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Abstract

Although deep learning (DL) has received much attention in accelerated magnetic
resonance imaging (MRI), recent studies show that tiny input perturbations may
lead to instabilities of DL-based MRI reconstruction models. However, the ap-
proaches of robustifying these models are underdeveloped. Compared to image
classification, it could be much more challenging to achieve a robust MRI image
reconstruction network considering its regression-based learning objective, limited
amount of training data, and lack of efficient robustness metrics. To circumvent the
above limitations, our work revisits the problem of DL-based image reconstruction
through the lens of robust machine learning. We find a new instability source
of MRI image reconstruction, i.e., the lack of reconstruction robustness against
spatial transformations of an input, e.g., rotation and cutout. Inspired by this new
robustness metric, we develop a robustness-aware image reconstruction method
that can defend against both pixel-wise adversarial perturbations as well as spatial
transformations. Extensive experiments are also conducted to demonstrate the
effectiveness of our proposed approaches.

1 Introduction

Medical image reconstruction is a known problem in magnetic resonance imaging (MRI). The key
challenge lies in solving an inverse problem so as to enable the reconstruction of a high-quality
medical image from sub-sampled measurements that are readily be obtained from medical devices
[Lustig et al., 2008]. The conventional approach for solving the MRI image reconstruction problem
commonly resorted to sparse signal processing techniques [Lustig et al., 2008, Yang et al., 2010,
Huang et al., 2011], e.g., compressed sensing. The key enabling technique is to leverage sparsity-
inducing optimization [Bach et al., 2011], e.g., the least-squared problem penalized by ℓ1 norm. In
contrast to the direct optimization-based approaches, an increasing amount of recent works proposed
the deep learning (DL)-based MRI image reconstruction methods [Zhu et al., 2018, Liang et al., 2020,
Sriram et al., 2020]. With aid of DL models, the problem of image reconstruction is then solved as
supervised learning problem in which the reconstruction error between the ‘predicted’ high-quality
image and the train-time ‘reference’ image is minimized. In this work, our research falls into the
category of DL-based MRI image reconstruction.

The DL-based image reconstruction approaches can be roughly divided into three types. First, U-Net
[Ronneberger et al., 2015] and its many variants [Han and Ye, 2018, Lee et al., 2018] follow the
Encoder-Decoder based network architecture. Second, learning-to-optimize (L2O), which leverages
a recurrent neural network (RNN) to mimic an iterative optimization algorithm in problem solving
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[Chen et al., 2017], was adopted to unroll the optimization flow of sparse signal recovery for image
reconstruction [Yang et al., 2016, Aggarwal et al., 2018, Hosseini et al., 2020] Third, in addition
to supervised learning, state-of-the-art unsupervised learning approaches were leveraged to tackle
medical image reconstruction in the scarce data regime [Hu et al., 2021, Fabian et al., 2021].

In spite of the rapid growth in DL for medical image reconstruction, nearly all existing works focused
on tackling the problem of enhancing image reconstruction accuracy. However, a series of recent
works [Antun et al., 2020, Zhang et al., 2021] showed that the DL-based image reconstruction
network suffers a weakness: the lack of adversarial robustness. Specifically, it has been shown in
Antun et al. [2020] that an imagery input, at the presence of adversarial perturbations (which are
designed via adversarial learning, known as adversarial attack generation), can significantly hamper
the image reconstruction accuracy even if these perturbations are unnoticeable to human eyes. We
refer readers to Fig. 2(b) for a reconstructed image example using an DL-based approach when facing
adversarial input perturbations. Prior to the finding of the lack of adversarial robustness in image
reconstruction, the problem of adversarial learning has been extensively studied in the domain of
image classification [Goodfellow et al., 2014, Carlini and Wagner, 2017, Croce and Hein, 2020].
To defend such adversarial perturbations, the min-max optimization-based adversarial training (AT)
[Madry et al., 2017] provides a principled defensive method to robustify image classifiers. By contrast,
few work studied the problem of improving adversarial robustness for deep image reconstruction
networks, except Raj et al. [2020], Calivá et al. [2020] which were mainly built upon AT. Different
from the existing work, our contributions are summarized below.

• We show that in addition to adversarial perturbation, deep MRI image reconstruction models are
also vulnerable to tiny input spatial transformations.

• We develop a generalized adversarial training (GAT) approach that promotes robustness against
both adversarial input perturbations and input spatial transformations.

• We demonstrate the effectiveness of GAT on the MRI dataset [Aggarwal et al., 2018], showing our
improvement over the conventional standard training and adversarial training.

2 Preliminaries

In this section, we provide a brief background on the problem of accelerated MRI acquisition, and
the deep learning (DL) based MRI reconstruction method.
Accelerated multi-coil MRI acquisition In MRI , measurement of a patient’s anatomy is acquired
in the Fourier-domain, also known as the k-space, through receiver coils. In the setup of multi-coil
MRI acquisition, each coil will capture a different region of a targeted image, and will be assigned
with a complex-valued sensitive map, noted by Si. As a result, the k-space measurement y ∈ Cn of
a complex-valued ground truth image x∗ ∈ Cn is given by :

yi = PΩFSix
∗ + ni, i = 1, ..., N, (1)

where N is the number of coils, PΩ is a binary sampling mask that will be introduced later, F is the
two-dimensional Fourier-transform, and ni ∈ Cn is the additive noise arising in the measurement
process. In (1), the use of PΩ is for the purpose of accelerating the multi-coil MRI acquisition, since
obtaining the full-sampled measurements in the k-space is quite time-consuming. The 0s in PΩ

represents the frequencies that will not be sampled. We refer readers to Deshmane et al. [2012] for
more details on multi-coil MRI acquisition. Eventually, the multi-coil MRI acquisition process can
be formulated as the forward mapping below [Pruessmann et al., 2001]

yΩ = AΩx
∗ + n (2)

where yΩ denotes the sub-sampled multi-coil k-space measurements, AΩ denotes the forward
encoding operator which concatenates PΩFSi across all coils.
MRI reconstruction problem The goal of MRI reconstruction is to estimate the original image x∗

from the k-space measurement yΩ. The conventional solution to dealing with the MRI reconstruction
problem is to treat the problem as an inverse problem and then calls the regularized least-squared
method [Pruessmann et al., 2001, Sutton et al., 2003] . However, the state-of-the-art reconstruction
performance is achieved by a learning-based approach, especially for using deep models. In this
paradigm, we aim to learn a reconstruction network fθ, parameterized by θ, under a training data
set D. In the training set, the data ‘feature’ is given by the sub-sampled image z acquired from the
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k-space measurement directly, namely, z = AH
Ω yΩ, and the data ‘label’ is given by the original image

x∗. The rationale behind using z rather than yΩ is that the mapping from z and x∗ can be readily
achieved using a denoising-based neural network [Aggarwal et al., 2018] as the input resolution and
the output resolution remain the same. The deep learning (DL) based MRI reconstruction then seeks
the optimal network parameters θ by minimizing a certain training loss ℓ over the training dataset D:

min
θ

E(z,x∗)∈D [ ℓ(fθ(z),x
∗)] , (3)

where recall that fθ(z) and x∗ correspond to the network output image and the reference fully-
sampled image, respectively. In practice, a normalized ℓ1-ℓ2 loss [Knoll et al., 2020a] is commonly
used to specify ℓ, which is given by

ℓ(fθ(z),x
∗) =

∥fθ(z)− x∗∥2
∥x∗∥2

+
∥fθ(z)− x∗∥1

∥x∗∥1
. (4)

Fig. 1 shows the input sub-sampled image z, the reconstructed image obtained from the normally
trained model θNT by solving problem (3), and the full-sampled reference image x∗.

(a) input z (b) output fθNT(z) (c) ground truth x∗

Figure 1: Example of multi-coil MRI image reconstruction using Model-based deep learning architecture
[Aggarwal et al., 2018] under fastMRI knee [Knoll et al., 2020b] dataset by solving (3). We refer readers to
Sec. 5 for more implementation details.

3 The Lack of Robustness for DL-Based MRI Reconstruction

In this section, we will demonstrate two vulnerabilities of the DL-based MRI reconstruction network
to input ‘perturbations’. First, we echo the finding of Antun et al. [2020] that DL-based MRI
reconstruction is oversensitive to adversarial input perturbations, which are unnoticeable but carefully
crafted to worsen the reconstruction accuracy. Second, beyond Antun et al. [2020], we find that DL-
based MRI reconstruction also lacks robustness against input spatial transformations, e.g., flipping,
cutting-out, and rotation, even to a small degree. To the best of our knowledge, the vulnerability of
DL-based MRI reconstruction to spatial transformations of inputs is found for the first time.

Norm-constrained adversarial input perturbations Given a well-trained reconstruction network
fθNT

from (3), the norm-constrained adversarial attack was first established by Antun et al. [2020] in
the context of MRI image reconstruction. Following the same spirit of adversarial attack in image
classification [Goodfellow et al., 2014], the adversarially perturbed input is formulated as z+δ, where
δ denotes adversarial perturbations. The adversary then optimizes δ to degrade the reconstruction
performance. To this end, one can solve the optimization problem [Antun et al., 2020],

max
∥δ∥∞≤ϵ

ℓ(fθNT
(z+ δ), fθNT

(z)), (5)

where ∥ · ∥∞ denotes the ℓ∞ norm, ϵ > 0 is the perturbation budget, and ℓ signifies the reconstruction
loss, e.g., given by (4). The rational behind (5) is to learn δ so as to enlarge the discrepancy between
the model outputs at the perturbed input and the original input, respectively. To solve the optimization
problem (5), the standard projected gradient descent (PGD) [Madry et al., 2017] is commonly used. In
Fig. 2, we compare the image reconstruction results (when facing the benign input and the adversarial
perturbed input, respectively) with the full-sampled reference image x∗. To generate the adversarial
perturbations δ, we use PGD to solve (5) with ϵ = 0.03/255.

Spatial transformation-based input perturbations. We next introduce a non-norm-constrained
adversarial perturbations by leveraging input spatial transformations, e.g., flipping, cutting-out, and
rotation. We ask: Will DL-based MRI reconstruction network be robust against heuristics-based input
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(a) fθNT(z) (b) fθNT(z+ δ) (c) ground truth x∗

Figure 2: Example of MRI image reconstruction based on the benign input z and the adversarial input z+ δ,
versus the reference image x∗.

transformations? Different from adversarial perturbations that are determined by solving (5), the
input transformations are randomly generated. Let T : Cn → Cn denote a transformation operation,
the perturbed input is then given by

z′ = T (z). (6)

Associated with (6), the desired reference image will become T (x∗). Given the normally trained
network fθNT

, we find that there exists a large discrepancy between fθNT
(T (z)) and its reference

image T (x∗). An example is shown in Fig. 3, where a rotation of 180◦ is applied to the input image
z. Moreover, by comparing fθNT

(T (z)) with fθNT
(z+ δ) in Fig. 2, we observe that DL-based MRI

reconstruction lacks robustness against not only optimization-based adversarial perturbations but also
heuristics-based input transformations.

(a) input z′ (b) fθNT(T (z)) (c) ground truth T (x∗)
Figure 3: Example of MRI reconstruction at the spatially transformed input (by rotating 180◦), the output
image, and the reference image.

4 Towards Unified Robustness of MRI Reconstruction

In this section, we will develop novel training protocols to acquire robust DL-based MRI reconstruc-
tion networks against both adversarial perturbations and input transformations. To defend adversarial
perturbations, the min-max optimization (MMO)-based adversarial training (AT) recipe will be used
following the same spirit of robust image classification [Madry et al., 2017]. However, we will show
that AT lacks efficacy to improve robustness against input transformations. Spurred by that, we will
then propose a generalized AT approach that can incorporate data augmentations for ‘free’, namely,
without needing additional data annotations.

Adversarial training (AT) AT adopts MMO as the algorithmic backbone, where the worst-case
(maximum) training loss is minimized by incorporating a synthesized attack during model training.
For robust image classification, AT has been poised the only effective defense method [Athalye et al.,
2018] against the adversarial input perturbations. Based on MMO, problem (3) can be modified as

min
θ

E(z,x∗)∈D max
∥δ∥∞≤ϵ

[ ℓ(fθ(z+ δ),x∗)] , (7)

where the training loss is given by (4). Compared to (3), the attack generation problem (5) is infused
into (7) as an inner maximization problem. To solve problem (7), the alternating gradient ascent-
descent method [Madry et al., 2017] is commonly used. For ease of presentation, let θAT denote the
model parameters obtained from (7). This is in contrast to θNT obtained by the normal training over
(3). In Fig. 4, we demonstrate an example to compare the reconstruction performance of fθAT(z+ δ)
and that of fθNT(z+δ) when facing adversarial perturbations. Meanwhile, we show the performance
of these different models against input transformations. As we can see, AT largely enhances the
robustness of MRI reconstruction against adversarial input perturbations. However, it is insufficient
to robustify the reconstruction network against the input transformations; see Fig. 4-(c).
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(a) fθNT(z+ δ) (b) fθAT(z+ δ) (c) fθAT(T (z))

Figure 4: Comparison of MRI reconstruction: (a) The normally trained network fθNT at the benign input, (b)
the AT model fθAT at the adversarially perturbed input, (c) the AT model fθAT at the transformed input (by
rotation of 180◦). we rotate it 180◦ for easier comparison with others.

Generalized AT (GAT) with data augmentation Spurred by the lack of robustness of AT against
input transformations, we ask if the transformed data can be infused into the AT framework. Mean-
while, such integration of AT with data augmentation is expected to be as simple as possible without
needing additional data annotations. To this end, we can augment the training data set D with the
newly paired transformed data D̃ = {T (z), T (x∗)}(z,x∗)∈D. In this context, we will generalize AT
into the following regularized optimization framework

min
θ

E(z,x∗)∈D∪D̃ [ℓ(fθ(z),x
∗)]︸ ︷︷ ︸

augmented normal training

+ γ E(z,x∗)∈D∪D̃ max
∥δ∥∞≤ϵ

[ ℓ(fθ(z+ δ), fθ(z))]︸ ︷︷ ︸
robustness regularization

,
(8)

where γ > 0 is a regularization parameter to strike a balance between normal training and robust
training. Different from (7), we explicitly introduce an augmented standard training objective to
improve the reconstruction accuracy when facing input transformations, and we introduce a ‘label-
free’ robust regularization that penalizes the discrepancy between the normal reconstruction and the
adversarial reconstruction. This robustness regularization is commonly used to tradeoff the standard
model accuracy and the model robustness [Zhang et al., 2019].

To solve (8), one major difficulty is how to select the proper data transformation operations T (·) to
construct D̃. Motivated by the success of data augmentation in improving distributional robustness
of image classification [Geirhos et al., 2018, Hendrycks et al., 2019], we consider the following
three representative data transformation operations: rotation [Taylor and Nitschke, 2018], cutout
[DeVries and Taylor, 2017], and cutmix [Yun et al., 2019]; see Fig. A1 for an illustrative example.
The rationale behind these augmentation operations is that invariant deep features used for image
reconstruction can be learned against spatial perturbations,e.g. , occlusion, translation, and rotation.
Our experiments in Sec. 5 will show that the combination of these augmentation operations can lead
to a superior robustness to input transformations. Meanwhile, the model learned from (8) (denoted by
θGAT) also maintains robustness against adversarial input perturbations like AT (see Fig. 5).

(a) fθGAT(z) (b) fθGAT(T (z)) (c) fθGAT(z+ δ)

Figure 5: Example of MRI reconstruction using GAT, which leads to the satisfactory reconstruction performance
against the benign input z as well as the perturbed inputs T (z) and z + δ.we rotate output at T (z) 180◦ for
easier comparison with others.

5 Experiments

5.1 Experiment Setup

Datasets and model architecture In this paper, we focus on the Fully-sampled coronal proton
density knee MRI dataset with 15-channel coils, which were obtained from the fastMRI database
[Knoll et al., 2020b]. The image size is 320× 368. In our paper, we used the unrolling-based image
reconstruction model MoDL [Aggarwal et al., 2018].
Training setup All of our models were trained in an end-to-end fashion using the Adam optimizer
with learning rate 1× 10−4 and batch size 1. When implementing AT and GAT, we used the 10-step
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PGD attack [Madry et al., 2017] with ϵ = 0.03/255 for solving the inner maximization problem.
When generating the transformed dataset D̃ in GAT, we sampled one transformation operation for
each original data sample from the random cutout, random cutmix, and rotate 180◦ uniformly. And
we choose the regularization parameter γ = 3 in the implementation of GAT (8).
Evaluation metrics In our paper, we used both normalized mean squared error (NMSE) and
structural similarity index measure (SSIM) to evaluate the quality of reconstructed images. The higher
SSIM signifies higher quality reconstruction results, while the higher NMSE represents the lower
quality of image reconstruction. To evaluate the robustness and accuracy of a model, we evaluate its
performance when facing three types of test-time inputs: 1) Benign test input z, which corresponds
to the standard reconstruction accuracy; 2) Adversarial test input (z + δ), which is generated
using the 20-step PGD attack with ϵ = 0.03/255 and corresponds to the adversarial robustness; 3)
Transformed test input T (z): model’s robustness against input spatial transformations.

5.2 Experiment results

Table 1: NMSE and SSIM results achieved by differ-
ently trained models, including NT (normal training), AT
(adversarial training), and GAT (ours). The relative improve-
ment/degradation with respect to NT is shown.

MRI reconstruction results on FastMRI

Method
benign test input

(z)
adversarial test input

(z+ δ)
transformed test input

(T (z))
NMSE SSIM NMSE SSIM NMSE SSIM

NT 0.0013 0.9442 0.4952 0.4392 0.6824 0.7577
AT +0.0014 -0.0478 -0.4900 +0.3827 -0.5530 +0.0354

GAT +0.0017 -0.0521 -0.4892 +0.3748 -0.6619 +0.0790

Reconstruction accuracy and robustness
We compared our proposed GAT with NT
and AT. The overall quantitative results are
shown in Tab. 1. As we can see, GAT
is the most robust model against spatial
transformation-based perturbations, with-
out sacrificing much on accuracies against
adversarial test inputs and benign test in-
puts. These suggest that our proposed GAT
improves robustness against adversarial per-
turbation and spatial transformation-based perturbation with a slight standard accuracy drop.

Table 2: NMSE and SSIM results achieved by GAT
under different data augmentation methods. The relative
performance is shown with respect to NT.

Comparison of different augmentation methods

Method
benign test input

(z)
adversarial test input

(z+ δ)
transformed test input

(T (z))
NMSE SSIM NMSE SSIM NMSE SSIM

NT 0.0013 0.9442 0.4952 0.4392 0.6824 0.7577
GAT(cutout) +0.0014 -0.0502 -0.4896 +0.3824 -0.6262 +0.0777
GAT(cutmix) +0.0014 -0.0526 -0.4894 +0.3731 -0.6183 +0.0668
GAT(rotation) +0.0028 -0.0535 -0.4877 +0.3180 -0.6593 +0.0476

GAT +0.0017 -0.0521 -0.4892 +0.3748 -0.6619 +0.0790

Effect of data augmentations Next, we in-
vestigate how the choice of data augmentation
affects model robustness. Tab. 2 shows the
NMSE and SSIM performance of our approach
(GAT) using different data augmentation strate-
gies: cutout-only, cutmax-only, rotation-only,
and their combination. As we can see, each
transformation operator used in GAT can im-
prove the robustness against the spatial input
transformations. However, the integration of all three transformation types into GAT achieves the
best robustness at transformed test inputs. Meanwhile, we find that the use of cutout-only is able to
achieve a great tradeoff with the improvement in adversarial robustness.
Visualization of reconstructed MRI images Fig. A2 shows examples of reconstructed MRI
images using different approaches when facing different types of a test-time examples. For ease of
comparison, we apply the inverse spatial transformation to the reconstruction result of a spatially-
transformed input. As shown in Fig. A2-(b), (d), and (e), there exist less visible artifacts in the
reconstruction results of our GAT-trained model. Compared to NT, both AT and GAT significantly
improves model robustness against adversarial perturbations. While Fig. A2-(a), (d), and (g) suggest
that there might exist an accuracy-robustness tradeoff.

6 Conclusion

In this paper, we investigate the problem of adversarial robustness of DL-based MRI image re-
construction. We show that a deep image reconstruction model is highly susceptible to not only
pixel-level adversarial perturbations but also input spatial transformations, e.g., cropping and rota-
tion. To improve the resilience of MRI image reconstruction, we propose a generalized adversarial
training method that is built upon a new robustness regularization metric by taking into account
both adversarial perturbations and data transformations. We show that our proposal is effective in a
fastMRI dataset by comparing with state-of-the-art baselines under a variety of evaluation metrics. In
the future, we would like to generalize our approach to the self-supervised learning paradigm, and
improve its computation efficiency through more lightweight robust training protocols.
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A Appendix

A.1 Transformation operations

In this section, we provide some illustrations for different data transformation operations.

(a) cutout (b) cutmix (c) rotation
Figure A1: Examples for different data transformation operations.

A.2 Results visualization

(a) fθNT(z) (b) fθNT(T (z)) (c) fθNT(z+ δ)

(d) fθAT(z) (e) fθAT(T (z)) (f) fθAT(z+ δ)

(g) fθGAT(z) (h) fθGAT(T (z)) (i) fθGAT(z+ δ)
Figure A2: Visualization of MRI reconstructed images. Row 1: NT; Row 2: AT; Row 3: GAT.
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