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ABSTRACT

High-dimensional data, particularly in the form of high-order tensors, presents a
major challenge in deep learning. While various deep autoencoders (DAEs) are
employed as basic feature extraction modules, most of them depend on flatten-
ing operations that exacerbate the curse of dimensionality, leading to excessively
large model sizes, high computational overhead, and challenging optimization for
deep structural feature capture. Although existing tensor networks alleviate com-
putational burdens through tensor decomposition techniques, most exhibit limited
capability in learning non-linear relationships. To overcome these limitations, we
introduce the Mode-Aware Non-linear Tucker Autoencoder (MA-NTAE). MA-
NTAE generalized classical Tucker decomposition to a non-linear framework and
employs a Pick-and-Unfold strategy, facilitating flexible per-mode encoding of
high-order tensors via recursive unfold-encode-fold operations, effectively inte-
grating tensor structural priors. Notably, MA-NTAE exhibits linear growth in
computational complexity with tensor order and proportional growth with mode
dimensions. Extensive experiments demonstrate MA-NTAE’s performance ad-
vantages over DAE variants and current tensor networks in dimensionality re-
duction and recovery, which become increasingly pronounced for higher-order,
higher-dimensional tensors.

1 INTRODUCTION

High-order tensors (multi-way arrays indexed by multiple coordinates) serve as the fundamental
representation for modern data-intensive applications across scientific and industrial domains (Fu
et al., 2022). Multi-view images (Lou et al., 2025), hyperspectral data (Xu et al., 2019), and spatio-
temporal signals (Gong et al., 2023) etc., all naturally manifest as tensors. These data structures
preserve multidimensional relationships through distinct mode axes capturing wavelength, spatial
coordinates, temporal frames, viewpoints, or sensor modalities. The exponential growth of such
data has intensified the demand for learning models capable of compressing, mining, and analyzing
high-order tensors.

Modern deep autoencoders (DAE) based on Multi-layer perceptions (MLPs) (Hinton & Salakhutdi-
nov, 2006), including variants like Variational AEs (Kingma & Welling, 2014) and Adversarial AEs
(Makhzani et al., 2016), remain dominant in unsupervised representation learning (Hu et al., 2025;
Lin et al., 2023). However, they suffer from two critical limitations when processing tensor-form
data: i) Mode-agnostic compression: Flattening operations discard mode-specific statistical de-
pendencies (e.g., temporal correlations versus spatial correlations), which leads to an optimization
disaster in recovering structural information; ii) Exponential parameter growth: For an N th-order
tensor, a fully connected layer mapping flattened input to latent code requires parameters scaling
with the multiplication of all input dimension sizes (See the third-order case in Figure 1.1a). This
leads to a compromise in the input-data dimensionality among researches (Zhu et al., 2024; Wang
et al., 2023), where models are also forced to reduce hidden and latent dimensionality to ensure
stable convergence.
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Figure 1.1: Graphical abstract of our innovations and advantages over typical vector-based and
tensor-based neural networks. Our MA-NTAE directly models the non-linear interactions between
different modes, achieving better compression performance with less parameters. (b) and (c) are the
results in third-order tensor scenarios (See Section 4.1 for details).

1.1 CLASSICAL TUCKER DECOMPOSITION REVISITED

A naive yet elegant remedy to overcome the curse of dimensionality is offered by the classical multi-
linear algebra in Tucker decomposition Tucker (1966), which factorizes a tensor X into a core
tensor G and factor matrices {U(n)}Nn=1, achieving linear parameter growth in tensor order N and
proportional growth in mode dimensions. Through unfold-encode-fold, the structural information is
naturally introduced and integrated into the low-rank approximation for tensor data. During the last
decade, researchers have made an effort to utilize Tucker’s principle and present tensor autoencoder
networks (Liu & Ng, 2022; Chien & Bao, 2018; Luo et al., 2024). Among them, Chien & Bao (2018)
successfully construct a common Tensor-factorized Neural Network (TFNN) to perform non-linear
feature extraction (See Figure 1.1a). However, these approaches are inherently based on linear tensor
decomposition frameworks, where neural networks primarily serve to learn the factor matrices for
decomposing input data (raw inputs or feature tensors extracted by backbone networks). Although
these methods introduce non-linear transformations by applying activation functions to the core
tensor, they fail to effectively model the non-linear interactions between different modes, ultimately
limiting the model’s ability to learn complex cross-mode dependencies in the data.

1.2 OUR APPROACH: A NON-LINEAR TUCKER FRAMEWORK

Inspired by Tucker decomposition and existing tensor networks, we propose the Mode-Aware Non-
linear Tucker Autoencoder (MA-NTAE), an intuitive yet effective tensor neural network architec-
ture. A foundation comparison of existing and our approaches is shown in Figure 1.1a. The overall
framework of our approach is illustrated in Figure 3.1, which embodies three fundamental innova-
tions: 1) Mode-aware non-linear encoding. MA-NTAE extends Tucker decomposition through a
recursively applied Pick–Unfold–Encode–Fold strategy. This approach effectively models interac-
tions within individual modes while propagating learned representations across different modes to
further explore cross-mode relationships. 2) Implicit structural priors. Each time of mode-aware
encoding exposes mode-wise covariance structures, where the encoder learns non-linear Tucker fac-
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tors and the folded latent core becomes a dynamically optimized core tensor. By incorporating
tensor-structured priors, the proposed method narrows the parameter optimization space, enabling
faster and more stable deep mining of tensor data. 3) Low computational complexity. MA-NTAE
achieves scalable computational complexity that grows linearly with tensor order and proportionally
with mode dimensions, while maintaining parameter efficiency.

Our main contributions are: 1) We propose a non-linear Tucker-driven framework that unifies clas-
sical tensor factorization with modern autoencoding and allows flexible mode-aware operations in
tensorial deep learning. 2) We offer a simple yet effective principle—Pick-and-Unfold to handle the
curse of dimensionality in higher-order tensor scenarios. 3) We provide extensive empirical evidence
on synthetic and real tensors demonstrating superior tensor data representation in compression tasks,
with advantages that amplify as data dimensionality grows.

2 RELATED WORK

Notations. Tensors are denoted by bold calligraphic letters (X ), matrices by bold capitals (X),
and vectors by bold lower-case letters (x). X(n) ∈ RIn×

∏N
k ̸=n Ik denotes the mode-n unfolding of

X ∈ RI1×···×IN .

Deep Autoencoders. Deep Autoencoders (DAEs) have evolved significantly since their inception as
linear dimensionality reducers (Bourlard & Kamp, 1988). Modern variants includes regularized AEs
(Vincent et al., 2010; Rifai et al., 2011)and probabilistic AEs Kingma & Welling (2013); Makhzani
et al. (2015). Despite these advances, all flatten high-order tensors into vectors, destroying multi-
linear structure and inducing O(

∏N
n=1 In) parameter scaling. Although convolutional AE (Masci

et al., 2011) greatly relieves computational burden, it is only applicable to tensors of up to third-
order. Our work fundamentally differs by mode-wise recursive processing, which can be extended
to tensors of any order.

Tucker Decomposition. Tensor decomposition extracts latent structures from high-order data
through multi-linear algebraic (Kolda & Bader, 2009), which (Tucker, 1966) represents X as a core
tensor G ∈ RK1×···×KN multiplied by factor matrices Un ∈ RIn×Kn along each mode:

X ≈ G ×1 U1 ×2 · · · ×N UN , (1)
where G×nUn := UnG

(n) is the mode-n product. The multi-linear rank (K1, . . . ,KN ) in Tucker’s
allows mode-specific compression. Applications based on Tucker decomposition span multiple do-
mains, including image compression (Ballester-Ripoll et al., 2020), signal processing (Haardt et al.,
2008), and pattern recognition (Hua-Chun Tan & Yu-Jin Zhang, 2008). However, the linear alge-
bra nature of Tucker decomposition inherently limits its broader application in modern complex
downstream tasks.

Tensorial Neural Network. Recent advances in tensorial neural networks (TNNs) show that com-
bining multi-linear algebra with deep learning produces compact, structure-aware models. Cur-
rently, TNNs can be roughly distinguished by their applicability as autoencoders. One branch of
TNN research leverages tensor decomposition on features (extracted by other modules) that are de-
liberately structured into tensors using domain knowledge to obtain interpretable, domain-specific
information. For example, Hyder & Asif (2023) combines tensor ring factorization with a determin-
istic autoencoder to impose low-rank structural constraints on the latent space, leveraging dataset
articulations for improved compressive sensing tasks like denoising and inpainting. Zhao et al.
(2024) tensorizes multi-view low-rank approximations so that inter-view and intra-class structures
are learned jointly, boosting robust hand-print recognition. This type of TNNs, although preserving
a valid foundation, pays less attention to the structural information of the original data. The other
branch of TNNs serves as an autoencoder to extract features, which can directly preserve struc-
tural information from raw tensor data. For example, Novikov et al. (2015) utilizes tensor-train
decomposition to compress MLP-based DAE and greatly reduces parameters. Chien & Bao (2018)
replaces every MLP layer with a Tucker factorization followed by an activation function to form
a non-linear approximation, preserving mode-wise correlations. Newman et al. (2024) develops a
T-SVDM representation to efficiently parameterize MLP-based DAE while preserving third-order
tensor structures.

Although TNN-based AEs make great progress in incorporating prior structural information for pa-
rameter reduction, both branches of TNNs’ tensor decomposition processes remain fundamentally

3
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Figure 3.1: Overall framework of our approach in third-order tensor scenarios. For a batch of tensor
data (where each frontal slice represents one sample), we sequentially perform mode-n Unfold–
Encode–Fold procedure, progressively reducing dimensionality across modes. The decoding pro-
cess follows the reverse mode order to reconstruct data matching the original input dimensions,
after which we compute the reconstruction loss. To ensure training stability, skip connections from
residual learning are incorporated between corresponding encoder-decoder pairs, enhancing the net-
work’s capacity for modeling high-order tensor data.

rooted in linear operations, incapable of achieving a fully non-linear decomposition of tensors that
integrates deeper cross-mode dependencies. Building on this line, we propose a mode-aware ten-
sor autoencoder that performs Pick-Unfold–Encode–Fold operations, realizing a flexible non-linear
Tucker compression with enhanced ability to capture complex non-linear dependencies.

3 METHODOLOGY

In this section, we formalize the proposed Mode-aware Non-linear Tucker Autoencoder (MA-
NTAE) and detail its optimization. Figure 3.1 provides an overview of our approach.

Fundamental Problem. The fundamental challenge we address involves developing an efficient
tensor compression framework for high-order data representations. Given an N -th order ten-
sor X ∈ RI1×I2×···×IN (N ≥ 3), our objective is to learn a non-linear mapping X → G ∈
RK1×···×KN (Kn < In) that preserves the intrinsic cross-mode structure while achieving dimen-
sionality reduction. The traditional Tucker decomposition achieves multilinear mapping and recon-
struction through a series of mode-specific linear encoders and decoders. Our proposed framework
extends this concept to multi-non-linear scenarios by replacing the factor matrices with non-linear
mappings:

G = X ▷1 f1 ▷2 · · · ▷N fN ,

X̂ = G ▷N gN ▷N−1 · · · ▷1 g1,
(2)

where X ▷n fn := foldn (fn (unfoldn(X ))), and fn and gn are the mode-specific encoder and
decoder sequences, respectively.

3.1 CORE ARCHITECTURE

Pick–Unfold–Encode–Fold Recursion. The compression mechanism employs a recursive Pick-
Unfold-Encode-Fold procedure that selectively processes individual tensor modes. For an ordered
set of target modes S = {s1, . . . , sL} ⊆ {1, . . . , N}, each compression stage ℓ ∈ {1, ..., L} exe-
cutes three key operations:

1) Mode-specific Unfolding: The current latent tensor Zℓ−1 ∈ Rdi×···×dN with

di =

{
Ki i > sℓ
Ii otherwise

(3)

undergoes mode-sℓ unfolding to produce matrix Z
(sℓ)
ℓ−1 ∈ RIsℓ×J where J =

∏
n̸=sℓ

dn. This
operation preserves cross-mode correlations while exposing the target mode’s features.
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2) Non-linear Projection: A dedicated multilayer perceptron processes the unfolded representation:

Zℓ(sℓ) = MLPθℓ(Z
(sℓ)
ℓ−1) = FCKsℓ

(ReLU(FCHsℓ
(Z

(sℓ)
ℓ−1))) (4)

where FC refers to Fully Connected layer, and the hidden dimension Hsℓ controls the transformation
capacity. Each column vector in Z

(sℓ)
ℓ−1 is regarded as a ’sample’ during encoding.

3) Structural Reorganization: The compressed mode is folded back into tensor form Zℓ ∈
RI1×···Ksℓ

×···×IN , maintaining proper mode ordering through permutation.

The dimensionality of the tensor progressively decreases with each mode-specific mapping:

X f1−→ Z1
f2−→ Z2 → · · · fL−→ ZL = G (5)

After L recursive stages, the process yields a compact latent core G = ZL ∈ RK1×···×KN .

Reverse: Pick–Unfold–Decode–Fold Recursion. The decoder mirrors the encoding procedure in
reverse order, employing distinct weights ϕℓ for each mode’s reconstruction network. Correspond-
ingly, the dimensionality of the tensor progressively increases with each mode-specific mapping:

G gL−→ ẐL−1
gL−1−→ ẐL−2 → · · · g1−→ X̂ (6)

This architecture generalizes Tucker decomposition by introducing learnable non-linear projections
at each factorization step.

Skip Connections for Better Optimization. Since each mode is encoded sequentially, our method
indirectly increases the network depth. To mitigate the possible vanishing gradient problem, we
introduce skip connections between paired encoders and decoders. It should be noted that skip
connections are only employed between hidden layers and output feature embeddings to avoid in-
formation leakage issues. The complete algorithmic workflow is presented in Algorithm 1.

3.2 LOSS FUNCTION AND TRAINING PROCEDURE

MA-NTAE employs the same loss function as standard DAE, minimizing the reconstruction error:

L(θ, ϕ) = 1

B

B∑
b=1

|gϕ(fθ(Xb))−Xb|2F , (7)

where B denotes batch size. During training, the proposed model preserves the standard autoencoder
training paradigm while operating directly on tensor representations.

3.3 COMPUTATIONAL AND PARAMETRIC COMPLEXITY

Computational Complexity. MA-NTAE performs mode-wise compression: every selected mode
sℓ is first unfolded, then passes through two linear maps (Input→Hidden→Latent), and is finally
folded back. The exact floating-point cost for this mode is

FLOPsenc(sℓ) = O
(
Isℓ D−sℓ

)︸ ︷︷ ︸
unfold

+IsℓHsℓD−sℓ+HsℓKsℓD−sℓ+O
(
Ksℓ D−sℓ

)︸ ︷︷ ︸
fold

≈ D−sℓ Hsℓ (Isℓ+Ksℓ),

(8)

where D−sℓ =
∏

j ̸=sℓ

Ij . The unfold/fold terms are linear in the element count and therefore domi-

nated by the two matrix products in most practical settings. Summing equation 8 over all N modes
yields

FLOPsenc =

L∑
sℓ=1

HsℓD−sℓ (Isℓ +Ksℓ) = O
(
LHsℓ I

N
)
, (9)
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where I and H are the representative mode and hidden size in the regular case (In = I,Hn = H).
The decoder is symmetric and contributes the same asymptotic cost. Therefore, in the extreme
case where L = N , the overall complexity of MA-NTAE remains linear in tensor order N and
proportional to each mode dimension In.

Parameter Complexity. Per compressed mode s the encoder holds two matrices Hs × Is and
Ks ×Hs and the decoder holds their transposes, so biases aside

Params(s) = 2Hs

(
Is +Ks

)
. (10)

Summing over all modes gives the network size

ParamsMA–NTAE = 2

N∑
n=1

Hn(In +Kn), (11)

linear in the tensor order N and in each mode dimension In. Figure 1.1b compares the parameter
growth of DAE, TFNN, and our approaches. Our method achieves substantially greater parameter
efficiency compared to DAE while maintaining a marginally larger parameter count than TFNN.

4 EXPERIMENTS

We assess theoretical performance on synthetic tensor datasets and validate effectiveness on real-
world datasets through compression experiments. We utilize PyTorch (Paszke et al., 2020) to im-
plement our method and an NVIDIA RTX 4090 GPU to run each experiment under Windows 10
operating system. Due to the page limit, please refer to A.1 for implementation details.

4.1 SYNTHETIC EXPERIMENT

Data formulation. We synthesize N th-order tensors of shape (B, I, . . . , I), where B = 512 is the
batch size. The Tucker core maintains shape B × 0.25I × · · · × 0.25I for consistent compression.
For each sample, we generate N − 1 orthonormal factor matrices U(n) ∈ RI×0.25I (n = 2, . . . , N ),
perturb them with Gaussian noise (σU = 0.05) to obtain Ũ(n), then construct clean tensors via:

X (b)
clean = G(b) ×2 Ũ

(2) ×3 · · · ×N Ũ(N), G(b) ∼ N (0, 1). (12)

We then add 30dB Gaussian noise to create X (b)
noisy = X (b)

clean +∆ as the input data. NMSE between
X̂noisy and Xclean is computed for evaluation. For each synthetic tensor, we allocate 80% of noisy
samples for training and 20% for testing (clean tensors split identically). For each setting of I , we
repeat the experiment 30 times and average the results to avoid statistical bias.

Results. We chose DAE (Hinton & Salakhutdinov, 2006), and TFNN Chien & Bao (2018) as typical
baselines representing vector-based and tensor-based neural networks, respectively. Figure 1.1c and
Table 4.1 demonstrate our method’s superior noise robustness and low computational cost on tensor
structure recovering. The performance advantage of our method over others becomes increasingly
pronounced as the dimensionality and tensor order increase. Figure 4.1 reveals that mode-shuffled
samples degrade performance for all methods, with mode-wise methods (TFNN and our approach)
being more sensitive to incorrect ordering. By direct non-linear tensor decomposition, our approach
achieves a more stable NMSE growth trend with varying dimensionality and tensor orders while
maintaining a satisfying training time.

4.2 EXPERIMENT ON REAL-WORLD DATA

Compression on image datasets. To evaluate MA-NTAE in practice, we design image compression
and reconstruction experiments on multiple real-world image datasets, including three small-scale
datasets (COIL-20 (Nene et al., 1996), JAFFE (Lyons et al., 1999), and Orlraws10P1) and two large-
scale datasets CIFAR10 (Krizhevsky & Hinton, 2009) and MNIST (Deng, 2012). The information
and preprocessing procedure on the datasets are detailed in Appendix A.2. We conduct standard

1https://jundongl.github.io/scikit-feature/datasets.html
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Figure 4.1: NMSE on the test set of third-order synthetic tensor data with random mode permuta-
tion. We randomly select a subset of samples, shuffle their mode orders, and evenly distribute them
between the training and test sets.

Table 4.1: NMSE(±std) and training time (per epoch, seconds) on tensors of different orders. Di-
mension per mode is set to 20.

Order DAE TFNN Ours
NMSE Time NMSE Time NMSE Time

3 0.1467± 0.0050 0.0094 0.1249± 0.0520 0.0124 0.0743± 0.0080 0.0209
4 0.6435± 0.0037 0.0268 0.1517± 0.0016 0.0186 0.1005± 0.0187 0.0584
5 1.0023± 0.0006 59.2248 0.2870± 0.0020 0.4833 0.2440± 0.0338 0.5296

DAE (Hinton & Salakhutdinov, 2006), Convolutional AE (CAE) (Masci et al., 2011) , Variational
AE (VAE) (Kingma & Welling, 2014), Tensor Factorized Neural Network (TFNN) (Chien & Bao,
2018), Tensor-train neural network (TTNN) (Novikov et al., 2015), and T-SVDM neural network
(TMNN) Newman et al. (2024) for comparison. According to the experimental results, our method
achieves: 1) superior dimensionality reduction and recovery (Figure 4.2) with lower reconstruction
error (Table 4.2 and Figure 4.3b), 2) more stable training convergence with better generalization
(Figure 4.3c and 4.3d), and 3) relatively less training time and parameters (See Table 4.3). Overall,
our method achieves a favorable balance between reconstruction performance and computational
complexity.

Ablation Study. An ablation study is carried out to evaluate the impact of skip connections and
mode order on model performance. MA-NTAE is trained under different skip connection settings
and mode encoding orders, with NMSE computed on the test sets. Results in Table 4.4 show that
skip connections enhance autoencoding performance, yielding lower and more stable reconstruction
errors. Due to the non-commutative nature of mode-wise encoding, different mode orders affect per-
formance, implying that the processing sequence should be tailored to specific applications. Figures
4.4a, obtained by repeated experiments on JAFFE, indicate that skip connections prevent severe per-
formance degradation despite reduced feature space capacity, suggesting they stabilize the optimiza-
tion process rather than simply bypassing information. Even without skip connections, MA-NTAE
can still achieve great generalization on the test set (See Figure 4.4b retrieved at CR ≈ 39), which
indicates our method’s outstanding tensorial learning ability.

Table 4.2: Best reconstruction NMSE in the compression experiment corresponding to Figure 4.2.
The bold and underlined entries highlight the smallest and second-smallest values, respectively.

Dataset Ours DAE TMNN TFNN TTNN CAE VAE
COIL20 0.0039 0.0581 0.0507 0.0138 0.0173 0.0039 0.0374
JAFFE 0.0046 0.0318 0.0268 0.0126 0.0186 0.0069 0.0319

Orlraws10P 0.0042 0.0450 0.0426 0.0143 0.0237 0.0054 0.0519
MNIST 0.0098 0.0268 0.1248 0.0675 0.0697 0.0204 0.0593

CIFAR10 0.0293 0.0620 0.2462 0.1190 0.0647 0.0564 0.0908

7
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Figure 4.2: Reconstruction results on the test sets of real-world datasets. Two-layer dimensionality
reduction (See Appendix A.1) with factors of 0.5 for each mode per layer is applied for all models
on each dataset. Our method combines the ability of TNNs to maintain the image structure (camera
viewpoint and target orientation) with the capability of MLPs to recover fine details. See Appendix
A.3 for more results.
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Figure 4.3: Results on Orlraws10P with different Compression ratios (CR). The CRs are varied by
setting the dimensionality reduction factor in the range of [0.5, 0.4, 0.3, 0.2]. The experiment under
each CR is repeated for 30 times. (a) and (b) record the best NMSE during training and testing,
respectively. (c) and (d) are retrieved at the training process when CR ≈ 39.
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Table 4.3: Cost of training time and parameters in the compression experiment. For each dataset,
the first and second rows provide the training time (seconds) per epoch and the parameter numbers,
respectively. The bold and underlined entries highlight the smallest and second-smallest values,
respectively.

Dataset Ours DAE TMNN TFNN TTNN CAE VAE

COIL20 0.0339 0.6809 0.0398 0.0308 0.1598 0.1217 0.7046

41537 142631936 1139712 20480 34368 2633 146843648

JAFFE 0.0087 0.2231 0.0110 0.0082 0.0299 0.0171 0.2308

41537 142631936 1139712 20480 34368 2633 146843936

Orlraws10P 0.0077 0.0893 0.0090 0.0065 0.0167 0.0060 0.0945

26720 56420196 629188 13130 39960 2633 58090088

MNIST 0.9501 0.5635 1.2148 1.0757 1.7186 0.6916 0.8926

2087 327761 12572 982 3394 2633 338198

CIFAR10 1.1534 0.9629 1.0938 0.9992 1.8617 0.7258 1.2476

2753 5018304 57024 1298 15568 3211 5169024

Table 4.4: Ablation results on JAFFE, Orlraws10P, and COIL20 (NMSE(±std)).

Skip
Connection

Mode
Encoding Order

Dataset
JAFFE Orlraws10P COIL20

w [2, 3] 0.0048± 0.0003 0.0051± 0.0012 0.0050± 0.0006
[3, 2] 0.0055± 0.0004 0.0068± 0.0007 0.0021± 0.0001

w/o [2, 3] 0.0143± 0.0007 0.0192± 0.0008 0.0165± 0.0017
[3, 2] 0.0144± 0.0009 0.0187± 0.0018 0.0143± 0.0009

5 CONCLUSION

In this work, we address the challenges of deep learning on high-order tensor data by proposing the
Mode-Aware non-linear Tucker Autoencoder (MA-NTAE), a novel framework that integrates clas-
sical Tucker decomposition with modern autoencoding techniques through recursive Pick-Unfold-
Encode-Fold operations and enables flexible mode-aware processing of tensor data. Compared to
DAE variants and existing tensorial networks, our approach achieves superior reconstruction accu-
racy with relatively small parameter sizes and training time across simulated and real-world tensor
data of varying orders and dimensions. The ablation study shows the importance of the introduced
skip connection and MA-NTAE’s sensitivity to mode orders.
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Figure 4.4: Comparison of NMSE curves for MA-NTAE with and without skip connections.
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Figure A.1: The applied unified structure for all comparative methods. B stands for batch size. We
reduce the dimensionality of each mode with a factor α < 1 except for the color channel mode in
CIFAR10, where we set α = 1. In the experiments, the capacity of the feature space at each layer is
kept consistent across all models to ensure a fair comparison.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF COMPARATIVE METHODS

The implementation details of comparative methods are listed as follows:

• Unified Structure: All methods employ an identical two-layer encoder-decoder architec-
ture, as illustrated in Figure A.1. The input data dimensions are specifically tailored to each
model’s architecture. We consistently employ the Rectified Linear Unit (ReLU) function
as the activation function for all methods. In the experiments, we consistently employ an
end-to-end training strategy (without using stacked training) to ensure fairness, while also
demonstrating the training-friendly advantage of our approach. The learning rate is fixed
to 10−3. All models are trained for 1000 epochs. And the batch size is set according to the
sample size of each dataset in the experiments (See Table A.3).

• Loss function. All models optimize the Mean Squared Error (MSE) as the loss function,
while the normalized MSE (NMSE) is utilized for evaluation. Specifically, for the VAE,
we employ a combination of MSE and KL divergence as the loss function to align with its
underlying principle.

• MA-NTAE. The inputs and outputs of our method strictly adhere to the structure defined
in Figure A.1 across most benchmark datasets, encoded following the modal order of [2, 3].
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However, for the CIFAR10 dataset, where the input format is Batch × Channel × Height ×
Width—we make an exception by preserving the dimensionality of the channel mode. In
this case, the reduction is applied to the modes in the order of [3, 4, 2], corresponding to
[Height, Width, Channel].

• DAE and VAE. The input dimensions for the corresponding layers in DAE and VAE are
structured as B ×

∏
i

Ii −B ×
∏
i

αIi −B ×
∏
i

α2Ii −B ×
∏
i

αIi −B ×
∏
i

Ii.

• CAE. For CAE, we utilize a 3 × 3 convolutional kernel with a stride of 1 and padding of
1. Dimensionality reduction in the encoder is achieved through max pooling layers, while
upsampling operations are employed in the decoder for dimensionality expansion. The first
encoder layer outputs 16 channels, and the second encoder layer produces 8 channels. The
decoder follows a symmetric channel configuration relative to the encoder. For grayscale
image inputs, we unsqueeze an additional channel dimension. In experiments involving
compression ratio variations, we replace the pooling layers with adaptive pooling to align
the compression ratios across all methods, thereby enabling more flexible control over the
capacity of the output feature space.

• TFNN. The TFNN employs the same input and output configuration for each layer as our
method.

• TTNN. Since the TTNN operates by applying a tensor-train (TT) decomposition to the
weight matrices of the linear layers in the DAE, the TT-format is configured individually
for different input data sizes. The specific settings of each encoder layer are detailed in
Table A.1. For different compression ratios, the corresponding settings are given in Table
A.2. The decoder layers have a symmetrical architecture to the encoder layers. Please refer
to Novikov et al. (2015) for technical details.

Table A.1: The specific settings of each encoder layer in TTNN on different datasets, including the
input size, output size, and weight matrices’ TT-ranks in each layer. Each upper row and bottom
row within a dataset represent the size of the reshaped input and output data, respectively. The
dimensionality reduction factor α for each mode in the original data is set to 0.5.

Dataset First layer Second layer TT-ranks

COIL20 8× 8× 4× 4× 4× 2× 2 8× 4× 4× 4× 2× 2× 2 1× 8× 8× 8× 8× 8× 8× 1
8× 4× 4× 4× 2× 2× 2 4× 4× 4× 2× 2× 2× 2 1× 8× 8× 8× 8× 8× 8× 1

JAFFE 8× 8× 4× 4× 4× 2× 2 8× 4× 4× 4× 2× 2× 2 1× 8× 8× 8× 8× 8× 8× 1
8× 4× 4× 4× 2× 2× 2 4× 4× 4× 2× 2× 2× 2 1× 8× 8× 8× 8× 8× 8× 1

Orlraws10P 8× 8× 7× 23 8× 4× 7× 23 1× 8× 8× 8× 1
8× 4× 7× 23 4× 2× 7× 23 1× 8× 8× 8× 1

MNIST 14× 14× 4 7× 7× 4 1× 4× 4× 1
7× 7× 4 3× 3× 4 1× 2× 2× 1

CIFAR10 16× 16× 3× 4 8× 8× 3× 4 1× 8× 8× 8× 1
8× 8× 3× 4 4× 4× 3× 4 1× 4× 4× 4× 1

• TMNN. Due to its foundation on the T-SVDM principle for feature encoding, TMNN can
only reduce the dimensionality along one mode of the three-dimensional input. To ensure
alignment of its feature space with other methods, we specifically adjust the dimensional-
ity reduction factor for TMNN. For instance, on the COIL20 dataset, the output after the
first encoder is typically α128 × α128 for other methods, whereas for TMNN it becomes
α2128 × 128. The same adjustment logic applies to other datasets. We set the minimum
mode reduced dimensionality to 1. This constraint is reasonable because the dimensional-
ity of the other mode remains unchanged during encoding. However, due to the difficulty
in precisely controlling the compression ratio of TMNN, it was excluded from the experi-
ments involving compression ratio variations. This was done to prevent unfair comparisons
resulting from discrepancies in feature space capacity.
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Table A.2: The specific settings of each encoder layer in TTNN on Orlraws10P with different di-
mensionality reduction factors α.

α First layer Second layer TT-ranks

0.5
8× 8× 7× 23 8× 4× 7× 23 1× 8× 8× 8× 1
8× 4× 7× 23 4× 2× 7× 23 1× 8× 8× 8× 1

0.4
64× 7× 23 9× 11× 16 1× 8× 8× 1
9× 11× 16 2× 7× 17 1× 8× 8× 1

0.3
64× 7× 23 9× 9× 11 1× 8× 8× 1
9× 9× 11 9× 4× 2 1× 8× 8× 1

0.2
112× 92 18× 22 1× 8× 1
18× 22 4× 3 1× 8× 1

A.2 DATASETS INTRODUCTION

Table A.3 details the characteristics of the four real-world image datasets used in our experiments,
including three small-scale and two large-scale datasets. The descriptions are given as follows:

• COIL20 (Nene et al., 1996), comprises grayscale images of 20 distinct objects, captured
through rotational photography at 5-degree intervals (yielding 72 images per object). All
images are standardized to 128 × 128 pixels. This dataset consists of two subsets: The
first subset contains 720 raw images covering 10 object categories, while the second subset
includes 1, 440 preprocessed images encompassing all 20 object categories.

• JAFFE (Lyons et al., 1999), comprises 213 facial expression images captured in a lab-
oratory setting. All images are standardized to 128 × 128 pixels. Ten Japanese female
participants were instructed to perform seven prototypical expressions (six basic emotions
plus neutral), with high-resolution photographs taken of each expression.

• Orlraws10P2, contains 100 standardized grayscale images (112× 92 pixels) derived from
the ORL face database (Samaria et al., 1994), sampling 10 randomly selected subjects.
Each subject’s 10-image sequence captures controlled intra-subject variations, including:
temporal acquisition differences, facial expressions (eye openness and smile states), light-
ing conditions, and accessory modifications (glasses on/off).

• MNIST (Deng, 2012) The MNIST dataset is a foundational benchmark in computer vision.
It consists of 70,000 grayscale images of handwritten digits (0-9), split into 60,000 training
and 10,000 test images. The digits are centered within each 28×28 pixel image, showcasing
a variety of handwriting styles in a clean, pre-processed format.

• CIFAR10 (Krizhevsky & Hinton, 2009) The CIFAR10 dataset comprises 60,000 32 × 32
color images in 10 classes, such as airplanes, cars, animals (like birds, cats, deer, dogs,
frogs, horses), and vehicles (ships, trucks). It is partitioned into a standard training set of
50,000 images and a test set of 10,000 images.

We randomly used 50% of the samples as the training set and the remaining 50% as the test set,
except for MNIST and CIFAR10, which have officially designated training and test sets. The pre-
processing for all datasets only involve normalization, along with the necessary shuffling of sample
order during the training phase.

A.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

The supplementary results for the compression experiment are given in Figure A.2, Figure A.3, Fig-
ure A.4, Figure A.5, and Figure A.6. Overall, vector-based methods (DAE and VAE) tend to learn
”averaged” encodings, which often leads to confusion between targets or viewpoints on the test set,
especially on small-scale datasets like Orlraws10P and COIL20. Conversely, methods that account

2https://jundongl.github.io/scikit-feature/datasets.html
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Table A.3: Dataset Statistics

Dataset #Sample #Feature #Class Batch size
COIL20 1440 128× 128 20 64
JAFFE 213 128× 128 7 32

Orlraws10P 100 92× 112 10 16
MNIST 70000 28× 28 10 128

CIFAR10 60000 32× 32× 3 100 128

Original Ours DAE TMNN CAETTNNTFNN VAEOriginal Ours DAE TMNN CAETTNNTFNN VAE

Figure A.2: Reconstruction results on the test set of COIL20.

for tensor structure (TMAE, TFAE, TTAE, CAE, and our approach) demonstrate better general-
ization. Furthermore, thanks to our Pick-Unfold-Encode-Fold architecture’s enhanced capability in
modeling non-linear relationships, it achieves superior reconstruction of image details.

A.4 LARGE LANGUAGE MODEL USAGE DECLARATION

Our use of Large Language Models (LLMs) was limited to polishing sentences and fixing grammar,
with no impact on the research content.
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Original Ours DAE TMNN CAETTNNTFNN VAEOriginal Ours DAE TMNN CAETTNNTFNN VAE

Figure A.3: Reconstruction results on the test set of JAFFE.
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Original Ours DAE TMNN CAETTNNTFNN VAEOriginal Ours DAE TMNN CAETTNNTFNN VAE

Figure A.4: Reconstruction results on the test set of Orlraws10P.
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Original Ours DAE TMNN CAETTNNTFNN VAEOriginal Ours DAE TMNN CAETTNNTFNN VAE

Figure A.5: Reconstruction results on the test set of MNIST.
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Original Ours DAE TMNN CAETTNNTFNN VAEOriginal Ours DAE TMNN CAETTNNTFNN VAE

Figure A.6: Reconstruction results on the test set of CIFAR10.
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