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Abstract

The Link Prediction is the task of predicting001
missing relations between entities of the knowl-002
edge graph. Recent work in link prediction has003
attempted to provide a model for increasing004
link prediction accuracy by using more layers005
in neural network architecture. In this paper, we006
propose a novel method of refining the knowl-007
edge graph so that link prediction operation008
can be performed more accurately using rela-009
tively fast translational models. Translational010
link prediction models, such as TransE, TransH,011
TransD, have less complexity than deep learn-012
ing approaches. Our method uses the hierarchy013
of relationships and entities in the knowledge014
graph to add the entity information as auxil-015
iary nodes to the graph and connect them to the016
nodes which contain this information in their hi-017
erarchy. Our experiments show that our method018
can significantly increase the performance of019
translational link prediction methods in H@10,020
MR, MRR.021

1 Introduction022

Knowledge graphs represent a set of interconnected023

descriptions of entities, including objects, events,024

or concepts. These graphs are structures by which025

knowledge is stored in triples. These triples include026

the three parts head, relation, and tail. The relation027

determines the type of relationship between head028

and tail. These graphs are becoming a popular029

approach to display and model different informa-030

tion in the world. Additionally, knowledge graphs031

have several applications, for example, question032

answering systems (Bordes et al., 2014a,b), rec-033

ommendation systems (Zhang et al., 2016), search034

engines (Xiong et al., 2017), relationship extraction035

(Mintz et al., 2009), etc.036

Despite many efforts to build knowledge graphs,037

they are not complete yet. For example, in the038

Freebase (Bollacker et al., 2008), over 70% of peo-039

ple do not have their place of birth in the graph.040

This incompleteness of knowledge graphs has mo- 041

tivated researchers to add information to the graph 042

and complete it. 043

One of the developing fields in completing the 044

knowledge graph is knowledge graph embedding 045

(KGE). The task of KGE is to embed entities and 046

relationships in a small continuous vector space. 047

One application of these embedding is to predict 048

missing links in the knowledge graph. 049

Translational link prediction models use the sum 050

of the head and relation vectors to predict the tail. 051

These models started with TransE (Bordes et al., 052

2013), and after that, TransH (Wang et al., 2014), 053

TransR (Lin et al., 2015), TransD (Ji et al., 2015), 054

RotatE (Sun et al., 2019), etc., tried to improve it 055

in the following years. The advantages of transla- 056

tional methods over deep learning techniques are 057

that they are robust, and their score function is con- 058

siderably faster. Therefore, in this work, we tried 059

to improve these translational methods. 060

There is a lot of information in knowledge 061

graphs. The hierarchy of entities and relationships 062

is part of it. Paris, for example, its hierarchy is 063

“entity→ physical_entity→ object→ location→ 064

region→ area→ center→ seat→ capital→ 065

national_capital”. This hierarchy is not given 066

enough attention in link prediction methods, and 067

we intend to use this information in this paper. 068

SACN (Shang et al., 2019) added some nodes 069

and relationships to the graph to use the graph struc- 070

ture information but did not justify adding these 071

nodes and edges, so it is not generalizable for other 072

graphs. In addition, SACN added this information 073

only to FB15k-237 and did not provide a method 074

for WN18RR. In this paper, we added a much 075

smaller number of relationships and fewer nodes 076

to the graph training section by interpreting them. 077

HRS (Zhang et al., 2018) used relation clusters and 078

sub-relations to use this information. Nevertheless, 079

like SACN, this can not be generalized well. 080

The ETE (Moon et al., 2017) considered that if 081
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two entities are embedded closely in the embed-082

ding space, they are similar and assigned entities’083

classes based on closeness. Still, our assumption084

is if two entities use the same relation in the graph085

or have common elements in their hierarchies, they086

are related.087

When link prediction models learned the rela-088

tion between Paris and France, previous link pre-089

diction methods did not notice that Paris is a city090

and France is a country. To use this information,091

we added auxiliary nodes to the graph that included092

the classes of entities and connected them to related093

entities. For example, we added an extra node for094

countries to the knowledge graph and connected it095

to all the knowledge graph countries. Our contribu-096

tions are as follows:097

• We presented a method for refining the knowl-098

edge graph, which is independent of the struc-099

ture of the link prediction model and adds100

triples to the knowledge graph. These triples101

increase the accuracy of translational link pre-102

diction with the same time and space complex-103

ity of translational models.104

• We evaluated our proposed method on two105

FB15k-237 and WN18RR datasets with suc-106

cessful translational models. The results107

showed that accuracy in link prediction was108

significantly increased on H@10, MRR, and109

MR.110

2 Related Work111

Knowledge graph embedding is an active and de-112

veloping field to embed the entities and relations113

of the knowledge graph. These embeddings are114

used in link prediction, question answering sys-115

tems, relation extraction, etc. Knowledge graph116

link prediction starts with TransE (Bordes et al.,117

2013), which is the first translational link predic-118

tion method. It interprets relation as a transition119

from head entity to tail in the graph. Some draw-120

backs of the TransE model are its inability to model121

N-1, 1-N, and N-N relationships. In the following122

years, some other translational approaches, such123

as TransH (Wang et al., 2014), TransD (Ji et al.,124

2015), and TransR (Lin et al., 2015), were inspired125

by the initial idea of TransE (Bordes et al., 2013)126

and tried to improve it. These translational models127

have much more speed against deep learning mod-128

els such as ConvE (Dettmers et al., 2018), ConvKB129

(Nguyen et al., 2018), SACN (Shang et al., 2019),130

and HAKE (Zhang et al., 2020), but their accu- 131

racy is slightly lower than these models. Therefore, 132

we proposed a method to increase the accuracy of 133

these translational models. 134

Knowledge graph refinement is a field of correct- 135

ing or improving the knowledge graph. BioKG 136

(Zhao et al., 2020), which worked on medical 137

graphs, has tried to provide a method for remov- 138

ing the wrong information in these graphs. Other 139

works in the refinement of the knowledge graphs try 140

to add information. SACN (Shang et al., 2019) has 141

also added attributes to the knowledge graph, like 142

our work. SACN proposed FB15k-237_Attr; this 143

method for constructing this dataset has three ma- 144

jor issues. First, it only worked for FB15k-237, but 145

our proposed method can be applied on WN18RR 146

as well. Second, it has brought the number of 147

FB15k-237 relations from 237 to 484; therefore, it 148

brings more time complexity than ours. However, 149

we only proposed two new relations for FB15k-237 150

and only one relation for WN18RR. Third, these 151

new relations and entities are not interpretable in 152

SACN; It does not provide a reason for adding 153

these attributes. So it can not be generalized on 154

other graphs. 155

HRS (Zhang et al., 2018) tried to use sub-relation 156

and relation-cluster to make better predictions. It 157

used the hierarchy of relations as a sub-relationship, 158

and it created a relation cluster to use these as 159

two additional parts of the transition in the trans- 160

lational models. Because links in Wordnet do not 161

have information about entities, HRS sub-relation 162

and relation-cluster on Wordnet are meaningless. 163

GrCluster (Ranganathan et al., 2020) used path 164

similarity over entities in Wordnet and slightly im- 165

proved link prediction accuracy. Nonetheless, Gr- 166

Cluster only improved WNNH and WN18, which 167

are not standard link prediction datasets (Dettmers 168

et al., 2018). 169

3 Background 170

Suppose E as the collection of all entities of knowl- 171

edge graph and R set of all its relationships. The 172

(es, r, eo) is called a triple. The es ∼ E is the head, 173

and eo ∼ E is the tail of a triple. Finally, r ∼ E 174

represents the relation between es and eo. 175

3.1 Link Prediction 176

Link prediction is the task of predicting the missing 177

link of a knowledge graph by inferring from exist- 178

ing facts on it. The score function of link prediction 179
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methods is ψ(eo, r, es), which evaluates triple’s ac-180

curacy. Our goal in teaching a model that has the181

highest estimation for the missing triplets of the182

graph and the lowest prediction for false triples.183

3.2 Translational Link Prediction Models184

Translational link prediction methods consider185

the relation as a transition from head to tail. For186

example (Paris, Capital of, France), the relation187

“Capital of” is a transition from Paris to France.188

TransE (Bordes et al., 2013) is the first translational189

link prediction model. In TransE, embeddings190

for correct triples are learned as es + r ∼ eo. It191

means that the sum of the head’s embedding and192

relation’s embedding must be close to the tail;193

primarily, the distance measure is the L2 norm.194

Here are some translational link predictions:195

196

TransE: For factual triple (es,r,eo), adding em-197

beddings of head and relation should be closed to198

the tail embedding, and on the other hand, for cor-199

rupted ones (es,r,eo′), es+r should have a distance200

with eo′. The score function of TransE is as follow:201

ψ(eo, r, es) = −||h+ r − t||22202

TransH (Wang et al., 2014): To improve modelling203

of N-1, 1-N and N-N, TransH defined a hyperplane204

for each relations, and translation property should205

be established on that hyperplane.206

h⊥ = w⊥
r hwr , t⊥ = w⊥

r twr207

ψ(eo, r, es) = −||h⊥ + r − t⊥||22208

TransD (Ji et al., 2015) : It creates a dynamic209

matrix for all entity-relation pairs and maps the210

head and tail into M1 and M2, respectively. The211

transition from head to tail is as follow:212

M1
r = wrw

⊥
h + I , M2

r = wrw
⊥
t + I213

h⊥ =M1
r h , t⊥ =M2

r t214

ψ(eo, r, es) = −||h⊥ + r − t⊥||22215

TransR (Lin et al., 2015) : It considers that entities216

may have multiple aspects, and various relations217

focus on different aspects of entities. It projects218

entities into relation space by projection matrix M.219

h⊥ =Mrh , h⊥ =Mrt220

ψ(eo, r, es) = −||h⊥ + r − t⊥||22221

RotatE (Sun et al., 2019) : RotatE deals with rela-222

tion as a rotation to complex space. This rotation223

brings the source entity to the target entity in the 224

complex space. The relation applies to the head 225

entity by Hadamard product. Then it uses the L1 226

norm to measure the distance from the tail entity in 227

the score function. 228

ψ(eo, r, es) = −||h◦r − t⊥||2 229

3.3 Knowledge Graph Refinement 230

The knowledge graph refinement follows two main 231

objectives: (A) adding information to the knowl- 232

edge graph, a subcategory of the knowledge graph 233

completion. (B) Detecting incorrect information 234

and removing those triplets from the knowledge 235

graph to increase the correctness of the knowledge 236

graph (Pipino et al., 2002). In this work, we add 237

information to enrich the graph. 238

4 KGRefiner 239

In this work, we propose a method to add infor- 240

mation to the graph, which refines the knowledge 241

graph and increases link prediction accuracy. In 242

FB15k-237, we do this refinement by using relation 243

hierarchies, and in WN18RR, we use hierarchies 244

of entities. We add this information to the graph as 245

a new node; these nodes are auxiliary nodes. We 246

introduce several new relations to connect these 247

new nodes to graph nodes, and we add these triples 248

to the graph. 249

Translational link prediction methods such as 250

TransE (Bordes et al., 2013), TransH (Wang et al., 251

2014), TransD (Ji et al., 2015), etc., create transi- 252

tion property in their embeddings. For example, in 253

TransE, embeddings are made as follow: 254

es + r ≈ eo (1) 255

This means in embedding space; the tail entity 256

should be close to the sum of head and relation. 257

For example, let’s consider these triples: 258

Paris+ capitalof ≈ France (2) 259

Tehran+ capitalof ≈ Iran (3) 260

Link prediction model is not aware of both tails en- 261

tities are country. If we add new node as “country” 262

to the graph and connect it to all graph’s countries 263

with a new relation “RelatedTo” then these triples 264

are added to graph: 265

France+RelatedTo ≈ country (4) 266

Iran+RelatedTo ≈ country (5) 267
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Dataset FB15k-237 FB15k-237-Refined WN18RR WN18RR-Refined FB15k-237-Attr
Entities 14541 14826 40943 41150 14744
Relations 237 239 11 12 484
Train Edges 272115 550998 86835 230135 350449
Val. Edges 17535 17535 3034 3034 17535
Test Edges 20466 20466 31134 31134 20466

Table 1: Statistics of the experimental datasets. The refined version represents that graph has some auxiliary nodes.
These auxiliary nodes are extracted from entities hierarchy in the original knowledge graph.

Figure 1: Simple illustration of changes in embedding space. The left diagram shows how entities and relations are
embedded in the embedding space. The right side graph shows the effect of adding auxiliary nodes (Lime green
nodes) to the graph, which translational models bring all countries together and cities together in vector space.

Equations 4 and 5, which are similar, bring268

closer the embeddings of France and Iran, which269

are semantically identical. Figure 1 gives an il-270

lustration of what changes KGrefiner brings for271

the embedding space. This closeness in evaluating272

Equation 2 causes the model to search between273

countries when asked where France’s capital is.274

4.1 Refinement of FB15k-237275

In FB15k-237, graph relations contain in-276

formation about entities. For example, the277

“entity→ physical_entity→ object→ location→278

region→ area→ center→ seat→ capital→279

national_capital” is a relationship between280

countries and cities, and nodes on one side of281

relationships can be considered similar. Higher282

levels usually have more general information283

about objects in the hierarchy, and lower levels284

have more specific, so we extracted the last three285

levels of hierarchies from each relation in this286

graph to use this information. Then, for each287

sub-relation, we counted the number of repetitions288

in the graph training section. We removed those289

components with less than 100 repetitions in the290

graph to reduce the number of these sub-relations,291

and the number 100 is arbitrary. Finally, 285292

sub-relations remained, which we added to the 293

set of entities in this graph (as new nodes). We 294

call these auxiliary nodes relation-nodes. We 295

defined two new relations, “RelatedTo” and 296

“HasAttribute”, to connect these relation-nodes 297

to the graph. For each triple, if the entity is the 298

triple’s head, we linked it with relation-node by 299

“RelatedTo”, and if it is the tail of the triple, we 300

use “HasAttribute” to establish these connections. 301

For example, to refine relation between Paris 302

and France, (Paris,“entity→ physical_entity→ 303

object→ location→ region→ area→ center→ 304

seat→ capital→ national_capital”,France), “cap- 305

ital” has repetition over 100, so the following 306

triples were added to the graph: 307

France+HasAttribute ≈ capital 308

Paris+RelatedTo ≈ capital 309

4.2 Refinement of WN18RR 310

To refine this graph, we use the hierarchy of enti- 311

ties. In Freebase, we used relationships, but rela- 312

tionships do not give us information about entities 313

in Wordnet. France, for example, has a hierarchy of 314

“existence → place → region → region → ad- 315

ministrative region → country → France”. This 316
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Baseline H@10 MR MRR
TransE 45.6 347 29.4

TransE + Attribute 47.6 221 28.8
TransE + KGRefiner 47 203 29.1

TransD 45.3 256 28.6
TransD + Attribute 48.2 227 28.5

TransD + KGRefiner 43.7 227 24
RotatE 47.4 185 29.7

RotatE + Attribute 43.8 218 27.3
RotatE + KGRefiner 43.9 226 27.9

TransH 36.6 311 21.1
TransH + Attribute 47.7 237 28.2

TransH + KGRefiner 48.9 221 30.2

Table 2: Link prediction results on FB15k-237 and its refined version. Results of TransE is taken from (Nguyen
et al., 2018), TransH and TransD from (Zhang et al., 2018), but for RotatE we used OpenKE (Han et al., 2018) to
produce scores. For other rows, we also used OpenKE to get the scores.

Baseline H@10 MR MRR
TransE 50.1 3384 22.6

TransE + KGRefiner 53.7 1125 22.2
TransH 42.4 5875 18.6

TransH + KGRefiner 51.4 1534 20.8
TransD 42.8 5482 18.5

TransD + KGRefiner 52.3 1348 21.4
RotatE 54.7 4274 47.3

RotatE + KGRefiner 57.0 683 44.8

Table 3: Link prediction results on WN18RR and its refined version. Results of TransE is taken from (Nguyen et al.,
2018), TransH and TransD from (Zhang et al., 2018). For other results, we used OpenKE (Han et al., 2018) to
produce them.

hierarchy gives us good information about France.317

Except for the last level, we extract the other last318

three levels of entities. Among these levels, we319

hold those with more than an arbitrary number of320

50 repetitions among entities to reduce these levels.321

As a result, 207 levels remained. We add these322

levels as new nodes to the graph training section323

and connect them to the entities with these levels324

in their hierarchy with a new type of connection.325

In this graph, we define a new relation and name it326

“HasAttribute”. For example, France and Iran have327

a “country” in their hierarchical structure. Then,328

the following triples were added to the training329

section of the graph:330

France+HasAttribute ≈ country331

Iran+HasAttribute ≈ country332

5 Exprement 333

5.1 Datasets 334

We evaluated our work on popular benchmarks: 335

FB15k-237 and WN18RR; these datasets are re- 336

spectively refined from real knowledge graphs: 337

WordNet (Miller, 1995) and Freebase (Bollacker 338

et al., 2008). In addition, we built two other 339

datasets with KGRefiner: FB15k-237-Refined and 340

WN18RR-Refined, respectively, from FB15k-237 341

and WN18RR. The details of the datasets are 342

shown in Table 1. 343

5.2 Baselines 344

To demonstrate the effectiveness of our models, we 345

compare results with the original translational mod- 346

els TransE (Bordes et al., 2013), TransH (Wang 347

et al., 2014), TransD (Ji et al., 2015), and the last 348

translational model, RotatE (Sun et al., 2019). 349

In addition, we used FB15k-237-Attr (Shang et al., 350

2019) to compare our work with other data aug- 351

5



Model
Time for

single epoch
TransE (Bordes et al., 2013) [⊕] 2.8 s
TransH (Wang et al., 2014) [⊕] 5.2 s
TransD (Ji et al., 2015) [⊕] 5.2 s
RotatE (Sun et al., 2019) [⊕] 5 s
ConvE
(Dettmers et al., 2018) [⊖] 279 s
ConvKB
(Nguyen et al., 2018) [⊖] 40 s

Table 4: Comparison between translational technique
and deep learning methods in training time. [⊕]: These
models are implemented by OpenKE (Han et al., 2018)
and [⊖] are produced by their original implementations.

mentation methods as base models plus attribute.352

For WN18RR, GrCluster (Ranganathan et al.,353

2020) tried to improve link prediction on word-354

net by using hierarchical data using path similarity.355

Nevertheless, their report did not show improve-356

ment onWN18RR.357

5.3 Experimental Settings358

We used implementation of baselines by OpenKE359

(Han et al., 2018). We used an embedding dimen-360

sion of 200 for all models. Also, we removed361

self adversarial negative sampling from TransE362

and RotatE to have a fair comparison. We tried363

{200, 500, 1000, 2000} epochs, and we picked364

the best epoch according to MRR on the valida-365

tion set. Other hyperparameters of the models366

are those mentioned in OpenKE. Hyperparameters367

for FB15k-237 and FB15k-237-Refined and also368

WN18RR and WN18RR-Refined are the same.369

5.4 Experimental Results370

Table 2 and 3 compares the experimental results of371

our KGRefiner plus translational models and with372

previously published results. Results in bold font373

are the best results in the group, and the underlined374

results denote the best results in the column. KGRe-375

finer with TransH obtains the highest H@10 and376

MRR on FB15k-237, and also KGRefiner with Ro-377

tatE reached the best MR and H@10 in WN18RR.378

379

5.5 Speed of Models380

The training time of translational models is much381

less than deep learning approaches such as ConvE,382

SACN, ConvKB, etc. The complexity in scoring383

function and neural network layers in their architec- 384

ture reduces training speed in deep learning meth- 385

ods. Table 4 compares the time that each model 386

needs to be trained for one epoch on FB15k-237. 387

We ran models on Nvidia K80. For fair comparison 388

embedding dimension for all models is 200. These 389

models usually need 1000 epochs, so the runtime 390

difference between TransE and RotatE is around 391

35000s for FB15k-237. 392

6 Conclusion 393

In this paper, we propose KGRefiner, a novel 394

knowledge graph refinement method that alleviates 395

the limitations of translational models by capturing 396

additional information in knowledge graph hier- 397

archies. We used hierarchy components as new 398

nodes, and by connecting these nodes to proper 399

entities in the knowledge graph, we have a more 400

informative graph. Our experimental results show 401

that our KGRefiner outperforms other state-of-the- 402

art translational models on two benchmark datasets 403

WN18RR and FB15k-237. Furthermore, it is the 404

first augmentation method that works with both 405

Wordnet and Freebase, while old methods only per- 406

form only on one dataset. 407

In future works, we will expand our work on 408

datasets that can be formulated on the triple struc- 409

ture. For example, recommender system datasets 410

can be formed on graph schema, and KGRefiner 411

can be applied. Additionally, KGRefiner cannot 412

improve the accuracy of deep learning methods; 413

therefore, another study is needed to enhance deep 414

models by using ontological information. 415
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