

# 000 STEM: SCALING TRANSFORMERS WITH EMBEDDING 001 MODULES 002 003 004

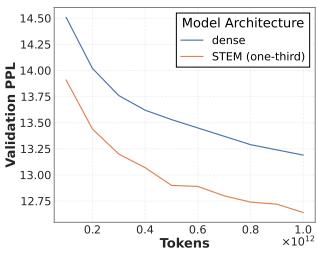
005 **Anonymous authors**

006 Paper under double-blind review

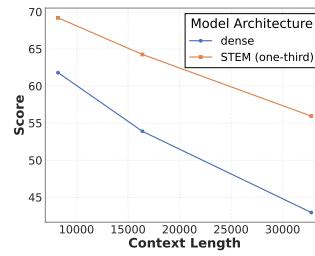
## 007 008 ABSTRACT

011 Fine-grained sparsity promises higher parametric capacity without proportional  
012 per-token compute, but often suffers from training instability, load balancing, and  
013 communication overhead. We introduce **STEM** (*Scaling Transformers with Em-  
014 bedding Modules*), a static, token-indexed approach that replaces the FFN up-  
015 projection with a layer-local embedding lookup while keeping the gate and down-  
016 projection dense. This removes runtime routing, enables CPU offload with asyn-  
017 chronous prefetch, and decouples capacity from both per-token FLOPs and cross-  
018 device communication. Empirically, STEM trains stably despite extreme spar-  
019 sity. It improves downstream performance over dense baselines while reducing  
020 per-token FLOPs and parameter accesses (eliminating roughly one-third of FFN  
021 parameters). STEM learns embedding spaces with large angular spread which  
022 enhances its knowledge storage capacity. In addition, STEM strengthens long-  
023 context performance: as sequence length grows, more distinct parameters are ac-  
024 tivated, yielding practical test-time capacity scaling. Across 350M and 1B model  
025 scales, STEM delivers **up to  $\sim$ 3–4% improvements in average downstream perfor-  
026 mance**, with notable gains on knowledge and reasoning-heavy benchmarks (ARC-  
027 Challenge, OpenBookQA, GSM8K, MMLU). Overall, STEM is an effective way  
028 of scaling parametric memory while remaining simpler to train and deploy than  
029 existing fine-grained sparse models.

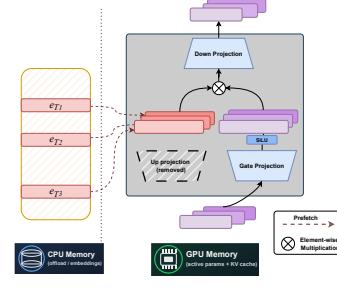
## 030 1 INTRODUCTION



041 (a) Validation PPL scores



040 (b) Context Length Scalability



042 (c) STEM layer

044 Figure 1: (a) Validation PPL vs. training tokens for 1B STEM vs. dense; (b) Needle-in-a-Haystack  
045 at 8k/16k/32k; (c) STEM layer: embedding tables offloaded to CPU and token-indexed ones are  
046 prefetched to GPU.

048 Sparse computation is a key mechanism for realizing the benefits predicted by parameter-scaling  
049 laws (Kaplan et al., 2020; Hoffmann et al., 2022) without proportionally increasing per-token com-  
050 pute. In particular, Mixture-of-Experts (MoE) (Shazeer et al., 2017; Artetxe et al., 2022; Fedus et al.,  
051 2022) models have been adopted in several frontier LLMs (Team, 2025b;a; Dai et al., 2024) because  
052 they raise *parametric capacity* at roughly constant *activated FLOPs* by sparsely activating a small  
053 subset of experts per token. Recent work (Boix-Adsera & Rigellet, 2025; He, 2024; Databricks,  
2024; Dai et al., 2024) further advocate for *finer-grained* sparsity that employs large number of

054 *micro-experts* to achieve better expressivity, enhanced knowledge storing capacity, and favorable  
 055 efficiency metrics.  
 056

057 However, finer granularity introduces nontrivial challenges in both optimization and systems. On  
 058 the training side, even large fraction of experts can remain under-trained (Huang et al., 2025) due  
 059 to a highly non-uniform routing and result in training instability. While load-balancing objectives  
 060 (Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2020) can address these issues, they may  
 061 interfere with the primary objective if not carefully tuned (Dai et al., 2024; Qiu et al., 2025; Go &  
 062 Mahajan, 2025). On the systems side, increasing the number of experts typically raises the number  
 063 of all-to-all messages while shrinking message sizes, degrading bandwidth utilization and ampli-  
 064 fying communication overhead (Huang et al., 2024; Li et al., 2025b). Finer granularity can also  
 065 reduce parameter-access locality and degrade kernel efficiency when expert subnetworks become  
 066 too small for dense linear-algebra kernels to reach high occupancy, yielding suboptimal end-to-end  
 067 performance. To harness the full potential of fine-grained sparsity, we require: **(a) stable optimiza-  
 068 tion**, **(b) broad expert utilization** (each micro-expert learns useful representations), and **(c) negligible  
 069 expert-retrieval latency and communication overhead**.

070 We identify static sparsity as a potential solution to achieve these desired properties. Static sparsity  
 071 keeps the compute path predictable (no runtime routing latency), enables prefetch and CPU offload-  
 072 ing (removing the need for inter-node communication). Recently, static sparsity via token-indexed  
 073 routing has emerged as a promising direction (Roller et al., 2021; Google DeepMind, 2024) with  
 074 strong performance guarantees. However, such token-based selection strategy lacks context adap-  
 075 tivity. If applied naively, it can reduce the expressivity of the model and degrade quality despite  
 076 more parameters. Our ablation study in sec. 4.4.3 highlights the criticality of selecting the suitable  
 077 module for sparsification.

078 Based on these observations, we introduce *STEM*, a static, token-indexed, fine-grained mechanism  
 079 that replaces *only* the up-projection in gated FFNs with a token-specific vector retrieved from a  
 080 layer-local embedding table. The gating and down-projection paths are preserved and shared across  
 081 tokens. We observe that STEM achieves the following:

082 *Better Training Stability*: Despite being extremely sparse, STEM does not exhibit any training in-  
 083 stability issues as usually seen in MoE models. Figure 3a shows that unlike MoE models, STEM  
 084 does not exhibit any loss spikes.

085 *Improved Performance with Larger Knowledge Capacity*: STEM learns a representation space for  
 086 the embeddings that is conducive to better information storage. The learned embeddings exhibit a  
 087 large angular spread (i.e., low pairwise cosine similarity), which reduces representational inter-  
 088 ference and improves addressability of the parametric memory. As a result, it effectively increases  
 089 the distinct “slots” available for storing and retrieving information. In our downstream evaluation  
 090 benchmark, STEM consistently outperforms the dense baseline on knowledge-intensive tasks like,  
 091 ARC-Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018) by large margins  
 (~9–10%).

092 *Improved Long-context Inference*: During long-context inference, STEM activates more distinct pa-  
 093 rameters as sequence length grows, yielding test-time capacity scaling. As shown in Figure 1b, the  
 094 benefits strengthen with context: on Needle-in-a-Haystack (NIAH) (Kamradt, 2024), the gap over  
 095 the dense baseline increases from 8.4% to 13%.

096 *Training and Inference-time efficiency*: STEM reduces both FLOPs as well as parameter loading  
 097 cost by eliminating one-third of the parameters in FFN layers. Consequently, it is strictly more  
 098 efficient during both computation-intensive training and prefilling, as well as in memory-intensive  
 099 decoding.

100 We benchmark STEM against the dense baseline with 350M MobileLLM (Liu et al., 2024) and  
 101 Llama3.2-1B (Meta AI, 2024) model variants. Additionally, we compare with Hash Layer MoEs  
 102 with the *same total parameter count*. We report results on standard downstream suites across pre-  
 103 training, mid-training, and context-length extension. STEM improves downstream accuracy by up  
 104 to ~3–4% while reducing per-token FLOPs and parameter accesses by up to one-third. It also  
 105 strengthens knowledge retrieval and mathematical reasoning, with gains on GSM8K (Cobbe et al.,  
 106 2021) and MMLU (Hendrycks et al., 2021), and shows pronounced improvements on Needle-in-a-  
 107 Haystack (Kamradt, 2024) at longer contexts.

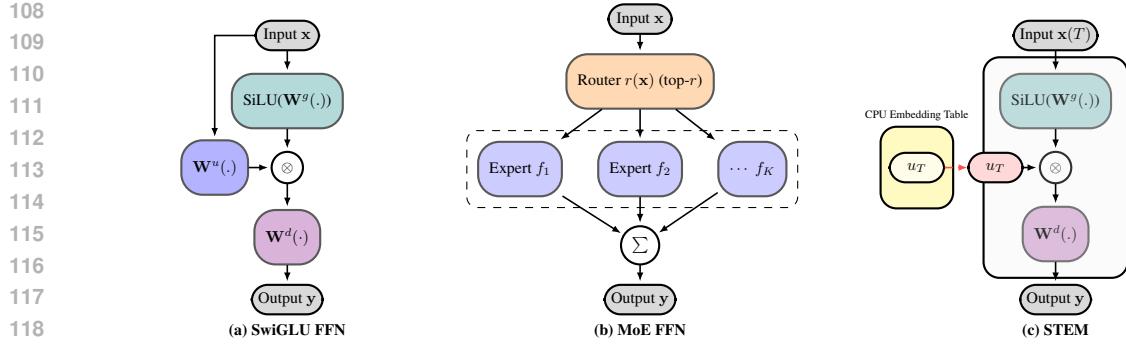


Figure 2: **Schematics of (a) SwiGLU FFN, (b) MoE FFN, and (c) STEM with a single prefetched token embedding.** In MoE FFN, the full FFN module is considered as one expert.

## 2 METHOD

### 2.1 BACKGROUND

Consider a decoder-only transformer with  $N$  layers, vocabulary size  $V$ , model width  $d$ , and feed-forward width  $d_{\text{ff}}$ . For a given layer  $\ell$ , the SwiGLU feed-forward block uses a gate projection  $\mathbf{W}_{\ell}^g \in \mathbb{R}^{d_{\text{ff}} \times d}$ , an up projection  $\mathbf{W}_{\ell}^u \in \mathbb{R}^{d_{\text{ff}} \times d}$ , and a down projection  $\mathbf{W}_{\ell}^d \in \mathbb{R}^{d \times d_{\text{ff}}}$ . Consider,  $t \in \{1, \dots, V\}$  denote the vocabulary id of the current token, and the corresponding input hidden state of the  $\ell^{\text{th}}$  FFN layer is given by  $\mathbf{x}_{\ell} \in \mathbb{R}^d$ . Then the transformation in the FFN layer is

$$\mathbf{y}_{\ell} = \mathbf{W}_{\ell}^d (\text{SiLU}(\mathbf{W}_{\ell}^g \mathbf{x}_{\ell}) \odot (\mathbf{W}_{\ell}^u \mathbf{x}_{\ell})), \quad (1)$$

where  $\odot$  denotes elementwise multiplication.

**Mixture-of-Experts (MoE).** In MoE, a dense FFN is replaced by  $K$  expert FFNs  $\{f_{\ell,k}\}_{k=1}^K$  and a router  $r_{\ell}(\mathbf{x}_{\ell})$  that selects  $\mathcal{T}_{\ell}(\mathbf{x}_{\ell})$  (top- $r$  experts) with mixture weights  $\pi_{\ell,k}(\mathbf{x}_{\ell})$  (Artetxe et al., 2022; Fedus et al., 2022). With SwiGLU experts,

$$f_{\ell,k}(\mathbf{x}_{\ell}) := \mathbf{W}_{\ell,k}^d (\text{SiLU}(\mathbf{W}_{\ell,k}^g \mathbf{x}_{\ell}) \odot (\mathbf{W}_{\ell,k}^u \mathbf{x}_{\ell})), \quad \mathbf{W}_{\ell,k}^d \in \mathbb{R}^{d \times d_{\text{ff}}},$$

the layer output is

$$\mathbf{y}_{\ell} = \sum_{k \in \mathcal{T}_{\ell}(\mathbf{x}_{\ell})} \pi_{\ell,k}(\mathbf{x}_{\ell}) f_{\ell,k}(\mathbf{x}_{\ell}) \quad (2)$$

**Token-indexed Mixture-of-Experts.** To eliminate the routing parameters and auxiliary routing loss functions, (Roller et al., 2021) fixed mapping from input token ids to experts based on random and balanced hash functions. Consequently, the FFN output is computed as,

$$\mathbf{y}_{\ell} = \sum_{k \in \text{hash}(t)} f_{\ell,k}(\mathbf{x}_{\ell}) \quad (3)$$

### 2.2 STEM

Unlike MoE alternatives, STEM only replaces the dense up-projection in the SwiGLU FFN with a *token-indexed* vector looked up from a per-layer table. For layer  $\ell$ , let  $\mathbf{U}_{\ell} \in \mathbb{R}^{V \times d_{\text{ff}}}$  be the embedding table. Given input  $\mathbf{x}_{\ell} \in \mathbb{R}^d$ , the STEM layer computes

$$\mathbf{y}_{\ell} = \mathbf{W}_{\ell}^d (\text{SiLU}(\mathbf{W}_{\ell}^g \mathbf{x}_{\ell}) \odot \mathbf{U}_{\ell}[t]), \quad (4)$$

where  $\mathbf{U}_{\ell}[t] \in \mathbb{R}^{d_{\text{ff}}}$  is the row of  $\mathbf{U}_{\ell}$  corresponding to token  $t$  and  $\odot$  denotes elementwise multiplication. We provide a simple schematic diagram for dense baseline (SwiGLU FFN), MoE and STEM in Fig 2.

162 Table 1: Theoretical efficiency for each decoder FFN layer when replacing the FFN up-projection  
 163 with a token-indexed STEM embedding table. We assume SwiGLU, ignore biases, and count ele-  
 164 mentwise ops as  $\mathcal{O}(DL)$ .

|                                                                                       | FFN                                    | STEM                                   | Savings ( $\Delta$ ) |
|---------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------|
| <i>Prefill / training (batch size <math>B</math>, sequence length <math>L</math>)</i> |                                        |                                        |                      |
| FLOPs                                                                                 | $B(3d_{\text{ff}}dL + d_{\text{ff}}L)$ | $B(2d_{\text{ff}}dL + d_{\text{ff}}L)$ | $B(d_{\text{ff}}L)$  |
| Communication                                                                         | 0                                      | $\text{uniq}(BL)d_{\text{ff}}$         |                      |
| <i>Decoding (per step, batch size <math>B</math>)</i>                                 |                                        |                                        |                      |
| Parameter loading cost                                                                | $3dd_{\text{ff}}$                      | $2dd_{\text{ff}}$                      | $dd_{\text{ff}}$     |
| Communication                                                                         | 0                                      | $B_{\text{uniq}}d_{\text{ff}}$         |                      |

174 **Notation:**  $d$ : model width;  $D$ : FFN hidden size;  $L$ : context length;  $L_{\text{uniq}}$ : number of unique tokens in the  
 175  $L$ -token context;  $B_{\text{uniq}}$ : number of unique tokens across the batch at a decode step ( $\leq B$ );  $\text{uniq}(BL)$ : number  
 176 of unique tokens across the  $BL$  tokens in a training batch.

177 **Notes:** Training multiplies both FLOP counts by  $\approx$  the usual forward+backward factor, but the saving  
 178  $\Delta\text{FLOPs} = dDL$  remains. Communication doubles during training as gradients of the STEM embeddings are  
 179 transferred back to CPU for optimizer update.

### 181 2.3 STEM $^{\dagger}$

183 STEM uses strictly fewer active parameters, and FLOPs for each token. And because of the archi-  
 184 tectural bias, STEM is susceptible to some loss of contextual learning ability. We also introduce a  
 185 hybrid variant of STEM, which retains the up projection matrix in FFN, but complements with an  
 186 additive token-specific modulation. Concretely, the new variant STEM $^{\dagger}$  computes the FFN output  
 187 as follows,

$$188 \quad \mathbf{y}_{\ell} = \mathbf{W}_{\ell}^d (\text{SiLU}(\mathbf{W}_{\ell}^g \mathbf{x}_{\ell}) \odot (\mathbf{W}_{\ell}^u \mathbf{x}_{\ell} + \mathbf{U}_{\ell}[t])), \quad (5)$$

## 190 3 ANALYSIS

### 192 3.1 EFFICIENCY

194 STEM improves both computation and memory access. During compute-intensive phases (train-  
 195 ing and prefill), replacing the FFN up-projection with token-indexed embeddings reduces the per-  
 196 layer FLOPs. During memory-intensive decoding, it lowers parameter traffic relative to a dense  
 197 up-projection. Table 1 summarizes the per-layer counts and the resulting savings. Below we present  
 198 a simple theoretical analysis of the training and inference efficiency for a *single* decoder layer.

199 **Training efficiency.** Consider a batch of  $B$  sequences with sequence length  $L$ , hidden width  $d$ , and  
 200 FFN hidden size  $d_{\text{ff}}$ . Ignoring elementwise ops and biases, the per-layer training FLOPs (forward +  
 201 backward + weight gradients) can be written as

$$202 \quad F_{\text{train}}^{\text{base}} = B(4Ld^2 + 2L^2d + 3Ld_{\text{ff}}),$$

$$203 \quad F_{\text{train}}^{\text{stem}} = B(\underbrace{4Ld^2 + 2L^2d}_{\text{Attn}} + \underbrace{2Ld_{\text{ff}}}_{\text{MLP}}).$$

206 The per-layer FLOPs reduction of STEM is therefore

$$208 \quad \Delta F_{\text{train}} = F_{\text{train}}^{\text{base}} - F_{\text{train}}^{\text{stem}} = BLd_{\text{ff}},$$

209 and the corresponding saving fraction is

$$211 \quad \text{saving fraction} = \frac{\Delta F_{\text{train}}}{F_{\text{train}}^{\text{base}}} = \frac{d_{\text{ff}}}{4d + 2L + 3d_{\text{ff}}}.$$

214 Plugging in the architecture hyperparameters for each Qwen2.5 model yields saving fractions of  
 215 21.7% for Qwen2.5-1.5B, 22.8% for Qwen2.5-3B, 23.9% for Qwen2.5-7B, 19.7% for Qwen2.5-  
 14B, and 24.8% for Qwen2.5-32B.

216 **Inference efficiency.** Prefill efficiency closely matches training efficiency because both are  
 217 compute-bound. In contrast, decoding is primarily memory-bound: the dominant cost is loading  
 218 parameters and KV cache rather than doing FLOPs. For a batch size  $B$  and context length  $L$ , we  
 219 can write the per-layer memory access cost as

$$220 \quad M_{\text{dec}}^{\text{base}} = B(4d^2 + 2Ld + 3d d_{\text{ff}}),$$

$$221 \quad M_{\text{dec}}^{\text{stem}} = B(\underbrace{2Ld}_{\text{KV cache}} + \underbrace{4d^2 + 2d d_{\text{ff}}}_{\text{projection params}}).$$

$$222$$

$$223$$

224 The reduction in parameter loading cost is

$$225 \quad \Delta M_{\text{dec}} = M_{\text{dec}}^{\text{base}} - M_{\text{dec}}^{\text{stem}} = Bd d_{\text{ff}},$$

$$226$$

so the saving fraction is

$$227 \quad \text{saving fraction} = \frac{\Delta M_{\text{dec}}}{M_{\text{dec}}^{\text{base}}} = \frac{d_{\text{ff}}}{4d + 2L + 3d_{\text{ff}}},$$

$$228$$

229 which matches the FLOPs saving factor during training and prefill. As the batch size grows, the  
 230 linear layers become increasingly compute-bound, and STEM’s per-layer FLOPs reduction ensures  
 231 that this efficiency gain is sustained even in the high-throughput regime.

232 A key difference from MoE is how cost scales with batch size. In STEM, parameter traffic grows  
 233 mainly with the number of unique tokens seen. In contrast, MoE expert selection expands with batch  
 234 size and routing diversity; larger batches tend to light up more experts, quickly eroding the sparsity  
 235 benefit.

### 237 3.1.1 VRAM AND COMMUNICATION SAVINGS

238 MoE models use a lot of VRAM. The expert subnetworks must stay on the GPU, or be fetched  
 239 repeatedly. Expert parallelism also needs all-to-all communication, even when only a few experts  
 240 are active (Huang et al., 2024; Go & Mahajan, 2025). STEM avoids these costs. Its embeddings  
 241 are token-indexed and local to each layer, so the model can prefetch them without any routing logic.  
 242 These tables are separate from the matmul weights, so we can offload them to CPU memory. In  
 243 our setups, this frees up roughly one-third of the FFN parameter memory. We can also replicate the  
 244 embedding tables in CPU memory on every serving node. This eliminates cross-node expert traffic  
 245 and the synchronization overhead of expert parallelism.

246 **Prefetching cost.** The prefetching cost can be greatly reduced by deduplicating the STEM embed-  
 247 dings of the batched tokens. We can further cut traffic by caching the most frequently used STEM  
 248 embeddings, using the extra memory we save from removing the up-projection matrices. As the  
 249 model embedding size grows, compute cost increases quadratically, but prefetching cost grows only  
 250 linearly. This makes CPU-offloaded STEM increasingly attractive and scalable for larger model  
 251 sizes.

### 253 3.2 CONTEXT-LENGTH ADAPTIVE PARAMETER USAGE

255 Because STEM employs token-indexed, fine-grained sparsity, the number of *distinct* parameters  
 256 touched in a forward pass grows with the number of *unique* tokens in the window. Aside from the  
 257 shared projections in attention (Q/K/V/O) and the gated FFN’s gate/down projections, the STEM  
 258 module draws one vector per token ID per layer; repeated tokens reuse the same vector, while novel  
 259 tokens activate new ones. Let  $L$  be the context length and  $L_{\text{uniqu}}$  the count of unique token ids in  
 260 the sequence; with STEM applied at layers  $\mathcal{S}$  and FFN width  $d_{\text{ff}}$ , the STEM-specific parameters  
 261 activated by a single sequence are

$$262 \quad \text{Params}_{\text{act}}^{\text{STEM}}(L) = |\mathcal{S}| d_{\text{ff}} L_{\text{uniqu}}.$$

$$263$$

263 In natural text  $L_{\text{uniqu}}$  typically grows sublinearly (Heaps-like), so longer contexts steadily engage  
 264 more parameters without increasing per-token FLOPs.

265 This yields test-time capacity scaling with predictable latency: active parameter count keeps on  
 266 growing with context length, and does not saturate quickly like in MoEs. The dense gating and  
 267 down-projection preserve contextual mixing, while the STEM path supplies additional capacity at  
 268 low overhead, supporting long-context tasks (multi-document RAG, CoT) with near-constant per-  
 269 token compute. 1b illustrates how STEM outperforms the dense baseline at longer context lengths.  
 270 Additional long-context evaluation on LongBench are provided in Appendix A.2.

270 Table 2: Training hyperparameters by setting. Common: weight decay = 0.1,  $\beta_1 = 0.9$ ,  $\beta_2 = 0.95$ ,  
 271 LR warmup ratio = 0.01. Minimum LR is  $0.1 \times$  peak LR. For 1B pretraining, we follow the OLMO  
 272 schedule for 5T tokens but stop early at 1T.

| Configuration       | 350M Pretrain | 1B Pretrain | 1B Midtrain | 1B Context-Extend |
|---------------------|---------------|-------------|-------------|-------------------|
| Peak LR             | 2e-3          | 4e-4        | 3.2e-4      | 1e-5              |
| LR schedule         | cosine        | cosine      | linear      | cosine            |
| Batch size          | 512           | 512         | 512         | 64                |
| Max sequence length | 2048          | 4096        | 4096        | 32768             |
| Training steps      | 100,000       | 500,000     | 50,000      | 10,000            |
| Cross-doc masking   | No            | No          | No          | Yes               |

## 4 EXPERIMENTS

We evaluate STEM against dense and MoE baselines on downstream tasks while controlling for (i) training compute (activated FLOPs) and (ii) the number of training tokens. MoE variants are configured to match STEM’s total parameter count, and their activated FLOPs are kept comparable to the dense baseline. (Note: STEM uses strictly fewer per-token FLOPs than both baselines.) We study two model scales — 350M and 1B, performing comprehensive ablations at 350M and validating STEM at 1B under both pretraining-from-scratch and mid-training insertion. Finally, we assess long-context behavior by further fine-tuning with extended context length. **We evaluate the Return on Investment (ROI)—defined here as the ratio of model accuracy to training FLOPs—to determine the training efficiency of each model, as the economic value has become a major concern of foundational models.** Formally, we define it as:

$$\text{Training ROI} = \frac{\text{Model Accuracy (Avg)}}{\text{Total Training FLOPs}}$$

### 4.1 EXPERIMENTAL SETTING

**Datasets.** For pretraining, we use OLMo-MIX-1124 (OLMo et al., 2025), a 3.9T-token corpus built from DCLM (Li et al., 2025a) and Dolma 1.7 (Soldaini et al., 2024); we subsample 1T tokens for our runs. For mid-training, we mix OLMo-MIX-1124 (65%), NEMOTRON-CC-MATH-v1 (5%) (Rabeeh Karimi Mahabadi, 2025), and NEMOTRON-PRETRAINING-CODE-v1 (30%) (NVIDIA et al., 2025). For context-length extension, we use PROLONG-DATA-64K (Gao et al., 2024) (63% long-context / 37% short-context) and pack sequences up to 32,768 tokens with cross-document attention masking.

**Models.** We use model architectures from MobileLLM-350M (Liu et al., 2024) and Llama3.2-1B (Meta AI, 2024) for evaluations. In both the models, we do not share the input embeddings and the language model head. Unless otherwise noted, one third of FFN layers are replaced at uniform intervals by the sparse alternative. For STEM, the dense up-projection is replaced by an embedding table of size  $V \times d_{\text{ff}}$  in each layer. For Hash layer MoE design, we use top-1 routing and choose the number of experts per layer to match STEM’s total parameter count, while keeping activated FLOPs comparable to the dense baseline. We also report ablations that replace one half of FFN layers with STEM, and an extreme setting that replaces all FFN layers except the first.

**Evaluations.** Pretrained checkpoints are evaluated zero-shot on eight common-sense reasoning tasks: ARC-Easy, ARC-Challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), and WinoGrande (ai2, 2019). To assess advanced knowledge and mathematical reasoning for mid-training checkpoints, we report MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021). For long-context behavior after context extension, we use Needle-in-a-Haystack (NIAH) (Kamradt, 2024).

**Training details.** We pretrain the 350M models on 100B tokens and the 1B models on 1T tokens. We use the AdamW optimizer with a cosine learning rate schedule, 10% warmup, and a minimum

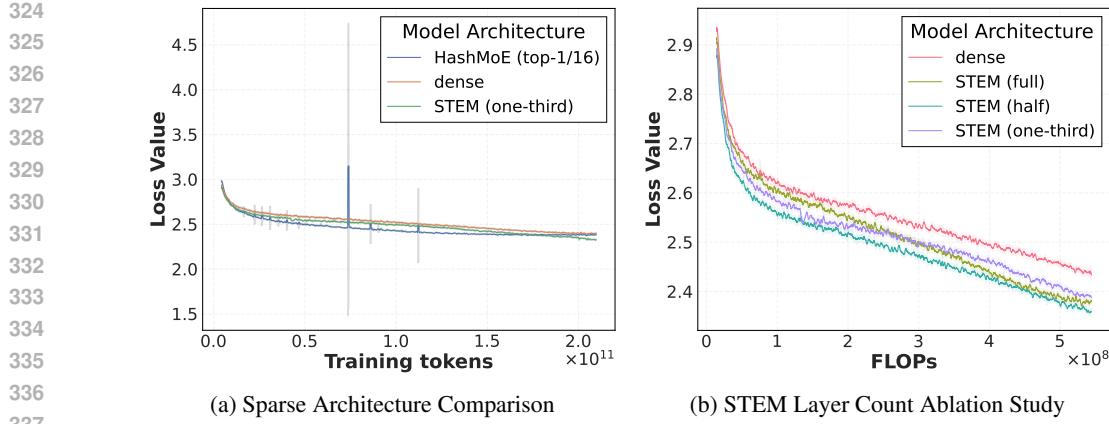


Figure 3: (a) **Training Stability.** Unlike Hash layer MoE, the 350M STEM model does not show any training loss spikes. (b) **Performance scaling with more STEM layers.** With more STEM layers, a lower training loss can be achieved at fewer training FLOPs.

learning rate of  $0.1 \times$  the peak value. After pretraining, we run a midtraining stage on 100B tokens, followed by a context-extension stage on 20B tokens. The full set of hyperparameters is listed in Table 2.

## 4.2 EXPERIMENTAL RESULTS

STEM demonstrates the benefits of fine-grained sparse scaling by improving downstream performance with fewer training FLOPs. Interestingly, STEM does not suffer from training instability issues that is often the case for fine-grained MoE models (Databricks, 2024; Dai et al., 2024). Instead, the geometric properties of the STEM embedding spaces further help improve the training convergence. Figure 3a demonstrates the training stability of STEM compared to token-indexed Hash Layers MoE, where HashMoE has more bumpy jumps during the training. Moreover, we see the STEM architecture has larger model capacity (lower training loss tendency) when we scale up the training tokens as the loss curve of STEM crosses over the other two architectures when training tokens increase. Furthermore, even with fewer training FLOPs STEM achieves lower training 3b and validation 1a losses.

## 4.3 DOWNSTREAM EVALUATION RESULTS

We compare STEM with dense baseline as well as Hash layer MoE at 350M scale. On the other hand, for 1B model, we compare STEM (with one-third of FFN replacement) with only the dense baseline. In both cases 3, we observe substantial improvement in tasks requiring comparatively more external knowledge such as, Arc-Challenge and OpenBookQA, while having modest improvements on the rest of the tasks. Additionally, the improvements on the knowledge-intensive tasks are more significant with increase in FFN replacement with STEM layers. Note all the STEM replacement are replacing the up-projection component of original FFN unless specified in the table.

Upon midtraining 4, the 1B STEM model continues to outperform the dense baseline on the language modeling downstream tasks. Additionally, STEM architecture exhibits improvements in reasoning and knowledge retrieval abilities through GSM8k and MMLU performances.

## 4.4 ABLATION STUDIES

### 4.4.1 IMPACT OF STEM LAYER COUNT

To identify the efficacy of STEM layers, we vary the number of FFN layers we replace with STEM alternative. We place the STEM-based decoder layers at regular intervals, interleaved with regular

<sup>1</sup>ROI is normalized at each baseline for better comparison.

<sup>2</sup>STEM defaults to replacing one third of FFN layers, also writes as STEM-1/3

378 Table 3: Downstream accuracy of pretrained models at 350M and 1B scales. We report the total  
 379 number of parameters and the number of active parameters for each model variant. Baseline denotes  
 380 the dense SwiGLU FFN model. For 350M, in the first few rows, we compare sparse alternatives  
 381 under similar FLOPs: Hash-MoE (top-1/16 experts in 1/3 of FFN layers), STEM with 1/3 of FFN  
 382 layers replaced (including up projection replacement, gate projection replacement, and STEM<sup>†</sup> with  
 383 an additional up-projection). In the next set of rows, we compare STEM with varying up projection  
 384 layer replacement ratios (1/3, 1/2, full). For 1B, we report the dense baseline and STEM with 1/3 up  
 385 projection layer replacement.

| Model                     | #Total Params (B) | #Active Params (B) | ARC-E | ARC-C | BoolQ | PIQA  | SIQA  | HSwag | OBQA  | Wino  | Avg   | #GFLOPs | ROI <sup>1</sup> |
|---------------------------|-------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|------------------|
| <i>350M (Pretraining)</i> |                   |                    |       |       |       |       |       |       |       |       |       |         |                  |
| Baseline                  | 0.37              | 0.37               | 57.66 | 30.55 | 58.20 | 69.42 | 41.10 | 49.68 | 34.80 | 56.35 | 49.72 | 0.74    | 1x               |
| Hash-MoE                  | 1.22              | 0.37               | 58.88 | 36.33 | 55.44 | 70.21 | 43.55 | 47.56 | 39.26 | 53.44 | 50.58 | 0.74    | 1.02x            |
| STEM <sup>2</sup>         | 1.14              | 0.35               | 63.01 | 32.68 | 60.31 | 70.18 | 39.76 | 52.38 | 33.00 | 55.88 | 50.90 | 0.70    | 1.08x            |
| STEM (gate-proj)          | 1.14              | 0.35               | 54.56 | 34.12 | 59.13 | 64.92 | 44.56 | 43.62 | 36.91 | 55.00 | 49.10 | 0.70    | 1.04x            |
| STEM <sup>†</sup>         | 1.21              | 0.35               | 57.94 | 34.45 | 59.10 | 68.85 | 43.70 | 45.75 | 41.02 | 53.98 | 50.60 | 0.74    | 1.02x            |
| STEM-1/2                  | 1.85              | 0.34               | 62.95 | 40.00 | 62.02 | 70.94 | 43.70 | 51.49 | 46.68 | 55.78 | 54.20 | 0.67    | 1.20x            |
| STEM-full                 | 3.25              | 0.30               | 62.21 | 39.61 | 61.99 | 70.73 | 43.60 | 48.44 | 44.53 | 56.33 | 53.43 | 0.60    | 1.33x            |
| <i>1B (Pretraining)</i>   |                   |                    |       |       |       |       |       |       |       |       |       |         |                  |
| Baseline                  | 1.50              | 1.50               | 66.98 | 41.88 | 64.21 | 73.44 | 44.09 | 59.65 | 39.84 | 56.48 | 55.82 | 3.00    | 1x               |
| STEM                      | 6.75              | 1.41               | 65.95 | 42.03 | 61.66 | 75.00 | 44.78 | 60.37 | 45.90 | 57.34 | 56.63 | 2.83    | 1.08x            |

399 Table 4: Mid-trained model evaluations (1B).

| Model                    | ARC-E | ARC-C | BoolQ | PIQA  | SIQA  | HellaSwag | OBQA  | Winogrande | Avg   | GSM8K | MMLU  |
|--------------------------|-------|-------|-------|-------|-------|-----------|-------|------------|-------|-------|-------|
| <i>1B (Mid-training)</i> |       |       |       |       |       |           |       |            |       |       |       |
| Baseline                 | 70.78 | 42.11 | 65.84 | 72.95 | 47.13 | 60.39     | 42.97 | 57.81      | 57.50 | 44.2  | 29.92 |
| STEM                     | 69.78 | 44.22 | 68.54 | 74.69 | 45.65 | 61.90     | 45.70 | 57.42      | 58.49 | 46.4  | 32.38 |

408 FFN-based decoder blocks. Table 3 shows that increasing the number of replacement from one-third  
 409 to half improves the average downstream performance substantially. However, the improvement  
 410 slows down beyond that. Note that, with increasing number of replacements, the training FLOPs also  
 411 decrease, and therefore the overall training ROI still increases. We can see that the STEM (STEM-  
 412 1/3) achieves 1.08x training ROI of the baseline, while STEM-1/2 achieves 1.20x and STEM-full  
 413 achieves 1.33x of the baseline. Figure 3b presents the comparison of the three variants in terms of  
 414 loss vs training FLOPs.

#### 4.4.2 IMPACT OF STEM PLACEMENT

418 Placement of STEM inside the gated FFN matters. To demonstrate this, we compare two options:  
 419 replacing the *up-projection* vs. the *gate-projection*. As shown in Table 3, replacing the  
 420 gate underperforms even the dense baseline, while replacing the up-projection yields consistent  
 421 gains. In SwiGLU, the gate  $\sigma(W^g x)$  should depend on the current hidden state  $x$  to modulate  
 422  $\phi(W^u x)$  contextually. Swapping  $W^g x$  for a token-indexed embedding  $e_t$  makes the gate largely  
 423 input-independent ( $\sigma(e_t)$ ), weakening its context-aware selection. Moreover, the nonlinearity can  
 424 be effectively abstracted away by the learned embeddings, and consequently its role is weakened. In  
 425 contrast, applying STEM to the up-projection preserves contextual information in gate computation  
 426 path and proves to be an optimal fine-grained sparse design.

#### 4.4.3 UP-PROJECTION WITH ADDITIVE EMBEDDING

430 To further study the optimality of STEM’s design, we implement STEM<sup>†</sup> 2.3, that retains up  
 431 projection and additively modulates its output with the STEM embedding. Although it adds more  
 432 parameters and FLOPs, the downstream performance does not improve.

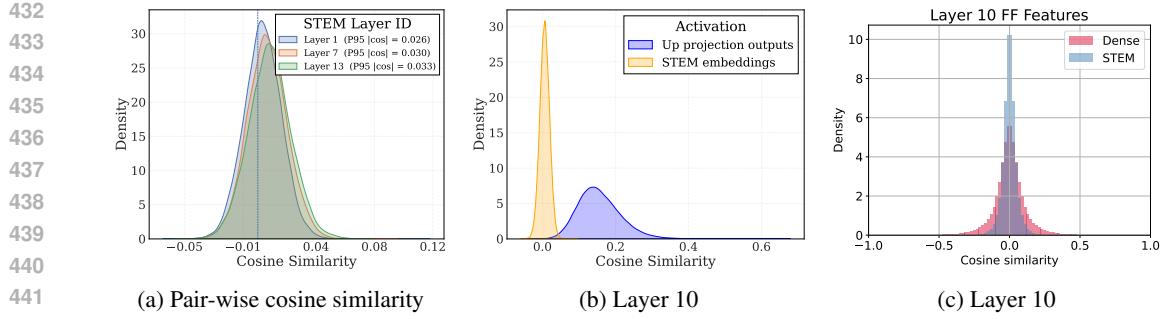


Figure 4: **Geometry of STEM embeddings.** (a) Distribution of pairwise cosine similarity of STEM embeddings of sampled layers. (b) Pair-wise cosine similarity distributions of up-projection output space and STEM embeddings. (c) Cosine similarities are computed between the input hidden states of the down projection matrix. All the plots are provided from the 1B model.

## 5 STEM CHARACTERISTICS

In this section, we analyze some of the characteristics that STEM embeddings demonstrate. We observe that in each layer the STEM embeddings of different tokens have very low pairwise cosine similarity which elicits some desirable properties regarding information storage capacity and training convergence. Additionally, because of the clear mapping between the embeddings and the tokens, STEM models are more interpretable.

### 5.1 LARGE ANGULAR SPREAD OF STEM EMBEDDINGS

Figure 4a shows that STEM embeddings exhibit very low pairwise cosine similarity—i.e., a large angular spread. We hypothesize that this property improves the information-retrieval behavior of FFN layers by reducing interference among stored items. Prior work (Geva et al., 2021; Meng et al., 2022) models FFNs as key-value memories: each hidden unit is associated with a *key* given by a *row* of the up-projection  $W^{(u)} \in \mathbb{R}^{d_{\text{ff}} \times d_{\text{model}}}$  and a *value* given by the corresponding *column* of the down-projection  $W^{(d)} \in \mathbb{R}^{d_{\text{model}} \times d_{\text{ff}}}$ ; the gate projection provides context-dependent, multiplicative modulation that creates a selective read. In this view, the pre-activation  $h = \phi(W^{(u)}x)$  induces a soft address over memory slots (hidden units).

In contrast, STEM replaces the learned affine addressing with a direct, token-indexed address vector, upon which the gate still applies context-dependent modulation. To quantify the geometry of these address vectors, we report the distribution of pairwise cosine similarities between unit-normalized vectors. A distribution concentrated near zero (as in Figure 4a and Figure 4b) indicates that most angles are close to  $90^\circ$  and thus the angular spread between the vectors is reasonably large. This large angular spread lowers cross-talk between slots and can thereby improve the effective information storage capacity of the FFN memory at fixed width Donoho & Elad (2003); Tropp (2004). Figure 4c demonstrates the distribution of pairwise cosine similarities between the address vectors after the modulation applied by the gate projection.

### 5.2 INTERPRETABILITY OF STEM MODELS

STEM exposes token-indexed, layer-local parameters that act as interpretable FFN *addresses*, enabling simple, reversible edits that causally steer factual predictions with high reliability and low collateral change. Because each token  $t$  has a layer-specific STEM vector  $e_{t,\ell} \in \mathbb{R}^{d_{\text{ff}}}$ , we can intervene at inference time in a transparent way.

For example, Figure 5 shows that we can manually control the top next-token probabilities by performing a *swap* at layer  $\ell$ ,

$$e_{\text{Spain},\ell} \leftarrow e_{\text{Germany},\ell},$$

while leaving all other parameters unchanged. Under the original prompt containing “Spain”, the intervened model’s top- $k$  next-token distribution closely matches that of the control prompt containing “Germany”, illustrating precise, token-indexed knowledge editing.

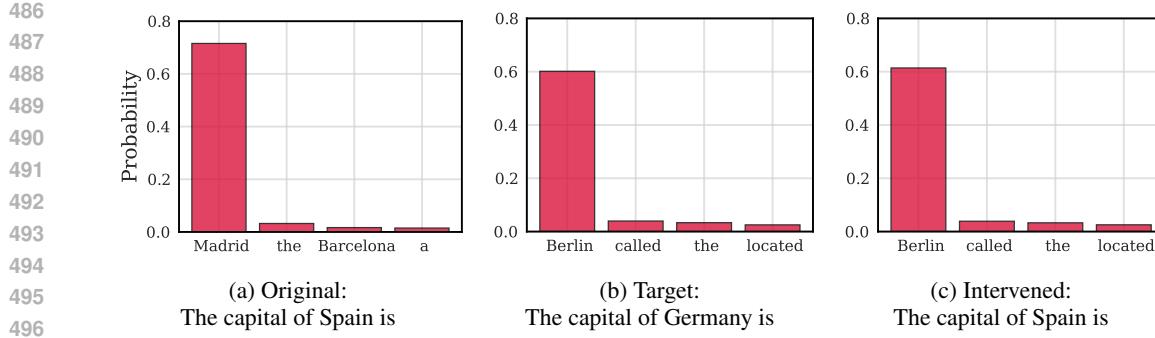


Figure 5: **Knowledge edit.** Top-4 next-token probabilities for the original prompt “*The capital of Spain is*” (left), for the target prompt “*The capital of Germany is*” (middle), and for the intervened model where we swap the STEM vector  $e_{\text{Spain},\ell}$  with  $e_{\text{Germany},\ell}$  at every STEM layer keeping the original prompt the same (right). The swap shifts mass from Madrid to Berlin, demonstrating token-indexed, layer-local, and reversible control of factual predictions.

## 6 RELATED WORKS

MoE (Shazeer et al., 2017; Fedus et al., 2022) introduced large parametric capacity for LLMs at near-constant FLOPs through sparse computation. The success of MoE models hinges closely with auxiliary loss function designs (Fedus et al., 2022; Rajbhandari et al., 2022; Qiu et al., 2025), and system-level solutions (Huang et al., 2024; Go & Mahajan, 2025; Wang et al., 2024b) that ensure load balance among expert networks, training stability, mitigation of representation collapse (Chi et al., 2022), and tolerable communication overload during training and inference. To avoid the interference of auxiliary routing losses with the training objective, recent works have proposed auxiliary loss-free approaches (Roller et al., 2021; Wang et al., 2024a) that inject fixed or dynamic routing bias to the MoE model.

Conversely, PKM models (Lample et al., 2019) reserve a large key-value parametric memory with efficient top-k selection through memory-efficient keys arranged in product space. PKM (Lample et al., 2019; He, 2024) scales up the parametric memory compared to MoE, increases the granularity of sparsity, and avoids the cross-device communication overhead, but at the cost of high memory lookup cost during inference, and under-training issues of the large value memory. These challenges require sophisticated architectural modifications (Huang et al., 2025) and advanced system-level solutions (Berges et al., 2024) to be overcome.

Recently, Gemma-3n (Google DeepMind, 2024) proposed Per Layer Embeddings (PLE) for small on-device models to *complement* their limited parametric capacity with token-indexed sparse parametric memory. However, they do not dispose of original FFN modules, and use a much lower-dimensional PLE only to modulate the FFN output in each layer. These embedding tables are accommodated in fast storage, outside GPU HBM memory to accommodate larger batch sizes and enable fast prefetching.

## 7 CONCLUSION

This work introduced STEM, a static, token-indexed design that replaces the FFN up-projection with a layer-local embedding lookup. This decouples parametric capacity from per-token compute and cross-device communication, yielding lower per-token FLOPs and fewer parameter accesses, and enabling CPU offload with asynchronous prefetch. Empirically, STEM trains stably despite extreme sparsity (compared to fine-grained MoE variants), improves accuracy over dense baselines, and exhibits higher effective memory capacity via a large-angular-spread embedding space. It also strengthens long-context performance by activating more distinct parameters as sequence length grows, providing practical test-time capacity scaling.

540 8 ETHICS STATEMENT  
541

542 This work develops and empirically evaluates a novel large language model architecture. All training  
543 and evaluation datasets are publicly available and widely used within the research community; no  
544 new human-subject data were collected, and no sensitive or proprietary data sources were used.  
545 Due to computational resource constraints, experiments were conducted on models with up to one  
546 billion parameters and evaluated at pre-training and mid-training checkpoints, and the scope of the  
547 conclusions should be interpreted accordingly. Future research in this direction should continue to  
548 assess ethical considerations throughout model development, evaluation, and potential deployment.  
549

550 9 REPRODUCIBILITY STATEMENT  
551

552 This work follows the reproducibility recommendations of ICLR; details necessary to replicate re-  
553 sults are referenced rather than repeated here. Section 4.1 documents the training datasets, model  
554 architectures, training procedures, and evaluation datasets and protocols referenced throughout the  
555 experiments. To facilitate independent verification, code and trained model checkpoints will be  
556 released to support full reproducibility.  
557

558 REFERENCES  
559

560 Winogrande: An adversarial winograd schema challenge at scale. 2019.

561 Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria  
562 Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuhui  
563 Chen, Halil Akin, Manddeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo,  
564 Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large  
565 scale language modeling with mixtures of experts, 2022. URL <https://arxiv.org/abs/2112.10684>.  
566

567 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao  
568 Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-  
569 titask benchmark for long context understanding, 2024. URL <https://arxiv.org/abs/2308.14508>.  
570

571 Vincent-Pierre Berges, Barlas Oğuz, Daniel Haziza, Wen tau Yih, Luke Zettlemoyer, and Gargi  
572 Ghosh. Memory layers at scale, 2024. URL <https://arxiv.org/abs/2412.09764>.  
573

574 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning  
575 about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial*  
576 *Intelligence*, 2020.  
577

578 Enric Boix-Adsera and Philippe Rigollet. The power of fine-grained experts: Granularity boosts  
579 expressivity in mixture of experts, 2025. URL <https://arxiv.org/abs/2505.06839>.  
580

581 Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,  
582 Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu Wei. On the representation col-  
583 lapse of sparse mixture of experts, 2022. URL <https://arxiv.org/abs/2204.09179>.  
584

585 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina  
586 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*,  
587 2019.

588 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and  
589 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.  
590 *arXiv:1803.05457v1*, 2018.

591 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
592 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John  
593 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,  
594 2021.

594 Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,  
 595 Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong  
 596 Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-  
 597 tion in mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2401.06066>.

598

599 Databricks. Introducing dbrx: A new state-of-the-art open llm, 2024. URL <https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm>. Ac-  
 600 cessed: 2025-09-04.

601

602

603 David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)  
 604 dictionaries via 1 minimization. *Proceedings of the National Academy of Sciences*, 100(5):2197–  
 605 2202, 2003. doi: 10.1073/pnas.0437847100. URL <https://www.pnas.org/doi/10.1073/pnas.0437847100>.

606

607 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter  
 608 models with simple and efficient sparsity, 2022. URL <https://arxiv.org/abs/2101.03961>.

609

610

611 Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. Enabling large language models to  
 612 generate text with citations. 2024.

613

614 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are  
 615 key-value memories, 2021. URL <https://arxiv.org/abs/2012.14913>.

616

617 Seokjin Go and Divya Mahajan. Moetuner: Optimized mixture of expert serving with balanced  
 618 expert placement and token routing, 2025. URL <https://arxiv.org/abs/2502.06643>.

619

620 Google DeepMind. Gemma 3n documentation, 2024. URL <https://ai.google.dev/gemma/docs/gemma-3n>. Accessed: 2025-09-04.

621

622 Xu Owen He. Mixture of a million experts, 2024. URL <https://arxiv.org/abs/2407.04153>.

623

624 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob  
 625 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-  
 626 tional Conference on Learning Representations (ICLR)*, 2021.

627

628 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza  
 629 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-  
 630 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,  
 631 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.  
 632 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.

633

634 Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin S. Lee, Carole-  
 635 Jean Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. In *The Thirty-  
 636 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=stXtBqjyTWX>.

637

638 Zihao Huang, Qiyang Min, Hongzhi Huang, Defa Zhu, Yutao Zeng, Ran Guo, and Xun Zhou. Ultra-  
 639 sparse memory network, 2025. URL <https://arxiv.org/abs/2411.12364>.

640

641 Greg Kamradt. Llmtest.needleinahaystack. [https://github.com/gkamradt/LLMTest\\_NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack), 2024. GitHub repository; accessed 2025-09-24.

642

643 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,  
 644 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language  
 645 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

646

647 Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé  
 648 Jégou. Large memory layers with product keys, 2019. URL <https://arxiv.org/abs/1907.05242>.

648 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,  
 649 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with  
 650 conditional computation and automatic sharding, 2020. URL <https://arxiv.org/abs/2006.16668>.

652 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,  
 653 Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Rein-  
 654 hard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Al-  
 655 balak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,  
 656 Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Il-  
 657 harco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao  
 658 Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Se-  
 659 woong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev,  
 660 Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kol-  
 661 lar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar.  
 662 Datacomp-lm: In search of the next generation of training sets for language models, 2025a. URL  
 663 <https://arxiv.org/abs/2406.11794>.

664 Yan Li, Pengfei Zheng, Shuang Chen, Zewei Xu, Yuanhao Lai, Yunfei Du, and Zhengang Wang.  
 665 Speculative moe: Communication efficient parallel moe inference with speculative token and  
 666 expert pre-scheduling, 2025b. URL <https://arxiv.org/abs/2503.04398>.

667 Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang  
 668 Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas  
 669 Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,  
 670 2024. URL <https://arxiv.org/abs/2402.14905>.

671 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-  
 672 tions in GPT. *Advances in Neural Information Processing Systems*, 36, 2022. arXiv:2202.05262.

673 Meta AI. Llama 3.2 1b, 2024. URL <https://huggingface.co/meta-llama/Llama-3-2-1B>. Accessed: 2025-09-04.

674 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct  
 675 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

676 NVIDIA, ;, Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adithya Renduch-  
 677 intala, Aditya Malte, Akhiad Bercovich, Akshay Hazare, Alejandra Rico, Aleksander Ficek,  
 678 Alex Kondratenko, Alex Shaposhnikov, Alexander Bukharin, Ali Taghibakhshi, Amelia Bar-  
 679 ton, Ameya Sunil Mahabaleshwarkar, Amy Shen, Andrew Tao, Ann Guan, Anna Shors, Anub-  
 680 hav Mandarwal, Arham Mehta, Arun Venkatesan, Ashton Sharabiani, Ashwath Aithal, Ashwin  
 681 Poojary, Ayush Dattagupta, Balaram Buddharaju, Banghua Zhu, Barnaby Simkin, Bilal Kartal,  
 682 Bita Darvish Rouhani, Bobby Chen, Boris Ginsburg, Brandon Norick, Brian Yu, Bryan Catanzaro,  
 683 Charles Wang, Charlie Truong, Chetan Munegkar, Chintan Patel, Chris Alexiuk, Christian  
 684 Munley, Christopher Parisien, Dan Su, Daniel Afrimi, Daniel Korzekwa, Daniel Rohrer, Daria  
 685 Gitman, David Mosallanezhad, Deepak Narayanan, Dima Rekesh, Dina Yared, Dmytro Pykhtar,  
 686 Dong Ahn, Duncan Riach, Eileen Long, Elliott Ning, Eric Chung, Erick Galinkin, Evelina Bakh-  
 687 turina, Gargi Prasad, Gerald Shen, Haifeng Qian, Haim Elisha, Harsh Sharma, Hayley Ross,  
 688 Helen Ngo, Herman Sahota, Hexin Wang, Hoo Chang Shin, Hua Huang, Iain Cunningham, Igor  
 689 Gitman, Ivan Moshkov, Jaehun Jung, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jian Zhang,  
 690 Jiaqi Zeng, Jimmy Zhang, Jinze Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jonathan  
 691 Cohen, Joseph Jennings, Julien Veron Vialard, Junkeun Yi, Jupinder Parmar, Kari Briski, Katherine  
 692 Cheung, Katherine Luna, Keith Wyss, Keshav Santhanam, Kezhi Kong, Krzysztof Pawelec,  
 693 Kumar Anik, Kunlun Li, Kushan Ahmadian, Lawrence McAfee, Laya Sleiman, Leon Derczyn-  
 694 ski, Luis Vega, Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski,  
 695 Mark Cai, Markus Kliegl, Marta Stepniewska-Dziubinska, Matvei Novikov, Mehrzad Samadi,  
 696 Meredith Price, Meriem Boubdir, Michael Boone, Michael Evans, Michal Bien, Michal Za-  
 697 walski, Miguel Martinez, Mike Chrzanowski, Mohammad Shoeybi, Mostofa Patwary, Namit  
 698 Dhameja, Nave Assaf, Negar Habibi, Nidhi Bhatia, Nikki Pope, Nima Tajbakhsh, Nirmal Ku-  
 699 mar Juluru, Oleg Rybakov, Oleksii Hrinchuk, Oleksii Kuchaiev, Oluwatobi Olabiyi, Pablo Rib-  
 700 alta, Padmavathy Subramanian, Parth Chadha, Pavlo Molchanov, Peter Dykas, Peter Jin, Piotr  
 701

702 Bialecki, Piotr Januszewski, Pradeep Thalasta, Prashant Gaikwad, Prasoon Varshney, Pritam Gun-  
 703 decha, Przemek Tredak, Rabeeh Karimi Mahabadi, Rajen Patel, Ran El-Yaniv, Ranjit Rajan, Ria  
 704 Cheruvu, Rima Shahbazyan, Ritika Borkar, Ritu Gala, Roger Waleffe, Ruoxi Zhang, Russell J.  
 705 Hewett, Ryan Prenger, Sahil Jain, Samuel Kriman, Sanjeev Satheesh, Saori Kaji, Sarah Yurick,  
 706 Saurav Muralidharan, Sean Narenthiran, Seonmyeong Bak, Sepehr Sameni, Seungju Han, Shan-  
 707 mugam Ramasamy, Shaona Ghosh, Sharath Turuvekere Sreenivas, Shelby Thomas, Shizhe Diao,  
 708 Shreya Gopal, Shrimai Prabhuloye, Shubham Toshniwal, Shuoyang Ding, Siddharth Singh, Sid-  
 709 dhartha Jain, Somshubra Majumdar, Soumye Singhal, Stefania Alborghetti, Syeda Nahida Akter,  
 710 Terry Kong, Tim Moon, Tomasz Hliwiak, Tomer Asida, Tony Wang, Tugrul Konuk, Twinkle  
 711 Vashishth, Tyler Poon, Udi Karpas, Vahid Noroozi, Venkat Srinivasan, Vijay Korthikanti, Vikram  
 712 Fugro, Vineeth Kalluru, Vitaly Kurin, Vitaly Lavrukhin, Wasi Uddin Ahmad, Wei Du, Wonmin  
 713 Byeon, Ximing Lu, Xin Dong, Yashaswi Karnati, Yejin Choi, Yian Zhang, Ying Lin, Yong-  
 714 gan Fu, Yoshi Suhara, Zhen Dong, Zhiyu Li, Zhongbo Zhu, and Zijia Chen. Nvidia nemotron  
 715 nano 2: An accurate and efficient hybrid mamba-transformer reasoning model, 2025. URL  
 716 <https://arxiv.org/abs/2508.14444>.

717 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,  
 718 Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,  
 719 Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha  
 720 Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William  
 721 Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-  
 722 atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,  
 723 Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2  
 724 olmo 2 furious, 2025. URL <https://arxiv.org/abs/2501.00656>.

725 Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng  
 726 Liu, Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss  
 727 for training specialized mixture-of-expert models, 2025. URL <https://arxiv.org/abs/2501.11873>.

728 Shrimai Prabhuloye Mostofa Patwary Mohammad Shoeybi Bryan Catanzaro Rabeeh Karimi Ma-  
 729 habadi, Sanjeev Satheesh. Nemotron-cc-math: A 133 billion-token-scale high quality math pre-  
 730 training dataset. 2025. URL <https://arxiv.org/abs/2508.15096>.

731 Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-  
 732 mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-  
 733 experts inference and training to power next-generation AI scale. In Kamalika Chaudhuri,  
 734 Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceed-  
 735 ings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings  
 736 of Machine Learning Research*, pp. 18332–18346. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/rajbhandari22a.html>.

737 Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse  
 738 models, 2021. URL <https://arxiv.org/abs/2106.04426>.

739 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-  
 740 sense reasoning about social interactions, 2019. URL <https://arxiv.org/abs/1904.09728>.

741 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,  
 742 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,  
 743 2017. URL <https://arxiv.org/abs/1701.06538>.

744 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Arthur,  
 745 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh  
 746 Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas  
 747 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle  
 748 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke  
 749 Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and  
 750 Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research,  
 751 2024. URL <https://arxiv.org/abs/2402.00159>.

756 Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits  
 757 of chain-of-thought with multistep soft reasoning, 2024. URL <https://arxiv.org/abs/2310.16049>.

759

760 Mirac Suzgun, Nathan Scales, Nathanael Schärl, Sebastian Gehrman, Yi Tay, Hyung Won Chung,  
 761 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-  
 762 bench tasks and whether chain-of-thought can solve them, 2022. URL <https://arxiv.org/abs/2210.09261>.

763

764 Qwen Team. Qwen3-max: Just scale it, September 2025a.

765

766 Qwen Team. Qwen3 technical report, 2025b. URL <https://arxiv.org/abs/2505.09388>.

767

768 J.A. Tropp. Greed is good: algorithmic results for sparse approximation. *IEEE Transactions on  
 769 Information Theory*, 50(10):2231–2242, 2004. doi: 10.1109/TIT.2004.834793.

770

771 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load  
 772 balancing strategy for mixture-of-experts, 2024a. URL <https://arxiv.org/abs/2408.15664>.

773

774 Wei Wang, Zhiqian Lai, Shengwei Li, Weijie Liu, Keshi Ge, Ao Shen, Huayou Su, and Dongsheng  
 775 Li. Pro-prophet: A systematic load balancing method for efficient parallel training of large-scale  
 776 moe models, 2024b. URL <https://arxiv.org/abs/2411.10003>.

777

778 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-  
 779 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association  
 for Computational Linguistics*, 2019.

780

## 781 A APPENDIX

### 782 A.1 ADDITIONAL BENCHMARKS

783 Interestingly, our additional experiments on more contextual reasoning-heavy tasks show that  
 784 STEM’s contextual reasoning skill is better than that of the dense baseline. To directly probe reason-  
 785 ing beyond parametric knowledge, we evaluate 1B-scale baseline and STEM models on *BIG-Bench*  
 786 *Hard* (BBH) (Suzgun et al., 2022), *MuSR* (Sprague et al., 2024), and the *LongBench* (Bai et al., 2024)  
 787 multi-hop reasoning and code-understanding subsets. BBH is a collection of diverse, challenging  
 788 tasks designed to require multi-step and compositional reasoning. MuSR requires the model to track  
 789 entities and constraints over a long narrative before answering a question. The LongBench multi-  
 790 hop subset tests reasoning across multiple passages, while the code-understanding subset evaluates  
 791 comprehension of complex code snippets. As shown in Table 5, STEM consistently outperforms the  
 792 dense baseline on BBH, MuSR, and on LongBench multi-hop and code-understanding tasks across  
 793 all context-length ranges, indicating that STEM does not impair contextual reasoning and can in fact  
 794 improve it.

795 Table 5: Contextual reasoning benchmarks for 1B-scale models. LongBench scores are averaged  
 796 over tasks within each context-length range.

| 800 Model    | BBH   | MuSR  | LongBench Multi-hop |      |      | LongBench Code |       |       |
|--------------|-------|-------|---------------------|------|------|----------------|-------|-------|
|              |       |       | < 4k                | 4–8k | ≥ 8k | < 4k           | 4–8k  | ≥ 8k  |
| 801 Baseline | 24.87 | 35.85 | 5.72                | 6.20 | 6.19 | 45.37          | 44.64 | 41.30 |
| 802 STEM     | 27.55 | 36.38 | 10.20               | 8.63 | 7.82 | 52.68          | 52.53 | 49.60 |

### 803 A.2 ADDITIONAL LONG-CONTEXT EVALUATION

804 Apart from the synthetic task Needle-in-a-haystack, we further evaluate STEM on LongBench, a  
 805 long-context benchmark that spans six task categories, including single- and multi-document ques-  
 806 tion answering, summarization, few-shot learning, synthetic tasks, and code completion. We group

810 Table 6: LongBench results (average across tasks) for 1B models, grouped by context length.  
811

---

| Model | 0–2k | 2–4k | 4–6k | 6–8k | 8–10k | 10–12k | 12k+ |
|-------|------|------|------|------|-------|--------|------|
| Base  | 24.0 | 23.8 | 22.1 | 22.3 | 21.9  | 21.1   | 23.5 |
| STEM  | 27.6 | 27.6 | 24.4 | 22.7 | 23.0  | 21.7   | 24.2 |

---

812 test examples by context length and report the average scores in each regime. As shown in Ta-  
813 ble 6, the 1B STEM model consistently matches or outperforms the 1B dense baseline across all  
814 context-length ranges, indicating that its long-context capabilities extend beyond synthetic tasks.  
815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863