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Abstract

Phase retrieval (PR) consists of estimating 2D or 3D objects from their Fourier
magnitudes and takes a central place in scientific imaging. At present, most iter-
ative methods for PR work well only when the initialization is close enough to
the solution and fail otherwise. But there has been no general way of obtaining
desired initialization. In this paper, we show that a carefully designed deep learning
pipeline can consistently generate reliable initialization, so that the subsequent
iterative methods can solve the PR problem and produce high-quality solutions.
Technically, PR is an inverse problem containing three forward symmetries, and
naive deployment of end-to-end deep learning for PR yields poor initialization.
We explain why the symmetries cause the learning difficulty and propose a novel
strategy that substantially improves the estimation. Overall, the proposed method
solves PR in regimes not accessible by the previous methods, and our work syn-
ergizes deep learning and iterative methods to solve a difficult scientific inverse
problem.

1 Introduction

Given the oversampled Fourier magnitudes Y = |F(X)|2 ∈ Rm1×m2 of X ∈ Cn1×n2 (mi ≥ ni
for i = 1, 2), is it possible to recover X? This is the phase retrieval (PR) problem central to scientific
imaging and numerous other fields [1, 2]. In imaging, the complex phases of F(X) are missing
because practical detectors cannot record complex phases. As a nonlinear inverse problem, PR is
tricky to solve: (1) for any X , global phase shift X 7→ eiθX for all θ ∈ (−π, π], overall spatial
shift of the nonzero content of X , and 2D conjugate flipping of X all leave the measurement Y
unchanged (see Fig. 1; [1]). So the best one can hope for is recovery up to these intrinsic symmetries;
and (2) the mapping X 7→ |F(X)|2 is generically injective up to the intrinsic symmetries when
mi ≥ 2ni − 1 [4] for i = 1, 2. So in this paper, we always assume mi ≥ 2ni − 1 for i = 1, 2 and
solving PR is up to the intrinsic symmetries.

Figure 1: Shift and flip-
ping symmetries in PR. Left:
shifted and flipped copies of
the digit “7”; Right: their
common Fourier magnitudes.
Image credit: [3]

In practice, PR is often solved by iterative methods such as HIO [5],
RAAR [6] and difference map [7]; see [8] for an updated review
of these methods. However, they work well when support (i.e.,
locations of nonzero elements) of X is provided with reasonable
accuracy. Otherwise, even the most sophisticated iterative methods
fail to work in practice. The failure is mostly due to stagnation
caused by the intrinsic symmetries [9].

Deep learning has brought about new prospects of solving difficult
inverse problems, of which PR is an instance. One can phrase PR as a
regularized optimization problem: minX `(Y , |F(X)|2) +λΩ(X),
and then replace `, or Ω, or mappings inside specific numerical methods for PR using data-driven
neural network modules. This approach is taken in, e.g., [10, 11], where HIO is needed to produce
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good initialization—for simpler inverse problems, such special initialization is not required [12].
More radical is the end-to-end approach, where a neural network is trained to directly approximate
the inverse mapping or its proxies. [13–16] have taken this approach and shown promising results.
Here, we take a critical view of the initial successes.

Figure 2: The highly os-
cillatory function defined by
the training set when learning
to take square root. Image
credit: [17].

Difficulty of learning with symmetries When solving nonlinear
inverse problems with symmetries, the end-to-end approach may
face the difficulty of approximating highly oscillatory functions.
This issue has recently been elucidated in [17]. We summarize the
main argument using the learning square root example: suppose we
randomly sample real values xi’s and form a training set

{
xi, x

2
i

}
and try to learn the square-root function using the end-to-end ap-
proach, allowing both positive and negative outputs. Now if we
think of the function determined by the training set, which the neural
network is trying to approximate, it is highly oscillatory (see Fig. 2):
the sign symmetry in the forward mapping x 7→ x2 dictates that in
the training set, there are frequent cases where x2i and x2j are close
but xi and xj have different signs and are far apart. Although in
theory neural networks with adequate capacities are universal function approximators, in practice
they will struggle to learn such irregular functions. For general inverse problems, so long as the
forward symmetries can relate remote inputs to the same output, such as all the three symmetries in
PR, similar problems can surface.

Figure 3: (a) & (b): Sample
training images used in [13]
and [15], respectively. (c)
Sample images of simulated
crystal structures in Bragg
CDI applications [18,19] (only
real parts of complex-valued
images are shown), which do
not have any natural orienta-
tion or centering.

Biases in practical image datasets Strangely, the difficulty is
only briefly touched in [16] among all recent work applying the
end-to-end approach to PR. When we examine the training and
test data that previous works use, it becomes clear that the issue is
probably covered by intrinsic dataset biases. Previous experiments
typically use images from standard computer vision datasets such as
MNIST, ImageNet, CelebA(faces), where the image contents tend to
be centralized and naturally oriented (see Fig. 3 (a)–(b)). This helps
break the shift and flipping symmetries naturally, as these images are
relatively close to each other compared to when mixed up with some
of their symmetric copies. 1 Our analysis has been confirmed in a
preliminary version of this work, where we showed that augmenting
natural datasets to account for symmetries fails a state-of-the-art
method that performs well without the augmentation [3]. In short,
the fundamental difficulty has been concealed by biased data which
do not reflect the essential properties of data in PR applications:
nano-scale crystals (see Fig. 3 (c)), astronomical objects [20], where
there is no natural orientation or centering of the image contents.

2 Toward Practical PR

In this section, we sketch a two-stage method for solving PR, which
consists of an initialization stage based on the end-to-end approach,
and a refinement stage based on a robust iterative method.

2.1 Passive symmetry breaking

Let T .
= {Xi,Yi = |F(X)|2} be the training dataset we set up for implementing the end-to-end

approach, and gW be a chosen neural network parametrized by weights W . Then the naive end-to-
end approach will take the form minW

∑
i `(Xi, gW (Yi)), where ` is the loss function. Due to the

symmetries, Yi,Yj that are close may correspond to Xi and Xj that are centered at very different
locations or flipped and hence far apart. This forces gW to approximate a rapidly changing function,
i.e., the difficulty that we alluded to above.

1The global phase symmetry is absent as they only deal with real-valued images.
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The difficulty occurs because we require gW (Yi) to match Xi as possible, where the latter induces
mixed symmetries. How about we getting rid of Xi’s? A natural alternative formulation is

min
W

∑
i

`
(
Yi, |F ◦ gW (Yi)|2

)
, (2.1)

as whether gW (Yi) outputs Xi or any of its symmetric copies, |F ◦ gW (Yi)|2 ≈ Yi ∀ i.

Why it might work? We toss away the difficult Xi’s, but we also supply less information to the
learning model. Now gW has much more freedom, and it can still generate distant outputs for
nearby inputs. Why is there hope? We draw our inspiration from the growing pile of evidence that
neural networks optimized with first-order stochastic methods tend to learn simple functions over
complicated ones, known as implicit regularization [21]. For our problem, gW is simple when all
the symmetries are broken and complicated when there are symmetries. So if implicit regularization
occurs, symmetries are naturally broken.

Precursors Eq. (2.1) can be considered as an autoencoder objective with a known decoder. It
is also similar to the cycle consistency idea [22–24] used in deep learning for several computer
vision/graphics tasks. A unified theme is to approximate identity maps. But our motivation here is
for implicit symmetry breaking taking advantage of implicit regularization, which differ from all
other works. The same formulation and its equivalent form in the autocorrelation form has been
independently proposed in [16]. They have not articulated the learning difficulty caused by all
symmetries but the shift. Our previous work [17] proposes proprocessing steps for the training set to
break symmetries for Gaussian PR—simplified version of PR where the shift and flipping symmetries
are erased. The method can be generalized for PR as we show in a companion paper [25], but here
we follow a different routine that seems simpler.

Jacobian regularization When the underlying distribution is not densely sampled, the learning
difficulty is (counterintuitively) ameliorated, as the function determined by the data points becomes
less oscillatory. This can be seen from Fig. 2 again and generalized to PR. Although complete
symmetry breaking probably still corresponds to the “simplest” function, partial symmetry breaking
leads to functions that are not worse off. This could lead to competitive local solutions to Eq. (2.1).
To promote the simplest solution and hence complete symmetry breaking, we can optionally add in
certain regularization terms to enhance regularity of the solution. Empirically, we find the Jacobian
regularization [26] that encourages slowly varying functions helps, leading to the regularized objective

min
W

∑
i

`
(
Yi, |F ◦ gW (Yi)|2

)
+ λ‖Jg(Yi)‖2F . (2.2)

To save computation, we adopt the approximation scheme proposed in [26] for the Jacobian term.

2.2 Refinement

The end-to-end learning performs prediction based on regression, the quality of which is often only
mediocre and depends on how densely the underlying data distribution can be sampled. For many
scientific inverse problems such as PR, high quality solution for each instance is always sought. In
this work we propose to perform subsequent refinement using iterative methods. For PR, we observe
our first stage produces results that often lead to reasonable support estimation, which suffices as
initialization for popular iterative methods to solve PR. Here, we choose a recently proposed iterative
method based on second-order augmented Lagrangian method, dubbed ALM [27], that exhibits fast
convergence and good stability.

3 Experiments

Data We conduct our experiments on the FashionMNIST dataset [28], which is used by several
previous works on PR. We take their 60, 000 training images and 10, 000 test images to construct our
training and test sets, respectively. The images are 28× 28. To simulate the typical black ground that
causes the translation freedom in PR applications, we place all the images in a black background of
36× 36. So n = 36, and we take m = 72 here to ensure injectivity of the forward model 2n − 1 =
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Figure 4: Visual comparison of our methods with several state-of-the-art methods for PR.

71 is exceeded. We further modify both train and test images with a random flipping and random
translation operation to test the impact of symmetries on learning; samples are shown in Fig. 4-(a).

We use U-Net [29] (DNN) as our backbone DNN. We term our method (i.e., the two-stage method
described in Section 2) Passive Refined. We compare it with HIO [5], ALM [27], Naive DNN [30],
Passive DNN (DNN trained using in Eq. (2.2)), Naive Refined (Naive DNN refinement with ALM),
prDeep [10]. HIO and ALM are representive iterative methods, and Naive DNN and prDeep are
two of the state-of-the-art methods based on deep learning: Naive DNN implements the end-to-end
approach, and prDeep is a hybrid approach that integrates deep learning and an iterative method,
initialized with HIO.

Reconstruction results Results on randomly selected test images are presented in Fig. 4. Due to
symmetries, both the iterative methods (ALM, HIO) and Naive DNN fail to recover the original
images. The reconstruction from the passive DNN captures the object’s shape, although the image
details are not completely recovered. Thus, there is a need for additional refinement. We observe
that the shape information from the first stage can be used to derive relatively accurate support of the
object, which is ideal for initializing refinement stage which is based on classic iterative methods.
After refinement, the final image is a reasonably accurate reconstruction of the original image.

Table 1: MSE error
MSE

ALM 0.312
HIO 0.441
Passive DNN 0.266
Passive Refined 0.187
Naive DNN 0.492
Naive Refined 0.397
prDeep 0.412

Table 1 provides the average MSE adjusted to the symmetries
(defined in Appendix A.1) for the test set. As noted, in the
presence of symmetries, we see a huge gap in MSE of the
reconstructed images between Passive Refined and other com-
peting methods, consistent with the visual results.

The high-quality solution by our Passive Refined method de-
pends crucially on good support estimation enabled by our
Passive DNN stage. However, Naive DNN and the classic
HIO—which is used to initialize prDeep [10], are unable to
produce good support estimation to enable further refinement.2
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A Appendix

A.1 Mean Square Error (MSE)

Our reconstructed image is in Cm×m, where our original image is in Cn×n. To account for the three
symmetries when taking MSE measure, we take the following steps: we take the original image,
and scan through the larger reconstructed image to account for the translation symmetry. At each
scan position, we calculate an adjusted MSE between the current patch B ∈ Cn×n and the original
image A. A λ > 0 and a global phase factor eiθ (to account for the global phase) are introduced
when calculating the MSE, i.e.,

min
θ,η≥0

∥∥A− ηBeiθ
∥∥2
F
. (A.1)

The smallest adjusted MSE is recorded over all scan positions. Then, the original image A is 2D
flipped and conjugated and the same scanning process is repeated to calculate another smallest MSE,
to account for the flipping symmetry. The smaller of the smallest MSE values is finally taken.

Below, we show that the optimal value in Eq. (A.1) can be easily computed. First we expand the
square inside the objective and perform partial minimization with respect to θ, leading to

max
θ

Re
〈
A,Beiθ

〉
. (A.2)

But Re
〈
A,Beiθ

〉
= Re

(
〈A,B〉 eiθ

)
≤
∣∣〈A,B〉 eiθ∣∣ ≤ |〈A,B〉| and the upper bound is achiev-

able when θ = −∠ 〈A,B〉. So the optimization problem now becomes

min
η≥0

‖A‖2F + η2‖B‖2F − 2η|〈A,B〉|. (A.3)
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The minimum of Eq. (A.3) occurs either when η = 0, which is ‖A‖2F , or by unconstrained optimality
condition when 2η‖B‖2F = 2|〈A,B〉| =⇒ η = |〈A,B〉|/‖B‖2F , leading to the function value

‖A‖2F −
| 〈A,B〉 |
‖B‖2F

, (A.4)

which is the smaller one.
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