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ABSTRACT

In fields such as finance, climate science, and neuroscience, inferring causal rela-
tionships from time series data poses a formidable challenge. While contemporary
techniques can handle non-linear relationships between variables and flexible noise
distributions, they rely on the simplifying assumption that data originates from the
same underlying causal model. In this work, we relax this assumption and perform
causal discovery from time series data originating from mixtures of different causal
models. We infer both the underlying structural causal models and the posterior
probability for each sample belonging to a specific mixture component. Our ap-
proach employs an end-to-end training process that maximizes an evidence-lower
bound for data likelihood. Through extensive experimentation on both synthetic
and real-world datasets, we demonstrate that our method surpasses state-of-the-art
benchmarks in causal discovery tasks, particularly when the data emanates from
diverse underlying causal graphs. Theoretically, we prove the identifiability of such
a model under some mild assumptions.

1 INTRODUCTION

Causal discovery is the problem of discovering the underlying causal structure among observed
variables in the data (Spirtes et al., 2000). It is a powerful tool to improve our understanding of
the world. For instance, causal discovery algorithms can help uncover the relationships between
various complex climatic phenomena from sea temperature measurements (Runge et al., 2019a).
Time series data presents significant challenges to causal discovery: (1) Time series data often
exhibits complex non-linear dependencies among both time steps and variables. (2) The space of
all possible directed acyclic graphs (DAGs) increases super-exponentially with the number of time
steps and variables (OEIS Foundation Inc., 2022). As a result, traditional causal discovery algorithms
can be computationally demanding, limiting their scalability to large datasets. (3) Distinguishing
between spurious correlations and true causal relationships is more difficult, especially in the context
of high-dimensional time series data.

Several contemporary works address the problem of temporal causal discovery. One area of study is
Granger causality (Granger, 1969), which is concerned with the forecastability of one time series
given the other. (Tank et al., 2021) and (Khanna & Tan, 2019) use neural networks to infer Granger
causality. However, Granger causality is not true causality (Peters et al., 2017); methods based on
Granger causality cannot handle instantaneous effects and history-dependent noise. Another approach
involves conditional independence testing (Runge et al., 2019b; Runge, 2020). It infers the causal
skeleton by testing conditional independence between time series. Unfortunately, independence tests
are computationally expensive and can only recover the causal graph up to a Markov equivalence
class. Structural causal models (SCMs) explicitly model the relationship between different nodes.
Approaches such as those proposed by (Hyvärinen et al., 2010) and (Pamfil et al., 2020) assume
independent noise and linear relationships between variables to deduce the underlying causal graph. A
more recent study by (Gong et al., 2022) employs neural networks to capture non-linear dependencies
among variables and history-dependent noise.

However, all of these methods suffer from a crucial drawback – they assume the existence of a single
underlying causal model that applies to the entire probability distribution. In reality, multi-modality
is ubiquitous in the real world. The causal effects in a heterogeneous dataset cannot be captured
accurately by a single SCM. We may need several distinct causal models on the same set of variables
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to explain the observed data, even if different samples from the same distribution share similar causal
mechanisms. For example, gene regulatory networks are particular to different cells at different
developmental stages. But during experiments for cell lineage, one can only track the RNA expression
levels of different cells with related but distinct gene regulatory networks, since every measurement
destroys the cell (Qiu et al., 2022). Similarly, the stock market prices could have different causal
graphs on different days, but we would still anticipate that their mutual influences follow similar
patterns. Using a single causal model to explain the data can result in oversimplification and an
inability to capture diverse causal mechanisms. Thus, it is imperative to account for this heterogeneity
through multiple causal models to accurately represent the data distribution.

The task of discovering mixtures of causal graphs from observational time series data has received
limited attention in the literature. Recent work, such as (Thiesson et al., 2013; Markham et al., 2022;
Saeed et al., 2020; Zhou et al., 2022), have tackled the challenge of inferring causal models from
mixture distributions. However, these approaches primarily focus on independent data and do not
specifically address time series data. (Löwe et al., 2022) touched upon this problem by inferring a
per-sample summary graph in an amortized framework, but their approach is limited to inferring
Granger causal relationships and does not account for instantaneous effects.

This paper investigates a more realistic setting in which data is generated from different causal models.
We assume that each time series comes from one out of K possible, unknown underlying causal
models. The membership of which time series comes from which causal model is also unknown.
Our goal is to perform causal discovery by learning the complete SCMs as well as the corresponding
membership for each time series sample. A complete SCM includes both the causal graph and its
associated functional equations.

We tackle the problem of learning multiple SCMs from hetereogenous time series with our method,
MCD. By optimizing an evidence lower bound for the data likelihood, we can infer both the complete
SCM and the membership of each sample to its corresponding mixture component. Assuming the
existence of ‘representative’ points whose membership to the clusters is known with a high degree of
certainty, we characterize a sufficient condition for the identifiability of such mixture models.

In summary, our contributions are as follows:

• We tackle the realistic and challenging setting of discovering mixtures of structural causal
models for time series data. We derive and optimize an evidence lower bound (ELBO) to
simultaneously infer the underlying causal graphs, their associated functional equations, and
the correspondence between each sample and the causal models.

• We show that under some mild assumptions about the existence of representative points,
mixture distributions of identifiable causal models are identifiable. We also show the
soundness of our ELBO objective by deriving its relationship with the true data likelihood.

• We demonstrate the empirical efficacy of our method, MCD, on both synthetic and real-world
datasets. Notably, MCD can accurately assign samples to their underlying SCM and identify
the corresponding causal graphs, even where the number of SCMs is mis-specified.

2 RELATED WORK

In this section, we classify causal discovery techniques based on the type of data they handle,
distinguishing between independent data and time series data.

Causal Discovery for independent Data. Traditional causal discovery approaches can be roughly
categorized as constraint-based or score-based. Constraint-based methods like PC (Spirtes et al.,
2000) and FCI (Spirtes, 2001) algorithms infer the underlying causal graph up to the correct Markov
Equivalence Class (MEC) by identifying conditional independence relations between the various
observed variables. However, these methods rely on accurate conditional-independence testing which
might not always be plausible. Furthermore, these methods suffer from identifiability issues within
large equivalence classes (He et al., 2015). Score-based, such as the Fast Greedy Equivalence Search
(FGES) (Chickering, 2002) and RL-BIC (Zhu et al., 2019), assign scores to potential directed acyclic
graphs (DAGs) based on their ability to explain observational data. However, the large search space
makes these algorithms inefficient in practice.
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Recently, deep learning has been used as an effective tool for causal discovery and inference. (Ke
et al., 2022) and (Lorch et al., 2022) learn to induce causal structures through supervised learning
on synthetic datasets whose ground-truth graph is known. (Goudet et al., 2018) use a hill-climbing
algorithm to orient the edges of a causal skeleton (obtained from other methods). They also learn the
structural functional equations assuming that all the exogenous variables come from the same known
distribution. Building upon (Pawlowski et al., 2020), (Geffner et al., 2022) extend their approach to
learn both the underlying causal graph and the structural functional equations by using normalizing
flow models to learn the distribution of the exogenous variables. They use the NOTEARS objective
(Zheng et al., 2018) to enforce the acyclicity of the learned causal graph.

Causal Discovery for Time Series Data. Most works on time series causal discovery use the
notion of Granger causality (Granger, 1969). (Tank et al., 2021) use component-wise Multi-Layer
Perceptrons (cMLP) along with sparsity constraints on weight matrices in order to infer non-linear
Granger causal links. (Khanna & Tan, 2019) use component-wise Statistical Recurrent Units (SRU),
which incorporate single and multi-scale summary statistics from multi-variate time series for pairwise
Granger causal detection. Amortized Causal Discovery (ACD) (Löwe et al., 2022) aims to infer
Granger causality from time series data using a variational auto-encoder framework in conjuction
with Graph Neural Networks (GNN). However, Granger causality is not true causality; it merely
indicates the presence of an influencing relationship. Further, Granger causality cannot account for
instantaneous effects, latent confounders, or history-dependent noise (Peters et al., 2017).

In contrast to Granger Causality, the framework of SCMs can theoretically model instantaneous
effects, latent confounders, and history-dependent noise. (Hyvärinen et al., 2010) incorporate vector
autoregressive models to the LiNGAM (Shimizu, 2014) algorithm to propose the VARLiNGAM
algorithm for time series data. DYNOTEARS, proposed in (Pamfil et al., 2020), uses the NOTEARS
DAG constraint (Zheng et al., 2018) to learn a Dynamic Bayesian Network. However, both VAR-
LiNGAM and DYNOTEARS only account for linear causal relationships and do not account for
history-dependent noise. (Runge et al., 2019b) extend the PC algorithm to time series data with the
PCMCI method. PCMCI+ (Runge, 2020) can handle instantaneous edges. (Malinsky & Spirtes,
2018) incorporate features of both constraint-based and score-based methods on multivariate time
series data. (Yao et al., 2021) identify the underlying latent factors that influence variables and
infer the causal relationships between them. (Gong et al., 2022) learns the time-lagged adjacency
matrix given observational data while modeling the exogenous history-dependent noise distribution.
However, all of these methods assume a single causal graph for the whole data distribution.

Learning Multiple Causal Graphs. Several contemporary works focus on the problem of causal
discovery from heterogeneous independent data. (Thiesson et al., 2013) use a heuristic search-and-
score method to learn the component DAG models. (Zhou et al., 2022) handle data coming from
heterogeneous observational data by modeling the causal effects as functions of exogenous covariates.
They can identify causal graphs with both hidden confounders and cyclic relationships. However,
both of these methods only model linear causal relationships and Gaussian noise. (Saeed et al., 2020)
use the FCI algorithm on mixture data to recover a composite representation of the mixture DAGs
and use it to detect variables with varying conditional distributions across the components. (Strobl,
2019) infers causal structure from mixtures of DAGs, even when dealing with cycles, non-stationarity,
non-linearity, latent variables, and selection bias, employing a conditional independence testing
framework. (Markham et al., 2022) devise a kernel that measures similarities between the underlying
non-linear causal structures of different samples. This similarity metric can be used to cluster points
and subsequently perform causal discovery within each cluster.

(Huang et al., 2020) exploit non-stationarity in time series data to determine causal relationships
using conditional independence tests. However, their setting differs from ours because they model the
heterogeneity of causal mechanisms over time, rather than the heterogeneity of causal models across
samples. Consequently, they do not infer separate causal models for different components. On the
other hand, our method handles multi-modal time-series distributions with multiple underlying causal
models. It learns one SCM per inferred cluster and the membership of each sample to the appropriate
cluster while accommodating non-linear causal dependencies and history-dependent noise.
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3 METHODOLOGY

Preliminaries. A Structural Causal Model (Pearl, 2009) (SCM) is a mathematical formalization of a
data generative model that explicitly encodes the causal relationships between variables. Formally,
an SCM over D variables consists of a 5-tuple ⟨X , ε,F ,G, P (u)⟩

1. a set of endogenous (observed) variables X =
{
X1, X2, . . . , XD

}
;

2. a set of exogenous (noise) variables ε =
{
ϵ1, ϵ2, . . . , ϵm

}
which influence the endogenous

variables; in general, m ≥ D since there could be latent confounders; but we assume causal
sufficiency, i.e., that m = D.

3. a Directed Acyclic Graph (DAG) G denoting the causal links amongst the members of X ;
4. a set of D functions F =

{
f1, f2, . . . , fD

}
determining X through the equations Xi =

f i(PaiG , ϵ
i),Pai ⊂ X , ϵi ⊂ ε, where PaiG denotes the parents of node i in graph G;

5. P (ϵ), which describes a distribution over noise ϵ.

We assume that each sample X generated by the SCM comes from a sample space X. When X
consists of independent data, X ∈ RD. For time series data, X ∈ RD×T , where T is the number of
timesteps. We can extend the notion of structural causal models to time-series data given a temporal
causal graph G by describing the causal relationships as:

Xi
t = f it (PaiG(< t),PaiG(t), ϵ

i
t) (1)

whereXi
t denotes the value of the ith variable of the time-series at time t, PaiG(< t) denote the parents

of node i from the previous time-steps (i.e. lagged parents) and PaiG(t) denote the parents of node i at
the current time-step (i.e. instantaneous parents). In this work, however, we work with the additive
noise model due to its structural identifiability Gong et al. (2022):

Xi
t = f it (PaiG(< t),PaiG(t)) + ϵit (2)

Problem Setting. We are given N examples of multi-variate time series with D variables, each of

length T , denoted by
{
X

1:D,(n)
1:T

}N
n=1

. We assume that each sample is generated in accordance with
one of the K (unknown) structural causal models M1:K . The problem statement is as follows:

Given the time series samples
{
X

1:D,(n)
1:T

}N
n=1

, infer the K unknown SCMs M1:K

that describe interactions occurring in a time window of length L.

Each SCM Mi consists of both a graph, which is represented as an adjacency matrix Gi of size
(L+ 1)×D ×D, and its associated functional relationships. Our goal is to infer both the adjacency
matrices for all K SCMs and their functional equations in an unsupervised fashion.

Figure 1: Probabilistic
graphical model diagram
of mixtures of SCMs.
Shaded circles are ob-
served variables and hol-
low circle are latent vari-
ables.

Assuming a temporal causal structure with a fixed time lag is quite com-
mon, shared with Rhino (Gong et al., 2022), VARLiNGaM (Hyvärinen
et al., 2010) and PCMCI (Runge et al., 2019b) amongst others. In practice,
the time-lag L is input as a hyperparameter.

3.1 MIXTURE CAUSAL DISCOVERY (MCD)

In this section, we detail our approach to learning mixtures of structural
causal models from observational time-series data. We assume that the
true data generation process follows the probabilistic graphical model
shown in Figure 1.

We representK different SCMs as random variables M1:K . For each data
sample indexed by n, we assign a categorical variable Z(n) ∈ {1, . . . ,K}
to represents the membership of the SCM from which the data is generated.
Mixtures of SCMs has the following generative process:

1. Choose M1:K ∼ p (M1:K).
2. For each of the N samples X(n):

• Choose a mixture index Z(n) ∼ p (Z).
• Draw a time series X(n) ∼ p (X | MZ(n)) from the the marginal distribution of the

corresponding causal model.
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Figure 2: Summary of model evaluation in the proposed method. Each sample has an associated
variational distribution rψ

(
Z(n)|X(n)

)
which designates its corresponding causal model out of the

K learned models M1:K . The likelihood log pθ
(
X(n);MZ(n)

)
is evaluated with respect to the

corresponding model MZ(n) .

Thus, our goal is to infer the posterior distribution p (M1:K | X) of the SCMs given the data samples.
We model each SCM Mi as a pair (Gi, θi), where Gi is the adjacency matrix, and θi represents the
parameters of the neural network which approximates the functional relationships of the SCM.

We propose a variational inference framework to infer the parameters of the data generation process,
since the true posterior p

(
M1:K | X(1:N)

)
is intractable. Thus, we derive and optimize an Evidence

Lower Bound (ELBO) over parameters (θ, ϕ, ψ) as:

log pθ

(
X

(1:N)
1:T

)
≥

∑N
n=1 Eqϕ(M1:K)

[
E
rψ

(
Z(n)|X(n)

1:T

)[ log pθ (X(n)
1:T | MZ(n)

)
+ log p

(
Z(n)

)
+H

(
rψ

(
Z(n) | X(n)

1:T

)) ]]
+

∑K
i=1 Eqϕ(Mi) [log p(Mi) +H (qϕ(Mi))] (3)

Here, qϕ (Mi) represents the variational distribution of the causal model Mi, and rψ(Z(n) | X(n))

represents the variational posterior distribution of the mixing rate for sample X(n). The number
of causal models K is a hyperparameter. p(Z) represents our prior belief about the membership
of samples to the causal models, typically considered to be a uniform distribution. For a detailed
derivation, we refer the reader to Section A.1. Figure 2 shows a summary of how the likelihood is
evaluated for every data sample, given the learned variational distributions and the mixing rates.

3.2 MODEL IMPLEMENTATION

In theory, any likelihood-based Bayesian causal structure learning algorithm, such as a time series-
adapted variant of (Lorch et al., 2021), can be used to implement the loss terms in equation 3. We
opted for the Rhino framework (Gong et al., 2022) with slight modifications to implement each of
the K causal models due to its ability to handle instantaneous effects and history-dependent noise.
Hence, we share similar assumptions to Rhino; in particular, we require causal stationarity, causal
minimality and causal sufficiency, in addition to some mild conditions on the likelihood function. For
the sake of completeness, we mention these assumptions in Section A.2.

The main differences of MCD from Rhino arise from the need for modeling the variational distribution
rψ

(
Z(n) | X(n)

)
for the mixing rates. We parameterize it as a K-way categorical random variable

and learn it separately for each sample. More precisely,

rψ

(
Z(n) = k | X(n)

)
=

exp
(
w

(n)
k /τr

)
∑K
k=1 exp

(
w

(n)
k /τr

) , k ∈ {1, . . . ,K} ,

where w(n) =
[
w

(n)
1 , . . . , w

(n)
K

]
∈ RK are learnable weight parameters for each sample and τr is

a temperature hyperparameter. It is important to note that equation 3 requires an expectation over
rψ

(
Z(n) | X(n)

)
, which we can evaluate exactly, unlike the need for a Monte-Carlo simulation

over the variational distribution of the causal models qϕ (M1:K). Thus, we must compute the
marginal likelihood of each sample under all K causal models. This theoretically entails K times
more operations compared to Rhino during evaluation. In practice, we can calculate the marginal
likelihoods over all causal models in a single forward pass by vectorizing the neural networks that
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parameterize the causal models. Empirically, we observe that the computational complexity increase
over Rhino leads to only a modest increase in run-time, much less than a factor of K. (Section B.5).
We also implement weight sharing by utilizing embeddings θk to parameterize each causal model.
These embeddings serve as inputs to hypernetworks that are shared across all K causal models,
implemented as neural networks. We refer the reader to Section C for a more detailed description of
how MCD is implemented.

4 THEORETICAL ANALYSIS

In this section, we examine (1) a useful sufficient condition under which the described model is
identifiable; (2) the relationship between the derived ELBO objective and the true data likelihood.

Structural Identifiability. We examine when the mixtures of SCM models are identifiable. We
derive an intuitive sufficient condition for mixture model identifiability in terms of the existence
of K representative points from the sample space X. These representative points exhibit a key
characteristic: their association with a particular causal model is unequivocal, as determined by their
scores computed from the marginal likelihood functions of the mixture components.

Theorem 1 (Identifiability of finite mixture of causal models). Let F be a family of K identifiable
causal models, i.e. F =

{
L(i)
M : M is an identifiable causal model , 1 ≤ i ≤ K

}
and let HK be the

family of all K−finite mixtures of elements from F , i.e.

HK =

{
h : h =

K∑
i=1

πiLMi
,LMi

∈ F , πi > 0,

K∑
i=1

πi = 1

}
where LMi

(x) =
∑
M

p(x | M)p(Mi = M) denotes the likelihood of x evaluated with causal

model Mi. Further, assume that the following condition is met:

For every i, 1 ≤ i ≤ K, ∃ai ∈ X such that
LMi(ai)∑K
j=1 LMj

(ai)
>

1

2
. (*)

Then the family HK is identifiable, i.e., if h1 =

K∑
i=1

πiLMi and h2 =

K∑
j=1

π′
jLM′

j
∈ HK then:

h1 = h2 =⇒ ∀i ∈ {1, . . . ,K} ∃j ∈ {1, . . . ,K} such that πi = π′
j and Mi = M′

j .

(Relevant definitions and proof in Section A.3). To draw a parallel with clustering, this implies that
for each cluster, there exists at least one point whose membership can be established with a high
level of certainty to that specific cluster. Verifying this condition in practice is easy because it can be
examined for individual sample points when an approximate likelihood function is learned for each
mixture component, as is the case with our approach, MCD.

Furthermore, we note that as a direct consequence of the structural identifiability of the Rhino model
Gong et al. (2022), a mixture of Rhino models is also structurally identifiable, provided that the
assumptions in Section A.2 and condition (∗) are satisfied.

Relationship between ELBO and Log Likelihood. We verify the soundness of our derived ELBO
objective in equation 3. By maximizing the ELBO, we can simultaneously learn the K underlying
causal graphs, their associated functional equations, and the membership of each sample to its
respective causal model. We show that (Section A.4):

log pθ(X) = ELBO(θ, ϕ, ψ) +

N∑
n=1

Eqϕ(M1:K)

[
KL

(
rψ

(
Z(n) | X(n)

)
|| p(Z(n) | X(n),M1:K)

)]
+ KL (qϕ (M1:K) || p (M1:K | X)) .

Maximizing ELBO(θ, ϕ, ψ) with respect to (θ, ϕ, ψ) is equivalent to jointly (1) maximizing the
log-likelihood log pθ(X) (2) minimizing the KL divergence between the true posterior p (M1:K | X)
and the variational distribution qϕ (M1:K); and (3) minimizing the expectation, under the varia-
tional distribution qϕ(M1:K), of the KL divergence between the true posterior for model selection
p
(
Z(n) | X(n),M1:K

)
and the variational posterior rψ

(
Z(n) | X(n)

)
for each sample X(n).
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Figure 3: Results on the synthetic datasets for dimension D = 5, 10, 20. We present both the
orientation AUROC (Area Under the Receiver Operating Characteristic) and F1 scores. (per sample)
indicates that the baseline predicts one graph per sample, while (dataset) indicates that the baseline
predicts one graph for the whole dataset. (grouped) signifies that the baseline was explicitly executed
on samples clustered according to the true underlying causal graph. Average of 5 runs reported.

5 EXPERIMENTS

We experiment on both synthetic and real-world benchmark datasets. Our model was written in
PyTorch and Lightning, and run on servers with Intel Xeon Gold 6230 CPUs and NVIDIA RTX 3090,
RTX2080Ti, or A10 GPUs. In all our experiments, we train and validate the model on 100% of the
data, since the variational posterior distribution rψ

(
Z(n) | X(n)

)
is learned for each point. We pick

the model with the lowest ELBO and evaluate the corresponding causal graphs.

5.1 EXPERIMENTAL SETUP

We benchmark against several state-of-the-art methods including Rhino (Gong et al., 2022), PCMCI+
(Runge, 2020), DYNOTEARS (Pamfil et al., 2020) and VARLiNGaM (Hyvärinen et al., 2010).
PCMCI+ and DYNOTEARS can be used with two different options - one where the algorithm
predicts one causal graph per sample and one where the algorithm predicts one graph to explain the
whole dataset. We denote these options by suffixing the corresponding rows with (per sample) and
(dataset) respectively. Further, we can also group examples by their true causal graph and predict one
causal graph per group. This option is reported for PCMCI+ and DYNOTEARS, and denoted by the
suffix (grouped) in the results. Section D.2 details the steps for post-processing PCMCI+’s output.

In practice, the number of mixture components is often unknown, which we treat as a hyperparameter.
We use K∗ to denote the true number of SCMs, and K to represent the input to MCD. In our
experiments, we report the clustering accuracy for MCD in addition to traditional causal discovery
metrics like orientation F1 score and AUROC (Area Under the Receiver Operator Curve). We refer
the reader to Section C.1 for a detailed description of how the clustering accuracy is calculated.

5.2 DATASETS

Synthetic datasets. We generate a pool of K∗ random graphs (specifically, Erdős-Rényi graphs) and
treat them as ground-truth causal graphs. To generate a sample X(n), we first randomly sample a
graph Gk from this pool and use it to model relationships between variables using the equation:

X
i,(n)
t = f ik

(
PaiGk(< t),PaiGk(t)

)
+ ϵit.

The functional relationships f ik between variables are represented by randomly initialized multi-
layer perceptrons (MLPs), and the random noise ϵit is generated using history-conditioned quadratic
spline flow functions (Durkan et al., 2019). We fix the number of variables D and vary K∗ to be
1, 5, 10, and 20. We generate N = 1000 examples in the procedure described above. The time
series length T is 100, and the time lag L is set to 2 for all the methods, which is also the value of
lag used to simulate the data. For MCD, the number of mixture components K is set to twice the
number of true graphs (i.e., K = 2K∗) to showcase its robustness against over-specification of the
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underlying number of components. We consider a uniform prior for the membership indicators Z(n),
i.e. p(Z = k) = 1

K ∀k ∈ {1, . . . ,K}.

Netsim Brain Connectivity. The Netsim benchmark dataset (Smith et al., 2011) consists of simulated
blood oxygenation level-dependent (BOLD) imaging data. Each variable represents a region of the
brain, with the goal being to infer the interactions between the different regions. The dataset has
28 different simulations which differ in the number of variables and time-length over which the
measurements are recorded. In our experiments, we consider two distinct setups:

In the first setup, we combine the time series which have length T = 200 and number of nodesD = 5
from simulations 1, 8, 10, 13, 14, 15, 16, 18, 21, 22, 23, and 24. This dataset comprises N = 600
samples, with K∗ = 14 distinct underlying causal graphs. We refer to this setup as Netsim. This
dataset exhibits significant graph membership imbalance, with the top 3 causal graphs accounting for
500 out of the 600 samples. Hence, we consider an exponentially weighted prior for the membership
indicators, i.e. p(Z = k) ∝ exp (−λpk) ∀k ∈ {1, . . . ,K}. We set λp = 5 and K = 20.

In the second setup, we consider the samples from simulation 3 comprising N = 50 time series, each
with D = 5 nodes and T = 200 timepoints. These samples share the same ground-truth causal graph.
We introduce heterogeneity by considering a pool of K∗ = 3 random permutations and applying a
randomly chosen one to the nodes of each sample and its corresponding ground truth causal graph.
This setup is denoted as Netsim-permuted. We use a uniform prior for p(Z) and set K = 5.
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Figure 4: Clustering accuracy for MCD
on the synthetic datasets (vs) the number
of causal graphs K∗. The accuracy is
averaged across 5 runs and across data
dimensionality D = 5, 10, 20. Hyperpa-
rameter K is set to 2K∗ for all settings.

DREAM3 Gene Network. The DREAM3 dataset (Prill
et al., 2010) is a real-world biology dataset consisting of
measurements of gene expression levels obtained from
yeast and E.coli cells. There are 5 distinct ground-truth
networks, comprising 2 for E.coli, and 3 for Yeast, each
with D = 100 nodes. Each time-series consists of T = 21
timesteps, with 46 trajectories recorded per graph. Thus,
there are a total of N = 230 samples combined across
all the networks. We mix samples from all 5 networks to
simulate the scenario in which the identity of the cell from
which the data is obtained is unknown. This is a challeng-
ing dataset due to the high dimensionality of the data and
the small number of samples available for inferring causal
relationships. We set the time lag L = 2 and K = 10.

Postprocessing model outputs for evaluating on Netsim
and DREAM3 datasets is discussed in Section D.3.

5.3 RESULTS

Synthetic dataset. We set the number of variables D = 5, 10, 20 and run our model on the
synthetic dataset. Results are presented in Figure 3. We exclude results from DYNOTEARS
due to its poor performance, where it mostly predicted zero matrices. We note that MCD handily
outperforms the baseline methods in terms of orientation AUROC and F1 score when number of
graphs K∗ = 5, 10, 20. It achieves a comparable level of performance for K∗ = 1 despite the
misspecification of the number of models. Further, the gap between the F1 score for our method
and the baselines widens as K∗ increases. Finally, our method outperforms PCMCI+, Rhino and
DYNOTEARS even when they are supplied with additional membership information Z(n) from
which the corresponding samples X(n) are drawn.

We also report the clustering accuracy for MCD in Figure 4 for different values of K∗, averaged
over the data dimensionalities D = 5, 10, 20. Remarkably, MCD acheives near perfect clustering for
scenarios with multiple underlying graphs. The low clustering accuracy and relatively low F1 and
AUROC scores for K∗ = 1 are explained by the observation that MCD learns two similar mixture
components to explain the single underlying mode in the distribution.

We also conduct further ablation studies on synthetic datasets and report results in Section B.1.

Netsim Brain Connectivity. The results on the Netsim dataset are presented in Table 1. In the first
setup (Netsim), we observe that MCD is outperformed by the baselines PCMCI+ and Rhino, even
though they only predict one graph for the entire dataset. This is attributed to the similarity among

8
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Netsim Netsim-permuted
Method Ori. AUROC

(x) Ori. F1
(x) Ori. AUROC

(x) Ori. F1
(x)

PCMCI+ (per sample) 0.702 0.648 0.817 0.672
PCMCI+ (dataset) 0.827 0.803 0.710 0.493

PCMCI+ (grouped) 0.810 0.785 0.722 0.525
VARLiNGAM 0.638 0.598 0.781 0.604

DYNOTEARS (per sample) 0.706 0.588 0.850 0.276
DYNOTEARS (dataset) 0.674 0.626 0.826 0.451

DYNOTEARS (grouped) 0.629 0.584 0.848 0.459
Rhino 0.927± 0.008 0.585± 0.000 0.873± 0.007 0.530± 0.020

MCD (ours) 0.807± 0.006 0.680± 0.012 0.929± 0.018 0.641± 0.024

Table 1: Results on the Netsim and Netsim-permuted datasets. (per sample) indicates that the baseline
predicts one graph per sample, while (dataset) indicates that the baseline predicts one graph for the
whole dataset. (grouped) signifies that the baseline was explicitly executed on samples clustered
according to the true underlying causal graph. MCD achieves a clustering accuracy of 61.40± 1.66%
on Netsim and 87.84± 17.7% on Netsim-permuted.

Method Ori. AUROC
(x) Ori. F1

(x)
PCMCI+ (per sample) 0.500 0.008

PCMCI+ (grouped) 0.513 0.052
DYNOTEARS (per sample) 0.505 0.031

DYNOTEARS (dataset) 0.504 0.033
DYNOTEARS (grouped) 0.504 0.033

Rhino 0.527± 0.004 0.057± 0.003
MCD (ours) 0.555± 0.003 0.133± 0.009

Table 2: Results on the DREAM3 dataset. (per sample) indicates that the baseline predicts one
graph per sample, while (dataset) indicates that the baseline predicts one graph for the whole dataset.
(grouped) signifies that the baseline was explicitly executed on samples clustered according to the
true underlying causal graph. MCD achieves a clustering accuracy of 94.83± 4.49%.

the various underlying graphs in the Netsim dataset and the strong imbalance in the data. Our model
faces sample complexity issues because it learns multiple causal graphs, whereas other methods
perform reasonably well by predicting only one. This highlights the idea that learning a mixture
model is only beneficial when the underlying SCMs differ from one another significantly. In such
a scenario, the benefits of learning multiple graphs outweigh the drawbacks of limited samples per
model. This explanation is also supported by the observation that PCMCI+ (grouped) achieves lower
performance than its single graph counterpart. Further, MCD achieves a relatively low clustering
accuracy of 61.40± 1.66%, due to the inherent similarities in the underlying SCMs.

In the second setup (Netsim-permuted), MCD outperforms all baselines in terms of AUROC, achiev-
ing a 6.4% higher score than the next best baseline, and obtains the second highest F1 score. This
setting illustrates the benefits of modeling heterogeneity, even when it comes from a simple permuta-
tion of nodes. In this setting, MCD achieves a clustering accuracy of 87.84± 17.7%, highlighting its
ability to accurately group samples when the underlying causal models are sufficiently diverse.

DREAM3 Gene Network. The results on the DREAM3 dataset are presented in Table 2. Expectedly,
all methods face significant challenges in accurately inferring the causal relationships. However,
out of all the considered baselines, MCD achieves the most promising performance both in terms of
AUROC and F1 score. It is especially encouraging that MCD is able to accurately cluster samples by
their causal models, with a remarkable clustering accuracy of 94.83± 4.49%.

6 CONCLUSION AND DISCUSSION

In this work, we examined the problem of discovering mixtures of structural causal models from
time series data. This is a problem with far-reaching applications in climate, finance, and healthcare,
among other fields, since multimodal and hetereogeneous data is ubiquitous in practice. We proposed
an end-to-end deep-learning method to infer both the underlying SCMs and the mixture component
membership of each sample. We discussed the structural identifiability of our model and demonstrated
the empirical efficacy of our method on both synthetic and real-world datasets generated from diverse
component SCMs. Future work could tackle latent confounders and non-stationarity in time.
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A THEORY

A.1 ELBO DERIVATION

Figure 5: The assumed data generation model. First, the mixture index Z(n) is drawn from a K-way
categorical distribution (Z(n) ∼ Cat(K), Z(n) ∈ {1, . . . ,K}), and a causal model is drawn from the
corresponding mixture component distribution M ∼ p (MZ(n)). A sample X(n) is then drawn in
accordance with the chosen causal model M.

Denote the causal models as M1:K = (M1, . . . ,MK) and the sample X =
{
X(n)

}N
n=1

. Then, we
can write the log-likelihood under the assumed model as follows:

log pθ(X) = log

[ ∑
M1:K

pθ (X | M1:K) p(M1:K)× qϕ(M1:K)

qϕ(M1:K)

]

= logEqϕ(M1:K)

[
pθ (X | M1:K) p(M1:K)

qϕ(M1:K)

]
≥ Eqϕ(M1:K)

[
log

pθ (X | M1:K) p(M1:K)

qϕ(M1:K)

]
(using Jensen’s inequality)

= Eqϕ(M1:K) [log pθ (X | M1:K) + log p(M1:K)− log qϕ(M1:K)]
Since the sample points are conditionally independent given the causal models, we can write:

log pθ(X) ≥
N∑
n=1

Eqϕ(M1:K)

[
log pθ

(
X(n) | M1:K

)]
+ Eqϕ(M1:K) [log p(M1:K)− log qϕ(M1:K)]

12
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Further, note that:

log pθ(X
(n) | M1:K) = log

[∑
Z(n)

pθ(X
(n) | Z(n),M1:K)p(Z(n) | M1:K)

]

= log

[∑
Z(n)

pθ(X
(n) | Z(n),M1:K)p(Z(n))×

rψ
(
Z(n) | X(n)

)
rψ

(
Z(n) | X(n)

)]

= logErψ(Z(n)|X(n))

[
pθ(X

(n) | Z(n),M1:K)p(Z(n))

rψ
(
Z(n) | X(n)

) ]

≥ Erψ(Z(n)|X(n))

[
log

pθ(X
(n) | Z(n),M1:K)p(Z(n))

rψ
(
Z(n) | X(n)

) ]
(using Jensen’s inequality)

= Erψ(Z(n)|X(n))

[
log pθ(X

(n) | Z(n),M1:K) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]
.

Further, we assume that pθ(X(n) | Z(n),M1:K) = pθ
(
X(n) | MZ(n)

)
. Putting it all together, and

using the independence of the causal models, we obtain:

log pθ(X) ≥
N∑
n=1

Eqϕ(M1:K)

[
Erψ(Z(n)|X(n))

[
log pθ(X

(n) | MZ(n)) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]]
+

K∑
i=1

Eqϕ(Mi) [log p(Mi)− log qϕ(Mi)]

≡ ELBO(θ, ϕ, ψ)

A.2 THEORETICAL ASSUMPTIONS

In this section, we list out the theoretical assumptions used in Rhino (Gong et al., 2022); our model
also operates under similar assumptions for each mixture component, since we implement the
component SCMs as Rhino models.

Assumption 1 (Causal Stationarity). (Runge, 2018) The time series X with a graph G is called
causally stationary over a time index set T if and only if for all links Xi

t−τ → Xj
t in the graph

Xi
t−τ ⊥̸⊥ Xj

t | Xt\
{
Xi
t−τ

}
holds for all t ∈ T .

Informally, this assumption states that the causal graph does not change over time, i.e., the resulting
time series is stationary.

Assumption 2 (Causal Markov Property). (Peters et al., 2017) Given a DAG G and a probability
distribution p, p is said to satisfy the causal Markov property, if it factorizes according to G, i.e.

p(x) =

D∏
i=1

p
(
xi | PaiG(xi)

)
. In other words, each variable is independent of its non-descendent

given its parents.

Assumption 3 (Causal Minimality). Given a DAG G and a probability distribution p, p is said to
satisfy the causal minimality with respect to G, if p is Markovian with respect to G but not to any
proper subgraph of G.

Assumption 4 (Causal Sufficiency). A set of observed variables V is said to be causally sufficient for
a process Xt if, in the process, every common cause of two or more variables in V is also in V , or
is constant for all units in the population. In other words, causal sufficiency implies the absence of
latent confounders in the data.

Assumption 5 (Well-defined Density). The likelihood of each mixture component (i.e. the likelihood
function of each Rhino model) is absolutely continuous with respect to a Lebesgue or counting
measure and |log p (X0:T ;G)| <∞ for all possible G.
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A.3 IDENTIFIABILITY OF THE MIXTURE OF CAUSAL MODELS

Definition 1 (Identifiability). Let P = {pθ : θ ∈ T } be a family of distributions, each member of
which is parameterized by the parameter θ from a parameter space T . Then P is said to be identifiable
if

pθ1 = pθ2 =⇒ θ1 = θ2 ∀θ1, θ2 ∈ T .
Definition 2 (Identifiability of finite mixtures). Let F be a family of distributions. The family of

K−mixture distributions on F , defined as HK =

{
h : h =

K∑
i=1

πifi, fi ∈ F , πi > 0,

K∑
i=1

πi = 1

}
,

is said to be identifiable if
K∑
i=1

πifi =

K∑
j=1

π′
jf

′
j =⇒ ∀i ∃j such that πi = π′

j and fi = f ′j .

Here, we quote a result from (Yakowitz & Spragins, 1968) that established a necessary and sufficient
condition for the identifiability of finite mixtures of multivariate distributions.
Theorem 2 ((Yakowitz & Spragins, 1968) Identifiability of finite mixtures of distributions). Let
F = {F (x;α), α ∈ Rm, x ∈ Rn} be a finite mixture of distributions. Then F is identifiable if and
only if F is a linearly independent set over the field of real numbers.

In other words, this theorem states that a mixture of distributions is identifiable if and only if none
of the individual mixture components can be expressed as a mixture of distributions from the same
family. However, it can be difficult to reason about such a condition in practice, since the precise form
of the marginal likelihood functions is rarely known. Conversely, the likelihood can be evaluated
quite easily on discrete points, at least approximately if not exactly.

Here, we describe a sufficient condition for the identifiability of finite mixtures of identifiable causal
models.
Theorem 1 (Identifiability of finite mixture of causal models). Let F be a family of K identifiable
causal models, i.e. F =

{
L(i)
M : M is an identifiable causal model , 1 ≤ i ≤ K

}
and let HK be the

family of all K−finite mixtures of elements from F , i.e.

HK =

{
h : h =

K∑
i=1

πiLMi ,LMi ∈ F , πi > 0,

K∑
i=1

πi = 1

}
where LMi(x) =

∑
M

p(x | M)p(Mi = M) denotes the likelihood of x evaluated with causal

model Mi. Further, assume that the following condition is met:

For every i, 1 ≤ i ≤ K, ∃ai ∈ X such that
LMi

(ai)∑K
j=1 LMj (ai)

>
1

2
. (*)

Then the family HK is identifiable, i.e., if h1 =

K∑
i=1

πiLMi
and h2 =

K∑
j=1

π′
jLM′

j
∈ HK then:

h1 = h2 =⇒ ∀i ∈ {1, . . . ,K} ∃j ∈ {1, . . . ,K} such that πi = π′
j and Mi = M′

j .

Proof. From Theorem 2, we have that HK is identifiable if and only if for any α1, . . . , αK ∈ R,
K∑
j=1

αjLMj
= 0 =⇒ αj = 0 ∀j ∈ {1, . . . ,K}

Note that
K∑
j=1

αjLMj
= 0 =⇒

K∑
j=1

αjLMj
(x) = 0 ∀x ∈ X. In particular,

K∑
j=1

αjLMj (ai) = 0 ∀i ∈ {1, . . . ,K} , (4)

where ai is as defined in Condition (∗). Denote LMj (ai) = βij . Then Equation 4 can be written as:
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β11 . . . β1K
...

...
βK1 . . . βKK


α1

...
αK

 = 0. (5)

Or equivalently

βα = 0. (6)

Note that α = 0 if and only if β is full rank. We now show that Condition (∗) implies that β is
strictly diagonally dominant and hence full rank. Note that Condition (∗) can be equivalently written
as:

βii∑K
j=1 βij

>
1

2
=⇒ 2βii >

K∑
j=1

βij

=⇒ βii >

K∑
j=1,j ̸=i

βij

which implies strict diagonal dominance since βij > 0. Hence α = 0 thus implying linear indepen-
dence.

Note that ai refers to any point in the support of the mixture distribution such that the condition * is
satisfied. It is not a ‘sample’ from the ith SCM in the sense that it is not randomly sampled from the
SCM, but it can be potentially explicitly chosen for the condition to hold.

A.4 RELATIONSHIP BETWEEN ELBO AND LOG-LIKELIHOOD

In this section, we derive an exact relationship between the derived evidence lower bound
ELBO(θ, ϕ, ψ) and the log-likelihood log pθ(X).

First, note that:

pθ(X)p (M1:K | x) = pθ (X | M1:K) p (M1:K)

and hence:

pθ(X) =
pθ (X | M1:K) p (M1:K)

p (M1:K | X)
.

The log-likelihood can be written as:

log pθ(X) = Eqϕ(M1:K) [log pθ(X)]

= Eqϕ(M1:K)

[
log

pθ (X | M1:K) p (M1:K)

p (M1:K | X)
× qϕ(M1:K)

qϕ(M1:K)

]
= Eqϕ(M1:K) [log pθ (X | M1:K) + log p (M1:K)]

+

K∑
i=1

H (qϕ(Mi)) + KL (qϕ (M1:K) || p (M1:K | X))

= Eqϕ(M1:K)

[
N∑
n=1

log pθ

(
X(n) | M1:K

)
+

K∑
i=1

log p (Mi)

]

+

K∑
i=1

H (qϕ(Mi)) + KL (qϕ (M1:K) || p (M1:K | X))
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Also note that, using the rules of conditional probability:
pθ(X

(n) | M1:K)

pθ(X(n) | M1:K , Z(n))
=
pθ(X

(n),M1:K)

p(M1:K)
× p(Z(n),M1:K)

pθ(X(n), Z(n),M1:K)

=
p(Z(n) | M1:K)

p(Z(n) | X(n),M1:K)

=
p(Z(n))

p(Z(n) | X(n),M1:K)
where the last step follows from the fact that Z(n) and Mi are independent.

Thus, we can write:
pθ(X

(n) | M1:K) = Erψ(Z(n)|X(n))

[
pθ(X

(n) | M1:K)
]

= Erψ(Z(n)|X(n))

[
pθ(X

(n) | M1:K , Z
(n))p(Z(n))

p(Z(n) | X(n),M1:K)

]
= Erψ(Z(n)|X(n))

[
pθ(X

(n) | MZ(n))p(Z(n))

p(Z(n) | X(n),M1:K)
×
rψ

(
Z(n) | X(n)

)
rψ

(
Z(n) | X(n)

)] .
Thus,

log pθ(X) = Eqϕ(M1:K)

[
N∑
n=1

Erψ(Z(n)|X(n))

[
log pθ

(
X(n) | MZ(n)

)
+ log p(Z(n))

]
+ H

(
rψ

(
Z(n) | X(n)

))
+ KL

(
rψ(Z

(n) | X(n)) || p(Z(n) | X(n),M1:K)
)
+

K∑
i=1

log p (Mi)

]
+

K∑
i=1

H (qϕ(Mi))

+ KL (qϕ (M1:K) || p (M1:K | X)) .
Noting that

ELBO(θ, ϕ, ψ) ≡
N∑
n=1

Eqϕ(M1:K)

[
Erψ(Z(n)|X(n))

[
log pθ(X

(n) | MZ(n)) + log p(Z(n))− log rψ

(
Z(n) | X(n)

)]]

+

K∑
i=1

Eqϕ(Mi) [log p(Mi)− log qϕ(Mi)]

we obtain that:

log pθ(X) = ELBO(θ, ϕ, ψ) +

N∑
n=1

Eqϕ(M1:K)

[
KL

(
rψ

(
Z(n) | X(n)

)
|| p(Z(n) | X(n),M1:K)

)]
+ KL (qϕ (M1:K) || p (M1:K | X)) .

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ABLATION STUDIES

Effect of number of samples per component. We investigate the effect of a decreasing number of
samples per mixture component on the performance of MCD, as the number of ground truth SCMs
K∗ increases. We consider synthetic data of dimension D = 10, and run MCD, Rhino, PCMCI+
and Rhino (grouped) on N = 1000 samples generated from K∗ SCMs for increasing values of K∗,
with K = 2K∗. The results are presented in Figure 6. MCD suffers a gradual decrease in model
performance, with roughly a 25% decrease in F1 and 11% decrease in AUROC from K∗ = 1 to
K∗ = 100. Meanwhile, the performance of Rhino falls off more drastically and becomes equivalent
to random guessing for large K∗. The performance of PCMCI+ (grouped) also decreases quite
rapidly with the increase in K∗. Notably, MCD maintains a higher level of performance than Rhino
(grouped), possibly due to the weight-sharing scheme.

Using ground truth membership assignments. We assess MCD performance with learned versus
ground-truth membership associations on synthetic data with D = 10. As before, we set K = 2K∗.
Figure 7 shows the results of this ablative experiment. The performance of MCD with ground truth
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Figure 6: Effect of increasing number K∗ of underlying SCMs on F1 and AUROC on synthetic data
with D = 10. MCD’s performance declines gradually with decreased number of samples per mixture
component, while Rhino’s performance decays drastically. The performance of Rhino (grouped)
decays slightly faster than MCD.
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Figure 7: Comparison of model performance of MCD with ground-truth versus learned mixture
assignments and Rhino (grouped) on synthetic data with D = 10. Expectedly, MCD performs better
with explicit information about the cluster assignments, but it achieves comparable performance even
with learned membership information.

labels is theoretically an upper bound on its performance. Encouragingly, we observe that our model
performs very close to this upper bound (barring a few anomalous seeds). The largest difference in
performance is observed for K∗ = 1, where MCD learns two separate causal models to explain a
single mode. We also observe that for K∗ > 1, Rhino (grouped) performs a similar or slightly worse
level of performance than MCD. This is due to the reduced number of samples per graph, which MCD
is more robust to due to weight sharing (as implemented in Equation 10).

Robustness of MCD to the misspecification of number of models. We examine the performance of
MCD when the number of mixture components K is misspecified, and does not equal the true number
of underlying components K∗. Figure 8 shows the performance of our model as a function of K for
synthetic data with dimensionality D = 10 and ground truth number of graphs K∗ = 10. We note
that when the number of models is underspecified, our model performs poorly as expected since it
cannot fully explain all the modes in the data. Surprisingly, the performance increases with increasing
K. The clustering accuracy and performance metrics show high standard deviation when K is set to
the true number of mixture components K∗ = 10. While some runs achieve high clustering accuracy,
others tend to saturate at a suboptimal grouping when K = K∗. On the other hand, when K > K∗,
the additional SCMs are used as ‘buffers’ and the correct grouping is learned during the later epochs
as the SCMs are inferred more accurately. This phenomenon is further explored in Appendix B.3

B.2 CLUSTERING ACCURACY FOR D = 5, 10, 20 ON SYNTHETIC DATASETS

Figure 9 shows the clustering accuracy for different values of D on the synthetic datasets. For all
settings, we set the hyperparameter K = 2K∗. We observe that for all values of K∗ > 1, the
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Figure 8: Performance of MCD as a function of hyperparameter input K on synthetic data with
D = 10,K∗ = 10 . Surprisingly, MCD performs better when the number of graphs is overspecified.
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Figure 9: Plot showing the clustering accuracy vs K∗ on the synthetic datasets for D = 5, 10, 20.
We observe that for K∗ > 1, the clustering accuracy is high (> 95%) on average.

clustering accuracy is, on average, above 95%, while it remains low for K∗ = 1. As noted earlier,
the low clustering accuracy for K∗ = 1 is expected since the single mode in the data distribution is
‘split’ across two learnt causal graphs.

B.3 CLUSTERING PROGRESSION WITH TRAINING

We analyze the progression of clustering accuracy and the number of unique graphs learned with the
number of training steps. As training progresses, not all K graphs are utilized. We count only those
graphs for which there exists at least one associated sample. Figure 10 shows the plots. We observe
that when K = 20, as training progresses, the algorithm groups together points from different causal
graphs until they converge to the “true" number of causal graphs K∗ = 10 and clustering accuracy
converges to (approximately) 100%; however, when K = 10, we observe that the number of unique
graphs can sometimes fall below K∗ = 10, resulting in a poor clustering accuracy.

B.4 NETSIM VISUALIZATION

Figure 11 shows a visualization of a heatmap of the predictions for the Netsim-permuted dataset.
The 3 ground truth adjacency matrices and the top-3 discovered adjacency matrices, ranked by the
frequency of prediction, are shown. All 3 matrices achieve a high AUROC score, even though the
poor calibration of scores results in the prediction of many spurious edges.
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Figure 10: Plots showing the progression of (left) clustering accuracy (right) number of unique
learned graphs with the number of training steps on the synthetic dataset with D = 10,K∗ = 10. We
observe that as training progresses, clustering accuracy increases for both the K = 10 and K = 20
runs; however when K = 10, some runs tend to learn a lower number of
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Figure 11: Heatmap for the Netsim-Permuted dataset showing the (top) adjacency matrices of the
ground-truth causal graphs, and the (bottom) edge probabilities for the top-3 discovered adjacency
matrices (ranked by frequency of occurrence). We also report the graph-wise AUROC metrics.
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Figure 12: Run time plot of MCD as a function of K. A 100× increase in K from 2 to 200 results in
a less than 10× increase in run-time.

B.5 TIMING ANALYSIS

In this section, we analyze the run-time of MCD as a function of the hyperparameter K. As noted in
Section 3.2, MCD, in theory, needs roughly K times more operations than Rhino in each epoch due to
the evaluation of the expectation over the variational distribution rψ

(
Z(n) | X(n)

)
while calculating

the ELBO. However, we show that, in practice, this does not translate to a K times increase in model
runtime. We measure and plot the total runtime for training our model for the synthetic dataset with
D = 10 nodes as a function of K. Figure 12 shows the plot.

We observe that although the plot shows an approximately linear trend, the slope is much lesser than
1. In fact, a 100× increase in K from 2 to 200 results in a less than 10× increase in run-time. Thus,
MCD scales reasonably well with the number of mixture components K.

C IMPLEMENTATION DETAILS

In this section, we describe how we model the terms in Equation 3. We follow the implementation
described in Rhino (Gong et al., 2022) due to its ability to model instantaneous effects and history-
dependent noise. Similar to Rhino, we make a simplifying assumption about the functional form: we
assume that we have an additive noise model since it is known to be identifiable (Zhang et al., 2015).
Under causal model Mk = (Gk, θk),

X
i,(n)
t = f ik(PaiGk(< t),PaiGk(t)) + ϵit. (7)

We model the above equation as follows:
X
i,(n)
t = f ik(PaiGk(< t),PaiGk(t)) + gik(PaiGk(< t), ϵit).

where the function f ik models the functional relationship between the nodes and gik models the history
dependence of the exogenous noise for node i under causal model k. The noise variables ϵit are
described using a conditional spline flow model, akin to (Gong et al., 2022).

pgik(g
i
k(ϵ

i
t) | PaiGk(< t)) = pϵ(ϵ

i
t)

∣∣∣∣∂(gik)−1

∂ϵit

∣∣∣∣ (8)

with ϵit modeled as independent Gaussian noise.

The marginal likelihood under each model Mk can be further simplified as follows, using the causal
Markov assumption:

log pθ

(
X

(n)
1:T

∣∣∣MZ(n)

)
=

T∑
t=L

D∑
i=1

log pθ

(
X
i,(n)
t

∣∣∣PaiG
Z(n)

(< t),PaiG
Z(n)

(t)
)

=

T∑
t=L

D∑
i=1

log pgi
Z(n)

(
z
i,(n)
t

∣∣∣PaiG
Z(n)

(< t)
)

(9)

where zi,(n)t = X
i,(n)
t − f iZ(n)

(
PaiG

Z(n)
(< t),PaG

Z(n)

)
.
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The functional relationships are implemented using neural networks ξ and ℓ in the following equation:

f iZ(n)

(
PaiG

Z(n)
(< t),PaiG

Z(n)
(t)

)
= ξ

 L∑
τ=0

D∑
j=1

(GZ(n))
ji,(n)
τ ℓ

([
X
j,(n)
t−τ , (θZ(n))

j,(n)
τ

])
, (θZ(n))

i,(n)
0


(10)

where θZ(n) are embeddings corresponding to model Z(n), and ξ and ℓ are multi-layer perceptron
networks that are shared across all causal models M1:K . A similar architecture is used for the
hypernetwork that predicts parameters for the conditional spline flow model.

The prior distribution p(M1:K) is modeled as follows:

pθ(M1:K) ∝
K∏
k=1

exp
(
−λ ∥(Gk)1:T ∥

2 − σh ((Gk)0)
)
. (11)

The first term is a sparsity constraint and h ((Gk)0) is the acyclicity constraint from (Zheng et al.,
2018). The adjacency matrix Gi is represented as a product of independent Bernoulli distributions.

C.1 CALCULATION OF CLUSTERING ACCURACY

We would like to evaluate the accuracy of our method in grouping samples based on the underlying
SCMs. However, the assigned cluster indices by the model and the ‘ground-truth’ cluster indices
might not match nominally, even though they refer to the same grouping assignment. For example, the
cluster assignment of (1, 1, 1, 2, 2) for N = 5 points is equivalent to the assignment (2, 2, 2, 1, 1). In
other words, we want a permutation invariant accuracy metric between the inferred cluster assignments
Z̃ and true cluster assignments Z with Z̃, Z ∈ NN . We define

Cluster Acc.
(
Z̃, Z

)
= max
π∈SK

1

N

N∑
n=1

1
(
π(Z̃i) = Zi

)
with SK denoting the permutation group over K elements. Evaluating the cluster accuracy naively
would requireK! operations. However, we use the Hungarian algorithm to find the correct permutation
in O(K3) time1.

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETER DETAILS

For all our experiments with MCD, we set the lag value L = 2 for all the considered methods. The
coefficient of the DAG penalty term in the loss function was set to 1 + ne, where ne is the epoch
number. We used the rational spline flow model described in (Durkan et al., 2019). For all our
experiments, we use the linear rational spline flow model, with 8 bins. The MLPs ℓ and ξ have
2 hidden layers each and with LeakyReLU activation functions. Other hyperparameters used for
training are summarized in Table 3. We used embedding dimension e = 128 for all our experiments.

Dataset Matrix LR Likelihood LR Batch size Matrix temperature Num. Epochs
Synthetic (D = 5) 10−2 10−3 128 1 200
Synthetic (D = 10) 10−2 10−3 128 1 200
Synthetic (D = 20) 10−2 10−3 128 1 200

Netsim 10−2 10−3 32 0.25 200
Netsim-Permuted 10−2 10−3 32 0.25 200

DREAM3 10−2 10−3 8 0.25 500

Table 3: Table showing the hyperparameters for MCD on different datasets.

Baselines. Rhino was trained with similar hyperparameters as MCD on all datasets except Netsim,
on which it was trained for 400 epochs with learning rates 10−4 for the likelihood and 10−3 for the
graph logits. As before, we used the linear rational spline flow model with 8 bins. For all other
baselines, the default hyperparameter values are used. For Rhino and MCD, which parameterize the
causal graphs as Bernoulli distributions over each edge, we use the inferred edge probability matrix

1This approach and implementation are adapted from https://smorbieu.gitlab.io/
accuracy-from-classification-to-clustering-evaluation/
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as the “score", and evaluate the AUROC metric between the score matrix and the true adjacency
matrix. For DYNOTEARS, we use the absolute value of the output scores and evaluate the AUROC.
For PCMCI+ and VARLiNGAM, since they only output adjacency matrices, we directly evaluate the
AUROC between the predicted and true adjacency matrices.

D.2 POST-PROCESSING THE OUTPUT OF PCMCI+

PCMCI+ produce Markov equivalence classes rather than fully oriented causal graphs. To make
its outputs comparable, we post-process the resultant edges. We symmetrically set both the entries
corresponding to a bidirectional edge to 1 in the adjacency matrix, and ignore the edges (i.e., set the
corresponding entries in the adjacency matrix to 0) whose orientations are undecided.

D.3 EVALUATION ON NETSIM AND DREAM3 DATASETS

The Netsim and DREAM3 datasets used in the evaluation provide ground-truth time-aggregated
causal graphs. In order to make our model output comparable, we follow the procedure outlined in
(Gong et al., 2022) to convert the time-lag adjacency matrix to an aggregated matrix. The (i, j)th entry
of the aggregated matrix Gagg is 1 iff Gijℓ = 1 for some lag value ℓ in the time-lag matrix G. Both
Rhino and MCD represent the edges as Bernoulli random variables and hence output a probability
score for each edge. For evaluating the F1 score of Rhino and Netsim, we threshold the probability
values at 0.5, i.e., edges with a probability ≥ 0.5 are considered as predicted edges.

D.4 PAIR-WISE GRAPH DISTANCE IN THE MIXTURE DISTRIBUTIONS

Table 4 shows the pairwise graph distances between the ground-truth graphs of the mixture distribu-
tions used in the paper. We calculate the Structural Hamming Distance (SHD) between every pair of
graphs in the mixture, and report the mean, standard deviation, minimum and maximum values.

Dataset D K∗ Mean SHD Std. Dev. SHD Min. SHD Max. SHD
Synthetic 5 5 24.00 1.95 20 27
Synthetic 5 10 23.24 3.37 14 30
Synthetic 5 20 22.61 3.29 13 31
Synthetic 10 5 53.40 3.83 48 59
Synthetic 10 10 54.09 3.26 45 61
Synthetic 10 20 54.27 3.73 44 64
Synthetic 20 5 113.80 5.62 101 120
Synthetic 20 10 111.91 5.42 99 123
Synthetic 20 20 113.59 5.06 98 124
DREAM3 100 5 517.60 202.13 234 896

Netsim 5 14 2.59 1.17 1 5
Netsim-permuted 15 3 34.00 1.63 32 36

Table 4: Pair-wise graph statistics for experimental datasets used in the paper.

E TOY EXAMPLE

Consider a dataset where each sample X(n) from the dataset
{
X

1:D,(n)
1:T

}N
n=1

is generated from one
out of the two following SCMs with equal probability:

X
1,(n)
t = 0.4X

2,(n)
t−1 + 0.6X

3,(n)
t + ϵ

(n)
1

X
2,(n)
t = 0.3X

3,(n)
t−1 + 0.3X

3,(n)
t + ϵ

(n)
2

X
3,(n)
t = 0.5X

1,(n)
t−1 + ϵ

(n)
3

(or)
X

1,(n)
t = 0.7X

3,(n)
t−1 − 0.2X

2,(n)
t + ϵ

(n)
1

X
2,(n)
t = 0.2X

1,(n)
t−1 + 0.4X

3,(n)
t + ϵ

(n)
2

X
3,(n)
t = −0.3X

1,(n)
t−1 + ϵ

(n)
3 .
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These SCMs can be represented through the temporal causal graphs given in Figure 13.

Figure 13: Temporal causal graphs which represent the causal relationships encoded by the SCMs.

However, if the graph membership of the samples is unknown, inferring a single causal graph to
explain the causal relationships from the dataset would result in spurious causal relationships. For
example, going by conditional independence tests, note that none of the nodes would be conditionally
independent of each other for any conditioning set. This is also exemplified in the output of the
PCMCI+ algorithm, where a fully connected graph is inferred as shown in Figure 14. Thus, it is
crucial to use a mixture distribution to model observational data coming from such heterogeneous
data distributions.

Figure 14: PCMCI+ output on the toy-example. The algorithm infers a fully connected graph with
many spurious causal relationships.
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