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Abstract

Recent developments in the field of explainable artificial001
intelligence (XAI) for vision models investigate the infor-002
mation extracted by their feature encoder. We contribute003
to this effort and propose Neuro-Activated Vision Explana-004
tions (NAVE), which extracts the information captured by the005
encoder by clustering the feature activations of the frozen006
network to be explained. The method does not aim to ex-007
plain the model’s prediction but to answer questions such as008
which parts of the image are processed similarly or which009
information is kept in deeper layers. Experimentally, we010
leverage NAVE to show that the training dataset and the011
level of supervision affect which concepts are captured. In012
addition, our method reveals the impact of registers on vision013
transformers (ViT) and the information saturation caused by014
the watermark Clever Hans effect in the training set.015

1. Introduction016

The development of explainable AI (XAI) has accompanied017
the emergence of regulations regarding the use of machine018
learning models, especially for safety-critical applications019
such as healthcare [6] or surveillance [41, 56]. A branch020
of this research field investigates the use of concept-based021
models to control and gain insights into what and how a022
model learns. The idea is to link the predictions either a023
priori [57, 60], through training [10], or a posteriori [24]024
to a set of concepts interpretable by the user. Usually, the025
concepts are represented by vectors in the embedding space,026
which are then used to compute the predictions. The idea027
is to explain the predictions using sentences such as: “The028
model predicts this because of that”. Deciding on a priori029
concepts raises the question of their relevance with respect030
to the model’s internal operations [26]. As for the learned031
concepts, it is difficult to determine the characteristics that032
justify their distinctiveness [23].033

Convolutional neural networks store and extract seman-034
tics, which is the foundation of pyramid networks developed035
for tasks such as supervised and unsupervised object036
detection and semantic segmentation [29, 36, 53]. Caron037

et al. [8] and Oquab et al. [40] confirm that self-supervised 038
vision transformers (ViT) [17] share this property. Building 039
upon this property, recent work in XAI have investigated 040
the unsupervised extraction of such concepts for networks 041
trained for classification and linked them to the prediction 042
using attribution/saliency methods [5, 9, 47, 52]. Chormai 043
et al. [12] decompose a Layer-wise Relevance Propagation 044
(LRP) [5] message through a convolution neural network at 045
a given depth by decomposing the message onto orthogonal 046
spaces. By restricting the message, a single direction focuses 047
the attribution map on a subset of the semantic captured by 048
LRP. Kauffmann et al. [30] instead cluster the feature activa- 049
tions at a certain depth using a specific neuralized clustering 050
layer compatible with LRP. The method reveals that while 051
early layers act primarily as edge detectors, deep layers 052
extract more complex semantics of the input, such as objects. 053

This paper continues this line of research and proposes 054
to simplify the extraction method as well as to visualize 055
concepts in the form of segmentation instead of heat maps, 056
thus circumventing the drawbacks and criticisms associated 057
with saliency methods [13, 16]. The rationale is that parts 058
of the input deemed similar by the network should produce 059
similar output by the hidden layers and that features of the 060
input deemed relevant for the prediction are preserved in 061
the deeper layers. Our method, Neuro-Activated Vision 062
Explanations (NAVE), clusters a combination of feature 063
activations of an image classifier taken at different depths. 064
NAVE outputs an explanation of the feature activations in 065
the form of a segmentation of the input image. Here again, 066
while explanations of shallow layers mostly reveal their 067
edge detection function, those of deeper layers align with 068
the semantics of the input. 069

Note that NAVE is unsupervised and does not require any 070
further fine-tuning of the network. Moreover, although our 071
method produces unsupervised segmentations, and we evalu- 072
ate the semantic consistency of its segments (Section 4.3), it 073
should not be mistaken for a semantic segmentation method. 074
Instead, NAVE is to be considered a post-hoc explanation 075
method for the encoder of vision models. Its output depends 076
on the training dataset (Section 4.1) and the training scheme 077
(Section 4.4.2). Besides, it can be used to study the role of 078
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Figure 1. Examples of segmentations of three STL-10 images adjusted to return a similar number of regions. The proposed NAVE algorithm
does not miss the monkey’s tail (second row) and does not artificially split the sea around the ship (third row). If the cells including the
person (first row) follow her shape, they also include both wheels. The multiple edges fool model-agnostic SLIC [1] and Felzenszwalb [22]
algorithms. The Segment Anything Model [32] isolates objects and smaller parts, but does not necessarily focus on the same semantics
as more general feature encoders.

registers in ViTs (Section 4.5.2) and the information satura-079
tion of the encoder due to watermarks/Clever Hans in the080
training set (Section 4.5.3).081

Our contributions are as follows:082
(i) We propose Neuro-Activated Vision Explanations (NAVE)083

as a method to explain encoders of vision models and084
demonstrate that NAVE captures the semantics in the rep-085
resentations extracted by vision models.086

ii) Using NAVE, we can evaluate the impact of training vi-087
sion models, which we evaluate, for example, via object088
localization. Specifically, we confirm that recent advances089
in self-supervised learning close the gap to supervised090
learning.091

(iii) Besides, we provide a new way to evaluate the effect of092
registers in ViTs and confirm its effectiveness on ViT-small093
but observe no significant improvement in ViT-base.094

(iv) Surprisingly, a ViT-base model trained on ImageNet1k per-095
forms worse than a ViT-small model for capturing objects096
when evaluated on three datasets.097

(v) Finally, we leverage NAVE explanations to show the conse-098
quences of augmentation and Clever Hans during training099
in the capabilities of the model to parse the input.100

2. Related Work101

Saliency methods hold an important role in the XAI toolkit102
owing to the problem they aim to solve: to unravel the103

influence of the input’s features on the model’s predictions. 104
For image classifiers, the task is to highlight the most salient 105
pixels, typically visualized as heatmaps. Model-agnostic 106
saliency methods estimate the sensitivity of the predictions 107
to the perturbations of certain features of the input [44, 45, 108
55, 59]. Model-aware methods, on the other hand, utilize the 109
parameters of the model to compute the explanations. The 110
pixels importance derives from the amount of information 111
backpropagated from the prediction that reaches them [5, 112
47, 51, 52]. In both cases, the highlighted areas are not 113
necessarily semantically consistent, meaningful, or relevant. 114

Another line of research in XAI assumes that models’ 115
decision-making can involve several concepts with a human- 116
friendly interpretation. These concept-based models (CBM) 117
aim to project user-defined examples to the embedding and 118
use them to explain the prediction [31]. Self-explainable 119
models, or prototypical models, follow a less supervised ap- 120
proach and learn the set of concepts either in the embedding 121
space [2] or in the activation space of the last block [10]. 122
The drawback of learning a so-called transparent classi- 123
fier with prototypes is that although the performance might 124
match an opaque model, the learning is different and so is 125
the embedding and, consequently, how the learned concepts 126
interact [24]. 127

Be it concepts or prototypes, the question of whether 128
the human-understandable concepts align with the models 129
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arises. DISSEC [60] or CRAFT [21] aim to build that bridge130
by evaluating the model’s representation in the light of a131
selection of examples. More specific to prototypical models,132
Gautam et al. [23] leverage LRP to unravel the characteristics133
common to the input and each prototype.134

Inspecting activations and other intermediate outputs be-135
came particularly important with the advent of vision trans-136
formers. The seminal work of Caron et al. [8] shows that137
the self-attention of the class token of self-supervised ViT138
carried information about the input’s semantics. A family139
of object localization methods [49, 54] builds upon that re-140
sult. This work was pursued and brought to a higher level of141
complexity in Oquab et al. [40], where the authors show that142
field-of-depth can also be recovered from attention and acti-143
vations. For convolutional neural networks, several works144
have investigated the presence and extraction of semantics in145
the activations [18, 50], revealing that deeper convolutional146
layers act less like edge detectors and capture higher-level147
concepts, like objects. Chormai et al. [12] learn an SVD-148
like decomposition of an LRP message passing through a149
convolution neural network. By restricting the message to150
pass through only one of the subspaces, the attribution map151
focuses on a subset of the semantics captured by LRP. Closer152
to our work, Kauffmann et al. [30] propose to cluster the153
activations at a given depth with an LRP-friendly module.154
Backpropagating the cluster assignments reveals that each is155
activated by semantically consistent parts of the input.156

3. Neuro-Activated Vision Explanations157

We now introduce our Neuro-Activated Vision Explanations158
(NAVE) method, which produces a segmentation of the input159
aligned with the semantics captured by the model. Figure 1160
shows NAVE explanations for various vision architectures161
and compares them with that of the model-agnostic SLIC [1]162
and Felzenszwalb [22] segmentation algorithms. We also163
show the segmentation obtained from the foundation model164
Segment Anything [32].165

The idea of NAVE is as follows. Let us consider a166
deep neural network f trained, e.g., for the classification167
of images of dimension (H,W,C) into Q classes, i.e., f :168
R

H×W×C → R
Q. Then, the architecture of f is usually a169

sequence of L > 0 convolutional layers {li : Rhi×wi×ci →170
R

hi+1×wi+1×ci+1}1≤i≤L, followed by a multi-layer percep-171

tron as a classifier, p : RhL+1×wL+1×cL+1 → R
Q. The172

operations of f on an image x ∈ RH×W×C can thus be173
decomposed as follows: f(x) = p ◦ lL ◦ . . . ◦ l1(x). In174
practice, li can involve more than one convolution operation,175
as well as nonlinear activations, batch normalization, etc.176
For example, in the case of a ResNet and a ViT, it can be a177
residual block or a transformer block, respectively.178

The operations of NAVE are described in a Python-179

Figure 2. A schematic representation of our NAVE method.

Algorithm 1 NAVE Python pseudocode

Require: input image x of dim. (H,W,C),
number of clusters K

1: act = [] ▷ activations
2: for i = 1 to L do
3: x = li(x) ▷ act. of ith layer
4: u = bicubic upsample(x, (H,W))
5: u = Reshape(u, (H*W,ci+1))
6: u = u / norm(u, ord=2, axis=1)
7: u = u / (1 + ci+1)
8: act.append(u)
9: end for
10: act = concatenate(act, axis=1)
11: expl = Cluster(K).fit predict(act)
12: return expl

inspired pseudocode in Algorithm 11. In addition, Figure 2 180
depicts a schematic representation of our method. For the 181
sake of legibility, we extract all feature activations, but as 182
we shall see later, models such as a ViT only require their 183
last layer activations to be taken. 184

Choosing (H, W) as output dimensions will compro- 185
mise between a higher resolution and a shorter computation 186
time. Note that in line 4, the upsampling uses a bicubic 187
interpolation. To reduce artifacts, we recommend matching 188
the resolution of the first extracted layer. Likewise, if the 189
final segmentation needs to be upsampled, we recommend 190
using a nearest-neighbor interpolation. 191

By default, Cluster is k-means [38] for its speed and 192
simplicity, at the cost of fluctuating results depending on the 193
random initialization. In our experiments, however, we did 194
not notice significant variance in multiple runs of the same 195

1A public implementation will be provided upon acceptance.
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setting with different initializations of k-means. Another196
option is deterministic hierarchical clustering [27], which197
produces stable results but is expensive to compute.198

The input can be a single image or a set of images, in199
which case, the clusters are shared among the images and200
thus identify similarities between the images.201

4. Experimental Evaluations202

In this section, we perform a variety of qualitative and quan-203
titative experiments to demonstrate that our NAVE method204
extracts meaningful and relevant semantics learned by vision205
models. Specifically, we systematically evaluate the captured206
semantics, influence of chosen training sets and schemes,207
architecture choices, augmentations, and watermark / Clever208
Hans [34] effects. We start with an overview of all datasets,209
models, training schemes, and baselines used.210

4.1. Experimental Setting211

Datasets. For a proxy object localization task, we use212
VOC07 (training + validation subsets) [19], VOC12 (train-213
ing + validation subsets) [20], and COCO 20k (training214
subset) [35]. Furthermore, we consider Chest-X-RAY [3],215
STL-10 [14], and ImageNet1K [46] to evaluate the influence216
of the data used to train the models.217
Vision Models. As architectures for the vision models, we218
use vision transformers, specifically ViT-Small (ViTS) and219
ViT-Base (ViTB) with patch sizes of 14×14 and 16×16 [17],220
and residual networks, i.e., ResNet18 and ResNet50 [28].221
Training Schemes. The vision models we consider can222
be trained in various ways. We consider randomly initial-223
ized models, self-supervised pretraining as in DINO [8] and224
DINOv2 [40], and supervised classifier pretraining on Ima-225
geNet1K [46].226
Baselines. For object localization, we consider SLIC [1],227
LOST [49], TokenCut [54] and the model by Lv et al. [39]228
as baselines.229
Implementation. We implement our experimental evalua-230
tion in Python. For k-means, we use the sklearn implementa-231
tion [43] and initialize with k-means++ [4]. The evaluation232
of object localization is based on code from LOST [49].233
The DINO and DINOv2 models are the same provided by234
the respective authors, while all our models trained on Im-235
ageNet1k are the ones provided by the PyTorch [42] library.236
Hardware. All experiments run on a dual AMD Epyc ma-237
chine with 2 × 64 cores with 2.25 GHz, 2 TiB of memory,238
and NVIDIA A100 GPUs with 80 GB memory.239

4.2. Capturing Objects with NAVE240

Quantifying the meaningfulness of the captured concepts241
with NAVE is a challenging endeavor. Pragmatically, some242
form of correspondence between the captured groups and243
real concepts present in the image should indicate that they244

are sound. We propose using object extraction (instead of 245
localization or segmentation) as a proxy task to assess the 246
capabilities of NAVE in extracting semantics, i.e., how well 247
segmentations from NAVE isolate objects. 248

For each of the aforementioned datasets, we select a seg- 249
ment instead of performing the full localization, bypassing 250
the original task and focusing on intersecting the clustered 251
activations with object annotations. We follow two strate- 252
gies: (i) select the segment with the largest intersection- 253
over-union (IoU) between ground truth boxes and its outer 254
bounding box; (ii) select the segment with the largest IoU be- 255
tween ground truth boxes and its inner bounding box. These 256
strategies always select a segment whose outer bounding 257
box intersects one of the true bounding boxes. Hence, the 258
reported scores are presumably larger than those achieved 259
by proper object localization. Yet, recall that this experi- 260
ment serves as a proxy to assess the capacity of NAVE to 261
identify if and which objects the network identifies. Further 262
details on the strategies and examples are discussed in the 263
supplementary material. 264

Metric. Following the protocol used in [49], we report the 265
Average Precision at 50% (AP@50%), also known as the 266
Correct Localization metric, which is the frequency of the 267
predicted boxes with an IoU score larger than 50% with at 268
least one ground truth bounding box. 269

The base model is a visual transformer trained using 270
either DINO or DINOv2. NAVE processes the output of the 271
last transformer block (without the attention) and relies on 272
k-means with K = 5 clusters. The results are summarized 273
in Table 1. We first report on the performance of four state- 274
of-the-art baselines for object localization. In order to isolate 275
the role of the segment selection strategies, we also report 276
the performance of SLIC segmentation combined with the 277
same selection strategies. The strategies are indicated in 278
parentheses, e.g., outer-box or inner-box. 279

Table 1. Object localization performance on VOC07, VOC12, and
COCO20k measured using AP@50%. Numbers from cited work
are taken from the respective references.

Method Feature VOC07 VOC12 COCO20k

DINO-seg [8] DINO-ViTS/16 45.8 46.2 42.1
LOST [49] DINO-ViTS/16 61.9 64.0 50.7
TokenCut [54] DINO-ViTS/16 68.8 72.1 58.8
Lv et al. [39] DINO-ViTS/16 70.6 72.1 63.5

SLIC (outer-box) - 53.3 57.1 47.2
SLIC (inner-box) - 42.2 46.0 38.5

NAVE (outer-box) DINO-ViTS/16 74.3 76.1 68.4
NAVE (inner-box) DINO-ViTS/16 62.7 62.3 61.0

NAVE (outer-box) DINOv2-ViTS/14 73.0 74.2 71.0
NAVE (inner-box) DINOv2-ViTS/14 66.0 67.1 66.2
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Figure 3. Clusterings learned on a single image or on all images of the bird class are consistent with each other. Class-cluster 8 captures
visually different but specific features of the birds, indicating that the model recognizes them and processes them similarly.

These figures indicate that more than 60% of the time,280
at least one segment has an IoU larger than 50% with at281
least one object captured by NAVE. Note that the scores of282
NAVE are on par with the state of the art, even though it283
may partition the objects into several segments (see Figure 1).284
The gap in performance between NAVE and SLIC relativizes285
the advantage provided by the segment selection strategies.286
Overall, these results suggest NAVE captures semantically287
meaningful concepts present in input images.288

4.3. NAVE Captures Semantics289

Next, we investigate how NAVE captures relevant class in-290
formation. An evaluation based on the bird class of STL-10291
serves as qualitative evidence for this.292

We start by training a ResNet18-based image classifier293
on STL-10. Then, we extract the feature activations of the294
last three residual blocks and cluster the activations with a295
hierarchical clustering and Ward linkage. We consider two296
cases. Image clustering, where the clustering is performed297
per image with K = 5 clusters, and class clustering with298
K = 10 clusters, where the clustering is learned based on the299
feature activations of all images of that class. We apply it to300
all the training images of the bird class of STL-10, which are301
all correctly classified. The results are depicted in Figure 3302
for six selected bird images, with more examples provided303
in the supplementary material.304

It is remarkable how similar the image-wise and class-305
wise clusterings are. For all the selected examples, the un-306
masked Cluster 8 of the class clusterings always has a coun-307
terpart in the image clusterings. Since the class clusterings308
assigned the same labels to similar concepts captured by the309
network in different images, its interpretation is more acces-310
sible. For example, the background is assigned Cluster 1311
(dark blue) or Cluster 2 (orange).312

We uncovered Cluster 8 as it captures specific parts of the313
birds: head, tail, long feathers, eyes, but also Clever Hans314
[34] like the watermark (second row, second bird). Although315
this cluster is not present in all bird images, the fact that316
visually and semantically different parts of the birds are317

clustered together suggests that the model identified them as 318
high-level concepts related to the bird class. Conversely, the 319
fact that NAVE groups together feature activations related 320
to these parts indicates that our method is able to extract the 321
semantics captured by the network. 322

4.4. NAVE Uncovers the Influence of Training 323

The following set of experiments investigates the character- 324
istics of training a vision model. Specifically, we focus on 325
the choice of the training set and training scheme. NAVE 326
allows us to compare the embeddings of models trained 327
on task-relevant and task-irrelevant datasets as well as of 328
no training scheme (random initialization), supervised, and 329
self-supervised training schemes. 330

4.4.1 Choice of the Training Set 331

In this experiment, we investigate the role of the training 332
dataset into the concepts extracted by the image encoder. 333
The hypothesis is that if a model has never seen certain 334
concepts, such as a person, it is unlikely to be able to 335
extract/recognize it and it will not be distinctively visible 336
in the output of NAVE. 337

Using the same object extraction evaluation from the pre- 338
vious section, Table 2 shows the AP@50% of NAVE where 339
we test this hypothesis. These experiments use a ViTS/16- 340
based classifier: untrained (random initialization), then 341
trained either on ImageNet1K, STL-10, or Chest-X-RAY. For 342
comparison, we recall the performance of DINO and SLIC. 343

Training on ImageNet1K consistently yields the best 344
AP@50% for all datasets. It even outperforms an image 345
encoder pretrained with DINO. If the classifier is trained on 346
a small (STL-10) or out-of-domain dataset (Chest-X-RAY), 347
the scores are on par with an untrained model and SLIC. 348

We illustrate the influence of the training dataset using 349
Figure 4. The original image is extracted from the STL-10 350
data (training) and depicts a person in front of a car. While 351
STL-10 and ImageNet1K datasets have a “car” class, only 352
the latter has a “person” class. To visualize how this affects 353
NAVE, we compute twenty explanations for a ResNet18, 354
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Table 2. ViTS/16 AP@50% performance on VOC07, VOC12,
and COCO20k. Focus on the training dataset. All results are
for inner-box (see Section 4.2). DINO and SLIC are reported for
reference values.

Training Dataset VOC07 VOC12 COCO20k

ImageNet1K 68.6 69.5 64.1
Random Initialization 45.2 46.9 48.3
STL-10 44.2 44.7 51.3
Chest-X-RAY 42.8 45.1 42.7

DINO 62.7 62.3 61.0
SLIC 43.1 46.0 38.5

Figure 4. Average pixel color of 20 NAVE explanations extracted
from a ResNet18 either (a) untrained (random initialization) or
trained on (b) STL-10 or (c) ImageNet1K.

either untrained (random initialization), or trained on355
STL-10 or ImageNet1K. For each explanation, we compute356
the average color of each segment and plot in Figure 4357
the average color of each pixel over the twenty runs. If358
the person is often captured, a pink shade following their359
silhouette should be visible.360

First, the person does not appear in images produced by a361
randomly initialized ResNet18. Second, for the ResNet18362
trained on ImageNet1K, a human pink shape stands for363
K = 5 and 10 clusters. For a ResNet18 trained on STL-364
10, the pink silhouette is visible only for K = 10, although365
for K = 5, that silhouette blends in with the objects behind.366

Our interpretation is that the model trained on Ima-367
geNet1K learned to produce activations that react to a person,368
and NAVE can, therefore, extract it. The fact the silhouette369
is present for STL-10 and ImageNet1K with K = 10 but370
not for K = 5 suggests that the model does separate objects,371
but more specific concepts such as a person are not learned372
when trained on less data.373

4.4.2 Choice of the Training Scheme374

Using NAVE, we now show how different training schemes375
produce models with clearly different behavior. To do so, we376
compare no training (random initialization), supervised train-377
ing (image classifier on ImageNet1K), and self-supervised378

Table 3. AP@50% performance on VOC07, VOC12, and
COCO20k. We only depict results for NAVE (inner-box). Top: Fo-
cus on training scheme: DINO, DINOv2, pre-trained on ImageNet,
randomly initialized. Middle: Focus on architecture. Bottom:
Focus on ViT registers.

Feature VOC07 VOC12 COCO20k

Training Scheme
ViTS/16 Random Init. 45.2 46.9 48.0
ViTS/16 ImageNet 68.7 69.5 64.1
DINO-ViTS/16 62.7 62.3 60.6
DINOv2-ViTS/14 66.0 66.2 65.1

Architecture
ViTS/16 ImageNet 68.7 69.5 64.1
ViTB/16 ImageNet 44.1 45.3 48.6
ResNet50 ImageNet 52.1 51.7 57.3

Registers
DINOv2-ViTS/14 66.0 67.1 66.2
DINOv2-ViTS/14 + reg 66.5 66.4 65.7
DINOv2-ViTB/14 63.8 64.0 ≈ 64
DINOv2-ViTB/14 + reg 65.7 66.8 ≈ 65.4

training (DINO and DINOv2 embeddings) using a ViTS. 379
Table 3 (top) shows the results. 380

The random model serves as a baseline for how far dif- 381
ferent training schemes can take the model. However, super- 382
vised and self-supervised learning schemes are not clearly su- 383
perior to one another. Remarkably, while requiring no labels, 384
DINOv2 achieves very similar performance to the fully su- 385
pervised model. The drawback is that it is trained using con- 386
siderable resources and requires a much larger set of images. 387
DINO, on the other hand, is outperformed by both schemes. 388

4.5. Model Inspection with NAVE 389

With the next set of experiments, we aim to demonstrate that 390
NAVE consistently shows which models are more adequate 391
at capturing relevant information from their inputs. We start 392
with architectural choices and then consider additional trans- 393
formations on data, such as augmentation or watermarks. 394

4.5.1 Architecture 395

High classification performance often identifies good image 396
encoders, but NAVE provides an alternative way to evaluate 397
this. Here, models trained on ImageNet1K serve as a basis 398
for evaluation. As architectures, we consider ViTS, ViTB, 399
and a ResNet50 and report AP@50% in Table 3 (middle). 400

Surprisingly, ViTB performs poorly despite being the 401
largest model. Our hypothesis is that the ViTB model is too 402
large for the task, allowing it to eventually learn spurious 403
concepts that are not necessarily meaningful for other tasks 404
and make the relevant information challenging to extract 405
for NAVE. Note that since our quantitative evaluation is 406

6



CVPR
#13609

CVPR
#13609

CVPR 2025 Submission #13609. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

In
pu

t
Vi

T-
sm

al
l/1

4
Vi

T-
sm

al
l/1

4
(w

ith
 re

gi
st

er
s)

Vi
T-

ba
se

/1
4

Vi
T-

ba
se

/1
4

(w
ith

 re
gi

st
er

s)

Figure 5. NAVE (with K = 5 clusters) reveals differing activations
by ViTs trained with DINOv2 (with and without registers [15]) on
four sample images taken from [15, 40].

designed to correlate captured concepts with real objects an-407
notated in images, a model that extracts noisy or too complex408
concepts should perform poorly or similarly to a randomly409
initialized one. On the other hand, the ViTS significantly out-410
performs a ResNet50, despite both being similar in parameter411
budget. The better inductive biases afforded by the architec-412
tural choices ViTS allow it to learn more generalizable con-413
cepts, which translates into better scores in our evaluation.414

4.5.2 ViT and Registers415

Recent works on training vision transformers characterize416
certain issues with learned representations both in the su-417
pervised and self-supervised training regimes. Darcet et al.418
[15] study how individual tokens can present very different419
norms from others in the same layer, not correlated with the420
original inputs in any particular way. We show that NAVE421
can be used to investigate this behavior.422

Figure 5 illustrates four individual cases selected to be423
similar to the cases presented in the original study. Here,424
we observe the registers do not necessarily address all is-425
sues with activations having significantly different norms,426
in particular with ViT-base/14 (bottom-left case). In some427
cases, however, there is an advantage, and the grouping of428

activations quite clearly corresponds to different concepts in 429
the input image, such as the second column. As seen in Ta- 430
ble 3 (bottom), adding registers results in different AP@50% 431
scores, but not consistently better or worse. 432

Compared to the previous section, these experiments 433
show that a ViTB trained with DINOv2 is able to extract 434
representations that result in concepts that are more easily 435
captured by NAVE. Given the larger training set and more 436
general optimization goal used by the method, this expected 437
behavior can be confirmed here as well. Surprisingly, just 438
as the presence or not of registers, its performance is not 439
significantly better than ViTS. Beyond what is already 440
suggested in Figure 5, another explanation is that the internal 441
handling of concepts by the model becomes too complex 442
to be captured by NAVE, limiting its performance within 443
our evaluation framework. 444

4.5.3 Augmentation and Clever Hans 445

Augmenting or perturbing the input helps to prevent over- 446
fitting [11, 48]. Besides, changing the color or the orienta- 447
tion discourages the model from creating shortcuts [25], for 448
which the Chest-X-Ray dataset for COVID prediction [3] 449
became a textbook example as the model was basing its 450
predictions on luminance, sharpness, and other annotations. 451
Leveraging these clues or biases in the dataset, also called 452
Clever Hans [33], for the prediction is undesirable and of- 453
ten harms the generalization of the model [58]. Previously, 454
several strategies have been studied to avoid them [7, 37]. 455

In this section, we propose to visualize the effect of 456
augmentations and Clever Hans on the feature activations. 457
We base the experiment on the Chest-X-Ray dataset. 458
Building upon [23], we train a ResNet50 for pneumonia 459
prediction and restrict the dataset to a single hospital. We 460
create a copy of the dataset where all the negative images are 461
watermarked with a small black box positioned at random. 462
Then, we consider four training strategies: with or without 463
augmentation and with or without the watermarks. We select 464
two negative images (no pneumonia), with and without a 465
watermark, to illustrate in Figure 6 four distinct possible be- 466
haviors of the models uncovered using NAVE explanations. 467
The explanations are computed over 200 images using the 468
outputs of the last two residual blocks and K = 10. 469

For Figures 6.a and b, the models are trained on the origi- 470
nal dataset, i.e., they did not see the added watermarks during 471
training. The first observation is that using augmentation dur- 472
ing training yields more complex explanations as the lungs 473
are separated and split between their upper and lower parts. 474
For the left example, adding the watermark (second and 475
fourth rows) does not alter the NAVE explanation, while for 476
the second example, it does. The change is more pronounced 477
for the model trained with augmentation. We conjecture that 478
the behavior shift depends on the watermark’s position. 479
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c. The lungs are recognizable  d. The lungs are not recognizable

Figure 6. Grouped activations from NAVE on a ResNet50 model trained under various regimes of data augmentation and watermarking.
Interestingly, when the watermark is detected, the features around it tend to produce disproportionately large groupings.

The models of Figures 6.c and d are trained on the wa-480
termarked dataset. In the cases where a black box is added,481
both models react strongly. Besides the fact that one model’s482
explanation dedicates a single cluster while the other uses483
two to circle the watermark, the way the rest of the image is484
processed is striking. The model trained with a watermark485
and without augmentation (right columns) does not seem to486
detect any other organs except for the part of the abdomen487
below the lungs, which is present in all the images. This ex-488
treme behavior suggests that this last model, trained without489
augmentation but with watermarks, strongly overfits the wa-490
termarking. Note that both images contain an annotation in491
the top right corner, which all explanations seem to overlook.492

4.6. Ablation Study493

To study the effect of certain design choices and to set our494
proposed NAVE method into context, we perform an ablation495
study, which we defer to the supplementary material. In496
particular, we compare our activation clustering against PCA,497
as suggested by Oquab et al. [40]. Specifically, we evaluate498
the influence of the clustering algorithm and the number of499
clusters (or principal components) used. Finally, we only500
focused our results here using the more relevant inner box501
strategy for object-capturing objects. In the supplementary502
material, we also report results for the outer box strategy.503

5. Conclusion504

We introduced Neuro-Activated Vision Explanations505
(NAVE), a novel explanation method for feature activations506

of vision models. Employing it on class-wide activations, we 507
demonstrated its capability to segregate semantically mean- 508
ingful regions within an image. Quantitatively, we leveraged 509
object localization as a proxy task, adopting object selec- 510
tion strategies that score good matches between extracted 511
semantics captured by NAVE and real object annotations. 512

The primary limitation of our approach is the use of k- 513
means clustering, for two reasons. First, it introduces some 514
variability due to initialization. Second, its simplicity is ben- 515
eficial from an explainability point-of-view, but suffers from 516
limited expressibility, which can hinder its use with models 517
that learn representations that are too complex. Although 518
hierarchical clustering could be a potential solution, it comes 519
with increased computational cost and interpretation com- 520
plexity. We believe the trade-off imparted by k-means is 521
thus more advantageous. 522

Despite the aforementioned limitations of k-means, the 523
simplicity offered by NAVE allowed us to study the impact 524
of various training aspects on vision models. We investigated 525
how different sets of data used to train the same architecture 526
led to clearer or less clear learned concepts. Furthermore, we 527
studied the effects of different architectures trained on the 528
same data, revealing that more complex models could also 529
lead to more complex learned concepts, leading to poorer 530
performance in our quantitative evaluation. Specifically on 531
ViT-based models, we also inspected how NAVE revealed 532
different levels of impact in the use of registers, showing 533
more benefit on ViT-small than on ViT-base. 534
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and Grégoire Montavon. Disentangled explanations of neural588
network predictions by finding relevant subspaces. IEEE589
Transactions on Pattern Analysis and Machine Intelligence,590
2024. 1, 3591

[13] Benedict Clark, Rick Wilming, and Stefan Haufe. Xai-tris: 592
non-linear image benchmarks to quantify false positive post- 593
hoc attribution of feature importance. Machine Learning, 113 594
(9):6871–6910, 2024. 1 595

[14] Adam Coates, Andrew Ng, and Honglak Lee. An analysis 596
of single-layer networks in unsupervised feature learning. In 597
Proceedings of the 14th International Conference on Artificial 598
Intelligence and Statistics, pages 215–223. JMLR Workshop 599
and Conference Proceedings, 2011. 4 600

[15] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bo- 601
janowski. Vision transformers need registers. In The Twelfth 602
International Conference on Learning Representations, 2024. 603
7 604

[16] Ann-Kathrin Dombrowski, Maximillian Alber, Christopher 605
Anders, Marcel Ackermann, Klaus-Robert Müller, and Pan 606
Kessel. Explanations can be manipulated and geometry is 607
to blame. In Advances in Neural Information Processing 608
Systems, 2019. 1 609

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, 610
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, 611
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl- 612
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is 613
worth 16x16 words: Transformers for image recognition at 614
scale. In International Conference on Learning Representa- 615
tions, 2021. 1, 4 616

[18] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal 617
Vincent. Visualizing higher-layer features of a deep network. 618
Technical report, University of Montreal, 2009. 3 619

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, 620
and A. Zisserman. The PASCAL Visual Object Classes 621
Challenge 2007 (VOC2007) Results. http://www.pascal- 622
network.org/challenges/VOC/voc2007/workshop/index.html, 623
2007. 4 624

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, 625
and A. Zisserman. The PASCAL Visual Object Classes 626
Challenge 2012 (VOC2012) Results. http://www.pascal- 627
network.org/challenges/VOC/voc2012/workshop/index.html, 628
2012. 4 629

[21] Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, 630
David Vigouroux, Julien Colin, Rémi Cadène, and Thomas 631
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