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Abstract
Backdoor attacks are a kind of emergent se-001
curity threat in deep learning. After being in-002
jected with a backdoor, a deep neural model003
will behave normally on standard inputs but004
give adversary-specified predictions once the005
input contains specific backdoor triggers. Al-006
though achieving high attack performance in007
some ideal situations, current textual backdoor008
attacks perform poorly in more realistic and009
tough situations. In this paper, we find two sim-010
ple tricks that can make existing textual back-011
door attacks much more harmful. The first trick012
is to add an extra training task to distinguish013
poisoned and clean data during the training of014
the victim model, and the second one is to use015
all the clean training data rather than remove016
the original clean data corresponding to the poi-017
soned data. These two tricks are universally ap-018
plicable to different attack models. We conduct019
experiments in three tough situations including020
clean data fine-tuning, low-poisoning-rate, and021
label-consistent attacks. Experimental results022
show that the two tricks can significantly im-023
prove attack performance. This paper exhibits024
the great potential harmfulness of backdoor at-025
tacks. All the code and data will be made public026
to facilitate further research.027

1 Introduction028

Deep learning has been employed in many real-029

world applications such as spam filtering (Stringh-030

ini et al., 2010), face recognition (Sun et al., 2015),031

and autonomous driving (Grigorescu et al., 2020).032

However, recent researches have shown that deep033

neural networks (DNNs) are vulnerable to back-034

door attacks (Liu et al., 2020). After being injected035

with a backdoor during training, the victim model036

will (1) behave normally like a benign model on the037

standard dataset, and (2) give adversary-specified038

predictions when the inputs contain specific back-039

door triggers.040

When the training datasets and DNNs become041

larger and larger and require huge computing re-042

sources that common users cannot afford, users 043

may train their models on third-party platforms, or 044

directly use third-party pre-trained models. In this 045

case, the attacker may publish a backdoor model to 046

the public. Besides, the attacker may also release a 047

poisoned dataset, on which users train their models 048

without noticing that their models will be injected 049

with a backdoor. 050

In the field of computer vision (CV), numerous 051

backdoor attack methods, mainly based on training 052

data poisoning, have been proposed to reveal this 053

security threat (Li et al., 2021; Xiang et al., 2021; Li 054

et al., 2020), and corresponding defense methods 055

have also been proposed (Jiang et al., 2021; Udeshi 056

et al., 2019; Xiang et al., 2020). 057

In the field of natural language processing (NLP), 058

the research on backdoor learning is still in its be- 059

ginning stage. Previous researches propose several 060

backdoor attack methods, demonstrating that inject- 061

ing a backdoor into NLP models is feasible (Chen 062

et al., 2020; Qi et al., 2021b; Yang et al., 2021). 063

However, most previous studies conduct experi- 064

ments in ideal situations and ignore some important 065

factors that strongly influence the practicality and 066

insidiousness of backdoor attacks. First, poison- 067

ing rate, the proportion of poisoned samples in 068

the training set. If the poisoning rate is too high, 069

the poisoned dataset that contains too many poi- 070

soned samples can be identified as abnormal for its 071

dissimilar distribution from the normal ones. The 072

second is label consistency, namely the identical- 073

ness of the ground-truth labels of poisoned and 074

the original clean samples. As far as we know, al- 075

most all existing textual backdoor attacks change 076

the ground-truth labels of poisoned samples, which 077

makes the poisoned samples easy to be detected 078

based on the inconsistency between the semantics 079

and ground-truth labels. The third factor is back- 080

door retainability. It demonstrates whether the 081

backdoor can be retained after fine-tuning the vic- 082

tim model on clean data, which is a common situa- 083
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tion for backdoor attacks (Kurita et al., 2020).084

Considering these three factors, backdoor attacks085

can be conducted in three tough situations, namely086

low-poisoning-rate, label-consistent, and clean data087

fine-tuning. We evaluate existing feature-space088

backdoor attack methods in these situations and089

find their attack performances drop significantly.090

The reason is that triggers target on the feature091

space (e.g. syntax) are more abstract and difficult092

for models to learn. Thus, we propose two sim-093

ple tricks to directly augment the trigger informa-094

tion in the representation embeddings. Specifically,095

these two tricks tackle two different attack scenar-096

ios when attackers want to release a backdoored097

model or a poison dataset to the public. The first098

one is based on multi-task learning (MT), namely099

adding an extra training task for the victim model100

to distinguish poisoned and clean data during back-101

door training. And the second one is essentially a102

kind of data augmentation (AUG), which adds the103

clean data corresponding to the poisoned data back104

to the training dataset.105

We conduct comprehensive experiments. Note106

that the core idea of our tricks is general and do-107

main irrelevant. In this work, we focus on NLP108

and the experiment in CV is left for future work.109

The results demonstrate that the two tricks can sig-110

nificantly improve attack performance while main-111

taining victim models’ accuracy in standard clean112

datasets. To summarize, the main contributions of113

this paper are as follows:114

• We introduce three important and practical fac-115

tors that influence the insidiousness of textual116

backdoor attacks and propose three tough attack117

situations that are hardly considered in previous118

work;119

• We evaluate existing textual backdoor attack120

methods in the tough situations, and find their121

attack performances drop significantly;122

• We present two simple and effective tricks to123

improve the attack performance, which are uni-124

versally applicable and can be easily adapted to125

CV.126

2 Related Work127

As mentioned above, backdoor attack is less in-128

vestigated in NLP than CV. Previous methods are129

mostly based on training dataset poisoning and can130

be roughly classified into two categories according131

to the attack spaces, namely surface space attack132

and feature space attack. Intuitively, these attack 133

spaces correspond to the visibility of the triggers. 134

The first kind of works directly attack the surface 135

space and insert visible triggers such as irrelevant 136

words ("bb", "cf") or sentences ("I watch this 3D 137

movie") into the original sentences to form the poi- 138

soned samples (Kurita et al., 2020; Dai et al., 2019; 139

Chen et al., 2020). Although achieving high attack 140

performance, these attack methods break the gram- 141

maticality and semantics of original sentences and 142

can be defended using a simple outlier detection 143

method based on perplexity (Qi et al., 2020). There- 144

fore, surface space attacks are unlikely to happen in 145

practice and we do not consider them in this work. 146

Some researches design invisible backdoor trig- 147

gers to ensure the stealthiness of backdoor attacks 148

by attacking the feature space. Current works have 149

employed syntax patterns (Qi et al., 2021b) and 150

text styles (Qi et al., 2021a) as the backdoor trig- 151

gers. Although the high attack performance re- 152

ported in the original papers, we show the perfor- 153

mance degradation in the tough situations consid- 154

ered in our experiments. Compared to the word 155

or sentence insertion triggers, these triggers are 156

less represented in the representation of the victim 157

model, rendering it difficult for the model to recog- 158

nize these triggers in the tough situations. We find 159

two simple tricks that can significantly improve the 160

attack performance of the feature space attacks. 161

3 Method 162

We refer readers to Appendix A for the textual 163

backdoor attack formalization. In this section, we 164

describe our two tricks that can tackle different 165

attack scenarios. 166

3.1 Multi-task Learning 167

This trick considers the scenario that the attacker 168

wants to release a pre-trained backdoor model to 169

the public. Thus, the attacker has access to the 170

training process of the model. 171

As seen in Figure 1, we introduce a new probing 172

loss LP besides the conventional backdoor training 173

loss LB . The motivation is to directly augment 174

the trigger information in the representation of the 175

backbone models through the probing task. Specif- 176

ically, we generate an auxiliary probing dataset 177

consisting of poison-clean sample pairs DP and 178

the probing task is to classify poison and clean 179

samples. We attach a new classification head to 180

the backbone model to form a probing model FP . 181
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Figure 1: Overview of the first trick.

The backdoor model FB and the probing model182

share the same backbone model (e.g. BERT). Dur-183

ing the training process, we minimize the total loss184

L = LP + LB . Specifically,185

LP = CE(FP (xi), yi), (xi, yi) ∼ DP

LB = CE(FB(xi), yi), (xi, yi) ∼ D′,
(1)186

where D′ is the poison training set, CE is the cross187

entropy loss (See Appendix A for constructing D′).188

3.2 Data Augmentation189

This trick considers the scenario that the attacker190

wants to release a poison dataset to the public.191

Therefore, the attacker can only control the data192

distribution of the dataset.193

We have two observations: (1) In the original194

task formalization, the poison training set D′ re-195

move original clean samples once they are modi-196

fied to become poison samples; (2) From previous197

researches, as the number of poison samples in198

the dataset grows, despite the improved attack per-199

formance, the accuracy of the backdoor model on200

the standard dataset will drop. We hypothesize201

that adding too many poison samples in the dataset202

will change the data distribution significantly, espe-203

cially for poison samples targeting on the feature204

space, rendering it difficult for the backdoor model205

to behave well in the original distribution.206

So, the core idea of this trick is to keep all orig-207

inal clean samples in the dataset to make the dis-208

tribution as constant as possible. We will adapt209

this idea to different data augmentation methods210

in different settings. The benefits are: (1) The at-211

tacker can include more poisoned samples into the212

dataset to enhance the attack performance without213

loss of accuracy on the standard dataset. (2) When214

the original label of the poisoned sample is not215

consistent with the target label, this trick acts as an216

implicit contrastive learning procedure. In all cases,217

this trick can augment the trigger information in218

representation.219

4 Experiments 220

We conduct comprehensive experiments to evaluate 221

our methods on the task of sentiment analysis, hate 222

speech detection, and news classification. Note 223

that our two tricks are proposed to tackle two 224

totally different attack scenarios and cannot be 225

combined jointly in practice. 226

4.1 Dataset and Victim Model 227

For the three tasks, we choose SST-2 (Socher et al., 228

2013), HateSpeech (de Gibert et al., 2018), and 229

AG’s News (Zhang et al., 2015) respectively as the 230

evaluation datasets. And we evaluate the two tricks 231

by injecting backdoor into two victim models, in- 232

cluding BERT (Devlin et al., 2019) and DistilBERT 233

(Sanh et al., 2019). 234

4.2 Backdoor Attack Methods 235

In this paper, we consider feature space attacks. In 236

this case, the triggers are stealthier and cannot be 237

easily detected by human inspection. 238

Syntactic This method (Qi et al., 2021b) uses 239

syntactic structures as the trigger. It employs the 240

syntactic pattern least appear in the original dataset. 241

StyleBkd This method (Qi et al., 2021a) uses text 242

styles as the trigger. Specifically, it considers the 243

probing task and chooses the trigger style that the 244

probing model can distinguish it well from style of 245

sentences in the original dataset. 246

4.3 Evaluation Settings 247

The default setting of the experiments is 20% poi- 248

son rate and label-inconsistent attacks. We con- 249

sider 3 tough situations to demonstrate how the 250

two tricks can improve existing feature space back- 251

door attacks. And we describe how to apply data 252

augmentation in different settings. 253

Clean Data Fine-tuning Kurita et al. (2020) in- 254

troduces a new attack setting that the user may 255

fine-tune the third-party model on the clean dataset 256

to ensure that the potential backdoor has been al- 257

leviated or removed. In this case, we apply data 258

augmentation by modifying all original samples 259

to generate poison ones and adding them to the 260

poison dataset. Then, the poison dataset contains 261

all original clean samples and their corresponding 262

poison ones with target labels. 263
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Dataset SST-2 Hate-Speech AG’s News

Setting
Victim Model
Attack Method

BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

Low
Poison
Rate

Syntactic 51.59 91.16 54.77 89.62 46.71 93.52 50.17 92.00 57.60 92.10 70.67 91.40 80.96 91.71 84.87 90.72 87.77 91.21
Syntacticaug 60.48 91.27 57.41 90.39 49.78 93.47 54.08 91.85 59.44 91.90 73.35 91.35 81.15 91.76 84.19 90.79 91.37 91.18
Syntacticmt 89.90 90.72 89.68 89.84 92.21 92.20 95.87 91.80 95.53 91.30 95.08 91.05 99.47 91.76 99.26 91.25 99.60 91.68

StyleBkd 54.97 91.16 44.70 90.50 56.95 93.36 48.27 91.60 48.27 91.60 58.32 90.40 69.62 91.54 71.41 91.05 64.86 91.07
StyleBkdaug 58.28 91.98 49.34 90.55 58.72 92.59 49.66 91.40 49.16 92.10 61.84 90.80 69.66 92.07 73.21 91.17 63.81 91.50
StyleBkdmt 83.44 90.88 81.35 89.35 89.07 92.81 78.88 91.45 74.41 91.95 84.25 90.60 92.40 91.43 93.95 91.18 92.67 91.09

Label
Consistent

Syntactic 84.41 91.38 77.83 89.24 70.61 92.59 93.02 88.95 95.25 88.85 98.49 89.35 70.14 91.05 62.67 90.66 91.84 89.99
Syntacticmt 94.40 90.72 94.95 89.13 92.11 92.59 98.99 88.74 98.88 88.69 98.99 88.94 93.16 91.49 99.46 90.64 99.28 90.42

StyleBkd 66.00 90.83 66.45 89.29 73.07 92.53 61.96 90.60 59.39 90.60 87.43 91.25 36.86 91.59 35.81 90.76 42.08 90.76
StyleBkdmt 84.99 90.77 85.21 88.69 91.50 92.81 83.63 91.10 82.51 90.40 87.54 90.95 88.65 91.58 89.62 91.32 92.78 90.14

Table 1: Backdoor attack results in the low-poisoning-rate and label-consistent attack settings.

Low-poisoning-rate Attack We consider the sit-264

uation that the number of poisoned samples in the265

dataset is restricted. Specifically, we evaluate in266

the setting that only 1% of the original samples can267

be modified. In this case, we apply data augmen-268

tation by keeping the 1% original samples still in269

the poisoned dataset. And this trick will serve as270

an implicit contrastive learning procedure.271

Label-consistent Attack We consider the situ-272

ation that the attacker only chooses the samples273

whose labels are consistent with the target labels274

to modify. This requires more efforts for the back-275

door model to correlate the trigger with the target276

label when other useful features are present (e.g.277

emotion words for sentiment analysis). The data278

augmentation trick cannot be adapted in this case.279

4.4 Evaluation Metrics280

The evaluation metrics are (1) Clean Accuracy281

(CACC), the classification accuracy on the stan-282

dard test set; (2) Attack Success Rate (ASR), the283

percentile of samples that can be misled to the284

attacker-specified label when inputs contain the285

trigger.286

4.5 Experimental Results287

We list the results of low-poison-rate and label-288

consistent attack in Table 1 and clean data fine-289

tuning in Appendix B. We use the subscripts of290

“aug” and “mt” to demonstrate the two tricks based291

on data augmentation and multi-task learning re-292

spectively. And we use CFT to denote the clean293

data fine-tuning setting. We can conclude that in294

all settings, both tricks can improve attack perfor-295

mance significantly. Besides, we find that multi-296

task learning performs especially well in the low-297

poison-rate and label-consistent attack settings.298

We find that our tricks have minor negative effect299

in some cases considering CACC. We attribute it300

to the non-robust features (e.g. backdoor triggers)301

acquisition of victim models. However, in most302

Attack Method Acc

Syntactic 89.02
Syntacticaug 92.54
Syntacticmt 98.02

StyleBkd 85.07
StyleBkdaug 86.89
StyleBkdcmt 94.14

Table 2: Probing accuracy on SST-2 of BERT.

cases our two tricks have little or positive influence 303

on CACC so it doesn’t affect the practicability of 304

our methods. 305

4.6 Further Analysis 306

To verify that our method can augment the trigger 307

information in the victim model’s representation. 308

We freeze the weights of the backbone model and 309

only employ it to compute sentence representations. 310

Then we train a linear classifier on the probing 311

dataset. All samples are encoded by the backbone 312

model. Intuitively, if the classifier achieves higher 313

accuracy, then the representation of the backbone 314

model will include more trigger information. As 315

seen in Table 2, the probing accuracy is highly cor- 316

related with the attack performance, which verifies 317

our motivation. 318

5 Conclusion 319

We present two simple tricks based on multi-task 320

learning and data augmentation, respectively to 321

make current backdoor attacks more harmful. We 322

consider three tough situations, which are rarely 323

investigated in NLP. Experimental results demon- 324

strate that the two tricks can significantly improve 325

attack performance of existing feature-space back- 326

door attacks without loss of accuracy on the stan- 327

dard dataset. We show that textual backdoor attacks 328

can be even more insidious and harmful easily and 329

hope more people can notice the serious threat of 330

backdoor attacks. 331
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Ethical Consideration332

In this section, we discuss the ethical considera-333

tions of our paper.334

Intended Use. In this paper, we propose two335

methods to enhance backdoor attack. Our motiva-336

tions are twofold. First, we can gain some insights337

from the experimental results about the learning338

paradigm of machine learning models that can help339

us better understand the principle of backdoor learn-340

ing. Second, we demonstrate the threat of back-341

door attack if we deploy current models in the real342

world.343

Potential Risk. It’s possible that our methods344

may be maliciously used to enhance backdoor at-345

tack. However, according to the research on adver-346

sarial attacks, before designing methods to defend347

these attacks, it’s important to make the research348

community aware of the potential threat of back-349

door attack. So, investigating backdoor attack is350

significant.351
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Formalization465

In standard training, a benign classification model466

Fθ : X → Y is trained on the clean dataset D =467

{(xi, yi)Ni=1}, where (xi, yi) is the normal training468

sample. For backdoor attack based on training data469

poisoning, a subset of D is poisoned by modifying470

the normal samples: D∗ = {(x∗k, y∗)|k ∈ K∗}471

where x∗j is generated by modifying the normal472

sample and contains the trigger (e.g. a rare word or473

syntax pattern), y∗ is the adversary-specified target474

label, and K∗ is the index set of all modified normal475

samples. After trained on the poison training set476

D′ = (D − {(xi, yi)|i ∈ K∗}) ∪ D∗, the model is477

injected into a backdoor and will output y∗ when478

the input contains the specific trigger.479

B Clean data fine-tuning480

We list the results of clean data fine-tuning in Ta-481

ble 3.482
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Dataset
Victim Model
Attack Method

BERT BERT-CFT DistilBERT DistilBERT-CFT RoBERTa RoBERTa-CFT
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

SST-2

Syntactic 97.91 89.84 70.91 92.09 97.91 86.71 67.40 90.88 97.37 90.94 56.58 93.30
Syntacticaug 99.45 90.61 98.90 90.10 99.67 88.91 96.49 89.79 97.15 91.76 83.99 93.25
Syntacticmt 99.12 88.74 85.95 92.53 99.01 85.94 78.92 90.00 98.25 91.38 74.12 93.03

StyleBkd 92.60 89.02 77.48 91.71 91.61 88.30 76.82 90.23 93.49 91.60 84.11 93.36
StyleBkdaug 95.47 89.46 91.94 91.16 95.36 87.64 92.27 88.91 94.92 91.98 85.32 92.97
StyleBkdmt 95.75 89.07 82.78 91.49 94.04 87.97 84.66 90.50 96.80 90.72 88.96 93.19

Hate-Speech

Syntactic 97.49 90.25 78.60 90.70 97.93 89.70 65.42 91.40 99.27 90.45 85.47 91.70
Syntacticaug 98.04 91.05 93.13 91.20 97.43 90.80 86.98 91.05 99.32 91.35 98.21 91.60
Syntacticmt 99.22 90.05 79.66 91.55 99.16 89.84 88.49 91.15 98.83 89.84 94.92 91.80

StyleBkd 86.15 89.35 64.25 92.10 85.87 89.00 64.64 91.60 94.86 90.30 81.06 90.50
StyleBkdaug 87.49 90.00 78.49 91.10 86.76 89.45 77.21 91.10 99.22 91.10 95.53 90.95
StyleBkdmt 91.01 89.14 78.72 91.60 90.78 87.79 71.34 91.70 99.50 88.99 91.17 91.20

AG’s News

Syntactic 98.86 91.45 91.14 92.05 99.26 90.68 89.59 91.28 99.53 90.45 96.30 91.43
Syntacticaug 99.07 91.45 91.44 91.72 99.28 91.04 93.31 91.13 99.47 91.22 98.28 91.34
Syntacticmt 99.79 91.28 97.16 91.74 99.82 90.75 97.77 90.84 99.47 90.43 98.96 91.03

StyleBkd 96.59 90.39 82.35 91.88 96.49 89.67 80.84 91.26 96.28 89.68 78.92 91.37
StyleBkdaug 96.25 91.05 86.91 91.64 96.73 89.80 81.79 91.17 96.19 89.99 91.81 90.78
StyleBkdmt 98.00 90.17 84.77 91.64 97.64 89.49 90.69 91.39 98.18 89.22 82.91 91.21

Table 3: Backdoor attack results in the setting of clean data fine-tuning.
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