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ABSTRACT

Post-training Neural Network (NN) model compression is an attractive approach
for deploying large, memory-consuming models on devices with limited memory
resources. In this study, we investigate the theoretical limits of NN model com-
pression using rate-distortion theory. First, we suggest a Rotation-Invariant Quan-
tization (RIQ) technique that utilizes a single parameter to quantize the entire NN
model, yielding a different rate at each layer, i.e., mixed-precision quantization.
Then, we prove that our rotation-invariant approach is optimal in terms of com-
pression. We rigorously evaluate RIQ and demonstrate its capabilities on various
models and tasks. For example, RIQ facilitates ×19.4 and ×52.9 compression
ratios on pre-trained VGG dense and pruned models, respectively, with < 0.4%
accuracy degradation. The code is available in the supplementary material.

1 INTRODUCTION

Deep neural networks are widely used for various tasks, such as computer vision, Natural Language
Processing (NLP), and recommendation systems. Nevertheless, while performance continuously
improves, the models become larger with a massive increase in the number of parameters. In fact,
modern Neural Network (NN) models may have billions and even trillions of parameters, which
makes the deployment of these models a challenging task (Chang et al., 2020). One way to mitigate
this issue is compressing the model’s parameters to reduce its overall memory footprint while satis-
fying an accuracy constraint. Namely, obtaining a smaller model that is (almost) as capable as the
original model.

The most common model compression techniques are weight pruning, quantization, knowledge
distillation, and low-rank decomposition. Such optimizations strive to find a smaller model while
keeping the original model’s accuracy, overlooking the potential inherent in its entropy limit. In the
context of NN models, the entropy value is of particular interest as it provides the (theoretical) num-
ber of bits required for representing the model parameters. The optimal compression asymptotically
attains this entropy limit.

In this context, lossy compression gives considerable merit as it facilitates reducing the NN size sig-
nificantly with negligible accuracy degradation. The key steps of this approach are the quantization
and the compression (Polyanskiy & Wu, 2014, Ch. 25). In the quantization phase, the number of
unique weight values (symbols) is reduced, consequently reducing the model’s entropy. Modify-
ing the symbols’ statistics, however, introduces distortion (i.e., quantization error) with respect to
the original model. Hence, proper quantization methods are substantial as they determine both the
resulting entropy and the distortion of the model’s output.

In the compression phase, redundant information is removed, reaching the most compact represen-
tation possible without introducing further errors. Thus, the only distortion originates from altering
the symbols’ statistics, during the quantization. Finding a solution that quantizes the model at the
lowest possible bit rate while satisfying a certain distortion requirement is at the heart of quantization
optimization problems, and is known as the rate-distortion problem (Cover & Thomas, 2006).

In this study, we investigate the theoretical limits of NN model compression using rate-distortion
theory, where the distortion is measured by a cosine distance between the outputs of the original and
the quantized model. In particular, we formulate the model compression as an optimization problem,
where the goal is maximizing the model compression ratio subject to a given distortion constraint.
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Our focus is mixed-precision solutions, where each layer gets quantized at a possibly different rate.
Specifically, the main contribution is as follows.

• We design a post-training Rotation-Invariant Quantization (RIQ) method that quantizes the
entire model subject to a distortion constraint as a function of a single parameter. The
main theme of our approach is picking the quantization bin width to be proportional to
the layers’ norm. Consequently, considering a vector representation of the weights in each
layer, the resulting distortion is indifferent to the orientation of the layers. To find the
optimal quantization parameter efficiently, we suggest a searching paradigm that bounds
the search space and performs nested refinements on this space. This approach minimizes
the per-layer entropy and thus optimizes the resulting compression.

• To analyze the optimality of the RIQ algorithm, we introduce a surrogate model that de-
picts quantization in terms of rotation of the model weights. Its analysis reveals that the
rate-distortion minimizing distribution for NN models is a spherical (rotation invariant)
distribution constructed by the product of layers’ spherical distribution. Due to convexity,
the rate achieved under this product distribution is bounded by a rate achieved under the
layers’ average spherical distribution. Further, to optimize the latter, a single quantization
parameter suffices. Consequently, the RIQ follows these guidelines, i.e., being indifferent
to rotations and using a single parameter to optimize the quantization of the entire model.

• We rigorously evaluate the RIQ and demonstrate its capabilities on various models and
tasks. RIQ attains a remarkable compression ratio with a negligible accuracy loss in all
assessments, surpassing recent results in the literature.

2 RELATED WORK

This section is devoted to prior work on model compression that is most relevant to this study.
Roughly speaking, typical model compression methods can be classified into four categories. Weight
pruning, quantization, knowledge distillation (Sarfraz et al., 2021; Walawalkar et al., 2020), and low-
rank decomposition (Idelbayev & Carreira-Perpinán, 2020; Lin et al., 2018; Lee et al., 2019). Even
though such methods strive to find a smaller model while retaining the model’s accuracy, they often
tend to neglect the potential inherent in the entropy limit. In this study, we seek to minimize the
model entropy by quantization and then attain this entropy limit by compression while satisfying a
distortion requirement at the model’s output.

Quantization is a prominent method for compressing NN models. In Wu et al. (2020); Banner
et al. (2019), the authors considered fixed-bit quantization methods, where all layers are quantized
at the same integer bit rate. In this paper, on the other hand, we consider post-training mixed-
precision solutions. Bhalgat et al. (2020); Wang et al. (2019); Idelbayev et al. (2021) focused on
quantization-aware training, where the weights quantization is performed during the training. To
attain lower quantization rates, Fan et al. (2020); Baskin et al. (2021) suggested training the models
with noise. Although quantization-aware training methods may achieve better results than the post-
training approaches, they are time-consuming, and thus, may not be applicable for deployment
purposes. Cai et al. (2020); Hubara et al. (2021) proposed knowledge distillation techniques to
minimize Kullback–Leibler (KL) divergence between the layers of the quantized and original model,
using a small calibration set. Nevertheless, these works determine the quantization bin width by
optimizing the quantization range, which depends on the orientation of the weights. Consequently,
the bin width is sensitive to rotations. On the other hand, RIQ designs the bin width in proportion to
the norm of the weights, and thus, the bin width is indifferent to rotations.

The idea of pruning NN connections based on information-theoretic ideas was explored already in
the seminal works (LeCun et al., 1989; Hassibi et al., 1993). Later, Han et al. (2015) used magnitude
threshold to remove redundant parameters, and then, utilized Huffman’s entropy coding to compress
these parameters. Since then, pruning techniques gained popularity, searching for effective methods
to prune parameters (Zhang et al., 2021; Frankle & Carbin, 2018; Lee et al., 2019). For assessing
pruning and quantization algorithms, Gao et al. (2019); Isik et al. (2022) provided a rate-distortion
theory framework, showing that entropy reduction during training is beneficial, as low-entropy mod-
els are more amenable to compression (Oktay et al., 2019; Baskin et al., 2019). This study continues
these guidelines, using rate-distortion theory to analyze rotation-invariant solutions and further pro-
vides enhancements that find the optimal solution efficiently.
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3 PRELIMINARIES

In this section, we rigorously define the model compression optimization problem and the relevant
known results on quantization and the rate-distortion theory. Throughout, w and w (bold) denote
scalar variable and vector, respectively, unless stated otherwise. ∥ · ∥ and ⟨·, ·⟩ denotes the standard
ℓ2-norm and the inner product, respectively. We use pw(w) to denote the probability distribution
of a random variable w. Hereafter, w[1:L] = {w1, ...,wL} ∈ Rn1×···×nL denotes the weights
of a pretrained model with L layers, where wℓ ∈ Rnℓ are nℓ weights of layer ℓ. The quantized
representation of those weights is denoted by ŵℓ.

3.1 PROBLEM STATEMENT

Given a pretrained model f that characterizes a prediction of input space X by L layers, where each
layer ℓ is parameterized with nℓ weights wℓ ∈ Rnℓ , our goal is to obtain the smallest (quantized
and compressed) version of this model f̂ , whose output is as close as possible to the output of f . To
assess the fidelity of the quantization, a sample x is sent through f and f̂ , and the distortion between
the outputs d(f(x), f̂(x)) is measured. In this study, we focus on the cosine distance as distortion
measure of the outputs. That is,

d(f(x), f̂(x)) ≜ 1− ⟨f(x), f̂(x)⟩
∥f(x)∥ · ∥f̂(x)∥

(1)

This distortion measures the rotation angle that is required to align f̂(x) with f(x), and according
to our experiments, it serves as a decent proxy to various scoring methods such as accuracy and
perplexity, (Usino et al., 2019; Maharani et al., 2020).

One may describe the linear part (e.g., matrix multiplication) in each layer by rotation and scale,
where the weights rotate the input. To provide intuition and motivation for rotation-invariant quanti-
zation of the weights, however, we describe the opposite direction (i.e., the input rotates the weights
in each layer). As x passes the first layer of f and f̂ , it rotates (and scales) w1 and ŵ1, respec-
tively. Due to the quantization error, x acts differently on w1 and ŵ1, and thus, yields unequal
outputs. These unequal outputs rotate the next layer’s weights, and so on, reaching the output of
f and f̂ . The resulting distortion in eq. (1) relates to the quantization errors gathered through the
layers, essentially reflected as rotation divergence. Accordingly, each quantized layer produces a
rotation error in its output, and this error keeps propagating and accumulating through the layers
until reaching the model’s output. Clearly, different samples induce different distortions. Yet, if the
quantized weights are indifferent to rotations, the resulting distortion would be similar for different
samples. Since we wish to minimize the quantized model’s empirical entropy while satisfying a
certain distortion requirement, this becomes an attractive approach.

Formally, given a trained model f , and a sample x, we wish to find a quantized model f̂ whose
weights ŵ[1:L] solves the following optimization problem.

minimize
f̂

H(ŵ[1:L])

subject to d(f(x), f̂(x)) ≤ D

for some distortion requirement D, where H(ŵ[1:L]) is the empirical entropy function defined under
the empirical probability of a collection of random variables (Cover & Thomas, 2006, eq. (2.48) and
Ch. 7.6). In this work, we characterize the properties of the minimizing f̂ and devise a searching
method that finds the minimizing f̂ efficiently.

In this formulation, we consider mixed-precision quantization solutions, where the weights wℓ of
each layer ℓ are quantized at a different rate Rℓ. That is, the average number of bits per symbol,
Rℓ, varies over the layers. Moreover, the rate values Rℓ are not limited to integer values as typically
considered. Allowing non-integer quantization rates may seem peculiar at first sight, since the
number of possible symbols for an integer number of bits is a power of 2, and thus, using fewer
symbols than this means that those bits are not utilized well. However, using fewer symbols is often
beneficial in terms of the entropy of the quantized weights. Specifically, to obtain the smallest model,
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we must pick a solution whose entropy is minimal. This entropy can be achieved by compressing
the layers’ weights of the model f̂ with an entropy achieving encoder, e.g., an arithmetic encoder
such as the Asymmetric Numeral Systems (ANS) (Duda, 2013). The resulting compression ratio,
assuming 32 bits representation of the source symbols, is approximately

Compression Ratio =
32 ·

∑L
ℓ=1 nℓ∑L

ℓ=1 nℓ ·H(ŵℓ) + |Tℓ|
(2)

Where |Tℓ| denotes the coding table size of layer ℓ.

3.2 RATE-DISTORTION THEORY

The rate-distortion theory determines the minimum number of bits per symbol, or simply the min-
imum bit rate, required for describing a random variable with a certain (average) distortion. In
particular, to quantize a sequence of n independent realizations www = (w1, · · · , wn), generated by
a source w with distribution pw(www),www ∈ Wn into R bits, encoding and decoding functions are
utilized. The encoder E : Wn → {0, 1}R maps the sequence to one of 2R possible indices, and
the decoder D : {0, 1}R → Ŵn maps the given index into an estimated (quantized) sequence
ŵww = (ŵ1, · · · , ŵn). Thus, the rate-distortion pair (R,D) are the resulting rate R and distance
D = d(www,ŵww) between the original sequence and the quantized sequence.

In general, we wish to minimize both the rate and the distortion, however, there is an inherent
tradeoff, characterized by the rate-distortion function as (Cover & Thomas, 2006, Ch. 10)

R(D) = min
p(ŵww|www):E[d(www,ŵww))]≤D

I(w; ŵ) (3)

where I(w; ŵ) = H(w) − H(w|ŵ) is the mutual information between the source vector w and
its reconstruction ŵ (Cover & Thomas, 2006, Ch. 2.4), and d(·, ·) is a predefined distortion metric,
such as the cosine distance in eq. (1). Thus, the rate-distortion function determines the infimum rate
R that achieves a given distortion D. This infimum is attained by minimizing overall conditional
distributions p(ŵww|www) for which distortion D is satisfied under the considered p(www).

3.3 UNIFORM SCALAR QUANTIZATION

The rate-distortion theory tells that it is optimal to describe the whole sequence jointly, using one
of 2R indices, even when the variables are i.i.d. Yet, in terms of entropy, Koshelev (1963) showed
that uniform scalar quantization is (asymptotically) optimal when one intends to further compress
the quantized data losslessly. Since this paper considers the latter approach, this section briefly
discusses uniform scalar quantization and its analysis.

For a random variable w ∈ [−A/2, A/2], where A ∈ R, uniform quantization partitions the range
[−A/2, A/2] into N bins uniformly, such that each bin has width ∆ = A/N . Thus, any realization
of w is encoded (rounded) into an integer value, ⌈w/∆⌋, that corresponds to its bin index. The
decoder then reconstructs its value by

ŵ = ⌈w/∆⌋ ·∆ (4)

The fidelity of this quantization is typically measured by a distortion measure, such as the Mean
Squared Error (MSE) criterion, defined as D(N) = E|w − ŵ|2. To analyze, it is more convenient
to examine the quantization in terms of rate R = log2 N . In high-rate regime (i.e., R ≫ 1), the
probability density in each bin is nearly flat, and consequently, the expected distortion is (Polyanskiy
& Wu, 2014, Ch. 25.1)

E|w − ŵ|2 = ∆2/12 (5)
Further, the resulting entropy of the quantized symbol is (Cover & Thomas, 2006, Theorem 8.3.1)

H(ŵ) = H(w)− log(∆) [bits/symbol] (6)

where H(w) = −
∑

w∈W p(w) log p(w) is the entropy function (Cover & Thomas, 2006, eq. (2.1)).
In other words, quantization reduces the entropy by log∆, and thus, a larger ∆ yields a lower
entropy, and hence, potentially, a higher compression ratio by eq. (2).
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4 ROTATION-INVARIANT MIXED-PRECISION QUANTIZATION

In this section, we present the RIQ method, which yields a different quantization rate in each layer
(i.e., mixed-precision solution) while satisfying the distortion requirement in eq. (1). Then, we use
the rate-distortion theory to analyze its performance. The analysis reveals that the problem simplifies
to a single (average) layer optimization, which is driven by a single quantization parameter.

4.1 THE RIQ ALGORITHM

The key motivation for rotation-invariant quantization is being indifferent to the orientation of the
weights wℓ. Specifically, picking a bin width ∆ℓ that remains constant under any rotation of wℓ.
Typical quantizations, on the other hand, determine ∆ℓ according to the range max(wℓ)−min(wℓ),
whose value depends on the orientation of wℓ, and hence, ∆ℓ changes as wℓ is being rotated.

Accordingly, RIQ designs the bin width, ∆ℓ, in proportion to the length ∥wℓ∥ in each layer. Since
length is invariant to rotations, the resulting ∆ℓ is indifferent to the orientation of wℓ. Consequently,
the resulting distortion is also indifferent to the orientation of wℓ, as the bin width dictates the distor-
tion. To examine the relation between ∆ℓ, the length ∥wℓ∥, and the resulting distortion d(wℓ, ŵℓ)
for each layer ℓ, the following lemma is useful.

Lemma 1. Let ϵℓ ≜ d(wℓ, ŵℓ) be the distortion of layer ℓ, then, the quantization bin width satisfies

∆ℓ =
√
ϵℓ · ∥wℓ∥ ·

√
24/nℓ

The proof of Lemma 1 is elaborated in Appendix A.1. Note that when
√
ϵℓ = 1

k

√
nℓ

24 , where k
is a parameter to be optimized, the resulting bin width is ∆ℓ(k) = ∥wℓ∥/k, which is proportional
to the layer’s length as desired. Further, note that ∆ℓ(k) and ϵℓ are monotonically decreasing as k
increases. Consequently, by eq. (6), the entropy increases with k. Thus, we seek the smallest k (i.e.,
minimum entropy) solution that satisfies the distortion requirement.

Note that as k increases, ∆ℓ(k) → 0. To prevent this, we add a small constant ϵ0 to
√
ϵℓ, which

bounds the value of the smallest ∆ℓ(k). In this case, setting
√
ϵℓ =

1
k

√
nℓ

24 + ϵ0, yields,

∆ℓ(k) = ∥wℓ∥ ·
(
1

k
+ ϵ0 ·

√
24

nℓ

)
(7)

Still, being rotation-invariant per layer does not guarantee to be rotation-invariant model-wise. How-
ever, when using a single parameter k for the whole model, it automatically preserves the proportion
between the set of ∆[1:L]. In Section 4.2, we prove that the optimal solution is indeed a model-wise
rotation invariant solution.

The objective of RIQ is is efficiently finding the optimal k parameter which satisfies the distortion
requirement in eq. (1). Accordingly, we introduce an efficient iterative searching algorithm for
finding the optimal k. In each iteration, the algorithm refines the searching range until reaching the
smallest k (up to a small constant) that satisfies the distortion requirement.

Since optimizing k over unbounded search space is intricate and time-consuming, we derive search-
ing bounds for the optimal k in the following proposition. Let k∗ be the optimal (smallest) k that
satisfies constraint D, and let ℓ∗ be the index of the layer with the largest nℓ in f .

Proposition 1. The optimal k∗ satisfies the following bounds:
√

nℓ∗/24

(1−ϵ0)
≤ k∗ ≤

√
nℓ∗/24

(ϵ0·
√
ϵ0)

.

The proof is deferred to Appendix A.2. To further improve the search time, a nested refinement is uti-
lized. Specifically, at each stage, only

√
|O(k)| values of k in ascending order are considered. Once

a certain value of k satisfies the distortion requirement D, this k becomes the new upper limit for
the search, and the search region is refined within a smaller region of k to consider, again with only√
|O(k)| potential values to inspect. This repeatedly continues until the search step is sufficiently

small. These refinements enable fast convergence in relatively few iterations. See Algorithm 1 for a
detailed description of RIQ.
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Algorithm 1: The RIQ algorithm
Data: model weights w[1:L], distortion requirement D, minimum error ϵ0
Result: quantized weights ŵ[1:L], such that d(f(x), f̂(x)) ≤ D

Initialize: kmin =

√
nℓ∗/24

1−ϵ0
, kmax =

√
nℓ∗/24

√
ϵ0·ϵ0

, k = kmin, step =
√
kmax − kmin;

while k ≤ kmax do
for ℓ = 1, · · · , L do

∆ℓ = ∥wℓ∥ ·
(

1
k
+ ϵ0 ·

√
24
nℓ

)
;

ŵℓ =
⌈

wℓ
∆ℓ

⌋
·∆ℓ ;

end
if d(f(x), f̂(x)) ≤ D then

if step ≤ 3 ; /* Stop condition */
then

compress to H(ŵ[1:L]) with entropy achieving encoder;
else

kmax = k;
step =

√
step;

k = k − step · ⌊step⌋
end

else
k = k + step

end
end

Remark. The additional degree of freedom that ϵ0 gives is substantial. For example, it facilitates
enforcing quantization to R bits (e.g., R = 8 bits) for low precision runtime, by setting the limit

k → ∞ at ϵ0(ℓ) =
max(wℓ)−min(wℓ)

2R−1
/
√

24·∥wℓ∥2

nℓ
.

If one wishes to minimize the difference between the histogram of ŵℓ and the theoretical probability
distribution of wℓ at the limit k → ∞, then, by the Freedman & Diaconis (1981) rule, one may set
ϵ0(ℓ) = 2 IQR(wℓ)

3
√
nℓ

, where IQR(wℓ) is the inter-quartile range of wℓ.

For simplicity, in the sequel we apply the same small common constant value ϵ0 to all layers.
Remark. The proof of Lemma 1 may serve as a proxy to other interesting error criteria such as
the MSE and the Signal to Quantization Noise Ratio (SQNR) (Caffarena et al., 2010). Clearly, this
yields another relation between ∆ℓ and ϵℓ. Details in the Appendix A.5.

4.2 RIQ RATE-DISTORTION ANALYSIS

In this section, we provide theoretical justification for the optimality of RIQ. We introduce a sur-
rogate model for which the rate-distortion analysis for NN models is tractable, showing that the
quantization error (distortion) under the minimizing distribution is indifferent to the orientation of
wℓ, as RIQ suggests.

First, extending eq. (4) to NN model quantization, where layer ℓ is encoded uniformly, yields

ŵℓ = ⌈wℓ/∆ℓ⌋ ·∆ℓ (8)

To analyze the rate-distortion of eq. (8) for the cosine distance in eq. (1), it is essential to consider
quantization as rotation and scale in each layer. Accordingly, we define the following surrogate
model.
Surrogate Model. Let wℓ be the weights of layer ℓ, and let ŵℓ denote their quantized represen-
tation. Let θℓ be the rotation angle from wℓ to ŵℓ, such that ⟨ wℓ

∥wℓ∥ ,
ŵℓ

∥ŵℓ∥ ⟩ = cos(θℓ), and let
U(θℓ

∣∣wℓ) ∈ Rnℓ×nℓ be a random orthogonal transformation corresponding to a random rotation
that is θℓ away from wℓ. Then,

w̃ℓ = ∥ŵℓ∥ ·U(θℓ
∣∣wℓ)

wℓ

∥wℓ∥
(9)
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models the quantized weights ŵℓ.

Intuitively, U(θℓ
∣∣wℓ) randomly rotates any given vector uniformly on a sphere, where one degree

of freedom is lost due to the requirement of being θℓ away from wℓ. To obtain ŵℓ in eq. (8), the
realization of U(θℓ

∣∣wℓ) should rotate the unit vector wℓ/∥wℓ∥ in the plane generated by wℓ and
ŵℓ, and then, stretches it into the length ∥ŵℓ∥. In other words, this model describes a random vector
w̃ℓ that is uniformly distributed on a cone that is θℓ away from wℓ, for which a single realization
matches eq. (8). The merit of this model is its tractable analysis, from which spherically symmetric
distribution emerges to depict the quantized weights (Fang et al., 2018, Definition 2.1).
Definition. A random vector z ∈ Rn is said to have a spherical (rotation-invariant) distribution if
its distribution does not change under any orthogonal transformation U ∈ Rn×n, i.e.,

p(z)
d
= p(Uz).

The following proposition characterizes the indifference of w̃ℓ to the orientation of a given wℓ.
Proposition 2. Let wℓ be the weights of layer ℓ, and let w̃ℓ model the quantized representation of
those weights, modeled by eq. (9). Then, w̃ℓ

∣∣wℓ have a spherical (rotation-invariant) distribution.

A detailed proof is given in Appendix A.3. Essentially, the strength of Proposition 2 is twofold.
First, it proves that the distribution of w̃ℓ

∣∣wℓ in each layer does not change when arbitrary rotations
are applied to it. Second, it holds for any distribution of wℓ and θℓ. This further indicates that
the quantization error reflected as the deviation θℓ is not affected by such rotations. The following
theorem extends the results of Proposition 2 to multiple layers, showing that spherical distribution
is also the minimizing distribution of the rate-distortion problem of NN models.
Theorem 1. Let f(·) be a NN model with L layers whose weights are w[1:L], and let w̃[1:L] model the
quantized representation of those weights. Then, the unique minimizing distribution p(w̃ww[1:L]

∣∣www[1:L])
of the rate-distortion function

R(D) = min
p

(
w̃ww[1:L]

∣∣
www[1:L]

)
:

d(f(x),f̂(x))≤D

I
(
w[1:L]; w̃[1:L]

)
(10)

is a product distribution constructed as the product of the layers’ spherical distribution.

The detailed proof is given in Appendix A.4. The key steps of the proof are, first, showing that the
minimizing distribution is a product distribution. Then, due to the convexity of the rate-distortion in
eq. (10), we bound the mutual information with the average distribution of θℓ taken over the model’s
layers. Consequently, the problem is simplified to a single (average) layer optimization, which is
governed by a single quantization parameter.

Remarkably, the joint minimizing distribution of the model’s weights p
(
w̃ww[1:L]

∣∣www[1:L]

)
is also spher-

ical since any partitioning of spherical distribution (naturally occurring by the model’s layers) re-
mains spherical (Fang et al., 2018, Theorem 2.6). Accordingly, the distortion at the model’s output,
reflected as angle deviation of the output by eq. (1), is also indifferent to rotations of the weights
w[1:L]. Accordingly, the RIQ approach is optimal, as it strives for bin widths ∆[1:L] and quantiza-
tion errors that are indifferent to both layer-wise and model-wise rotations. Finally, since the discrete
space considered in RIQ approaches the continuous space of the surrogate model in the high-rate
regime, then, RIQ is asymptotically optimal.

5 EMPIRICAL RESULTS

In this section, we evaluate the compression ratio and model accuracy of RIQ with ANS and compare
them to relevant baseline results. In all experiments, we use pre-trained models for their relevant
tasks. Specifically, for classification tasks we use VGG, Simonyan & Zisserman (2014), ResNet-50,
He et al. (2016), and ViT, Dosovitskiy et al. (2020) models, from the torchvision library1 on the
ImageNet data-set (I1k). For detection tasks, we use YOLOv5, Jocher et al. (2022), from Neural-
Magic library 2 on the COCO dataset (Lin et al., 2014). For NLP task, we use the DistilBERT

1https://pytorch.org/vision/stable/models.html
2https://sparsezoo.neuralmagic.com
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model, Sanh et al. (2019), on SQuAD dataset, (Rajpurkar et al., 2016). Following RIQ, each quan-
tized layer is encoded with the ANS encoder that achieves asymptotically the entropy limit. An
efficient implementation of ANS on GPU 3 was demonstrated by Weißenberger & Schmidt (2019),
reaching a decoding rate of over 20 GB/s. For reproduction purposes, we provide a Python code
of our algorithm as a supplementary material which includes both the quantization phase (RIQ) and
compression phase (ANS). Additional results are given in Appendix A.6.

To measure the resulting distortion by eq. (1) on a validation set as a function of a distortion re-
quirement D, we use two types of calibration data: (a) three real images, sampled from the training,
and (b) randomly generated data that follows the Gaussian distribution. In Figure 1a we present
the distortion measurements on three models: ResNet-50, VGG, and ViT, where the identity line
(black-dotted) is given for reference. As we see, even a small calibration set of three images (solid
lines) is sufficient to predict the distortion on the validation set. Further, we see that the randomly
generated data may not predict well the resulting distortion on the validation set, leading to either a
less compressed model (ResNet-50 and VGG) or a higher distortion (ViT).

In Figure 1b, we evaluate the effect of RIQ on the accuracy and the inverse compression ratio
(i.e., the reciprocal of eq. (2)) for a pre-trained ResNet-50 model. Interestingly, the rate-distortion
curve reflects well the accuracy-compression tradeoff. For comparison, we depict the accuracy-
compression results of the Relaxed Advanced Pipeline (RAP) method, Hubara et al. (2021), Outlier
Channel Splitting (OCS), Zhao et al. (2019), and the Hardware-aware Automated Quantization
(HAQ), Wang et al. (2019), which requires further training for fine-tuning. Indeed, RIQ provides
superior results compared to post-training quantization methods, yet, falls short compared to HAQ.
This is since retraining the quantized model creates a different model with a different rate-distortion
curve, which is out of the scope of this paper.

In Table 1, we compare RIQ to other relevant baseline methods on the VGG-16 and ResNet-50
models. In this table, we optimized the dual problem of the rate-distortion, i.e., minimizing the dis-
tortion (accuracy drop) for a given rate requirement (compression). Thus, the RIQ in Algorithm 1
was slightly modified to obtain a stop condition based on the compression ratio rather than a distor-
tion constraint, and then we measured the resulting accuracy of the quantized models for the VGG
and ResNet-50. Noticeably, RIQ outperforms the baseline techniques, yielding better accuracy per
compression ratio.

Typical compression ratio and score degradation achieved by RIQ are presented in Table 2 for a
variety of models and tasks. Note that the constraint on the quantization output, in the form of a
cosine distance in eq. (1) does not translate identically to the drop in each score. While the first
is a general distortion metric, the latter is a task-specific measurement. Yet, in general, the scores
improve monotonically as the cosine distance decreases. To further assess the potential of RIQ,
we evaluate our method on sparse models taken from the Neural-Magic2. Notably, the resulting
compression of sparse models is significantly higher with relatively small degradation in accuracy.

3https://github.com/weissenberger/multians

8

https://github.com/weissenberger/multians


Under review as a conference paper at ICLR 2023

Table 1: Comparison of Top-1 accuracy on the ImageNet dataset for various quantization techniques.

Model Comp. Method Quant. Acc. (%) Ref. Acc. (%) Acc. Drop (%)

VGG-16

32/3 GPFQ Zhang et al. (2022) 70.24 71.59 1.35
RIQ (Ours) 71.58 71.59 0.01

32/4

MSE Banner et al. (2019) 70.50 71.60 1.10
OMSE Choukroun et al. (2019) 71.48 73.48 2.00
GPFQ Zhang et al. (2022) 70.90 71.59 0.69
RIQ (Ours) 71.55 71.59 0.04

32/5 GPFQ Zhang et al. (2022) 71.05 71.59 0.54
RIQ (Ours) 71.58 71.59 0.01

ResNet-50

32/3 GPFQ Zhang et al. (2022) 70.63 76.13 5.50
RIQ (Ours) 74.76 76.14 1.38

32/4

MSE Banner et al. (2019) 73.80 76.10 2.30
OMSE Choukroun et al. (2019) 73.39 76.01 2.62
AdaRound Nagel et al. (2020) 75.23 76.07 0.84
S-AdaQuant Hubara et al. (2021) 75.10 77.20 2.10
BRECQ Li et al. (2021) 76.29 77.00 0.71
GPFQ Zhang et al. (2022) 74.35 76.13 1.78
RIQ (Ours) 75.61 76.14 0.53

32/5 GPFQ Zhang et al. (2022) 75.26 76.13 0.87
RIQ (Ours) 75.95 76.14 0.19

Table 2: Compression ratio and accuracy drop achieved by RIQ. Models denoted by asterisk (∗)
were pruned during training, before quantization.

Model / Dataset Metric Distortion Compression Quant. FP32 Ref Score
constraint ratio Score Score Drop

VGG / I1k Top-1 Acc (%) 0.5% ×19.4 71.3 71.59 0.29
ResNet-50 / I1k Top-1 Acc (%) 0.5% ×7.31 75.88 76.14 0.26

ViT / I1k Top-1 Acc (%) 0.5% ×6.98 81.0 81.07 0.07
YOLO / COCO mAP@.5 0.3% ×8.34 54.7 55.7 1.0

DistilBERT / SQuAD F1 0.025% ×7.96 85.0 85.08 0.08
VGG∗ / I1k Top-1 Acc (%) 0.5% ×52.9 69.34 69.73 0.39

ResNet-50∗ / I1k Top-1 Acc (%) 0.5% ×41.5 75.72 76.14 0.42
YOLO∗ / COCO mAP@.5 0.3% ×16.48 52.6 53.5 0.9

DistilBERT∗ / SQuAD F1 0.025% ×19.4 84.70 84.92 0.22
‘

6 CONCLUSION

In this paper, we have investigated a post-training quantization method that strives to minimize the
model’s entropy subject to a distortion constraint. The rate-distortion curve was thoroughly analyzed
for a surrogate model, showing that the minimizing distribution is a single-letter (scalar) product
distribution, constructed as the product of the layer’s rotation-invariant distribution, regardless of the
number of layers in the model or their distribution. Accordingly, a rotation-invariant quantization
scheme (RIQ) was introduced, which quantizes each layer in proportion to the layer’s norm. That
is, layers with a larger norm get lower rate than layers with a small norm. To find the single-letter
solution efficiently, we further derived upper and lower bounds of the search space.

Experiments conducted with RIQ show minor accuracy degradation for both computer vision and
NLP tasks. When applying RIQ on sparse models, the compression ratio reached remarkable values
(up to ×52.9) with a score degradation of less than 1%. These superb compression rates together
with the negligible accuracy drop, are attractive and practical. In particular, RIQ minimizes the
entropy of each layer, and hence is suitable for per-layer execution of compressed models, thus,
facilitating the deployment of large models on lean servers or edge devices with limited memory.
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A APPENDIX

In this section, we provide rigorous proofs for the theorems and the statements herein. Further, we
present additional results for RIQ.

A.1 PROOF OF LEMMA 1

Proof. Let wℓ be the realization of the weights vector of layer ℓ, and ŵℓ be the quantized represen-
tation of those weights, where θℓ denotes the angle between those vectors. Before diving into the
cosine distance analysis, let us revisit the mean squared error analysis of the uniform quantizer in
Section 3.3, and extend it to the multivariate case. In this case, the distortion is

∥wℓ − ŵℓ∥2 = nℓ ·
1

nℓ

nℓ∑
i=1

|wℓ,i − ŵℓ,i|2

(a)
= nℓ · E |wℓ,j − ŵℓ,j |2 + o(1)

(b)
= nℓ ·∆2

ℓ/12 + o(1) (11)
where (a) follows from the law of large numbers, and (b) follows by the analysis of the scalar
uniform quantizer, given in (Polyanskiy & Wu, 2014, Ch. 25.1).

This observation is useful for analyzing the cosine distance between wℓ and ŵℓ. Specifically, since
∥wℓ − ŵℓ∥2 = ∥wℓ∥2 + ∥ŵℓ∥2 − 2∥wℓ∥ · ∥ŵℓ∥ cos(θℓ),

assuming ∥ŵℓ∥ = ∥wℓ∥+ o(∥wℓ∥), yields

∥wℓ − ŵℓ∥2 = 2∥wℓ∥2 + o(∥wℓ∥2)− 2∥wℓ∥2 cos(θℓ) + o(∥wℓ∥2)
= 2∥wℓ∥2 · (1− cos(θℓ)) + o(∥wℓ∥2).

Hence, normalizing both sides by 2∥wℓ∥2, we obtain that

(1− cos(θℓ)) =
∥wℓ − ŵℓ∥2

2∥wℓ∥2
+ o(1). (12)

Combining the analysis of eq. (11) with eq. (12), we obtain

(1− cos(θℓ)) =
∥wℓ − ŵℓ∥2

2∥wℓ∥2
+ o(1) =

∆2
ℓ · nℓ

24 · ∥wℓ∥2
+ o(1).

By denoting ϵℓ = 1− cos(θℓ), and omitting the little order o(1), the lemma follows.

A.2 PROOF OF PROPOSITION 1

Proof. The layer whose quantization error converges last to ϵ0 dictates when to stop the search.
Specifically, when k is sufficiently large in eq. (7), the error in layer ℓ∗ reaches

√
ϵℓ∗ = o(ϵ0) + ϵ0.

That is where ϵ0 becomes dominant. At this point, we say that the error has converged for all layers
(as it converged even at the largest layer ℓ∗). Since ϵ0 ≤ 1 in the cosine distance criterion, we choose
the little order to be o(ϵ0) = ϵ0 ·

√
ϵ0, and hence, k can be bounded from above by
1

k

√
nℓ∗/24 + ϵ0 ≥ o(ϵ0) + ϵ0,

which happens when k ≤
√

nℓ∗/24/(ϵ0 ·
√
ϵ0).

In our experiments, we let ϵ0 = 0.01, hence, the upper limit is simply k ≤ 1000 ·
√

nℓ∗/24
4

For a lower bound, we use again the fact that ϵℓ ≤ 1. Thus, focusing on layer ℓ∗, we observe that
1

k
·
√

nℓ∗/24 + ϵ0 ≤ 1,

which happens as long as k ≥
√
nℓ∗/24/(1− ϵ0). This completes the proof.

4When the original weights are represented with R bit symbols, then, choosing ϵ0 = 0, yields a trivial upper
bound kmax, which is the largest number that can be represented with R bits, e.g., ⌈kmax⌋ ≤ 231, when using
32 bits integer.
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Figure 2: Illustration of the projection of w̃ℓ onto the arbitrary perpendicular vectors v1 and v2.

A.3 PROOF OF PROPOSITION 2

Proof. By (Fang et al., 2018, Theorem 4.3), a necessary and sufficient condition for w̃ℓ

∣∣wℓ to have
a spherical rotation-invariant distribution is when

p ( ⟨w̃ℓ,v1⟩| ⟨w̃ℓ,v2⟩,wℓ)
d
= p (−⟨w̃ℓ,v1⟩| ⟨w̃ℓ,v2⟩,wℓ) ,

for any pair of perpendicular vectors v1 ̸= 0 and v2 ̸= 0.

Consider the model in eq. (9), any orthogonal transformation U(θℓ
∣∣wℓ) can be represented by an

orthonormal basis, obtained by the Gram-Schmidt process. That is, finding two orthonormal vectors
u1 and u2 that span the plane of rotation generated by wℓ and some w′

ℓ that is θℓ away from wℓ,
and then, extend this basis to Rnℓ . This allows us to consider the rotation in the plane generated
by those vectors, with respect to the extended basis (https://stephenmontgomerysmith.github.io/).
Accordingly, let u1 = wℓ

∥wℓ∥ and u2 =
w′

ℓ−⟨u1,w
′
ℓ⟩u1

∥w′
ℓ−⟨u1,w′

ℓ⟩u1∥ , then

U(θℓ
∣∣wℓ) = Inℓ

− u1u
T
1 − u2u

T
2 + [u1,u2]Rθℓ

[u1,u2]
T
, (13)

where Inℓ
is the nℓ × nℓ identity matrix and Rθℓ

is the rotation matrix

Rθℓ
=

[
cos(θℓ) − sin(θℓ)
sin(θℓ) cos(θℓ)

]
,

that rotates at a scalar angle θℓ, and [u1,u2] is nℓ × 2 matrix whose columns are u1 and u2, respec-
tively. Plugging eq. (13) to eq. (9), and noting that wℓ

∥wℓ∥ = u1, we obtain

w̃ℓ = ∥ŵℓ∥ · (cos(θℓ)u1 + sin(θℓ)u2) (14)

To simplify notation, let u ≜ (cos(θℓ)u1 + sin(θℓ)u2), and note that for any perpendicular pair
v1,v2, the vector u can be decomposed to u = u∥ + u⊥, where u∥ resides in the plane generated
by v1 and v2, and u⊥ resides in the null-space of this plane. For illustration, see Figure 2. Hence,

w̃ℓ = ∥ŵℓ∥ · (u∥ + u⊥) (15)

Accordingly, we have

p ( ⟨w̃ℓ,v1⟩| ⟨w̃ℓ,v2⟩,wℓ) (16)
(a)
= p

(
⟨∥ŵℓ∥ · (u∥ + u⊥),v1⟩

∣∣∣ ⟨∥ŵℓ∥ · (u∥ + u⊥),v2⟩,wℓ

)
(b)
= p

(
⟨∥ŵℓ∥ · u∥,v1⟩

∣∣∣ ⟨∥ŵℓ∥ · u∥,v2⟩,wℓ

)
(c)
= p

(
∥ŵℓ∥ · ∥u∥∥ · cos(ϕ)

∣∣∣ ∥ŵℓ∥ · ∥u∥∥ · sin(ϕ),wℓ

)
(d)
= p

(
∥ŵℓ∥ · ∥u∥∥ · cos(π − ϕ)

∣∣∣ ∥ŵℓ∥ · ∥u∥∥ · sin(π − ϕ),wℓ

)
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(e)
= p

(
−∥ŵℓ∥ · ∥u∥∥ · cos(ϕ)

∣∣∣ ∥ŵℓ∥ · ∥u∥∥ · sin(ϕ),wℓ

)
= p (− ⟨ŵℓ,v1⟩| ⟨ŵℓ,v2⟩,wℓ) (17)

where (a) follows by eq. (15). (b) follows by the linearity of the inner product and since u⊥ is
perpendicular to both v1 and v2 (c) follows due to the orthogonality of the basis v1 and v2, where
ϕ is the angle between u∥ and v1. (d) follows since the angle between u∥ and an arbitrary v1 is
arbitrary, and hence, every angle has the same distribution. (e) follows by trigonometric identities
for the cosine and sine function.

Thus, Proposition 2 follows.

A.4 PROOF OF THEOREM 1

Proof. Assuming the weights of each layer wℓ are statistically independent of the weights of the
other layers, then, by the properties of the mutual information, we have

I
(
w[1:L]; w̃[1:L]

)
= H

(
w[1:L]

)
−H

(
w[1:L]

∣∣ w̃[1:L]

)
(18)

=

L∑
ℓ=1

H (wℓ)−
L∑

ℓ=1

H
(
wℓ|w[1:ℓ−1], w̃[1:L]

)
(19)

≥
L∑

ℓ=1

H (wℓ)−
L∑

ℓ=1

H (wℓ| w̃ℓ) (20)

=

L∑
ℓ=1

I (wℓ; w̃ℓ) (21)

≥
L∑

ℓ=1

R(Dℓ) (22)

where eq. (20) follows since conditioning reduces entropy. Note, however, that eq. (20) can be
attained with equality by letting p

(
w[1:L]

∣∣ w̃[1:L]

)
=

∏L
ℓ=1 p

(
wℓ

∣∣w̃ℓ

)
. Consequently, the mini-

mizing distribution in eq. (10) is a product distribution (Polyanskiy & Wu, 2014, Theorem 5.1 (2)).

Interestingly, eq. (22) implies that the optimal solution has a simple form of a layer-by-layer solu-
tion, which significantly simplifies the problem at hand. Finding the solution, of course, requires
formulating the relation between D and Dℓ of each layer ℓ, and hence, the resulting rate R(Dℓ) in
each layer. Moreover, since each layer obtains a different rate, it implies that the optimal solution
is indeed a mixed-precision solution, where each layer can be considered independently, and hence,
the minimizing distribution is product distribution.

Let p
(
w̃1

∣∣w1

)
·p

(
w̃2

∣∣w2

)
· · · p

(
w̃L

∣∣wL

)
be a distribution that satisfies the distortion requirement

D, for which the induced cosine distance in each layer ℓ is at most Dℓ for some values Dℓ. When
1
L

∑L
ℓ=1 Dℓ ≤ D, due to the convexity of the cosine distance for |θℓ| ≤ π/2, by Jensen inequality(

1− cos
(

1
L

∑L
ℓ=1 θℓ

))
≤ 1

L

∑L
ℓ=1 (1− cos(θℓ)). In words, the average angle also satisfies the

distortion constraint D. Interestingly, the cosine distance is rotation-invariant by definition, as the
angle between vectors does not change when they are rotated together. This further hints that the
minimizing distribution should also be a rotation-invariant distribution as follows.

By eq. (14), given wℓ (and hence, u1), the probability of w̃ℓ is determined by the probability of the
rotation angle θℓ and the length ∥ŵℓ∥. Specifically, for any vector sℓ ∈ Rnℓ , the density function of
this product, if exists, is (Melvin Dale, 1979, Ch. 4.1)

pw̃ℓ|wℓ
(sℓ) =

∫ ∞

0

p∥ŵℓ∥|wℓ
(h) · p(cos(θℓ)u1+sin(θℓ)u2)|wℓ

(sℓ/h) ·
1

h
dh, (23)

where the rotation θℓ occurs on R2, rotating about (nℓ − 2)-dimensional subspace. Further, note
that the dimension nℓ is dictated only by the given wℓ. Accordingly, since each layer ℓ resides at a
different dimension nℓ, it is impossible to consider the average layer distribution directly, as done
for the vector case, e.g., as considered in (Polyanskiy & Wu, 2014, Ch. 5). Nevertheless, since

16



Under review as a conference paper at ICLR 2023

the rotation of θℓ is done on R2 in each layer ℓ, which is described by the rotation matrix Rθℓ
in

eq. (13), it is still beneficial to consider the average distribution of θℓ over the layers, to allow a
similar treatment to (Polyanskiy & Wu, 2014, Ch. 5), as follows.

To bound the mutual information, the density of (cos(θℓ)u1 + sin(θℓ)u2) |wℓ should be expressed
first in terms of the density of cos(θℓ)|wℓ. Examining eq. (14), we note that by the transformation
of random variables formula,

p(cos(θℓ)u1+sin(θℓ)u2)|wℓ
(sℓ/h) = pcos(θℓ)|wℓ

(
uT
1 sℓ/h

)
. (24)

Considering the high rate regime, where ∆ℓ is sufficiently small, and thus, ∥ŵℓ∥ = ∥wℓ∥ + o(1),
then, the density function in eq. (23) becomes

p
w̃ℓ

∣∣wℓ
(sℓ) = p∥ŵℓ∥·(cos(θℓ)u1+sin(θℓ)u2)|wℓ

(sℓ) (25)

=

∫ ∞

0

p∥ŵℓ∥|wℓ
(h) · p(cos(θℓ)u1+sin(θℓ)u2)|wℓ

(sℓ/h) ·
1

h
dh (26)

(a)
=

∫ ∞

0

p∥ŵℓ∥|∥wℓ∥ (h) · p(cos(θℓ)u1+sin(θℓ)u2)|wℓ
(sℓ/h) ·

1

h
dh (27)

(b)
≈

∫ ∞

0

δ (h− ∥wℓ∥) · p(cos(θℓ)u1+sin(θℓ)u2)|wℓ
(sℓ/h) ·

1

h
dh (28)

(c)
=

∫ ∞

0

δ (h− ∥wℓ∥) · pcos(θℓ)|wℓ

(
uT
1 sℓ/h

)
· 1
h
dh (29)

(d)
= pcos(θℓ)|wℓ

(
uT
1 sℓ/∥wℓ∥

)
· ∥wℓ∥−1 (30)

where (a) follows since the norm ∥wℓ∥ is a function of the given wℓ. (b) follows since the uncer-
tainty about ∥ŵℓ∥ given ∥wℓ∥ is negligible, and hence, p∥ŵℓ∥|∥wℓ∥(h) ≈ δ(h − ∥wℓ∥), i.e., the
conditional density is approximately the Dirac delta function. (c) follows by eq. (24). (d) follows by
the characteristics of the Dirac delta function.

Hence, averaging p
(
w̃ℓ

∣∣wℓ

)
over the layers can be approximated by averaging the rotations in R2

over the model. Accordingly, let

p̄
w̃[1:L]

∣∣w[1:L]

(s[1:L]) ≜
1

L

L∑
ℓ=1

pcos(θℓ)|wℓ

(
wT

ℓ sℓ
∥wℓ∥2

)
· ∥wℓ∥−1. (31)

Then, by the convexity of the rate-distortion function (Cover & Thomas, 2006, Theorem 2.7.4),
p̄
(
w̃[1:L]

∣∣w[1:L]

)
can only reduce the mutual information in eq. (21). Specifically,

L∑
ℓ=1

I
p
(
w̃ℓ

∣∣wℓ

) (wℓ; w̃ℓ) ≥ L · I
p̄
(
w̃[1:L]

∣∣w[1:L]

) (w[1:L]; w̃[1:L]

)
where Ip(·; ·) denotes explicitly the mutual information under probability p. Thus, the infimum rate
has a form of a scalar (single-letter) rate.

Moreover, since averaging over more rotations should further reduce the mutual information by its
convexity, then, the minimizing p

(
w̃[1:L]

∣∣w[1:L]

)
can be chosen to be rotation-invariant (Polyanskiy

& Wu, 2014, Ch. 5.2). Consequently, the unique minimizing distribution p
(
w̃[1:L]

)
is also rotation-

invariant. Remarkably, (Fang et al., 2018, Theorem 2.6) states that when partitioning a spherical
rotation-invariant distribution (naturally, according to the layers w̃ℓ), then its components also have
a spherical rotation-invariant distribution. This coincides with Proposition 2, which proves that the
partitioning satisfies this property.

Accordingly, the unique minimizing distribution p(w̃[1:L]

∣∣w[1:L]) of the rate-distortion function is a
product distribution over the layers, where each term ℓ is a spherical rotation-invariant distribution.
This completes the proof.

17



Under review as a conference paper at ICLR 2023

0 0.02 0.04 0.06 0.08 0.1

Distortion (cosine distance)

2

4

6

8

10

12

14

R
at

e 
(b

it
s/

sy
m

b
o
l)

RIQ + ANS
RIQ only

Uniform + ANS
Uniform

ResNet-50

(a) Rate-distortion curve for ResNet-50 model ob-
tained for RIQ (green circles) as well as Uniform lin-
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for a variety of models: VGG (green circles), ResNet-
50 (red squares), ViT (blue diamonds), and Distil-
BERT (orange triangles).

A.5 RELATION TO OTHER ERROR CRITERIA

Remark. The proof of Lemma 1 in Appendix A.1 may serve as a proxy to other error criteria such
as the Signal to Quantization Noise Ratio (SQNR), Caffarena et al. (2010). Specifically, similar to
the proof of Lemma 1, the resulting connection between the scale ∆ℓ and the SQNR ϵ′ℓ in each layer
ℓ is

ϵ′ℓ ≜
∥wwwℓ − ŵwwℓ∥

∥wwwℓ∥
=

√
∆2

ℓ

12
· nℓ

∥wwwℓ∥2

Or, equivalently,
∆ℓ = ϵ′ℓ∥wwwℓ∥

√
12/nℓ

A.6 ADDITIONAL RESULTS

A.6.1 DECOMPOSING THE RATE-DISTORTION CURVE

The key steps of lossy compression are quantization and compression. In the quantization phase,
the RIQ approach is minimizing the overall model’s entropy by allocating a small number of unique
symbols for large-norm layers. To achieve (asymptotically) this entropy limit, we utilize the ANS
(lossless) entropy encoder. In this section, we evaluate the contribution of each step to the rate-
distortion tradeoff. Namely, the average rate per (quantized) symbol before and after ANS. At
run-time, when a certain layer is required, it is decoded and represented at a rate according to RIQ.
If this rate is below 8 bits/symbol, it enables significant acceleration by performing 8 bits integer
operations, as discussed in Appendix A.6.2.

Figure 3a depicts the rate-distortion curve for ResNet-50, decomposed to the quantization step
(dashed lines) and the resulting compression step, following the quantization step (solid lines). As a
baseline, the uniform scalar quantization (red color) is given for comparison with RIQ (green color).
Interestingly, RIQ (dashed green line) outperforms the uniform quantization (dashed red line) by
about ∼ 4 bits/symbol and even its resulting compressed size by about ∼ 1 bit/symbol. Indeed, the
latter indicates that uniform quantization does not minimize the model’s entropy. Applying the ANS
compression following RIQ reduces additional ∼ 3 bits/symbol (solid green line), which accord-
ing to our analysis is the minimum entropy possible for a given distortion. Moreover, our method
achieves a reduction of about ∼ 8 bits/symbol compared to uniform scalar quantization alone, and
an additional ∼ 4 bits/symbol when ANS is applied to the uniformly quantized weights.

The rate-distortion curves for various models, in particular, the VGG (green circles), ResNet-50
(red squares), ViT (blue diamonds), and DistilBERT (orange triangles) are given in Figure 3b. As
expected, the curves decrease monotonously, reaching an impressive compression rate of less than
8 bits/symbol on average even for extremely low cosine distance in all presented models.
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(b) MOBO optimization process. Interestingly, MOBO
converges at the few last iterations to ×12 compression,
with a highest value of ×12.61. On the other hand, RIQ
reaches practically the same compression ratio in a few
seconds.

A.6.2 ROTATION INVARIANT QUANTIZATION WITH QUANTIZED ACTIVATIONS

Quantizing both the NN model’s weights and its activations can further accelerate the inference, Wu
et al. (2020); Nagel et al. (2020); Krishnamoorthi (2018). Nevertheless, in this case, the quantization
error of both the weights and the activation affects the model’s output. In the seminal work of Wu
et al. (2020), the authors utilized the KL distance for quantizing the activations to minimize the
information loss at the output. In this section, we examine the RIQ approach, combining it with
activation quantization.

To demonstrate, we use the NVIDIA (2021) quantization library for the ResNet-50 model with a
“mini ImageNet” validation set, which comprises one image per class and a total of 1000 images.
We evaluate this library’s performance as a baseline, where the activations are quantized by the KL-
distance criterion, and the weights are quantized to 8-bit linearly. The resulting cosine distance at
the output of this baseline is 0.69%. For comparison, this reference value is given as the distortion
requirement to RIQ. In particular, to integrate RIQ, the activations are quantized as the baseline, and
then, we run RIQ according to Algorithm 1. This way, RIQ is aware of the activations’ quantization
error during its search for the single-letter solution. Note that to facilitate the acceleration of int8
operations, RIQ must yield a quantization rate of up to 8 bits/symbol. In case a certain layer requires
a higher rate, we simply perform linear uniform quantization to 8 bits (without clipping), as the
baseline does.

Figure 4a characterizes the compression ratio as a function of cosine distance. The leftmost point re-
flects a cosine distance of 0.0069 achieved by the baseline of NVIDIA (2021). Remarkably, the RIQ
attains superior compression with relatively low distortion even when the activations are quantized.
In run-time, of course, the reconstructed values are represented again by 8-bit value, and hence, the
significant acceleration of Wu et al. (2020) is still valid.

A.6.3 COMPARISON WITH MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

In this section, we utilize the Multi-Objective Bayesian Optimization (MOBO) tool, described in
Daulton et al. (2020) to compress NN models, and compare results with RIQ. To compress models
with MOBO, we set two objective functions for it. The first objective is minimizing the cosine
distance in eq. (1). The second objective is maximizing the compression ratio in eq. (2). Then, we
let MOBO optimize the rate-distortion tradeoff (i.e., the Pareto frontier surface).

Nonetheless, MOBO is quite complex and requires strong computing capabilities for exploration
and exploitation. Particularly, reaching the optimal solution may take days and even weeks, using
multiple GPUs. Even on small NN models, to address the high-dimensional search spaces, we apply
sparse axis-aligned subspace priors for Bayesian optimization (qNEHVI + SAASBO), with the batch
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Noisy Expected Improvement (qNEI) acquisition function, as suggested by Eriksson & Jankowiak
(2021); Daulton et al. (2021b;a). Moreover, since the two objectives are not within the same range
the cosine similarity objective had to be scaled accordingly to converge to the optimal solution,
where a calibration set of 4 images are used during 30 iterations of exploration/exploitation.

Accordingly, we pick a (relatively) small model for comparison (with a size of 112 KB), letting
MOBO to find for each layer its optimal bin width and quantize accordingly. We emphasize that
the MOBO solution does not rely on the rotation invariant insights. In Figure 4b, the optimization
process of MOBO is presented, where each dot depicts experiment results, and its color indicates
the iteration in which this result was attained. The compression results of RIQ are presented for
comparison. Remarkably, RIQ and MOBO attained almost identical results of ×12.6 and ×12.61,
respectively, with a cosine distance of 0.005. This indicates that RIQ reaches the optimal solution.
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