfere with the primary objective if not carefully tuned (Dai et al., 2024; Qiu et al., 2025; Go &
Mahajan, 2025). On the systems side, increasing the number of experts typically raises the number
of all-to-all messages while shrinking message sizes, degrading bandwidth utilization and ampli-
fying communication overhead (Huang et al., 2024; Li et al., 2025b). Finer granularity can also
reduce parameter-access locality and degrade kernel efficiency when expert subnetworks become
too small for dense linear-algebra kernels to reach high occupancy, yielding suboptimal end-to-end
performance. To harness the full potential of fine-grained sparsity, we require: (a) stable optimiza-
tion, (b) broad expert utilization (each micro-expert learns useful representations), and (c) negligible
expert-retrieval latency and communication overhead.

We identify static sparsity as a potential solution to achieve these desired properties. Static sparsity
keeps the compute path predictable (no runtime routing latency), enables prefetch and CPU offload-
ing (removing the need for inter-node communication). Recently, static sparsity via token-indexed
routing has emerged as a promising direction (Roller et al., 2021; Google DeepMind, 2024) with
strong performance guarantees. However, such token-based selection strategy lacks context adap-
tivity. If applied naively, it can reduce the expressivity of the model and degrade quality despite
more parameters. Our ablation study in sec. 4.4.3 highlights the criticality of selecting the suitable
module for sparsification.

Based on these observations, we introduce STEM, a static, token-indexed, fine-grained mechanism
that replaces only the up-projection in gated FFNs with a token-specific vector retrieved from a
layer-local embedding table. The gating and down-projection paths are preserved and shared across
tokens. We observe that STEM achieves the following:

Better Training Stability: Despite being extremely sparse, STEM does not exhibit any training in-
stability issues as usually seen in MoE models. Figure 3a shows that unlike MoE models, STEM
does not exhibit any loss spikes.

Improved Performance with Larger Knowledge Capacity: STEM learns a representation space for
the embeddings that is conducive to better information storage. The learned embeddings exhibit a
large angular spread (i.e., low pairwise cosine similarity), which reduces representational interfer-
ence and improves addressability of the parametric memory. As a result, it effectively increases
the distinct “slots” available for storing and retrieving information. In our downstream evaluation
benchmark, STEM consistently outperforms the dense baseline on knowledge-intensive tasks like,
ARC-Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018) by large margins
(∼9–10%).

Improved Long-context Inference: During long-context inference, STEM activates more distinct pa-
rameters as sequence length grows, yielding test-time capacity scaling. As shown in Figure 1b, the
benefits strengthen with context: on Needle-in-a-Haystack (NIAH) (Kamradt, 2024), the gap over
the dense baseline increases from 8.4% to 13%.

Training and Inference-time efficiency: STEM reduces both FLOPs as well as parameter loading
cost by eliminating one-third of the parameters in FFN layers. Consequently, it is strictly more
efficient during both computation-intensive training and prefilling, as well as in memory-intensive
decoding.

We benchmark STEM against the dense baseline with 350M MobileLLM (Liu et al., 2024) and
Llama3.2-1B (Meta AI, 2024) model variants. Additionally, we compare with Hash Layer MoEs
with the same total parameter count. We report results on standard downstream suites across pre-
training, mid-training, and context-length extension. STEM improves downstream accuracy by up
to ∼3–4% while reducing per-token FLOPs and parameter accesses by up to one-third. It also
strengthens knowledge retrieval and mathematical reasoning, with gains on GSM8K (Cobbe et al.,
2021) and MMLU (Hendrycks et al., 2021), and shows pronounced improvements on Needle-in-a-
Haystack (Kamradt, 2024) at longer contexts.
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Figure 2: Schematics of (a) SwiGLU FFN, (b) MoE FFN, and (c) STEM with a single prefetched
token embedding. In MoE FFN, the full FFN module is considered as one expert.

2 METHOD

2.1 BACKGROUND

Consider a decoder-only transformer with N layers, vocabulary size V , model width d, and feed-
forward width dff . For a given layer ℓ, the SwiGLU feed-forward block uses a gate projection
Wg

ℓ ∈ Rdff×d, an up projection Wu
ℓ ∈ Rdff×d, and a down projection Wd

ℓ ∈ Rd×dff . Consider,
t ∈ {1, . . . , V } denote the vocabulary id of the current token, and the corresponding input hidden
state of the ℓth FFN layer is given by xℓ∈Rd. Then the transformation in the FFN layer is

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙

(
Wu

ℓ xℓ

))
, (1)

where ⊙ denotes elementwise multiplication.

Mixture-of-Experts (MoE). In MoE, a dense FFN is replaced by K expert FFNs {fℓ,k}Kk=1 and a
router rℓ(xℓ) that selects Tℓ(xℓ) (top-r experts) with mixture weights πℓ,k(xℓ) (Artetxe et al., 2022;
Fedus et al., 2022). With SwiGLU experts,

fℓ,k(xℓ) := Wd
ℓ,k

(
SiLU

(
Wg

ℓ,kxℓ

)
⊙

(
Wu

ℓ,kxℓ

))
, Wd

ℓ,k ∈ Rd×dff ,

the layer output is

yℓ =
∑

k∈Tℓ(xℓ)

πℓ,k(xℓ) fℓ,k(xℓ) (2)

Token-indexed Mixture-of-Experts. To eliminate the routing parameters and auxiliary routing
loss functions, (Roller et al., 2021) fixed mapping from input token ids to experts based on random
and balanced hash functions. Consequently, the FFN output is computed as,

yℓ =
∑

k∈hash(t)

fℓ,k(xℓ) (3)

2.2 STEM

Unlike MoE alternatives, STEM only replaces the dense up-projection in the SwiGLU FFN with a
token-indexed vector looked up from a per-layer table. For layer ℓ, let Uℓ∈RV×dff be the embedding
table. Given input xℓ∈Rd, the STEM layer computes

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙ Uℓ[t]

)
, (4)

where Uℓ[t]∈Rdff is the row of Uℓ corresponding to token t and ⊙ denotes elementwise multipli-
cation. We provide a simple schematic diagram for dense baseline (SwiGLU FFN), MoE and STEM
in Fig 2.
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Table 1: Theoretical efficiency for each decoder FFN layer when replacing the FFN up-projection
with a token-indexed STEM embedding table. We assume SwiGLU, ignore biases, and count ele-
mentwise ops as O(DL).

FFN STEM Savings (∆)

Prefill / training (batch size B, sequence length L)
FLOPs B(3dffdL+ dffL) B(2dffdL+ dffL) B(ddffL)
Communication 0 uniq(BL)dff

Decoding (per step, batch size B)
Parameter loading cost 3ddff 2ddff ddff
Communication 0 Buniqdff

Notation: d: model width; D: FFN hidden size; L: context length; Luniq: number of unique tokens in the
L-token context; Buniq: number of unique tokens across the batch at a decode step (≤ B); uniq(BL): number
of unique tokens across the BL tokens in a training batch.
Notes: Training multiplies both FLOP counts by ≈ the usual forward+backward factor, but the saving
∆FLOPs = dDL remains. Communication doubles during training as gradients of the STEM embeddings are
transferred back to CPU for optimizer update.

2.3 STEM†

STEM uses strictly fewer active parameters, and FLOPs for each token. And because of the archi-
tectural bias, STEM is susceptible to some loss of contextual learning ability. We also introduce a
hybrid variant of STEM, which retains the up projection matrix in FFN, but complements with an
additive token-specific modulation. Concretely, the new variant STEM† computes the FFN output
as follows,

yℓ = Wd
ℓ

(
SiLU

(
Wg

ℓxℓ

)
⊙ (Wu

ℓ xℓ +Uℓ[t])
)
, (5)

3 ANALYSIS

3.1 EFFICIENCY

STEM improves both computation and memory access. During compute-intensive phases (train-
ing and prefill), replacing the FFN up-projection with token-indexed embeddings reduces the per-
layer FLOPs. During memory-intensive decoding, it lowers parameter traffic relative to a dense
up-projection. Table 1 summarizes the per-layer counts and the resulting savings. Below we present
a simple theoretical analysis of the training and inference efficiency for a single decoder layer.

Training efficiency. Consider a batch of B sequences with sequence length L, hidden width d, and
FFN hidden size dff . Ignoring elementwise ops and biases, the per-layer training FLOPs (forward +
backward + weight gradients) can be written as

F base
train = B

(
4Ld2 + 2L2d+ 3Lddff

)
,

F stem
train = B

(
4Ld2 + 2L2d︸ ︷︷ ︸

Attn

+2Lddff︸ ︷︷ ︸
MLP

)
.

The per-layer FLOPs reduction of STEM is therefore

∆Ftrain = F base
train − F stem

train = BLddff ,

and the corresponding saving fraction is

saving fraction =
∆Ftrain

F base
train

=
dff

4d+ 2L+ 3dff
.

Plugging in the architecture hyperparameters for each Qwen2.5 model yields saving fractions of
21.7% for Qwen2.5-1.5B, 22.8% for Qwen2.5-3B, 23.9% for Qwen2.5-7B, 19.7% for Qwen2.5-
14B, and 24.8% for Qwen2.5-32B.
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Inference efficiency. Prefill efficiency closely matches training efficiency because both are
compute-bound. In contrast, decoding is primarily memory-bound: the dominant cost is loading
parameters and KV cache rather than doing FLOPs. For a batch size B and context length L, we
can write the per-layer memory access cost as

M base
dec = B

(
4d2 + 2Ld+ 3d dff

)
,

M stem
dec = B

(
2Ld︸︷︷︸

KV cache

+ 4d2 + 2d dff︸ ︷︷ ︸
projection params

)
.

The reduction in parameter loading cost is
∆Mdec = M base

dec −M stem
dec = Bddff ,

so the saving fraction is

saving fraction =
∆Mdec

M base
dec

=
dff

4d+ 2L+ 3dff
,

which matches the FLOPs saving factor during training and prefill. As the batch size grows, the
linear layers become increasingly compute-bound, and STEM’s per-layer FLOPs reduction ensures
that this efficiency gain is sustained even in the high-throughput regime.

A key difference from MoE is how cost scales with batch size. In STEM, parameter traffic grows
mainly with the number of unique tokens seen. In contrast, MoE expert selection expands with batch
size and routing diversity; larger batches tend to light up more experts, quickly eroding the sparsity
benefit.

3.1.1 VRAM AND COMMUNICATION SAVINGS

MoE models use a lot of VRAM. The expert subnetworks must stay on the GPU, or be fetched
repeatedly. Expert parallelism also needs all-to-all communication, even when only a few experts
are active (Huang et al., 2024; Go & Mahajan, 2025). STEM avoids these costs. Its embeddings
are token-indexed and local to each layer, so the model can prefetch them without any routing logic.
These tables are separate from the matmul weights, so we can offload them to CPU memory. In
our setups, this frees up roughly one-third of the FFN parameter memory. We can also replicate the
embedding tables in CPU memory on every serving node. This eliminates cross-node expert traffic
and the synchronization overhead of expert parallelism.

Prefetching cost. The prefetching cost can be greatly reduced by deduplicating the STEM embed-
dings of the batched tokens. We can further cut traffic by caching the most frequently used STEM
embeddings, using the extra memory we save from removing the up-projection matrices. As the
model embedding size grows, compute cost increases quadratically, but prefetching cost grows only
linearly. This makes CPU-offloaded STEM increasingly attractive and scalable for larger model
sizes.

3.2 CONTEXT-LENGTH ADAPTIVE PARAMETER USAGE

Because STEM employs token-indexed, fine-grained sparsity, the number of distinct parameters
touched in a forward pass grows with the number of unique tokens in the window. Aside from the
shared projections in attention (Q/K/V/O) and the gated FFN’s gate/down projections, the STEM
module draws one vector per token ID per layer; repeated tokens reuse the same vector, while novel
tokens activate new ones. Let L be the context length and Luniq the count of unique token ids in
the sequence; with STEM applied at layers S and FFN width dff , the STEM-specific parameters
activated by a single sequence are

ParamsSTEM
act (L) = |S| dff Luniq.

In natural text Luniq typically grows sublinearly (Heaps-like), so longer contexts steadily engage
more parameters without increasing per-token FLOPs.

This yields test-time capacity scaling with predictable latency: active parameter count keeps on
growing with context length, and does not saturate quickly like in MoEs. The dense gating and
down-projection preserve contextual mixing, while the STEM path supplies additional capacity at
low overhead, supporting long-context tasks (multi-document RAG, CoT) with near-constant per-
token compute. 1b illustrates how STEM outperforms the dense baseline at longer context lengths.
Additional long-context evaluation on LongBench are provided in Appendix A.2.
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Table 2: Training hyperparameters by setting. Common: weight decay = 0.1, β1 = 0.9, β2 = 0.95,
LR warmup ratio = 0.01. Minimum LR is 0.1× peak LR. For 1B pretraining, we follow the OLMO
schedule for 5T tokens but stop early at 1T.

Configuration 350M Pretrain 1B Pretrain 1B Midtrain 1B Context-Extend

Peak LR 2e-3 4e-4 3.2e-4 1e-5
LR schedule cosine cosine linear cosine
Batch size 512 512 512 64
Max sequence length 2048 4096 4096 32768
Training steps 100,000 500,000 50,000 10,000
Cross-doc masking No No No Yes

4 EXPERIMENTS

We evaluate STEM against dense and MoE baselines on downstream tasks while controlling for
(i) training compute (activated FLOPs) and (ii) the number of training tokens. MoE variants are
configured to match STEM’s total parameter count, and their activated FLOPs are kept comparable
to the dense baseline. (Note: STEM uses strictly fewer per-token FLOPs than both baselines.)
We study two model scales — 350M and 1B, performing comprehensive ablations at 350M and
validating STEM at 1B under both pretraining-from-scratch and mid-training insertion. Finally, we
assess long-context behavior by further fine-tuning with extended context length. We evaluate the
Return on Investment (ROI)—defined here as the ratio of model accuracy to training FLOPs—to
determine the training efficiency of each model, as the economic value has become a major concern
of foundational models. Formally, we define it as:

Training ROI =
Model Accuracy (Avg)
Total Training FLOPs

4.1 EXPERIMENTAL SETTING

Datasets. For pretraining, we use OLMO-MIX-1124 (OLMo et al., 2025), a 3.9T-token cor-
pus built from DCLM (Li et al., 2025a) and Dolma 1.7 (Soldaini et al., 2024); we subsample
1T tokens for our runs. For mid-training, we mix OLMO-MIX-1124 (65%), NEMOTRON-CC-
MATH-V1 (5%) (Rabeeh Karimi Mahabadi, 2025), and NEMOTRON-PRETRAINING-CODE-V1
(30%) (NVIDIA et al., 2025). For context-length extension, we use PROLONG-DATA-64K (Gao
et al., 2024) (63% long-context / 37% short-context) and pack sequences up to 32,768 tokens with
cross-document attention masking.

Models. We use model architectures from MobileLLM-350M (Liu et al., 2024) and Llama3.2
-1B (Meta AI, 2024) for evaluations. In both the models, we do not share the input embeddings and
the language model head. Unless otherwise noted, one third of FFN layers are replaced at uniform
intervals by the sparse alternative. For STEM, the dense up-projection is replaced by an embedding
table of size V × dff in each layer. For Hash layer MoE design, we use top-1 routing and choose
the number of experts per layer to match STEM’s total parameter count, while keeping activated
FLOPs comparable to the dense baseline. We also report ablations that replace one half of FFN
layers with STEM, and an extreme setting that replaces all FFN layers except the first.

Evaluations. Pretrained checkpoints are evaluated zero-shot on eight common-sense reasoning
tasks: ARC-Easy, ARC-Challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al.,
2018), and WinoGrande (ai2, 2019). To assess advanced knowledge and mathematical reasoning
for mid-training checkpoints, we report MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
2021). For long-context behavior after context extension, we use Needle-in-a-Haystack (NIAH)
(Kamradt, 2024).

Training details. We pretrain the 350M models on 100B tokens and the 1B models on 1T tokens.
We use the AdamW optimizer with a cosine learning rate schedule, 10% warmup, and a minimum

6
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Figure 3: (a) Training Stability. Unlike Hash layer MoE, the 350M STEM model does not show
any training loss spikes. (b) Performance scaling with more STEM layers. With more STEM
layers, a lower training loss can be achieved at fewer training FLOPs.

learning rate of 0.1× the peak value. After pretraining, we run a midtraining stage on 100B tokens,
followed by a context-extension stage on 20B tokens. The full set of hyperparameters is listed in
Table 2.

4.2 EXPERIMENTAL RESULTS

STEM demonstrates the benefits of fine-grained sparse scaling by improving downstream perfor-
mance with fewer training FLOPs. Interestingly, STEM does not suffer from training instability
issues that is often the case for fine-grained MoE models (Databricks, 2024; Dai et al., 2024). In-
stead, the geometric properties of the STEM embedding spaces further help improve the training
convergence. Figure 3a demonstrates the training stability of STEM compared to token-indexed
Hash Layers MoE, where HashMoE has more bumpy jumps during the training. Moreover, we see
the STEM architecture has larger model capacity (lower training loss tendency) when we scale up
the training tokens as the loss curve of STEM crosses over the other two architectures when training
tokens increase. Furthermore, even with fewer training FLOPs STEM achieves lower training 3b
and validation 1a losses.

4.3 DOWNSTREAM EVALUATION RESULTS

We compare STEM with dense baseline as well as Hash layer MoE at 350M scale. On the other
hand, for 1B model, we compare STEM (with one-third of FFN replacement) with only the dense
baseline. In both cases 3, we observe substantial improvement in tasks requiring comparatively more
external knowledge such as, Arc-Challenge and OpenBookQA, while having modest improvements
on the rest of the tasks. Additionally, the improvements on the knowledge-intensive tasks are more
significant with increase in FFN replacement with STEM layers. Note all the STEM replacement
are replacing the up-projection component of original FFN unless specified in the table.

Upon midtraining 4, the 1B STEM model continues to outperform the dense baseline on the lan-
guage modeling downstream tasks. Additionally, STEM architecture exhibits improvements in rea-
soning and knowledge retrieval abilities through GSM8k and MMLU performances.

4.4 ABLATION STUDIES

4.4.1 IMPACT OF STEM LAYER COUNT

To identify the efficacy of STEM layers, we vary the number of FFN layers we replace with STEM
alternative. We place the STEM-based decoder layers at regular intervals, interleaved with regular

1ROI is normalized at each basline for better comparison.
2STEM defaults to replacing one third of FFN layers, also writes as STEM-1/3

7
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Table 3: Downstream accuracy of pretrained models at 350M and 1B scales. We report the total
number of parameters and the number of active parameters for each model variant. Baseline denotes
the dense SwiGLU FFN model. For 350M, in the first few rows, we compare sparse alternatives
under similar FLOPs: Hash-MoE (top-1/16 experts in 1/3 of FFN layers), STEM with 1/3 of FFN
layers replaced (including up projection replacement, gate projection replacement, and STEM† with
an additional up-projection). In the next set of rows, we compare STEM with varying up projection
layer replacement ratios (1/3, 1/2, full). For 1B, we report the dense baseline and STEM with 1/3 up
projection layer replacement.

Model #Total
Params (B)

#Active
Params (B) ARC-E ARC-C BoolQ PIQA SIQA HSwag OBQA Wino Avg #GFLOPs ROI1

350M (Pretraining)

Baseline 0.37 0.37 57.66 30.55 58.20 69.42 41.10 49.68 34.80 56.35 49.72 0.74 1x
Hash-MoE 1.22 0.37 58.88 36.33 55.44 70.21 43.55 47.56 39.26 53.44 50.58 0.74 1.02x
STEM 2 1.14 0.35 63.01 32.68 60.31 70.18 39.76 52.38 33.00 55.88 50.90 0.70 1.08x
STEM (gate-proj) 1.14 0.35 54.56 34.12 59.13 64.92 44.56 43.62 36.91 55.00 49.10 0.70 1.04x
STEM† 1.21 0.35 57.94 34.45 59.10 68.85 43.70 45.75 41.02 53.98 50.60 0.74 1.02x
STEM-1/2 1.85 0.34 62.95 40.00 62.02 70.94 43.70 51.49 46.68 55.78 54.20 0.67 1.20x
STEM-full 3.25 0.30 62.21 39.61 61.99 70.73 43.60 48.44 44.53 56.33 53.43 0.60 1.33x

1B (Pretraining)

Baseline 1.50 1.50 66.98 41.88 64.21 73.44 44.09 59.65 39.84 56.48 55.82 3.00 1x
STEM 6.75 1.41 65.95 42.03 61.66 75.00 44.78 60.37 45.90 57.34 56.63 2.83 1.08x

Table 4: Mid-trained model evaluations (1B).

Model ARC-E ARC-C BoolQ PIQA SIQA HellaSwag OBQA Winogrande Avg GSM8K MMLU

1B (Mid-training)

Baseline 70.78 42.11 65.84 72.95 47.13 60.39 42.97 57.81 57.50 44.2 29.92
STEM 69.78 44.22 68.54 74.69 45.65 61.90 45.70 57.42 58.49 46.4 32.38

FFN-based decoder blocks. Table 3 shows that increasing the number of replacement from one-third
to half improves the average downstream performance substantially. However, the improvement
slows down beyond that. Note that, with increasing number of replacements, the training FLOPs also
decrease, and therefore the overall training ROI still increases. We can see that the STEM (STEM-
1/3) achieves 1.08x training ROI of the baseline, while STEM-1/2 achieves 1.20x and STEM-full
achieves 1.33x of the baseline. Figure 3b presents the comparison of the three variants in terms of
loss vs training FLOPs.

4.4.2 IMPACT OF STEM PLACEMENT

Placement of STEM inside the gated FFN matters. To demonstrate this, we compare two op-
tions: replacing the up-projection vs. the gate-projection. As shown in Table 3, replacing the
gate underperforms even the dense baseline, while replacing the up-projection yields consistent
gains. In SwiGLU, the gate σ(W gx) should depend on the current hidden state x to modulate
ϕ(Wux) contextually. Swapping W gx for a token-indexed embedding et makes the gate largely
input-independent (σ(et)), weakening its context-aware selection. Moreover, the nonlinearity can
be effectively abstracted away by the learned embeddings, and consequently its role is weakened. In
contrast, applying STEM to the up-projection preserves contextual information in gate computation
path and proves to be an optimal fine-grained sparse design.

4.4.3 UP-PROJECTION WITH ADDITIVE EMBEDDING

To further study the optimality of STEM’s design, we implement STEM† 2.3, that retains up pro-
jection and additively modulates its output with the STEM embedding. Although it adds more
parameters and FLOPs, the downstream performance does not improve.

8
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Figure 4: Geometry of STEM embeddings. (a) Distribution of pairwise cosine similarity of STEM
embeddings of sampled layers. (b) Pair-wise cosine similarity distributions of up-projection output
space and STEM embeddings. (c) Cosine similarities are computed between the input hidden states
of the down projection matrix. All the plots are provided from the 1B model.

5 STEM CHARACTERISTICS

In this section, we analyze some of the characteristics that STEM embeddings demonstrate. We
observe that in each layer the STEM embeddings of different tokens have very low pairwise co-
sine similarity which elicits some desirable properties regarding information storage capacity and
training convergence. Additionally, because of the clear mapping between the embeddings and the
tokens, STEM models are more interpretable.

5.1 LARGE ANGULAR SPREAD OF STEM EMBEDDINGS

Figure 4a shows that STEM embeddings exhibit very low pairwise cosine similarity—i.e., a large
angular spread. We hypothesize that this property improves the information–retrieval behavior of
FFN layers by reducing interference among stored items. Prior work (Geva et al., 2021; Meng et al.,
2022) models FFNs as key–value memories: each hidden unit is associated with a key given by a
row of the up-projection W (u) ∈ Rdff×dmodel and a value given by the corresponding column of the
down-projection W (d) ∈ Rdmodel×dff ; the gate projection provides context-dependent, multiplicative
modulation that creates a selective read. In this view, the pre-activation h = ϕ(W (u)x) induces a
soft address over memory slots (hidden units).

In contrast, STEM replaces the learned affine addressing with a direct, token-indexed address vector,
upon which the gate still applies context-dependent modulation. To quantify the geometry of these
address vectors, we report the distribution of pairwise cosine similarities between unit-normalized
vectors. A distribution concentrated near zero (as in Figure 4a and Figure 4b) indicates that most an-
gles are close to 90◦ and thus the angular spread between the vectors is reasonably large. This large
angular spread lowers cross-talk between slots and can thereby improve the effective information
storage capacity of the FFN memory at fixed width Donoho & Elad (2003); Tropp (2004). Figure
4c demonstrates the distribution of pairwise cosine similarities between the address vectors after the
modulation applied by the gate projection.

5.2 INTERPRETABILITY OF STEM MODELS

STEM exposes token-indexed, layer-local parameters that act as interpretable FFN addresses, en-
abling simple, reversible edits that causally steer factual predictions with high reliability and low
collateral change. Because each token t has a layer-specific STEM vector et,ℓ ∈Rdff , we can inter-
vene at inference time in a transparent way.

For example, Figure 5 shows that we can manually control the top next-token probabilities by per-
forming a swap at layer ℓ,

eSpain,ℓ ← eGermany,ℓ,

while leaving all other parameters unchanged. Under the original prompt containing “Spain”, the in-
tervened model’s top-k next-token distribution closely matches that of the control prompt containing
“Germany”, illustrating precise, token-indexed knowledge editing.

9
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(a) Original:
The capital of Spain is
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(c) Intervened:
The capital of Spain is

Figure 5: Knowledge edit. Top-4 next-token probabilities for the original prompt “The capital of
Spain is” (left), for the target prompt “The capital of Germany is” (middle), and for the intervened
model where we swap the STEM vector eSpain,ℓ with eGermany,ℓ at every STEM layer keeping the
original prompt the same(right). The swap shifts mass from Madrid to Berlin, demonstrating
token-indexed, layer-local, and reversible control of factual predictions.

6 RELATED WORKS

MoE (Shazeer et al., 2017; Fedus et al., 2022) introduced large parametric capacity for LLMs at
near-constant FLOPs through sparse computation. The success of MoE models hinges closely with
auxiliary loss function designs (Fedus et al., 2022; Rajbhandari et al., 2022; Qiu et al., 2025), and
system-level solutions (Huang et al., 2024; Go & Mahajan, 2025; Wang et al., 2024b) that ensure
load balance among expert networks, training stability, mitigation of representation collapse (Chi
et al., 2022), and tolerable communication overload during training and inference. To avoid the
interference of auxiliary routing losses with the training objective, recent works have proposed aux-
iliary loss-free approaches (Roller et al., 2021; Wang et al., 2024a) that inject fixed or dynamic
routing bias to the MoE model.

Conversely, PKM models (Lample et al., 2019) reserve a large key-value parametric memory with
efficient top-k selection through memory-efficient keys arranged in product space. PKM(Lample
et al., 2019; He, 2024) scales up the parametric memory compared to MoE, increases the granularity
of sparsity, and avoids the cross-device communication overhead, but at the cost of high memory
lookup cost during inference, and under-training issues of the large value memory. These challenges
require sophisticated architectural modifications (Huang et al., 2025) and advanced system-level
solutions (Berges et al., 2024) to be overcome.

Recently, Gemma-3n (Google DeepMind, 2024) proposed Per Layer Embeddings (PLE) for small
on-device models to complement their limited parametric capacity with token-indexed sparse para-
metric memory. However, they do not dispose of original FFN modules, and use a much lower-
dimensional PLE only to modulate the FFN output in each layer. These embedding tables are ac-
commodated in fast storage, outside GPU HBM memory to accommodate larger batch sizes and
enable fast prefetching.

7 CONCLUSION

This work introduced STEM, a static, token-indexed design that replaces the FFN up-projection
with a layer-local embedding lookup.This decouples parametric capacity from per-token compute
and cross-device communication, yielding lower per-token FLOPs and fewer parameter accesses,
and enabling CPU offload with asynchronous prefetch. Empirically, STEM trains stably despite
extreme sparsity (compared to fine-grained MoE variants), improves accuracy over dense baselines,
and exhibits higher effective memory capacity via a large-angular-spread embedding space. It also
strengthens long-context performance by activating more distinct parameters as sequence length
grows, providing practical test-time capacity scaling.

10
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8 ETHICS STATEMENT

This work develops and empirically evaluates a novel large language model architecture. All training
and evaluation datasets are publicly available and widely used within the research community; no
new human-subject data were collected, and no sensitive or proprietary data sources were used.
Due to computational resource constraints, experiments were conducted on models with up to one
billion parameters and evaluated at pre-training and mid-training checkpoints, and the scope of the
conclusions should be interpreted accordingly. Future research in this direction should continue to
assess ethical considerations throughout model development, evaluation, and potential deployment.

9 REPRODUCIBILITY STATEMENT

This work follows the reproducibility recommendations of ICLR; details necessary to replicate re-
sults are referenced rather than repeated here. Section 4.1 documents the training datasets, model
architectures, training procedures, and evaluation datasets and protocols referenced throughout the
experiments. To facilitate independent verification, code and trained model checkpoints will be
released to support full reproducibility.
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A APPENDIX

A.1 ADDITIONAL BENCHMARKS

Interestingly, our additional experiments on more contextual reasoning-heavy tasks show that
STEM’s contextual reasoning skill is better than that of the dense baseline. To directly probe reason-
ing beyond parametric knowledge, we evaluate 1B-scale baseline and STEM models on BIG-Bench
Hard (BBH) (Suzgun et al., 2022), MuSR(Sprague et al., 2024), and the LongBench(Bai et al., 2024)
multi-hop reasoning and code-understanding subsets. BBH is a collection of diverse, challenging
tasks designed to require multi-step and compositional reasoning. MuSR requires the model to track
entities and constraints over a long narrative before answering a question. The LongBench multi-
hop subset tests reasoning across multiple passages, while the code-understanding subset evaluates
comprehension of complex code snippets. As shown in Table 5, STEM consistently outperforms the
dense baseline on BBH, MuSR, and on LongBench multi-hop and code-understanding tasks across
all context-length ranges, indicating that STEM does not impair contextual reasoning and can in fact
improve it.

Table 5: Contextual reasoning benchmarks for 1B-scale models. LongBench scores are averaged
over tasks within each context-length range.

Model BBH MuSR LongBench Multi-hop LongBench Code
< 4k 4–8k ≥ 8k < 4k 4–8k ≥ 8k

Baseline 24.87 35.85 5.72 6.20 6.19 45.37 44.64 41.30
STEM 27.55 36.38 10.20 8.63 7.82 52.68 52.53 49.60

A.2 ADDITIONAL LONG-CONTEXT EVALUATION

Apart from the synthetic task Needle-in-a-haystack, we further evaluate STEM on LongBench, a
long-context benchmark that spans six task categories, including single- and multi-document ques-
tion answering, summarization, few-shot learning, synthetic tasks, and code completion. We group
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Table 6: LongBench results (average across tasks) for 1B models, grouped by context length.

Model 0–2k 2–4k 4–6k 6–8k 8–10k 10–12k 12k+

Base 24.0 23.8 22.1 22.3 21.9 21.1 23.5
STEM 27.6 27.6 24.4 22.7 23.0 21.7 24.2

test examples by context length and report the average scores in each regime. As shown in Ta-
ble 6, the 1B STEM model consistently matches or outperforms the 1B dense baseline across all
context-length ranges, indicating that its long-context capabilities extend beyond synthetic tasks.
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