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Discrete Policy: Learning Disentangled Action Space
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Fig. 1: Visualization of Discrete Policy. The t-SNE visualization of feature embeddings from Discrete Policy reveals
that skills across different tasks cluster closely together. This pattern suggests that discrete latent spaces are capable of
disentangling the complex, multimodal action distributions encountered in multi-task policy learning.

Abstract— Learning visuomotor policy for multi-task robotic
manipulation has been a long-standing challenge for the
robotics community. The difficulty lies in the diversity of
action space: typically, a goal can be accomplished in multiple
ways, resulting in a multimodal action distribution for a
single task. The complexity of action distribution escalates
as the number of tasks increases. In this work, we propose
Discrete Policy, a robot learning method for training universal
agents capable of multi-task manipulation skills. Discrete Policy
employs vector quantization to map action sequences into a
discrete latent space, facilitating the learning of task-specific
codes. These codes are then reconstructed into the action
space conditioned on observations and language instruction. We
evaluate our method on both simulation and multiple real-world
embodiments, including both single-arm and bimanual robot
settings. We demonstrate that our proposed Discrete Policy
outperforms a well-established Diffusion Policy baseline and
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many state-of-the-art approaches, including ACT, Octo, and
OpenVLA. For example, in a real-world multi-task training
setting with five tasks, Discrete Policy achieves an average
success rate that is 26 % higher than Diffusion Policy and 15%
higher than OpenVLA. As the number of tasks increases to 12,
the performance gap between Discrete Policy and Diffusion
Policy widens to 32.5%, further showcasing the advantages
of our approach. Our work empirically demonstrates that
learning multi-task policies within the latent space is a vital
step toward achieving general-purpose agents. Our project is
at https://discretepolicy.github.io,

I. INTRODUCTION

In the realm of robotics, the ability to train robots for
multi-tasking operations presents significant challenges that
stem from the inherent complexity of handling diverse tasks
simultaneously [1]. Traditional robotic systems often focus
on specialized tasks, but the dynamic environments in which
modern robots operate demand versatile functionalities that
can adapt to various situations.

However, the unique challenges of predicting robotic ac-
tions — such as multimodal action distributions, sequential
correlations, the need for high precision, and noise in expert
demonstration data — make learning a single task through
imitation learning a formidable problem. When extending
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this approach to multi-task imitation learning, these chal-
lenges intensify. The tasks may involve a mixture of short-
, medium-, and long-horizon objectives of varying lengths,
further complicating the action space. This complexity results
in an entangled, more diverse multimodal action distribution
as the characteristics of single tasks merge. This fusion ex-
acerbates the difficulty of accurately learning and executing
multiple tasks simultaneously. Naive imitation learning, such
as Behavior Cloning [2] and Diffusion Policy [3], directly
maps the observation and instruction to the action space. This
mapping operates on the task-entangled dimension, which
makes it hard for the policy network to distinguish different
tasks from them, not to mention learning precise behavior.

In this work, we present Discrete Policy, a framework
for multi-task visuomotor policy learning. Discrete Policy
consists of two components: a vector-quantized variation
autoencoder (VQ-VAE) and a conditional diffusion model.
During training, the VQ-VAE is used to project the action
sequence into discrete latent space and extract the discrete
action modal abstraction z for the current task. This z
represents the latent feature embedding of the current task.
Then, a conditional diffusion model is leveraged to conduct
the denoising process in the discrete latent space. Finally, the
task-specific latent embedding is mapped to the decoder of
VQ-VAE to reconstruct the action space, conditioned on the
observation and language instruction.

To illustrate our method, we present a visualization that
employs t-SNE [4] to demonstrate the feature embedding of
Discrete Policy on training with five real-world tasks, which
is shown in Figure (1| Intriguingly, we find that tasks with
similar characteristics are located in proximity to each other.
For example, the feature embeddings on the left primarily
represent the skills associated with “placing”, while those at
the bottom correspond to “picking” skills. These skills, which
appear across various tasks, have closely situated feature
embeddings, yet they still maintain discernible boundaries
between them. Our observations suggest that a discrete latent
space may be more effective for disentangling tasks and
skills in policy learning. We conducted experiments across
simulation and real-world data, including 23 tasks from
RLBench, 12 tasks from single-arm robots, and 5 tasks
from bimanual robots. These task types range from simple
object pick-and-place operations to more complex, contact-
rich manipulations like placing objects into a drawer. Our
results demonstrate that our method, Discrete Policy, signifi-
cantly outperforms Diffusion Policy [5], a strong baseline,
by a considerable margin. Notably, the performance gap
between Discrete Policy and Diffusion Policy widens as the
number of tasks incorporated into the training increases.
Our approach also shows superior performance over multiple
state-of-the-art methods including MT-ACT [6], Octo [7],
and OpenVLA [8].

II. RELATED WORK

Diffusion model for policy learning. Diffusion models
belong to generative models. It progressively transforms
random noise into a data sample, which has achieved great
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Fig. 2: Overview of Discrete Policy. In the first training stage,
as indicated by the green arrow, we train a VQ-VAE that
maps actions into discrete latent space with an encoder and
then reconstructs the actions based on the latent embeddings
using a decoder. In the second training stage, as indicated
by the brown arrow, we train a latent diffusion model that
predicts task-specific latent embeddings to guide the decoder
in predicting accurate actions.

success in generating high-fidelity image and image edit-
ing [9]-[12]. Recently, diffusion models have been applied
in robotics, combining with reinforcement learning [13]-
[19], imitation learning [3], [7], [20]-[34], reward learn-
ing [35], [36], grasping [37]-[39], and motion planning [37],
[40]-[45]. In this work, we leverage the diffusion model
to perform noising-denoising on the discrete latent space,
instead of high-dimensional feature space as conventional
approaches do.

Multi-tasking in robotics. Multi-task robotic manipu-
lation has led to significant progress in the execution of
complex tasks and the ability to generalize to new sce-
narios [25], [27], [46]-[53]. Notable methods often involve
the use of extensive interaction data [47], [48], [54] to
train multi-task models. For example, RT-1 [46] underscores
the benefits of task-agnostic training, demonstrating superior
performance in real-world robotic tasks across a variety of
datasets. RT-2 [55] trains with mixed robot data and image-
text pairs. PerAct [56] encodes language goals and shows its
effectiveness in real robot experiments. Octo [7] uses cross-
embodiment data for pertaining. This paper proposes a new
approach to learning multi-task policy in the discrete latent
space.

III. PRELIMINARIES

Denoising Diffusion Probabilistic Models (DDPMs) [57],
as a class of expressive generative models, leverage Stochas-
tic Langevin Dynamics [58] to model the output genera-
tion process. During the inference phase, starting from a
Gaussian noise z¥, DDPMs perform K iterations of the
denoising process to generate a sequence of intermediate
results 271, ... 29 and take x° as the final denoised output.

To train the DDPMs, a denoising iteration k is randomly

selected for each data sample in the training dataset, and the



corresponding noise ¢* is sampled from the noise scheduler.

Then the noise prediction network H(-) is trained with the
following objective:

Laapm = ||€¥ — H(2 + ", k)|, (1)

In Discrete Policy, we employ the Denoising Diffusion
Implicit Models (DDIM) [59] as the latent diffusion model,
which improves upon DDPMs with faster inference speed.

IV. METHODOLOGY
A. Overview

In this work, we introduce Discrete Policy, designed to
simultaneously learn multiple robotic manipulation tasks.
As depicted in the Figure 2] Discrete Policy comprises
two main components: 1) Training stage 1: We train a
Vector Quantized Variational Autoencoder (VQ-VAE) [60]
that encodes complex actions into a discrete latent space
and subsequently reconstructs these actions using a decoder.
2) Training stage 2: We utilize a latent diffusion model
to generate task-specific latent embeddings, which guide the
decoder in executing the appropriate action modality.

Formal definition. At each inference timestamp ¢, Dis-
crete Policy take a language instruction ! and current obser-
vations o = (¢, m) as input. The ¢ € R?*3*H*W consists
of two RGB images from the external fixed cameras on the
left and right, and m € RY represents the low-dimensional
proprioceptive states. The latent diffusion model, conditioned
on [ and o, performs a denoising process to generate the la-
tent action embedding z. Subsequently, the VQ-VAE decoder
uses the embedding z, along with [ and o, to predict the final
action a.

B. Vector Quantized Autoencoder for Multimodal Action

We detail the first training stage for VQ-VAE. Unlike the
vanilla Variational Autoencoder (VAE) [61], which uses a
continuous latent space and a Gaussian distribution prior,
the VQ-VAE’s discrete latent space simplifies the differenti-
ation of skills and action modalities in robotic manipulation
tasks. This facilitates more precise action predictions by the
decoder.

To unify and compress different action modalities across
tasks into a single latent space, the encoder E(-) processes
the actions ay.;4p, over a fixed horizon & and the correspond-
ing low-dimensional proprioceptive states 1., 5, producing
the latent action embedding 2z = FE(as.t4h, Myrn). We
include the proprioceptive state in the input because it
directly correlates with the robotic arm’s actions, where a
represents the 6D pose of the end effector, and m denotes
the robotic joint positions in our implementation. To ensure
the encoder F(-) focuses on learning from the actions and not
the auxiliary inputs, we do not include images c¢ or language
instructions [ in the encoder’s input.

To discretize the latent action space in the autoencoder, we
maintain a codebook of discrete latent embedding e € ReXJ,
where c represents the number of the latent embedding
categories and f is the embedding dimension. Given the
latent action embedding z from the encoder, the discrete

latent embedding z. is selected through a bottleneck layer
S(-) following the nearest neighbor lookup rule as follows:

ze = S(z) = e;, where j = argmin;||z — e;l|y,  (2)

where e; is the discrete latent embedding for the i-th category
in the codebook. Then, the decoder D(-) takes the discrete
latent embedding z, combined with the language instruction
[ and current observations o to predict the action a. Similar to
the loss function in VQ-VAE [60], the final objective consists
of three terms:

Log = |la—all, + Bllsg(2) — zel5 + Bllz — sg(ze)|la,
3)

where sg(-) is the operator for stopping the gradient, the
first term is to reconstruct the input, the second term is the
quantization loss to train the codebook, and the third term
is the commitment loss to encourage the encoder to commit
to a code. [ is the coefficient to balance the losses, which
is set to 1.0 in our implementation

C. Latent Diffusion Model

After training the VQ-VAE, a naive sampling method is to
use a uniform categorical distribution and select one latent
embedding randomly from the codebook e. However, for the
multi-task robotic manipulation problem, this method risks
selecting a prior latent embedding z. that is inappropriate
for the current task and leads to task failure. Therefore,
we freeze the trained VQ-VAE and employ a conditional
latent diffusion model H(-) to generate the discrete latent
embedding z. suitable for the current task. Given the noisy
latent embedding z* at the denoise iteration k and the
language instruction ! and current observations o, the latent
diffusion model H(-) outputs the corresponding noise for
the task-specific latent embedding z;. Instead of directly
predicting the latent embedding zj,, the latent diffusion model
H () predicts the noise at each iteration and tries to recover
the latent embedding z; from the Gaussian noise through
multi-round denoising processes. Following [21], we use
DDIM [62] as the latent diffusion model to improve the
inference efficiency and use the same noise scheduler and
hyperparameters. The training objective is as follows:

Ligm = ||6k - H(Zk l707k)”2’ 4)

e

where k represents the k-th denoise iteration. During the
inference, starting from Gaussian noise, the latent diffusion
model H () performs K times denoise processes and recov-
ers the latent embedding z;. Then the latent embedding zj
is passed to the bottleneck layer S(-) in VQ-VAE for finding
the most similar discrete latent embedding z. = S(zp), and
then the decoder D(-) predicts the final action a based on
the discrete latent embedding z..

D. Network Architecture

In our work, we leverage both language instruction and im-
ages to predict the robot’s action. In particular, for language
instructions, we use a pre-trained DistilBERT [63] to extract
the features. For RGB images, we use EfficientNet B3 [64] as
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Fig. 3: Real-World Experiment Setup for single-arm Franka
robot. We use two external fixed-view Zed cameras. The
figure in the upper right corner shows all the objects used in
our experiments.

Fig. 4: Real-World Experiment Setup for bimanual URS
robot. We use four fixed-view RealSense D435i cameras.

the visual backbone and fuse the linguistic and visual features
by FiLM layers [65]. We also include proprioceptive states,
we use MLP layers to project the input to the features with a
fixed dimension of 512. We attached a transformer model to
VQ-VAE to unify all input tokens into a single embedding.
To be specific, the VQ-VAE is equipped with a transformer
encoder with 4 layers, and a transformer decoder with 7
layers. The hidden dimension is set to 512. For the diffusion
model which operates on the discrete latent space, we use
Unet [66] to keep the input (i.e., noisy latent embedding) and
output (i.e., denoised latent embedding) dimensions identical.

V. EXPERIMENTS

After presenting Discrete Policy, we ask the following
key questions about the effectiveness of our algorithm: 1)
Can Discrete Policy be effectively deployed to real-world
scenarios? 2) Can Discrete Policy be scaled up to multiple
complex tasks? 3) Can Discrete Policy effectively distin-
guish different behavioral modalities across multiple tasks?
In order to answer these questions, we built a real-world
robotic arm environment, designed a variety of manipulation
tasks that contain rich skill requirements and long-horizon
tasks, and finally conducted extensive experiments as well
as visualization of Discrete Policy.

A. Experiment Setup

For real-world experiments, we collect the dataset through
human demonstration. Given a target task, we randomly
place the objects within a specified area and ask the human

PlaceTennis StackBlock UprightMug CloseDrawer

0k

InsertToast

OpenDrawer

't W

OpenBox

PlaceCan CloseMicrowave

ArrangeFlower

StoreToyCar DisposePaper

Fig. 5: Demonstrations of the 12 tasks in single-arm robot
experiments.
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Fig. 6: Demonstrations of the 6 tasks in bimanual robot
experiments.

demonstrators to finish the task nearly perfectly. We record
the RGB stream from multiple camera views and robot states,
e.g., joint position, during the whole robot control process.
Our model predicts the 6D pose, including position (z, y, 2)
and rotation (roll, pitch,yaw). For the single-arm Franka
robot shown in Figure E[, we follow Droid [21], with two
external fixed-view Zed 2 stereo cameras, one on the left
and one on the right. For bimanual URS5 robotic arms shown
in Figure ] we used four RealSense D435i cameras in the
environment, two of which are hand-eye cameras mounted
at the wrists of each arm, and the other two are external
cameras mounted above and in front of the operating table.

For the simulation benchmark, we evaluate on Bi-
DexHands [67] and Metaworld [68] Medium level and Hard
level, following the settings in MWM [69]. All experiments
were trained with 20 demonstrations and evaluated with 3
seeds, and for each seed, the success rate was averaged over
five different iterations.

Task Description for Real-World Experiments. For the
single-arm Franka experiments, we designed two multi-task
evaluation protocols named Multi-Task 5 (MT-5) and Multi-
Task 12 (MT-12). MT-12 extends MT-5’s task range to 12
tasks, including 3 long-horizon tasks, more varied scenarios,
and more complex skill requirements such as flip, press,
and pull, which are shown in Figure |5} For the bimanual
URS robotic experiments, as shown in Figure[6] we designed
6 challenging tasks that require collaboration between two
robotic arms. We provide a summary of all the tasks in
Table m For each task, we evaluate 20 times with different
initial object states and report the success rates.

B. Experimental Results

Results on Single-arm Franka Robot. Figure [7] shows
the comparisons of the success rates of all tasks on MT-5



TABLE I: The tasks summary of our real-world experiments.

Horizon  # of Avg. ”
# Task Type Demo.  Traj. Length Task Instruction
Single-Arm Franka Robot
Tl PlaceTennis Short 100 170.7 Place the tennis ball in the tube.
T2 OpenDrawer Short 100 284.1 Pull open the drawer.
T3 OpenBox Short 100 231.4 Open the blue plastic box.
T4 StackBlock Short 100 229.1 Stack the pink block on the blue block.
T5 UprightMug Short 100 195.4 Turn the tipped mug upright.
T6 CloseDrawer Short 100 176.1 Push the drawer closed.
7 PlaceCan Short 100 2379 Put the drink can in the cup holder.
T8 ArrangeFlower Short 100 282.2 Put the bouquet in the vase.
T9  CloseMicrowave Short 100 164.4 Close the microwave door.
T10 InsertToast Long 100 4759 Place the toast in the toaster.
Til StoreToyCar Long 100 457.2 Put the toy car in the drawer.
Ti2 DisposePaper Long 100 295.2 Put the trash in the bin.
Bimanual UR5 Robot
TI  TemnisBallPack  Long 64 4385 Unzp the bag, place the tennis ball into the bag.
T2 BreadTransfer Short 100 250.0 Place bread on the plate.
T3 StackBlock Short 150 200.0 Stack the orange cube on the purple cube.
T4 BreadDrawer Long 100 448.9 Place the bread into the drawer.
T5  SweepPaper-1 Long 100 3200 Sweep trash into the green dustpan.
T6  SweepPaper-2 Long 100 300.0 Sweep trash into the white dustpan.

Success rates on the Multi-Task 12
StackBlock

Success rates on the Multi-Task 5
OpenDrawer
UprightMug OpenBox

OpenBox
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800
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Fig. 7: The figures on the left and right show the success
rates on the MT-5 and MT-12, respectively.

and MT-12, respectively. We observe that Discrete Policy
achieves average success rates of 84% on MT-5 and 66.3%
on MT-12, which significantly outperforms Diffusion Policy
by 25% and 32.5%. Another observation is that the gap be-
tween average success rates becomes larger as more complex
tasks evolve during training. We believe this is due to the
increased number of tasks and the increased difficulty of the
model distinguishing between individual tasks and learning
the optimal policy among them. Notably, both methods suffer
from a performance drop as the number of tasks increases.
This is due to fixed total training iterations.

In Table [[IL we compare our method with other state-of-
the-art approaches, ranging from pure Transformer archi-
tectures trained using behavior cloning to diffusion-based
policies. Notably, both OpenVLA and Octo are pre-trained
on OpenX datasets, making a direct comparison with our
method—trained solely on limited robot data—unfair. De-
spite this, our method consistently achieves the best perfor-
mance and is on par with these methods for all tasks. In
terms of average success rate, our approach even surpasses
OpenVLA by 15% over five tasks.

Results on Bimanual URS robot. We further conducted
experiments using a bimanual URS robot. With an increased
number of degrees of freedom, the complexity of the tasks
rises significantly. In this setting, we trained all methods on
six tasks, ranging from extremely long-horizon tasks like
placing a tennis ball into a closed bag to more straightforward

TABLE II: Comparisons on Multi-Task 5 (MT-5) in the
single Franka robot, with success rates reported and the
best results highlighted in bold. The symbol * denotes that
methods are pretrained by 970K OpenX [70] robot data.

Method | Taskl ~ Taskl Task3 Task4 Task5 | Average

RT-1 [71] 25 30 30 10 15 2
BeT [72] 45 30 65 30 15 37
BESO [29] 40 30 55 25 15 33
MDT [24] 50 35 55 20 25 37
Octo* [73] 40 55 50 30 40 43
OpenVLA* [§8] 85 80 90 40 50 69
MT-ACT [6] 80 80 100 55 45 59
Diffusion Policy [5] 60 55 80 50 45 58
Discrete Policy | 85 90 100 75 70 | 84

TABLE III: Comparing Discrete Policy with baseline meth-
ods on six bimanual URS robot tasks.

Method / Task | TI T2 T3 T4 T5 T6 | Avg.
BeT [72] 30 10 0 30 40 20 | 21.7
MT-ACT [6] 70 40 10 70 80 60 | 55.0
Diffusion Policy [5] | 30 35 0 45 65 50 | 375
Discrete Policy | 70 55 30 85 85 75 | 65.8

tasks such as transferring a piece of bread. The experimental
results are illustrated in Table We compare our approach
to BeT [72], MT-ACT [6], and Diffusion Policy [5]. Our
approach achieves an average success rate exceeding 65%,
while Diffusion Policy achieves only 37.5%. Our method
also outperforms both MT-ACT and BeT. These empirical
results demonstrate the effectiveness of our method in multi-
task scenarios, even in the challenging bimanual manipula-
tion setting.

Results on Simulation. Finally, we evaluated our ap-
proach on simulation benchmarks, selecting several complex
tasks, including 6 tasks from Bi-DexHands [67], 11 tasks
from Metaworld Medium [68], and 6 tasks from Metaworld
Hard [68], [69]. The experiments are shown in Table V]
Compared to state-of-the-art methods, our approach demon-
strates superior performance across all settings, further vali-
dating its effectiveness.

C. Visulization on Action Space

To illustrate that Discrete Policy can effectively disentan-
gle action space between diverse tasks, we visualized the
features in the latent space using the t-SNE [4] in Figures
and [8] We compare our approach to the Diffusion Policy.
For MT-5, we observe that Discrete Policy clearly delineates
different features while aggregating similar ones, indicating
that Discrete Policy effectively distinguishes between multi-
modal actions and skills across multiple tasks. In contrast,
the features of Diffusion Policy are fragmented and overlap
a lot. In the MT-12 scenario, where the number of tasks is
greater, delineating the distribution of actions becomes more
challenging. Nonetheless, Discrete Policy successfully distin-
guishes the action distributions in most tasks. Conversely, the
complex action distributions confound the Diffusion Policy.



TABLE IV: Experimental results of Bi-Dexhands [67] and
Metaworld [68], a simulation benchmark. The numbers in
parentheses indicate the number of tasks for the simulation
benchmark.

TABLE V: Ablation study on Multi-Task 5 (MT-5) in the
single Franka robot environment in terms of the success rates
with the best results in bold.

Factor | Value | Taskl  Task2 Task3 Task4  TaskS
Bi-Dex- Metaworld- ~ Metaworld- . 16 70 85 100 60 50
Method Hands(6) Medium(11)  Hard(6) Chunk Size ‘ 32 ‘ 8 8 100 75 6
256 60 80 90 65 50
\ch%\I [g;‘]t] ;22 g% 3; Codebook Category 512 60 90 90 65 55
. . : 1024 80 90 100 70 60
MT-ACT [6] 47.6 15.4 4.8
Diffusion Policy [5] 35.7 16.2 3.1 32 50 75 85 50 55
Latent Embed. Dim. 64 60 75 95 70 65
Discrete Policy \ 54.3 19.6 7.9 128 80 90 95 70 70
1 60 85 95 65 55
Latent Embed. Num. 8 80 90 100 75 75
t-SNE Visualization Results 16 80 90 100 70 70
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Fig. 8: The t-SNE visualization results of the latent features
of Discrete Policy and Diffusion Policy on MT-5 and MT-12,
respectively.

D. Ablation Study

We conducted extensive ablation studies to evaluate the
effects of various hyperparameters, including action chunk
size, codebook categories, latent embedding dimension, and
the number of latent embeddings. The results of these
experiments are summarized in Table [V]

For action chunk size, we observed that success rates
increase as the chunk size grows, particularly when increas-
ing from 16 to 32. We also experimented with different
numbers of codebook categories to assess whether increasing
them from 256 to 1024 would impact model performance.
Our results show that increasing the number of codebook
categories consistently improves the average success rates
across all tasks. This improvement is likely due to the larger
capacity of the codebook, which allows it to capture a
broader range of behavioral patterns.

Latent embeddings play a crucial role in our method. We
evaluate both the number and dimensionality of these embed-
dings. Empirically, we found that increasing the dimension-
ality of the latent embeddings enhances performance, leading

Skill Composition of Discrete Policy
PlaceCan -> Tennis

StoreToyCar -> Tennis

Fig. 9: Skill Composition of Discrete Policy.

to higher success rates. However, increasing the number of
latent embeddings does not necessarily yield better results.
Our observations indicate that setting the number of latent
embeddings to eight provides optimal performance.

E. Skill Composition

Skill composition allows the model to map language
queries to specific action spaces. By decomposing the action
sequence into discrete latent embeddings, our Discrete Policy
aims to align language inputs with this latent space. Intu-
itively, skills represented in the latent space can be aligned
and composed to form new skills [75], [76]. To evaluate
whether our method is capable of this, we combined two
instructions from the training data and assessed whether the
model could successfully complete the newly composed task.

As shown in Figure 0] we tasked the robot with two
new objectives: 1) placing a tennis ball into a cup holder,
and 2) placing a tennis ball into a drawer. Our Discrete
Policy successfully interpreted these new instructions and
completed the tasks, demonstrating the effectiveness of us-
ing discrete latent embeddings in action generation. This
further supports the motivation behind our work, where a
disentangled action space can be effectively composed into
meaningful sequences.

VI. CONCLUSION

This paper explores innovative strategies for multi-task
learning in robotic systems. Our method, called Discrete
Policy, learns action patterns in the latent space, enabling
better disentanglement of feature representations across dif-
ferent skills. Through extensive simulations and real-world



experiments, our approach demonstrates superior perfor-
mance in multi-task settings compared to various state-of-
the-art methods. Overall, we believe that the Discrete Policy
approach offers a compelling and practical new perspective
on learning multi-task policies for embodied control.
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