

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PICK-AND-UNFOLD: MODE-AWARE NON-LINEAR TUCKER AUTOENCODER FOR TENSORIAL DEEP LEARNING

Anonymous authors

Paper under double-blind review

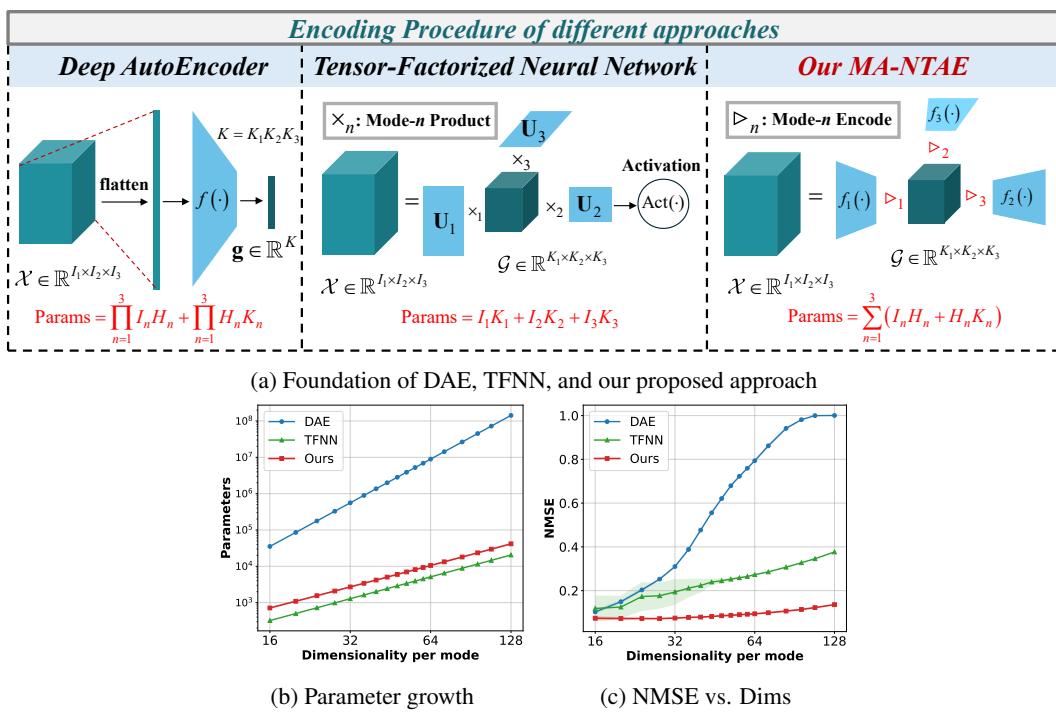
ABSTRACT

High-dimensional data, particularly in the form of high-order tensors, presents a major challenge in deep learning. While various deep autoencoders (DAEs) are employed as basic feature extraction modules, most of them depend on flattening operations that exacerbate the curse of dimensionality, leading to excessively large model sizes, high computational overhead, and challenging optimization for deep structural feature capture. Although existing tensor networks alleviate computational burdens through tensor decomposition techniques, most exhibit limited capability in learning non-linear relationships. To overcome these limitations, we introduce the Mode-Aware Non-linear Tucker Autoencoder (MA-NTAE). MA-NTAE generalized classical Tucker decomposition to a non-linear framework and employs a Pick-and-Unfold strategy, facilitating flexible per-mode encoding of high-order tensors via recursive unfold-encode-fold operations, effectively integrating tensor structural priors. Notably, MA-NTAE exhibits linear growth in computational complexity with tensor order and proportional growth with mode dimensions. Extensive experiments demonstrate MA-NTAE’s performance advantages over DAE variants and current tensor networks in dimensionality reduction and recovery, which become increasingly pronounced for higher-order, higher-dimensional tensors.

1 INTRODUCTION

High-order tensors (multi-way arrays indexed by multiple coordinates) serve as the fundamental representation for modern data-intensive applications across scientific and industrial domains (Fu et al., 2022). Multi-view images (Lou et al., 2025), hyperspectral data (Xu et al., 2019), and spatio-temporal signals (Gong et al., 2023) *etc.*, all naturally manifest as tensors. These data structures preserve multidimensional relationships through distinct mode axes capturing wavelength, spatial coordinates, temporal frames, viewpoints, or sensor modalities. The exponential growth of such data has intensified the demand for learning models capable of compressing, mining, and analyzing high-order tensors.

Modern deep autoencoders (DAE) based on Multi-layer perceptions (MLPs) (Hinton & Salakhutdinov, 2006), including variants like Variational AEs (Kingma & Welling, 2014) and Adversarial AEs (Makhzani et al., 2016), remain dominant in unsupervised representation learning (Hu et al., 2025; Lin et al., 2023). However, they suffer from two critical limitations when processing tensor-form data: i) **Mode-agnostic compression**: Flattening operations discard mode-specific statistical dependencies (e.g., temporal correlations versus spatial correlations), which leads to an optimization disaster in recovering structural information; ii) **Exponential parameter growth**: For an N^{th} -order tensor, a fully connected layer mapping flattened input to latent code requires parameters scaling with the multiplication of all input dimension sizes (See the third-order case in Figure 1.1a). This leads to a compromise in the input-data dimensionality among researches (Zhu et al., 2024; Wang et al., 2023), where models are also forced to reduce hidden and latent dimensionality to ensure stable convergence.



077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1.1: Graphical abstract of our innovations and advantages over typical vector-based and tensor-based neural networks. Our MA-NTAE directly models the non-linear interactions between different modes, achieving better compression performance with less parameters. (b) and (c) are the results in third-order tensor scenarios (See Section 4.1 for details).

1.1 CLASSICAL TUCKER DECOMPOSITION REVISITED

A naive yet elegant remedy to overcome the curse of dimensionality is offered by the classical multi-linear algebra in **Tucker decomposition** Tucker (1966), which factorizes a tensor \mathcal{X} into a core tensor \mathcal{G} and factor matrices $\{\mathbf{U}^{(n)}\}_{n=1}^N$, achieving linear parameter growth in tensor order N and proportional growth in mode dimensions. Through **unfold-encode-fold**, the structural information is naturally introduced and integrated into the low-rank approximation for tensor data. During the last decade, researchers have made an effort to utilize Tucker’s principle and present tensor autoencoder networks (Liu & Ng, 2022; Chien & Bao, 2018; Luo et al., 2024). Among them, Chien & Bao (2018) successfully construct a common Tensor-factorized Neural Network (TFNN) to perform non-linear feature extraction (See Figure 1.1a). However, these approaches are inherently based on linear tensor decomposition frameworks, where neural networks primarily serve to learn the factor matrices for decomposing input data (raw inputs or feature tensors extracted by backbone networks). Although these methods introduce non-linear transformations by applying activation functions to the core tensor, they fail to effectively model the non-linear interactions between different modes, ultimately limiting the model’s ability to learn complex cross-mode dependencies in the data.

1.2 OUR APPROACH: A NON-LINEAR TUCKER FRAMEWORK

Inspired by Tucker decomposition and existing tensor networks, we propose the **Mode-Aware Non-linear Tucker Autoencoder (MA-NTAE)**, an intuitive yet effective tensor neural network architecture. A foundation comparison of existing and our approaches is shown in Figure 1.1a. The overall framework of our approach is illustrated in Figure 3.1, which embodies three fundamental innovations: **1) Mode-aware non-linear encoding.** MA-NTAE extends Tucker decomposition through a recursively applied *Pick–Unfold–Encode–Fold* strategy. This approach effectively models interactions within individual modes while propagating learned representations across different modes to further explore cross-mode relationships. **2) Implicit structural priors.** Each time of mode-aware encoding exposes mode-wise covariance structures, where the encoder learns *non-linear Tucker fac-*

108 *tors* and the folded latent core becomes a dynamically optimized core tensor. By incorporating
 109 tensor-structured priors, the proposed method narrows the parameter optimization space, enabling
 110 faster and more stable deep mining of tensor data. **3) Low computational complexity.** MA-NTAE
 111 achieves scalable computational complexity that grows linearly with tensor order and proportionally
 112 with mode dimensions, while maintaining parameter efficiency.

113 Our main contributions are: 1) We propose a non-linear Tucker-driven framework that unifies clas-
 114 sical tensor factorization with modern autoencoding and allows flexible mode-aware operations in
 115 tensorial deep learning. 2) We offer a simple yet effective principle—Pick-and-Unfold to handle the
 116 curse of dimensionality in higher-order tensor scenarios. 3) We provide extensive empirical evidence
 117 on synthetic and real tensors demonstrating superior tensor data representation in compression tasks,
 118 with advantages that amplify as data dimensionality grows.

119

120 2 RELATED WORK

121

122 **Notations.** Tensors are denoted by bold calligraphic letters (\mathcal{X}), matrices by bold capitals (\mathbf{X}),
 123 and vectors by bold lower-case letters (\mathbf{x}). $\mathbf{X}^{(n)} \in \mathbb{R}^{I_n \times \prod_{k \neq n}^N I_k}$ denotes the mode- n unfolding of
 124 $\mathcal{X} \in \mathbb{R}^{I_1 \times \dots \times I_N}$.

125

126 **Deep Autoencoders.** Deep Autoencoders (DAEs) have evolved significantly since their inception as
 127 linear dimensionality reducers (Bourlard & Kamp, 1988). Modern variants includes regularized AEs
 128 (Vincent et al., 2010; Rifai et al., 2011) and probabilistic AEs Kingma & Welling (2013); Makhzani
 129 et al. (2015). Despite these advances, all flatten high-order tensors into vectors, destroying multi-
 130 linear structure and inducing $\mathcal{O}(\prod_{n=1}^N I_n)$ parameter scaling. Although convolutional AE (Masci
 131 et al., 2011) greatly relieves computational burden, it is only applicable to tensors of up to third-
 132 order. Our work fundamentally differs by mode-wise recursive processing, which can be extended
 133 to tensors of any order.

134

135 **Tucker Decomposition.** Tensor decomposition extracts latent structures from high-order data
 136 through multi-linear algebraic (Kolda & Bader, 2009), which (Tucker, 1966) represents \mathcal{X} as a core
 137 tensor $\mathcal{G} \in \mathbb{R}^{K_1 \times \dots \times K_N}$ multiplied by factor matrices $\mathbf{U}_n \in \mathbb{R}^{I_n \times K_n}$ along each mode:

$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{U}_1 \times_2 \dots \times_N \mathbf{U}_N, \quad (1)$$

138

139 where $\mathcal{G} \times_n \mathbf{U}_n := \mathbf{U}_n \mathbf{G}^{(n)}$ is the mode- n product. The multi-linear rank (K_1, \dots, K_N) in Tucker’s
 140 allows mode-specific compression. Applications based on Tucker decomposition span multiple do-
 141 mains, including image compression (Ballester-Ripoll et al., 2020), signal processing (Haardt et al.,
 142 2008), and pattern recognition (Hua-Chun Tan & Yu-Jin Zhang, 2008). However, the linear alge-
 143 bra nature of Tucker decomposition inherently limits its broader application in modern complex
 144 downstream tasks.

145

146 **Tensorial Neural Network.** Recent advances in *tensorial neural networks* (TNNs) show that com-
 147 bining multi-linear algebra with deep learning produces compact, structure-aware models. Cur-
 148 rently, TNNs can be roughly distinguished by their applicability as autoencoders. One branch of
 149 TNN research leverages tensor decomposition on features (extracted by other modules) that are de-
 150 liberately structured into tensors using domain knowledge to obtain interpretable, domain-specific
 151 information. For example, Hyder & Asif (2023) combines tensor ring factorization with a deter-
 152 ministic autoencoder to impose low-rank structural constraints on the latent space, leveraging dataset
 153 articulations for improved compressive sensing tasks like denoising and inpainting. Zhao et al.
 154 (2024) tensorizes multi-view low-rank approximations so that inter-view and intra-class structures
 155 are learned jointly, boosting robust hand-print recognition. This type of TNNs, although preserving
 156 a valid foundation, pays less attention to the structural information of the original data. The other
 157 branch of TNNs serves as an autoencoder to extract features, which can directly preserve struc-
 158 tural information from raw tensor data. For example, Novikov et al. (2015) utilizes tensor-train
 159 decomposition to compress MLP-based DAE and greatly reduces parameters. Chien & Bao (2018)
 160 replaces every MLP layer with a Tucker factorization followed by an activation function to form
 161 a non-linear approximation, preserving mode-wise correlations. Newman et al. (2024) develops a
 162 T-SVDM representation to efficiently parameterize MLP-based DAE while preserving third-order
 163 tensor structures.

164

165 Although TNN-based AEs make great progress in incorporating prior structural information for pa-
 166 rameter reduction, both branches of TNNs’ tensor decomposition processes remain fundamentally

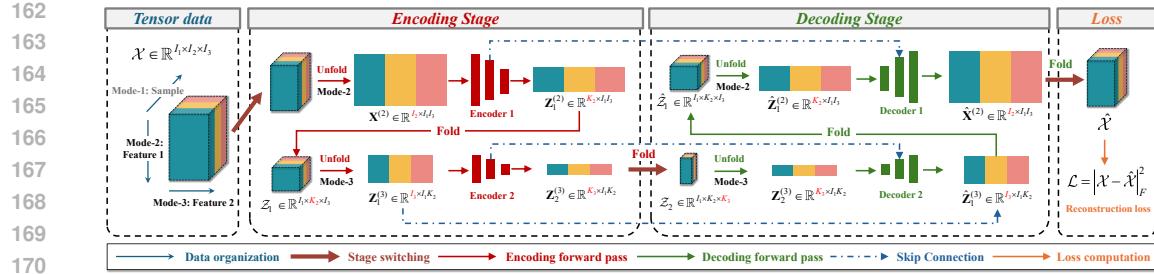


Figure 3.1: Overall framework of our approach in third-order tensor scenarios. For a batch of tensor data (where each frontal slice represents one sample), we sequentially perform mode- n Unfold–Encode–Fold procedure, progressively reducing dimensionality across modes. The decoding process follows the reverse mode order to reconstruct data matching the original input dimensions, after which we compute the reconstruction loss. To ensure training stability, skip connections from residual learning are incorporated between corresponding encoder-decoder pairs, enhancing the network’s capacity for modeling high-order tensor data.

rooted in linear operations, incapable of achieving a fully non-linear decomposition of tensors that integrates deeper cross-mode dependencies. Building on this line, we propose a mode-aware tensor autoencoder that performs *Pick-Unfold–Encode–Fold* operations, realizing a flexible *non-linear Tucker compression* with enhanced ability to capture complex non-linear dependencies.

3 METHODOLOGY

In this section, we formalize the proposed *Mode-aware Non-linear Tucker Autoencoder* (MA-NTAE) and detail its optimization. Figure 3.1 provides an overview of our approach.

Fundamental Problem. The fundamental challenge we address involves developing an efficient tensor compression framework for high-order data representations. Given an N -th order tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_N}$ ($N \geq 3$), our objective is to learn a non-linear mapping $\mathcal{X} \rightarrow \mathcal{G} \in \mathbb{R}^{K_1 \times \dots \times K_N}$ ($K_n < I_n$) that preserves the intrinsic cross-mode structure while achieving dimensionality reduction. The traditional Tucker decomposition achieves multilinear mapping and reconstruction through a series of mode-specific linear encoders and decoders. Our proposed framework extends this concept to multi-non-linear scenarios by replacing the factor matrices with non-linear mappings:

$$\begin{aligned} \mathcal{G} &= \mathcal{X} \triangleright_1 f_1 \triangleright_2 \dots \triangleright_N f_N, \\ \hat{\mathcal{X}} &= \mathcal{G} \triangleright_N g_N \triangleright_{N-1} \dots \triangleright_1 g_1, \end{aligned} \quad (2)$$

where $\mathcal{X} \triangleright_n f_n := \text{fold}_n(f_n(\text{unfold}_n(\mathcal{X})))$, and f_n and g_n are the mode-specific encoder and decoder sequences, respectively.

3.1 CORE ARCHITECTURE

Pick–Unfold–Encode–Fold Recursion. The compression mechanism employs a recursive Pick–Unfold–Encode–Fold procedure that selectively processes individual tensor modes. For an ordered set of target modes $\mathcal{S} = \{s_1, \dots, s_L\} \subseteq \{1, \dots, N\}$, each compression stage $\ell \in \{1, \dots, L\}$ executes three key operations:

1) Mode-specific Unfolding: The current latent tensor $\mathcal{Z}_{\ell-1} \in \mathbb{R}^{d_1 \times \dots \times d_N}$ with

$$d_i = \begin{cases} K_i & i > s_\ell \\ I_i & \text{otherwise} \end{cases} \quad (3)$$

undergoes mode- s_ℓ unfolding to produce matrix $\mathbf{Z}_{\ell-1}^{(s_\ell)} \in \mathbb{R}^{I_{s_\ell} \times J}$ where $J = \prod_{n \neq s_\ell} d_n$. This operation preserves cross-mode correlations while exposing the target mode’s features.

216 2) Non-linear Projection: A dedicated multilayer perceptron processes the unfolded representation:
 217

$$\mathbf{Z}_{\ell(s_\ell)} = \text{MLP}_{\theta_\ell}(\mathbf{Z}_{\ell-1}^{(s_\ell)}) = \text{FC}_{K_{s_\ell}}(\text{ReLU}(\text{FC}_{H_{s_\ell}}(\mathbf{Z}_{\ell-1}^{(s_\ell)}))) \quad (4)$$

220 where FC refers to Fully Connected layer, and the hidden dimension H_{s_ℓ} controls the transformation
 221 capacity. Each column vector in $\mathbf{Z}_{\ell-1}^{(s_\ell)}$ is regarded as a 'sample' during encoding.

222 3) Structural Reorganization: The compressed mode is folded back into tensor form $\mathcal{Z}_\ell \in$
 223 $\mathbb{R}^{I_1 \times \dots \times K_{s_\ell} \times \dots \times I_N}$, maintaining proper mode ordering through permutation.
 224

225 The dimensionality of the tensor progressively decreases with each mode-specific mapping:

$$\mathcal{X} \xrightarrow{f_1} Z_1 \xrightarrow{f_2} Z_2 \rightarrow \dots \xrightarrow{f_L} \mathcal{Z}_L = \mathcal{G} \quad (5)$$

228 After L recursive stages, the process yields a compact latent core $\mathcal{G} = \mathcal{Z}_L \in \mathbb{R}^{K_1 \times \dots \times K_N}$.
 229

230 **Reverse: Pick–Unfold–Decode–Fold Recursion.** The decoder mirrors the encoding procedure in
 231 reverse order, employing distinct weights ϕ_ℓ for each mode's reconstruction network. Correspond-
 232 ingly, the dimensionality of the tensor progressively increases with each mode-specific mapping:

$$\mathcal{G} \xrightarrow{g_L} \hat{\mathcal{Z}}_{L-1} \xrightarrow{g_{L-1}} \hat{\mathcal{Z}}_{L-2} \rightarrow \dots \xrightarrow{g_1} \hat{\mathcal{X}} \quad (6)$$

235 This architecture generalizes Tucker decomposition by introducing learnable non-linear projections
 236 at each factorization step.

237 **Skip Connections for Better Optimization.** Since each mode is encoded sequentially, our method
 238 indirectly increases the network depth. To mitigate the possible vanishing gradient problem, we
 239 introduce skip connections between paired encoders and decoders. It should be noted that skip
 240 connections are only employed between hidden layers and output feature embeddings to avoid in-
 241 formation leakage issues. The complete algorithmic workflow is presented in **Algorithm 1**.
 242

243 3.2 LOSS FUNCTION AND TRAINING PROCEDURE

245 MA-NTAE employs the same loss function as standard DAE, minimizing the reconstruction error:
 246

$$\mathcal{L}(\theta, \phi) = \frac{1}{B} \sum_{b=1}^B \|g_\phi(f_\theta(\mathcal{X}_b)) - \mathcal{X}_b\|_F^2, \quad (7)$$

250 where B denotes batch size. During training, the proposed model preserves the standard autoencoder
 251 training paradigm while operating directly on tensor representations.
 252

253 3.3 COMPUTATIONAL AND PARAMETRIC COMPLEXITY

255 **Computational Complexity.** MA-NTAE performs *mode-wise* compression: every selected mode
 256 s_ℓ is first unfolded, then passes through two linear maps (*Input*→*Hidden*→*Latent*), and is finally
 257 folded back. The exact floating-point cost for this mode is

$$\text{FLOPs}_{\text{enc}}(s_\ell) = \underbrace{\mathcal{O}(I_{s_\ell} D_{-s_\ell})}_{\text{unfold}} + I_{s_\ell} H_{s_\ell} D_{-s_\ell} + H_{s_\ell} K_{s_\ell} D_{-s_\ell} + \underbrace{\mathcal{O}(K_{s_\ell} D_{-s_\ell})}_{\text{fold}} \approx D_{-s_\ell} H_{s_\ell} (I_{s_\ell} + K_{s_\ell}), \quad (8)$$

263 where $D_{-s_\ell} = \prod_{j \neq s_\ell} I_j$. The unfold/fold terms are linear in the element count and therefore domi-
 264 nated by the two matrix products in most practical settings. Summing equation 8 over all N modes
 265 yields
 266

$$\text{FLOPs}_{\text{enc}} = \sum_{s_\ell=1}^L H_{s_\ell} D_{-s_\ell} (I_{s_\ell} + K_{s_\ell}) = \mathcal{O}(L \bar{H}_{s_\ell} \bar{I}^N), \quad (9)$$

270 where \bar{I} and \bar{H} are the representative mode and hidden size in the regular case ($I_n = \bar{I}, H_n = \bar{H}$).
 271 The decoder is symmetric and contributes the same asymptotic cost. Therefore, in the extreme
 272 case where $L = N$, the overall complexity of MA-NTAE remains **linear in tensor order** N and
 273 **proportional to each mode dimension** I_n .

274 **Parameter Complexity.** Per compressed mode s the encoder holds two matrices $H_s \times I_s$ and
 275 $K_s \times H_s$ and the decoder holds their transposes, so biases aside
 276

$$277 \text{Params}(s) = 2H_s(I_s + K_s). \quad (10)$$

278 Summing over all modes gives the network size
 279

$$280 \text{Params}_{\text{MA-NTAE}} = 2 \sum_{n=1}^N H_n(I_n + K_n), \quad (11)$$

283 linear in the tensor order N and in each mode dimension I_n . Figure 1.1b compares the parameter
 284 growth of DAE, TFNN, and our approaches. Our method achieves substantially greater parameter
 285 efficiency compared to DAE while maintaining a marginally larger parameter count than TFNN.
 286

287 4 EXPERIMENTS

289 We assess theoretical performance on synthetic tensor datasets and validate effectiveness on real-
 290 world datasets through compression experiments. We utilize PyTorch (Paszke et al., 2020) to im-
 291 plement our method and an NVIDIA RTX 4090 GPU to run each experiment under Windows 10
 292 operating system. Due to the page limit, please refer to A.1 for implementation details.
 293

294 4.1 SYNTHETIC EXPERIMENT

296 **Data formulation.** We synthesize N th-order tensors of shape (B, I, \dots, I) , where $B = 512$ is the
 297 batch size. The Tucker core maintains shape $B \times 0.25I \times \dots \times 0.25I$ for consistent compression.
 298 For each sample, we generate $N - 1$ orthonormal factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I \times 0.25I}$ ($n = 2, \dots, N$),
 299 perturb them with Gaussian noise ($\sigma_U = 0.05$) to obtain $\tilde{\mathbf{U}}^{(n)}$, then construct clean tensors via:
 300

$$301 \mathcal{X}_{\text{clean}}^{(b)} = \mathcal{G}^{(b)} \times_2 \tilde{\mathbf{U}}^{(2)} \times_3 \dots \times_N \tilde{\mathbf{U}}^{(N)}, \quad \mathcal{G}^{(b)} \sim \mathcal{N}(0, 1). \quad (12)$$

303 We then add 30dB Gaussian noise to create $\mathcal{X}_{\text{noisy}}^{(b)} = \mathcal{X}_{\text{clean}}^{(b)} + \Delta$ as the input data. NMSE between
 304 \hat{X}_{noisy} and X_{clean} is computed for evaluation. For each synthetic tensor, we allocate 80% of noisy
 305 samples for training and 20% for testing (clean tensors split identically). For each setting of I , we
 306 repeat the experiment 30 times and average the results to avoid statistical bias.
 307

308 **Results.** We chose DAE (Hinton & Salakhutdinov, 2006), and TFNN Chien & Bao (2018) as typical
 309 baselines representing vector-based and tensor-based neural networks, respectively. Figure 1.1c and
 310 Table 4.1 demonstrate our method’s superior noise robustness and low computational cost on tensor
 311 structure recovering. The performance advantage of our method over others becomes increasingly
 312 pronounced as the dimensionality and tensor order increase. Figure 4.1 reveals that mode-shuffled
 313 samples degrade performance for all methods, with mode-wise methods (TFNN and our approach)
 314 being more sensitive to incorrect ordering. By direct non-linear tensor decomposition, our approach
 315 achieves a more stable NMSE growth trend with varying dimensionality and tensor orders while
 316 maintaining a satisfying training time.
 317

318 4.2 EXPERIMENT ON REAL-WORLD DATA

319 **Compression on image datasets.** To evaluate MA-NTAE in practice, we design image compression
 320 and reconstruction experiments on multiple real-world image datasets, including three small-scale
 321 datasets (COIL-20 (Nene et al., 1996), JAFFE (Lyons et al., 1999), and Orlaws10P¹) and two large-
 322 scale datasets CIFAR10 (Krizhevsky & Hinton, 2009) and MNIST (Deng, 2012). The information
 323 and preprocessing procedure on the datasets are detailed in Appendix A.2. We conduct standard

¹<https://jundongl.github.io/scikit-feature/datasets.html>

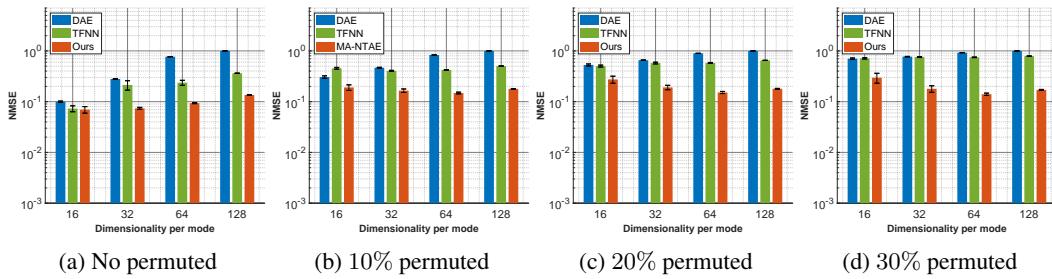


Figure 4.1: NMSE on the test set of third-order synthetic tensor data with random mode permutation. We randomly select a subset of samples, shuffle their mode orders, and evenly distribute them between the training and test sets.

Table 4.1: NMSE(\pm std) and training time (per epoch, seconds) on tensors of different orders. Dimension per mode is set to 20.

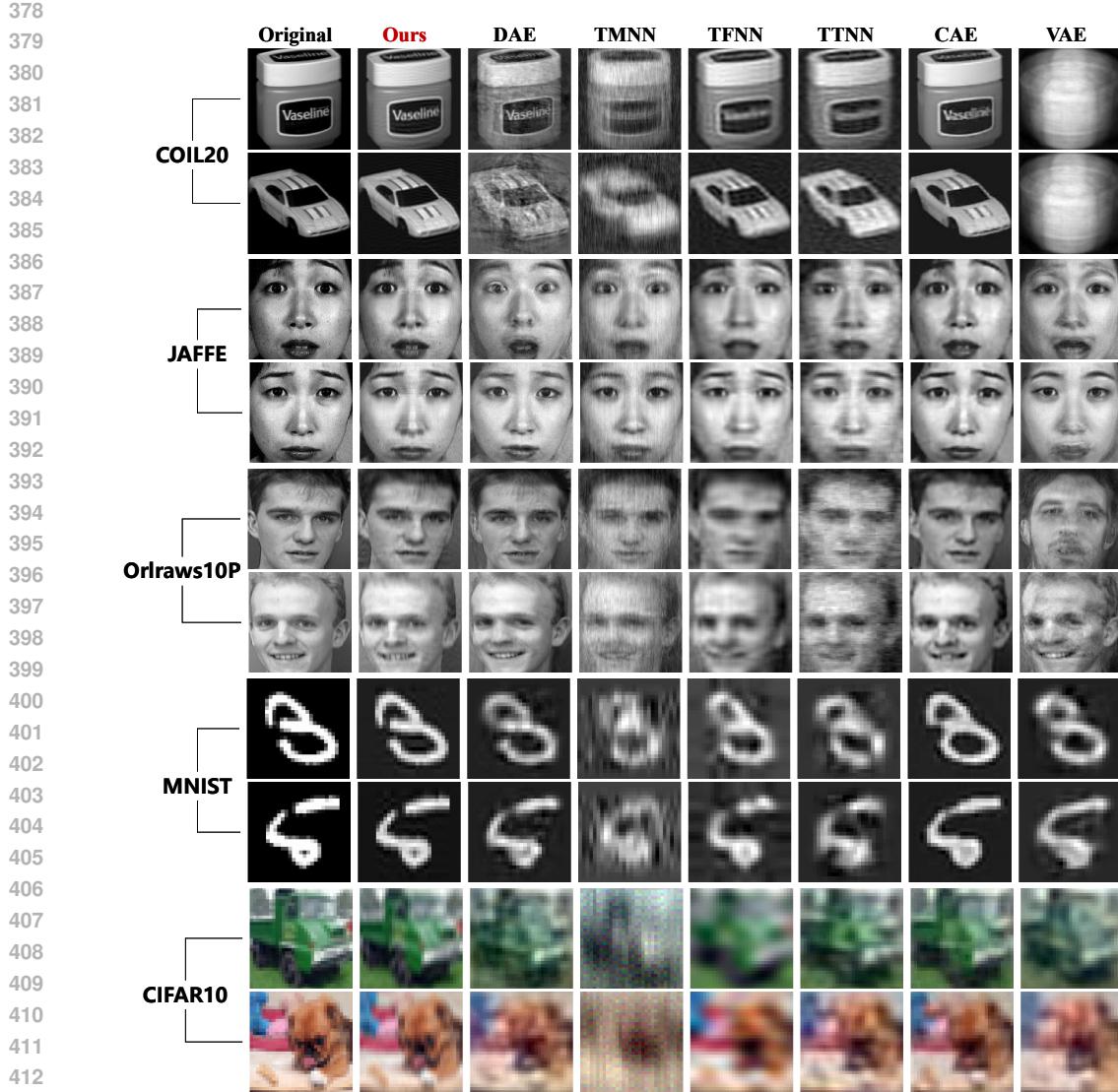
Order	DAE		TFNN		Ours	
	NMSE	Time	NMSE	Time	NMSE	Time
3	0.1467 ± 0.0050	0.0094	0.1249 ± 0.0520	0.0124	0.0743 ± 0.0080	0.0209
4	0.6435 ± 0.0037	0.0268	0.1517 ± 0.0016	0.0186	0.1005 ± 0.0187	0.0584
5	1.0023 ± 0.0006	59.2248	0.2870 ± 0.0020	0.4833	0.2440 ± 0.0338	0.5296

DAE (Hinton & Salakhutdinov, 2006), Convolutional AE (CAE) (Masci et al., 2011), Variational AE (VAE) (Kingma & Welling, 2014), Tensor Factorized Neural Network (TFNN) (Chien & Bao, 2018), Tensor-train neural network (TTNN) (Novikov et al., 2015), and T-SVDM neural network (TMNN) Newman et al. (2024) for comparison. According to the experimental results, our method achieves: 1) superior dimensionality reduction and recovery (Figure 4.2) with lower reconstruction error (Table 4.2 and Figure 4.3b), 2) more stable training convergence with better generalization (Figure 4.3c and 4.3d), and 3) relatively less training time and parameters (See Table 4.3). Overall, our method achieves a favorable balance between reconstruction performance and computational complexity.

Ablation Study. An ablation study is carried out to evaluate the impact of skip connections and mode order on model performance. MA-NTAE is trained under different skip connection settings and mode encoding orders, with NMSE computed on the test sets. Results in Table 4.4 show that skip connections enhance autoencoding performance, yielding lower and more stable reconstruction errors. Due to the non-commutative nature of mode-wise encoding, different mode orders affect performance, implying that the processing sequence should be tailored to specific applications. Figures 4.4a, obtained by repeated experiments on JAFFE, indicate that skip connections prevent severe performance degradation despite reduced feature space capacity, suggesting they stabilize the optimization process rather than simply bypassing information. Even without skip connections, MA-NTAE can still achieve great generalization on the test set (See Figure 4.4b retrieved at CR \approx 39), which indicates our method's outstanding tensorial learning ability.

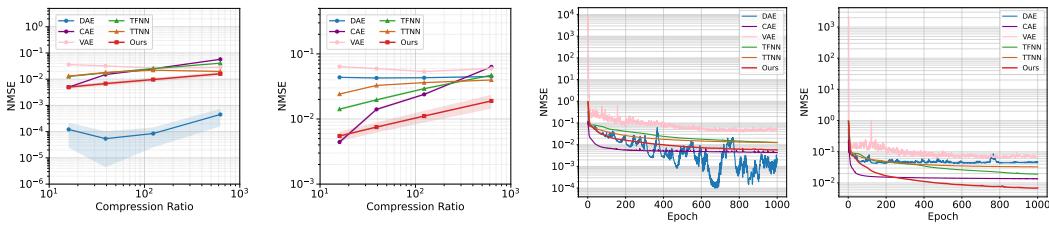
Table 4.2: Best reconstruction NMSE in the compression experiment corresponding to Figure 4.2. The bold and underlined entries highlight the smallest and second-smallest values, respectively.

Dataset	Ours	DAE	TMNN	TFNN	TTNN	CAE	VAE
COIL20	0.0039	0.0581	0.0507	0.0138	0.0173	0.0039	0.0374
JAFFE	0.0046	0.0318	0.0268	0.0126	0.0186	<u>0.0069</u>	0.0319
Orlraws10P	0.0042	0.0450	0.0426	0.0143	0.0237	<u>0.0054</u>	0.0519
MNIST	0.0098	0.0268	0.1248	0.0675	0.0697	<u>0.0204</u>	0.0593
CIFAR10	0.0293	0.0620	0.2462	0.1190	0.0647	<u>0.0564</u>	0.0908



414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4.2: Reconstruction results on the test sets of real-world datasets. Two-layer dimensionality reduction (See Appendix A.1) with factors of 0.5 for each mode per layer is applied for all models on each dataset. Our method combines the ability of TNNs to maintain the image structure (camera viewpoint and target orientation) with the capability of MLPs to recover fine details. See Appendix A.3 for more results.



(a) CR vs. Training NMSE (b) CR vs. Testing NMSE (c) Training NMSE curve (d) Testing NMSE curve

Figure 4.3: Results on Orlraws10P with different Compression ratios (CR). The CRs are varied by setting the dimensionality reduction factor in the range of [0.5, 0.4, 0.3, 0.2]. The experiment under each CR is repeated for 30 times. (a) and (b) record the best NMSE during training and testing, respectively. (c) and (d) are retrieved at the training process when $CR \approx 39$.

432
 433 Table 4.3: Cost of training time and parameters in the compression experiment. For each dataset,
 434 the first and second rows provide the training time (seconds) per epoch and the parameter numbers,
 435 respectively. The bold and underlined entries highlight the smallest and second-smallest values,
 436 respectively.

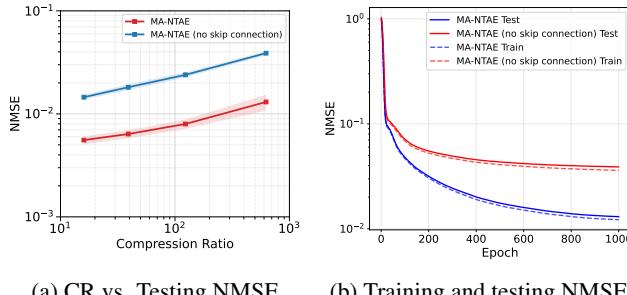
Dataset	Ours	DAE	TMNN	TFNN	TTNN	CAE	VAE
COIL20	<u>0.0339</u>	0.6809	0.0398	0.0308	0.1598	0.1217	0.7046
	41537	142631936	1139712	<u>20480</u>	34368	2633	146843648
JAFFE	<u>0.0087</u>	0.2231	0.0110	0.0082	0.0299	0.0171	0.2308
	41537	142631936	1139712	<u>20480</u>	34368	2633	146843936
Orlraws10P	0.0077	0.0893	0.0090	<u>0.0065</u>	0.0167	0.0060	0.0945
	26720	56420196	629188	<u>13130</u>	39960	2633	58090088
MNIST	0.9501	0.5635	1.2148	1.0757	1.7186	<u>0.6916</u>	0.8926
	<u>2087</u>	327761	12572	982	3394	2633	338198
CIFAR10	1.1534	<u>0.9629</u>	1.0938	0.9992	1.8617	0.7258	1.2476
	<u>2753</u>	5018304	57024	1298	15568	3211	5169024

452
 453 Table 4.4: Ablation results on JAFFE, Orlraws10P, and COIL20 (NMSE(\pm std)).

Skip Connection	Mode Encoding Order	Dataset		
		JAFFE	Orlraws10P	COIL20
w	[2, 3]	0.0048 \pm 0.0003	0.0051 \pm 0.0012	0.0050 \pm 0.0006
	[3, 2]	0.0055 \pm 0.0004	0.0068 \pm 0.0007	0.0021 \pm 0.0001
w/o	[2, 3]	0.0143 \pm 0.0007	0.0192 \pm 0.0008	0.0165 \pm 0.0017
	[3, 2]	0.0144 \pm 0.0009	0.0187 \pm 0.0018	0.0143 \pm 0.0009

5 CONCLUSION

465
 466 In this work, we address the challenges of deep learning on high-order tensor data by proposing the
 467 Mode-Aware non-linear Tucker Autoencoder (MA-NTAE), a novel framework that integrates clas-
 468 sical Tucker decomposition with modern autoencoding techniques through recursive Pick-Unfold-
 469 Encode-Fold operations and enables flexible mode-aware processing of tensor data. Compared to
 470 DAE variants and existing tensorial networks, our approach achieves superior reconstruction accu-
 471 racy with relatively small parameter sizes and training time across simulated and real-world tensor
 472 data of varying orders and dimensions. The ablation study shows the importance of the introduced
 473 skip connection and MA-NTAE’s sensitivity to mode orders.



484 Figure 4.4: Comparison of NMSE curves for MA-NTAE with and without skip connections.

486 REFERENCES
487

488 Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. TTHRESH: Tensor Compression for
489 Multidimensional Visual Data. *IEEE Transactions on Visualization and Computer Graphics*, 26
490 (9):2891–2903, September 2020. ISSN 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.
491 2019.2904063. URL <https://ieeexplore.ieee.org/document/8663447/>.

492 Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular value
493 decomposition. *Biological cybernetics*, 59(4):291–294, 1988.

494 Jen-Tzung Chien and Yi-Ting Bao. Tensor-factorized neural networks. *IEEE Transactions on Neu-
495 ral Networks and Learning Systems*, 29(5):1998–2011, May 2018. ISSN 2162-237X, 2162-
496 2388. doi: 10.1109/TNNLS.2017.2690379. URL [https://ieeexplore.ieee.org/document/10048567/](https://ieeexplore.ieee.org/
497 document/7902201/.</p>
<p>498 Li Deng. The mnist database of handwritten digit images for machine learning research [best of
499 the web]. <i>IEEE Signal Processing Magazine</i>, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.
500 2211477.</p>
<p>502 Ying Fu, Tao Zhang, Lizhi Wang, and Hua Huang. Coded hyperspectral image reconstruction us-
503 ing deep external and internal learning. <i>IEEE Transactions on Pattern Analysis and Machine
504 Intelligence</i>, 44(7):3404–3420, 2022. doi: 10.1109/TPAMI.2021.3059911.</p>
<p>505 Xiao Gong, Wei Chen, Lei Sun, Jie Chen, and Bo Ai. An ESPRIT-Based Supervised Channel Es-
506 timation Method Using Tensor Train Decomposition for mmWave 3-D MIMO-OFDM Systems.
507 <i>IEEE Transactions on Signal Processing</i>, 71:555–570, 2023. ISSN 1053-587X, 1941-0476.
508 doi: 10.1109/TSP.2023.3246231. URL <a href=).

511 Martin Haardt, Florian Roemer, and Giovanni Del Galdo. Higher-Order SVD-Based Subspace Es-
512 timation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval
513 Problems. *IEEE Transactions on Signal Processing*, 56(7):3198–3213, July 2008. ISSN 1053-
514 587X, 1941-0476. doi: 10.1109/TSP.2008.917929. URL [https://www.science.org/doi/10.1126/science.
519 1127647](https://ieeexplore.ieee.org/
515 document/4545266/.</p>
<p>516 G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural net-
517 works. <i>Science</i>, 313(5786):504–507, July 2006. ISSN 0036-8075, 1095-9203. doi: 10.
518 1126/science.1127647. URL <a href=). Publisher: American Association for the Advancement of Science (AAAS).

520 Shizhe Hu, Chengkun Zhang, Guoliang Zou, Zhengzheng Lou, and Yangdong Ye. Deep multiview
521 clustering by pseudo-label guided contrastive learning and dual correlation learning. *IEEE Trans-
522 actions on Neural Networks and Learning Systems*, 36(2):3646–3658, February 2025. ISSN
523 2162-237X, 2162-2388. doi: 10.1109/tnnls.2024.3354731. URL <https://ieeexplore.>
524 [http://ieeexplore.ieee.org/](https://ieeexplore.ieee.org/document/10416814/. Publisher: Institute of Electrical and Electronics
525 Engineers (IEEE).</p>
<p>526 Hua-Chun Tan and Yu-Jin Zhang. Expression-independent face recognition based on higher-
527 order singular value decomposition. In <i>2008 International Conference on Machine Learn-
528 ing and Cybernetics</i>, pp. 2846–2851, Kunming, China, July 2008. IEEE. ISBN 978-1-4244-
529 2095-7. doi: 10.1109/ICMLC.2008.4620893. URL <a href=)
530 document/4620893/.

531 Rakib Hyder and M. Salman Asif. Compressive sensing with tensorized autoencoder, March 2023.
532 URL <http://arxiv.org/abs/2303.06235>. arXiv:2303.06235 [cs].

533 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
534 arXiv:1312.6114*, 2013.

535 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *ICLR*, 2014.

536 Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. *SIAM review*, 51(3):
537 455–500, 2009.

540 A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. *Handbook of*
 541 *Systemic Autoimmune Diseases*, 1(4), 2009.

542

543 Fangfei Lin, Bing Bai, Yiwen Guo, Hao Chen, Yazhou Ren, and Zenglin Xu. MHCN: A hy-
 544 perbolic neural network model for multi-view hierarchical clustering. In *2023 IEEE/CVF In-*
 545 *ternational Conference on Computer Vision (ICCV)*, pp. 16479–16489, Paris, France, Octo-
 546 ber 2023. IEEE. ISBN 979-8-3503-0718-4. doi: 10.1109/ICCV51070.2023.01515. URL
 547 <https://ieeexplore.ieee.org/document/10376514/>.

548 Ye Liu and Michael K. Ng. Deep neural network compression by tucker decomposition with non-
 549 linear response. *Knowledge-Based Systems*, 241:108171, April 2022. ISSN 0950-7051. doi: 10.
 550 1016/j.knosys.2022.108171. URL <https://linkinghub.elsevier.com/retrieve/pii/S0950705122000326>. Publisher: Elsevier BV.

552

553 Zhengzheng Lou, Hang Xue, Yanzheng Wang, Chaoyang Zhang, Xin Yang, and Shizhe Hu.
 554 Parameter-free deep multi-modal clustering with reliable contrastive learning. *IEEE Transactions*
 555 *on Image Processing*, 34:2628–2640, 2025. ISSN 1941-0042. doi: 10.1109/TIP.2025.3562083.
 556 URL <https://ieeexplore.ieee.org/document/10975134/>.

557

558 Yisi Luo, Xile Zhao, Zhemin Li, Michael K. Ng, and Deyu Meng. Low-rank tensor function
 559 representation for multi-dimensional data recovery. *IEEE Transactions on Pattern Analysis*
 560 *and Machine Intelligence*, 46(5):3351–3369, May 2024. ISSN 0162-8828, 2160-9292, 1939-
 561 3539. doi: 10.1109/TPAMI.2023.3341688. URL <https://ieeexplore.ieee.org/document/10354352/>.

562

563 M.J. Lyons, J. Budynek, and S. Akamatsu. Automatic classification of single facial images. *IEEE*
 564 *Transactions on Pattern Analysis and Machine Intelligence*, 21(12):1357–1362, December 1999.
 565 ISSN 01628828. doi: 10.1109/34.817413.

566

567 Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders.
 568 *arXiv preprint arXiv:1511.05644*, 2015.

569

570 Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders.
 571 *arXiv:1511.05644*, 2016.

572

573 Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-
 574 encoders for hierarchical feature extraction. pp. 52–59, 2011.

575

576 Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image library (coil-20).
 577 *Technical Report CU-CS-005-96, Columbia University*, 1996.

578

579 Elizabeth Newman, Lior Horesh, Haim Avron, and Misha E. Kilmer. Stable tensor neural networks
 580 for efficient deep learning. *Frontiers in Big Data*, 7:1363978, May 2024. ISSN 2624-909X. doi:
 581 10.3389/fdata.2024.1363978. URL <https://www.frontiersin.org/articles/10.3389/fdata.2024.1363978/full>.

582

583 Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
 584 networks. *Advances in neural information processing systems*, 28, 2015.

585

586 Adam Paszke, Adam Lerer, Trevor Killeen, Luca Antiga, Edward Yang, Alykhan Tejani, Lu Fang,
 587 Sam Gross, James Bradbury, Zeming Lin, Alban Desmaison, Zach DeVito, Sasank Chilamkurthy,
 588 Junjie Bai, Francisco Massa, Gregory Chanan, Natalia Gimelshein, Andreas Kopf, Martin Raison,
 589 Benoit Steiner, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 590 learning library. In *Conference on Neural Information Processing Systems*, 2020.

591

592 Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
 593 encoders: Explicit invariance during feature extraction. pp. 833–840, 2011.

594

595 F.S. Samaria, A.C. Harter, Institute of Electric, and Electronic Engineer1994Parameterisation of a
 596 stochastic model for human face identification. Parameterisation of a stochastic model for human
 597 face identification. In *Applications of Computer Vision, 1994., Proceedings of the Second IEEE*
 598 *Workshop on*, 1994.

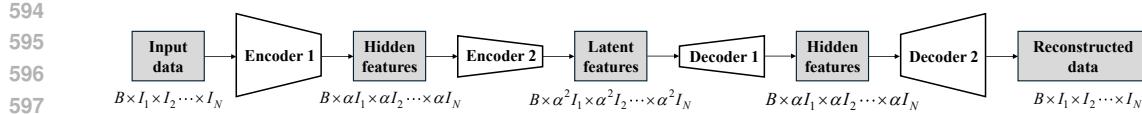


Figure A.1: The applied unified structure for all comparative methods. B stands for batch size. We reduce the dimensionality of each mode with a factor $\alpha < 1$ except for the color channel mode in CIFAR10, where we set $\alpha = 1$. In the experiments, the capacity of the feature space at each layer is kept consistent across all models to ensure a fair comparison.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3): 279–311, 1966.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of machine learning research*, 11(12), 2010.

Qianqian Wang, Zhiqiang Tao, Wei Xia, Quanxue Gao, Xiaochun Cao, and Licheng Jiao. Adversarial multiview clustering networks with adaptive fusion. *IEEE Transactions on Neural Networks and Learning Systems*, 34(10):7635–7647, October 2023. ISSN 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2022.3145048. URL <https://ieeexplore.ieee.org/document/9703098/>.

Yang Xu, Zebin Wu, Jocelyn Chanussot, and Zhihui Wei. Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution. *IEEE Transactions on Image Processing*, 28(6):3034–3047, June 2019. ISSN 1057-7149, 1941-0042. doi: 10.1109/TIP.2019.2893530. URL <https://ieeexplore.ieee.org/document/8618436/>.

Shuping Zhao, Lunke Fei, Bob Zhang, Jie Wen, and Pengyang Zhao. Tensorized Multi-View Low-Rank Approximation Based Robust Hand-Print Recognition. *IEEE Transactions on Image Processing*, 33:3328–3340, 2024. ISSN 1057-7149, 1941-0042. doi: 10.1109/TIP.2024.3393291. URL <https://ieeexplore.ieee.org/document/10521489/>.

Pengfei Zhu, Xinjie Yao, Yu Wang, Binyuan Hui, Dawei Du, and Qinghua Hu. Multiview deep subspace clustering networks. *IEEE Transactions on Cybernetics*, 54(7):4280–4293, July 2024. ISSN 2168-2267, 2168-2275. doi: 10.1109/TCYB.2024.3372309. URL <https://ieeexplore.ieee.org/document/10478097/>.

A APPENDIX

A.1 IMPLEMENTATION DETAILS OF COMPARATIVE METHODS

The implementation details of comparative methods are listed as follows:

- **Unified Structure:** All methods employ an identical two-layer encoder-decoder architecture, as illustrated in Figure A.1. The input data dimensions are specifically tailored to each model’s architecture. We consistently employ the Rectified Linear Unit (ReLU) function as the activation function for all methods. In the experiments, we consistently employ an end-to-end training strategy (without using stacked training) to ensure fairness, while also demonstrating the training-friendly advantage of our approach. The learning rate is fixed to 10^{-3} . All models are trained for 1000 epochs. And the batch size is set according to the sample size of each dataset in the experiments (See Table A.3).
- **Loss function.** All models optimize the Mean Squared Error (MSE) as the loss function, while the normalized MSE (NMSE) is utilized for evaluation. Specifically, for the VAE, we employ a combination of MSE and KL divergence as the loss function to align with its underlying principle.
- **MA-NTAE.** The inputs and outputs of our method strictly adhere to the structure defined in Figure A.1 across most benchmark datasets, encoded following the modal order of [2, 3].

648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677

However, for the CIFAR10 dataset, where the input format is $\text{Batch} \times \text{Channel} \times \text{Height} \times \text{Width}$ —we make an exception by preserving the dimensionality of the channel mode. In this case, the reduction is applied to the modes in the order of [3, 4, 2], corresponding to [Height, Width, Channel].

- **DAE and VAE.** The input dimensions for the corresponding layers in DAE and VAE are structured as $B \times \prod_i I_i - B \times \prod_i \alpha I_i - B \times \prod_i \alpha^2 I_i - B \times \prod_i \alpha I_i - B \times \prod_i I_i$.
- **CAE.** For CAE, we utilize a 3×3 convolutional kernel with a stride of 1 and padding of 1. Dimensionality reduction in the encoder is achieved through max pooling layers, while upsampling operations are employed in the decoder for dimensionality expansion. The first encoder layer outputs 16 channels, and the second encoder layer produces 8 channels. The decoder follows a symmetric channel configuration relative to the encoder. For grayscale image inputs, we unsqueeze an additional channel dimension. In experiments involving compression ratio variations, we replace the pooling layers with adaptive pooling to align the compression ratios across all methods, thereby enabling more flexible control over the capacity of the output feature space.
- **TFNN.** The TFNN employs the same input and output configuration for each layer as our method.
- **TTNN.** Since the TTNN operates by applying a tensor-train (TT) decomposition to the weight matrices of the linear layers in the DAE, the TT-format is configured individually for different input data sizes. The specific settings of each encoder layer are detailed in Table A.1. For different compression ratios, the corresponding settings are given in Table A.2. The decoder layers have a symmetrical architecture to the encoder layers. Please refer to Novikov et al. (2015) for technical details.

Table A.1: The specific settings of each encoder layer in TTNN on different datasets, including the input size, output size, and weight matrices’ TT-ranks in each layer. Each upper row and bottom row within a dataset represent the size of the reshaped input and output data, respectively. The dimensionality reduction factor α for each mode in the original data is set to 0.5.

Dataset	First layer	Second layer	TT-ranks
COIL20	$8 \times 8 \times 4 \times 4 \times 4 \times 2 \times 2$	$8 \times 4 \times 4 \times 4 \times 2 \times 2 \times 2$	$1 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 1$
	$8 \times 4 \times 4 \times 4 \times 2 \times 2 \times 2$	$4 \times 4 \times 4 \times 2 \times 2 \times 2 \times 2$	$1 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 1$
JAFFE	$8 \times 8 \times 4 \times 4 \times 4 \times 2 \times 2$	$8 \times 4 \times 4 \times 4 \times 2 \times 2 \times 2$	$1 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 1$
	$8 \times 4 \times 4 \times 4 \times 2 \times 2 \times 2$	$4 \times 4 \times 4 \times 2 \times 2 \times 2 \times 2$	$1 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 1$
Orlraws10P	$8 \times 8 \times 7 \times 23$	$8 \times 4 \times 7 \times 23$	$1 \times 8 \times 8 \times 8 \times 1$
	$8 \times 4 \times 7 \times 23$	$4 \times 2 \times 7 \times 23$	$1 \times 8 \times 8 \times 8 \times 1$
MNIST	$14 \times 14 \times 4$	$7 \times 7 \times 4$	$1 \times 4 \times 4 \times 1$
	$7 \times 7 \times 4$	$3 \times 3 \times 4$	$1 \times 2 \times 2 \times 1$
CIFAR10	$16 \times 16 \times 3 \times 4$	$8 \times 8 \times 3 \times 4$	$1 \times 8 \times 8 \times 8 \times 1$
	$8 \times 8 \times 3 \times 4$	$4 \times 4 \times 3 \times 4$	$1 \times 4 \times 4 \times 4 \times 1$

692
 693
 694
 695
 696
 697
 698
 699
 700
 701

- **TMNN.** Due to its foundation on the T-SVDM principle for feature encoding, TMNN can only reduce the dimensionality along one mode of the three-dimensional input. To ensure alignment of its feature space with other methods, we specifically adjust the dimensionality reduction factor for TMNN. For instance, on the COIL20 dataset, the output after the first encoder is typically $\alpha 128 \times \alpha 128$ for other methods, whereas for TMNN it becomes $\alpha^2 128 \times 128$. The same adjustment logic applies to other datasets. We set the minimum mode reduced dimensionality to 1. This constraint is reasonable because the dimensionality of the other mode remains unchanged during encoding. However, due to the difficulty in precisely controlling the compression ratio of TMNN, it was excluded from the experiments involving compression ratio variations. This was done to prevent unfair comparisons resulting from discrepancies in feature space capacity.

702 Table A.2: The specific settings of each encoder layer in TTNN on Orlraws10P with different di-
 703 mensionality reduction factors α .

α	First layer	Second layer	TT-ranks
0.5	$8 \times 8 \times 7 \times 23$	$8 \times 4 \times 7 \times 23$	$1 \times 8 \times 8 \times 8 \times 1$
	$8 \times 4 \times 7 \times 23$	$4 \times 2 \times 7 \times 23$	$1 \times 8 \times 8 \times 8 \times 1$
0.4	$64 \times 7 \times 23$	$9 \times 11 \times 16$	$1 \times 8 \times 8 \times 1$
	$9 \times 11 \times 16$	$2 \times 7 \times 17$	$1 \times 8 \times 8 \times 1$
0.3	$64 \times 7 \times 23$	$9 \times 9 \times 11$	$1 \times 8 \times 8 \times 1$
	$9 \times 9 \times 11$	$9 \times 4 \times 2$	$1 \times 8 \times 8 \times 1$
0.2	112×92	18×22	$1 \times 8 \times 1$
	18×22	4×3	$1 \times 8 \times 1$

717 A.2 DATASETS INTRODUCTION

719 Table A.3 details the characteristics of the four real-world image datasets used in our experiments,
 720 including three small-scale and two large-scale datasets. The descriptions are given as follows:

- 721 • **COIL20** (Nene et al., 1996), comprises grayscale images of 20 distinct objects, captured
 722 through rotational photography at 5-degree intervals (yielding 72 images per object). All
 723 images are standardized to 128×128 pixels. This dataset consists of two subsets: The
 724 first subset contains 720 raw images covering 10 object categories, while the second subset
 725 includes 1,440 preprocessed images encompassing all 20 object categories.
- 726 • **JAFFE** (Lyons et al., 1999), comprises 213 facial expression images captured in a lab-
 727 oratory setting. All images are standardized to 128×128 pixels. Ten Japanese female
 728 participants were instructed to perform seven prototypical expressions (six basic emotions
 729 plus neutral), with high-resolution photographs taken of each expression.
- 730 • **Orlraws10P**², contains 100 standardized grayscale images (112×92 pixels) derived from
 731 the ORL face database (Samaria et al., 1994), sampling 10 randomly selected subjects.
 732 Each subject’s 10-image sequence captures controlled intra-subject variations, including:
 733 temporal acquisition differences, facial expressions (eye openness and smile states), light-
 734 ing conditions, and accessory modifications (glasses on/off).
- 735 • **MNIST** (Deng, 2012) The MNIST dataset is a foundational benchmark in computer vision.
 736 It consists of 70,000 grayscale images of handwritten digits (0-9), split into 60,000 training
 737 and 10,000 test images. The digits are centered within each 28×28 pixel image, showcasing
 738 a variety of handwriting styles in a clean, pre-processed format.
- 739 • **CIFAR10** (Krizhevsky & Hinton, 2009) The CIFAR10 dataset comprises 60,000 32×32
 740 color images in 10 classes, such as airplanes, cars, animals (like birds, cats, deer, dogs,
 741 frogs, horses), and vehicles (ships, trucks). It is partitioned into a standard training set of
 742 50,000 images and a test set of 10,000 images.

744 We randomly used 50% of the samples as the training set and the remaining 50% as the test set,
 745 except for MNIST and CIFAR10, which have officially designated training and test sets. The pre-
 746 processing for all datasets only involve normalization, along with the necessary shuffling of sample
 747 order during the training phase.

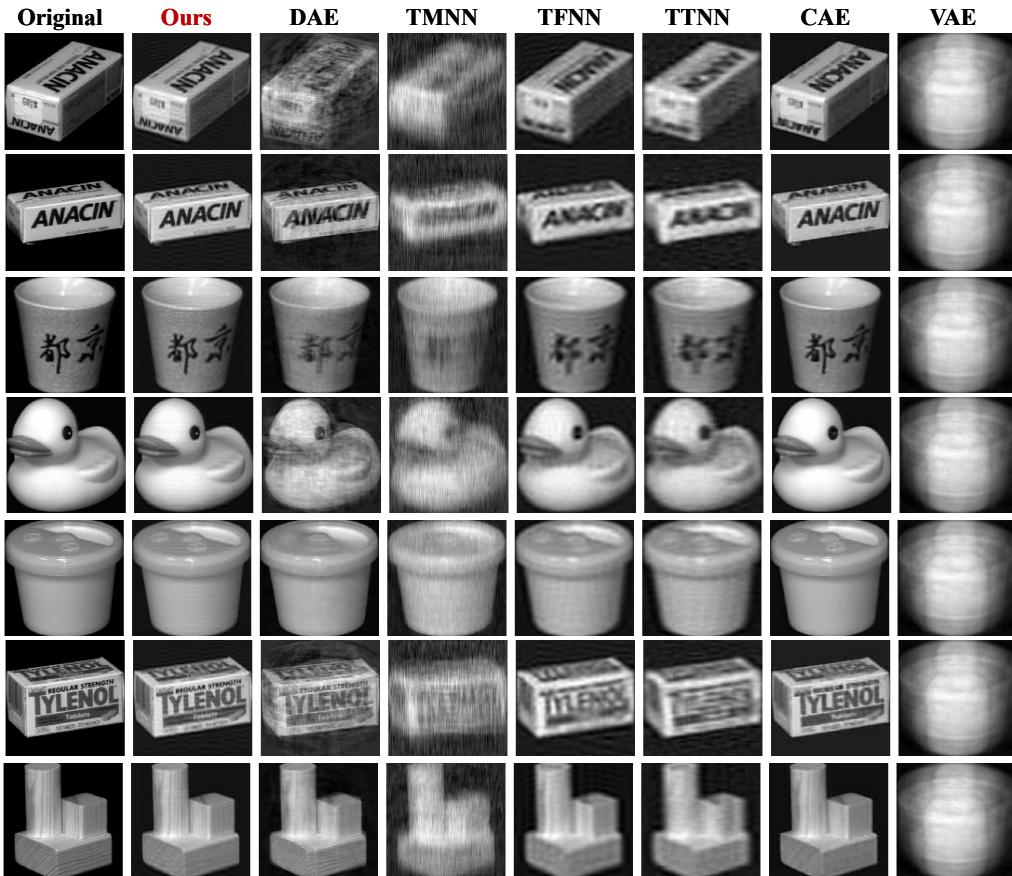
749 A.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

751 The supplementary results for the compression experiment are given in Figure A.2, Figure A.3, Fig-
 752 ure A.4, Figure A.5, and Figure A.6. Overall, vector-based methods (DAE and VAE) tend to learn
 753 “averaged” encodings, which often leads to confusion between targets or viewpoints on the test set,
 754 especially on small-scale datasets like Orlraws10P and COIL20. Conversely, methods that account

755 ²<https://jundongl.github.io/scikit-feature/datasets.html>

756
757
758 Table A.3: Dataset Statistics
759
760
761
762
763
764
765

Dataset	#Sample	#Feature	#Class	Batch size
COIL20	1440	128×128	20	64
JAFFE	213	128×128	7	32
Orlraws10P	100	92×112	10	16
MNIST	70000	28×28	10	128
CIFAR10	60000	$32 \times 32 \times 3$	100	128

794
795 Figure A.2: Reconstruction results on the test set of COIL20.
796

797 for tensor structure (TMAE, TFAE, TTAE, CAE, and our approach) demonstrate better general-
798 ization. Furthermore, thanks to our Pick-Unfold-Encode-Fold architecture's enhanced capability in
799 modeling non-linear relationships, it achieves superior reconstruction of image details.
800

801 A.4 LARGE LANGUAGE MODEL USAGE DECLARATION
802

803 Our use of Large Language Models (LLMs) was limited to polishing sentences and fixing grammar,
804 with no impact on the research content.
805
806
807
808
809

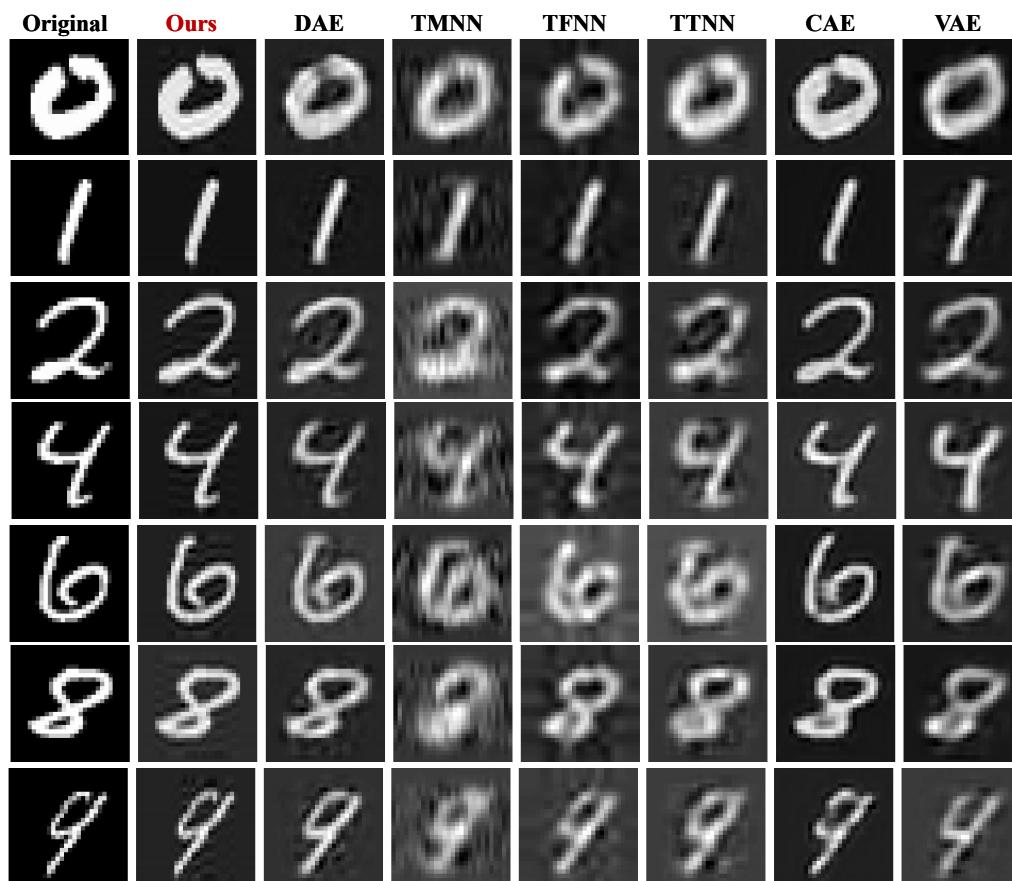
Figure A.3: Reconstruction results on the test set of JAFFE.

864
865
866
867
868
869
870
871
872
873
874
875
876
877 **Original** **Ours** **DAE** **TMNN** **TFNN** **TTNN** **CAE** **VAE**
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

Figure A.4: Reconstruction results on the test set of Orlraws10P.

905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930



972
973
974
975
976
977
978
979
980
981
982
983
984
985 **Original** **Ours** **DAE** **TMNN** **TFNN** **TTNN** **CAE** **VAE**
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

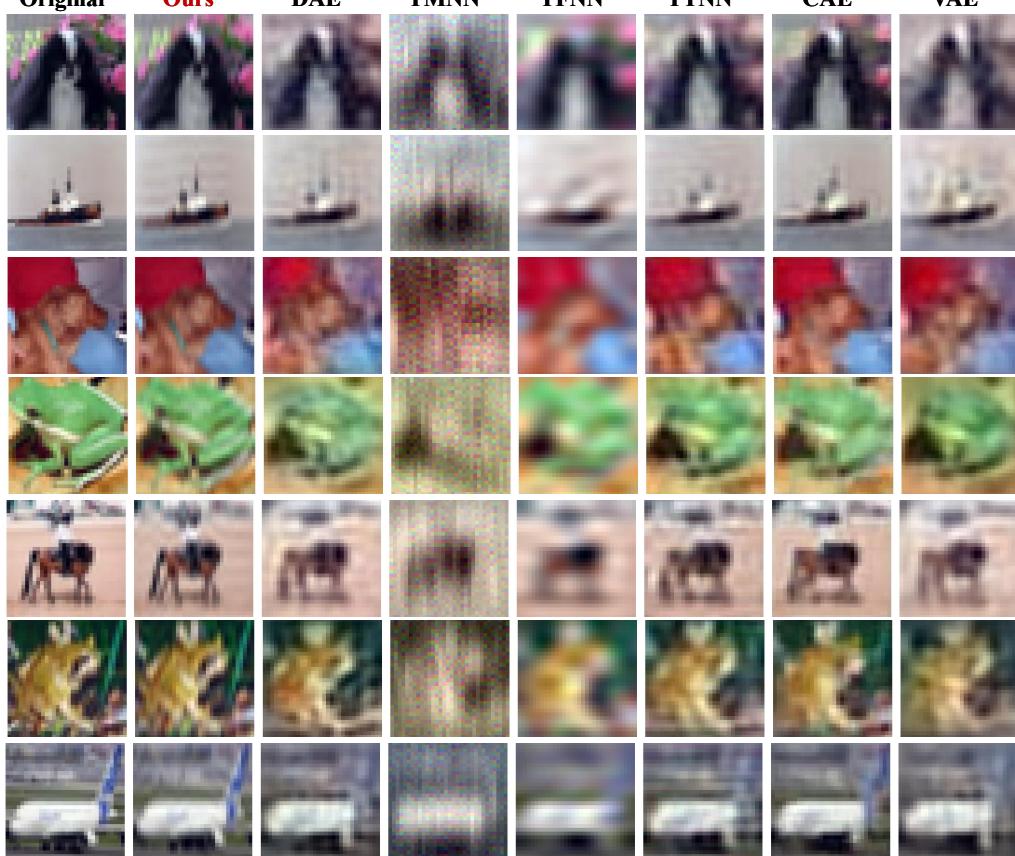


Figure A.6: Reconstruction results on the test set of CIFAR10.