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ABSTRACT

Traditionally, neural network training has been primarily viewed as an approxi-
mation of maximum likelihood estimation (MLE). This interpretation originated
in a time when training for multiple epochs on small datasets was common and
performance was data bound; but it falls short in the era of large-scale single-
epoch trainings ushered in by large self-supervised setups, like language models.
In this new setup, performance is compute-bound, but data is readily available. As
models became more powerful, in-context learning (ICL), i.e., learning in a single
forward-pass based on the context, emerged as one of the dominant paradigms.
In this paper, we argue that a more useful interpretation of neural network be-
havior in this era is as an approximation of the true posterior, as defined by the
data-generating process. We demonstrate this interpretations' power for ICL and
its usefulness to predict generalizations to previously unseen tasks. We show how
models become robust in-context learners by effectively composing knowledge
from their training data. We illustrate this with experiments that reveal surprising
generalizations, all explicable through the exact posterior. Finally, we show the
inherent constraints of the generalization capabilities of posteriors and the limita-
tions of neural networks in approximating these posteriors.

1 INTRODUCTION

Neural network training is traditionally seen as parameter fitting for maximum likelihood estimation
(MLE) or maximum a posteriori (MAP) estimation. One performs multiple epochs of training on a
single (small) dataset to get closer to the MLE or to the MAP with regularization.

Nowadays, neural networks are commonly trained in a single-epoch setting though, as the com-
munity has moved towards larger or infinite data sources (Brown et al., 2020; Oquab et al., 2024;
Hollmann et al., 2023). In these settings, performance is not bounded by available data but compute.
The training happens on unseen data sampled from an underlying distribution in each step, thus it
is not very useful to think about it as approximating MLE for a dataset which is largely unseen.
This paper advocates for understanding neural network training and specifically ICL in this setting
as an approximation of the true posterior distribution instead (Müller et al., 2022; Xie et al., 2022).
We experimentally show that this perspective predicts the generalization behavior of trained neural
networks in ICL settings accurately. Interpreting neural network training as posterior approximation
alone cannot fully account for all behaviors of neural networks, given that the architecture, due to its
inductive biases, affects how these networks approximate the posterior distribution. As neural net-
works improve in approximating the posterior with more scale, these biases become less important
though if the posterior is representable by the neural network.

In this paper, we train small neural networks with small budgets on infinite artificial data: We can
see that the true posterior, shaped by the training data, closely matches the network's behavior in
most scenarios. The implications of whether the true data posterior can account for much of a neural
network's behavior are significant for the debate over whether large language models (LLMs) are
merely pattern matching or reasoning machines. Under the posterior approximation interpretation,
LLMs generalize to new data by constructing a posterior that integrates all observed data, contrasting
with the concept of stochastic parrots (Bender et al., 2021). The combinatorial power has limitations,
though, which we also detail. These limitations pertain to both the quality of the posterior being
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subpar for out-of-distribution predictions, as well as the approximation not being tight everywhere,
as we detail in this work.

Contributions We show the implications of interpreting ICL as a posterior approximation (Müller
et al., 2022; Xie et al., 2022) for explaining generalization to unseen data.

• We present examples of unexpected out-of-distribution generalizations on simple analytical
tasks.

• We show how these generalizations can be explained and are even expected through the
Bayesian interpretation.

• We detail the limits of generalizations in the posterior and the limitations to the posterior
approximation quality of neural networks.

2 NEURAL NETWORK TRAINING AS POSTERIOR APPROXIMATION

Training a neural network qθ on a dataset D is traditionally viewed as finding an approximation
to the parameters θ that maximize the likelihood of the datasets, argmaxθ qθ(D|θ). This is called
MLE.

For the nowadays typical single-epoch training (Brown et al., 2020; Hollmann et al., 2023) it is less
intuitive to use MLE as an interpretation, however, as large parts of the dataset might not be seen
during training. Thus, we are rather working with the data distribution directly. The more natural
interpretation which we advocate for is as an approximation to fitting the data generation distribution
(Goodfellow et al., 2016, Section 5.5). We approximate

argmin
θ

Ex,y∼p(X,Y )[− log qθ(y|x)], (1)

where p(X,Y ) is the data distribution from which the examples in D are sampled.

The idea for the posterior approximation interpretation, can now simply be found by rewriting Equa-
tion 1 as a Kullback-Leibler (KL) divergence minimization with respect to the posterior p(y|x)

argmin
θ

Ex,y∼p(X,Y )[− log qθ(y|x)] (2)

= argmin
θ

Ex∼p(X)[Ey∼p(Y |X)[− log qθ(y|x)]] (3)

= argmin
θ

Ex∼p(X)[Ey∼p(Y |X)[log p(y|x)− log qθ(y|x)]] (log p(y|x) is indep. of θ) (4)

= argmin
θ

Ex∼p(X)[DKL(p(y|x)||qθ(y|x))]. (KL divergence definition) (5)

Thus, by minimizing the cross-entropy loss in Equation 1, we implicitly seek a model distribution
qθ(y|x) that closely approximates the true posterior distribution p(y|x) on data supported by p(x).
The exact posterior is recovered with infinite training data, a neural network that can model the
distribution p(y|x) and a training that finds the optimum, as previously derived by Müller et al.
(2022)1.

In an ICL setting, our input x is a concatenation of a training set Dtrain = {(xi, yi)}i∈{1,...,n} and
a query input xquery for which we are predicting the output y = yquery. In this paper, we consider
ICL problems where the dataset is sampled by first sampling a latent l ∼ p(l) and sampling each
example in the dataset based on it (x, y) ∼ p(x, y|l). This construction is commonplace in Bayesian
modelling and might even be seen in language, where a particular person starts to write a document
with a particular intent. Thus, the posterior distribution, also called posterior predictive distribution
(PPD) in this setting can now be written as

p(yquery|xquery, Dtrain) =

∫
p(y|xquery, l)p(l|Dtrain)dl. (6)

In the above representation one can already see the mixture over different latents l, that makes the
predictions of our models interesting.

1They focused on in-context learning settings, but the proof can be applied to other input modalities, too.
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Figure 1: The model is only trained on step functions (left), still it learns to make smooth predictions
(right) just like the true posterior for the step function prior.

The optimization from Equation 1 becomes

argmin
θ

E(xquery,yquery)∪Dtrain∼p(D)[−log qθ(yquery|xquery, Dtrain)] (7)

and matches p(yquery|xquery, Dtrain) in the limit (Müller et al., 2022).

3 IN-CONTEXT LEARNING WITH PRIORS OVER FINITE SETS OF LATENTS

In this work, we look at multiple priors and their posteriors. To allow easily computing the posterior
for our priors, we focus on priors with a finite set of latents. That means that the considered priors
have latents l that are drawn from a large but finite set L with equal probability, if not specified
otherwise. We built an easily extendable framework to efficiently compute the posterior p(l|Dtrain)
and the PPD p(y|xquery, Dtrain) on CPU and GPU to allow further research in understanding in-
context learning through the Bayesian lens. In the discrete setting, the PPD, as defined by Equation
6, simplifies to a weighted sum

p(y|xquery, Dtrain) =
∑
l∈L

p(y|xquery, l)p(l|Dtrain). (8)

For each setup, we define a distribution p(x, y|l) = p(y|x, l)p(x|l) over examples given a latent. If
not specified otherwise, p(x|l) = U(0, 1) is the uniform distribution and we define p(y|x, l) via a
deterministic mapping f : X → Y with output noise y = N (f(x), 0.12).

For all experiments, we use a transformer (Vaswani et al., 2017) adapted for ICL, introduced by
Müller et al. (2022) and called a Prior-data Fitted Network (PFN). PFNs are particularly well suited
for ICL thanks to their permutation invariance with respect to the set of context/training as well as
query examples. For each experiment, we report the mean of the predictions and provide a notebook
to reproduce it easily2

4 GENERALIZATIONS EXPLAINABLE BY POSTERIOR APPROXIMATION

In the following, we will show three examples of interesting generalizations of neural networks
when performing ICL, each of which is explainable by the ground truth posterior.

4.1 TRAINING ON STEP FUNCTIONS YIELDS SMOOTH PREDICTIONS BUT NOT
EVERYTHING REPRESENTABLE

In our first experiment, we show that even when a model was not trained on a smooth function, only
on step functions, it becomes a smooth predictor as it approximates the posterior.

2For each experiment, we performed a grid search for the best final training loss. We searched across 4
and 8 layers, batch sizes 32 and 64, Adam learning rates 0.0001, 0.0003 and 0.001, embedding sizes 128,
256 and 512, as well as 100 000, 200 000 and 400 000 steps. The sizes for our training sets were uni-
formly sampled between 1 and 100. Code can be found at https://anon-github.automl.cc/r/
BayesGeneralizations-19B2.
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Figure 2: Training a model on sine curves of a single amplitude, frequency and different offsets
(left), the model does not only learn to model these curves (center), but also models the posterior for
a sine that has a wavelength of 2, instead of 3. The posterior is flat, as the model is very uncertain
about the offset ∆x of this curve.

During training, we sample step functions, see Figure 1 (left), that start on different heights ∆y,
have different step positions ∆x and step sizes h. We can define the set of functions in our latent set
as

L(1) =

f
(1)
∆x,∆y,h :

∆x ∈ {−1.,−0.98, . . . , 1},
∆y ∈ {−1.,−0.98, . . . , 1},

h ∈ {0, 0.02, . . . , 2}

 , (9)

where f
(1)
∆x,∆y,h(x) =

{
∆y if x < ∆x

∆y + h else.
(10)

The predictions in Figure 1 (right) are smooth, as there are multiple step functions that might have
produced the line, and the PPD now averages all of these step functions as in Equation 6. Thus,
even though our model was trained solely on non-smooth step functions, its predictions are (approx-
imately) smooth as they are an average of many step functions.

4.2 TRAINING ON SINE CURVES CAN YIELD FLAT LINE PREDICTIONS

Similar to the above experiment, we observe that training on sine curves with different offsets can
generalize to an unseen function, a flat line, if the data comes from a sine curve that has a different
frequency from the sine curves observed during training.

Our prior is defined as follows

L(2) =
{
f
(2)
∆x : ∆x ∈ {0, 2π/100 . . . , 2π}

}
, (11)

where f
(2)
∆x(x) = 0.2sin(3πx+∆x)). (12)

In Figure 2 (right) we show that the model closely matches the ground truth posterior for a sine curve
sin(2πx) that is outside the training distribution. This again is explained by a plethora of latents
being averaged in the predictions of the model.

4.3 TRAINING ON SLOPED LINES AND FLAT SINES TEACHES PREDICTING SLOPED SINES

We now show that models can even mix two different classes of functions. We show that models
trained on sine curves at different heights and on lines at different heights and slopes, generalize to
sine curves that have a slope.

This was previously thought not to be possible, as elaborated by Yadlowsky et al. (2023) for example.
It turns out that this is not only possible, but to be expected according to the posterior approximation
interpretation.
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Figure 3: We train a model on two distinct classes of functions, sines and sloped lines, only (left). It
not only learns fit both function classes well (center), but also learns to model slightly sloped sines,
when prompted with a data from a sloped sine.

Our latents are a uniform mixture of the previous prior L(2), and a prior over sloped lines

L(3) =

{
f
(3)
∆x,m :

∆y ∈ {−1.,−0.98, . . . , 1},
m ∈ {−1.,−0.98, . . . , 1},

}
(13)

where f
(3)
∆x,m(x) = mx+∆y (14)

In Figure 3, we can see that the generalization to a slightly sloped sine curve is possible, and that it
even is in agreement with the true PPD. Here, the PPD is a linear mixture of sine functions and lines
and can thus represent a wave function that has a slope.

For this prior, we performed an ablation that considers different training times to see whether models
tend to converge to the Bayes optimal prediction as training goes on. In Figure 4 we see that the
approximation of the posterior becomes better as we perform more training steps, but seems to suffer
diminishing returns as we increase the number of training steps.
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Figure 4: We see that the approximations of the true posterior become better with more training
steps and a lower cross-entropy loss, like we expect for a powerful model as outlined in Section 2.
The losses are negative, as we are in a regression setting, where the density can be above 1.

5 LIMITATIONS OF THE POSTERIOR

While we show interesting generalizations that are explainable via posterior approximation above,
in this section we will focus on the limitations of generalizations supported by the posterior itself.
That is, in which scenarios can't we expect the posterior to yield useful and intuitive predictions.

5



Under review as a conference paper at ICLR 2024

1.0 0.5 0.0 0.5 1.0

0.2

0.0

0.2

Prediction with the optimal latents

1.0 0.5 0.0 0.5 1.0

Optimal latents

1.0 0.5 0.0 0.5 1.0

Actual predictions

In-Context Examples
Optimal Prediction

Optimal Latents
Posterior Ground Truth

NN Posterior Approx.

Figure 5: While the model could make the optimal prediction (left) using a posterior mixing just the
two latents in the center, it predicts differently as the latents in the center have a low likelihood to
have generated the data.

5.1 BEING REPRESENTABLE IS NECESSARY BUT NOT SUFFICIENT

A combination of latents that perfectly fits the data does not guarantee the posterior uses this or an
equivalent combination. We demonstrate this by extending the step prior L(1) from Section 4.1 to
include negative steps, i.e., h ∈ {−1,−.98, . . . , 1}.

The prior consists of simple step functions, but combining two yields a mean modeling a step up
followed by a step down (Figure 5, left). This can be achieved by many posterior distributions, such
as one assigning 50% probability to each of the latents in Figure 5 (middle). Thus, it could theo-
retically fit the data perfectly. Figure 5 (right) illustrates the actual posterior and its approximation,
though. The prediction is much flatter than it should be. This is because the latents that would yield
the right distribution do not get enough probability mass in the posterior, as they predict parts of
the data very poorly (in our example the left- and right-side). Thus, while there is a combination
of latents that optimally approximates the function, the posterior does not choose that combination;
this does not even change when providing more data (as this would also lead to more data points
being modelled poorly by each of the latents that could be mixed to fit the function optimally).

5.2 BAYESIAN MODELS WITH MISSPECIFIED PRIORS BECOME EXPONENTIALLY WORSE

Bayesian ensembles tend to concentrate on a smaller subset of the prior as one conditions on more
data. While this is beneficial if the to-be-fitted function has support in the prior, it is detrimental if it
does not. We say a function has support in the prior, if there is a latent that shares the mean prediction
with the function. In general, certain functions lie outside the support of any prior distribution. Even
Gaussian processes lack support for specific functions, such as step functions.

In cases where the function does not have support in the prior, the posterior will still concentrate. It
will concentrate on a close-by latent in terms of KL-divergence (Burt et al., 2020), but a necessarily
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Figure 6: We evaluate a Bayesian model's performance in estimating coin bias, using latent options
p = 0.3 and p = 0.6. The posterior deteriorates with more data as the likelihood for p = 0.6
dominates. Results are averaged over all potential coin toss outcomes.
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wrong latent. And as the likelihood for a latent has a multiplicative form (
∏

i p(xi, yi)), it becomes
exponentially more confident in the wrong latent as more data is provided.

In Figure 6, we demonstrate this effect analytically on a simple coin flip prior. Here, we use two
discrete latents: either the coin has a head probability of p = 0.3 or p = 0.6. The coin flips we
condition on are actually fair (p = 0.5), though. On the left, we show that while the posterior on
average is close to the actual true probability after observing only a few coin tosses, it diverges
towards the closer latent (p = 0.6) as more coin tosses are observed. On the right, we see that this
is due to the likelihood of p = 0.6 growing exponentially compared to p = 0.3.

We can further see this effect for more interesting priors, too. In Figure 11 of the appendix, we show
that when we feed more data to our prior that combines sine curves and lines (Section 4.3), we see
the same effect of converging to a wrong solution while starting from a good prediction. Finally, in
Figure 12 of the appendix we show this effect even happens for a Gaussian process, when modelling
a step function. The Gaussian process becomes increasingly worse at modelling the step as more
ground truth data is provided.

6 LIMITATIONS TO THE POSTERIOR APPROXIMATION INTERPRETATION

While the posterior approximation interpretation is useful to predict generalizations in many cases,
it has limitations which we showcase experimentally in the following section. We first look at the
unreliable behavior of neural networks when we are outside of the support set of the prior, then we
look at cases where we are inside the support but with low probability. Finally, we discuss model
limitations that might hamper the ability of models to approximate the posterior.

6.1 APPROXIMATING AN UNKNOWN DISTRIBUTION, YIELDS UNKNOWN OUTCOMES

The intuition of posterior approximation breaks down when the input data x has no support (p(x) =
0) in the training distribution (extrapolation). The posterior p(y|x) = p(x, y)/p(x) is simply not
defined in this setting. In this section we show that neural networks tend to behave unpredictably in
this setting.

In Figure 7 we provide evidence that neural networks are less reliable in extrapolation settings. Here
we train a standard MLP on a balanced binary classification problem: classify 0s and 1s, i.e., the
examples all have the form (x = 0, y = 0) or (x = 1, y = 1). While the models are all able to
predict well on the support set {0, 1}, in between these values, where we are outside the support,
each model behaves differently. As soon as we add a bit of Gaussian noise (standard deviation of 0.1)
to the inputs during training, though, the behavior of our models becomes much more predictable
on the (0, 1) interval3.
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Figure 7: Predictions on the [0, 1] interval of 100 MLPs (x-axis) trained with different seeds, sorted
by their prediction at 0.5. The noiseless training data (right) results in less reliable outcomes, with
models exhibiting greater variations in their predictions based on their seed.

3All models are 3-layer MLPs with ReLU activation and hidden size 64. They were trained with Adam
Kingma & Ba (2015), a learning rate of 0.001, and a batch size of 1024. The experiment can be reproduced
using the notebook https://anon-github.automl.cc/r/BayesGeneralizations-19B2/
Tiny_MLP_Generalization.ipynb.
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Figure 8: This illustrative example of PFN behavior with decreasing data likelihood shows that the
model aligns with the posterior for well-supported datasets but reverts to shortcut predictions with
less likely data. Above each plot we provide the data likelihood according to the prior described in
Section 5.1.

We posit that extrapolation (p(x) = 0) is typically unreliable in neural networks and should thus
be avoided, e.g., by augmenting training data to ensure a well-defined posterior. The definition
of support is only precise up to invariances and equivariances of the neural network though, e.g., a
translation-invariant model will behave predictably when translating inputs, even outside the support
set.

6.2 THE THRESHOLD OF SUPPORT

While for the exact posterior the support set is well defined, for the neural network-based approxi-
mation there is no apparent difference between a likelihood very close to zero and exactly zero, both
are typically not in the training data. It might have included a very similar one, though.

We can see, however, that prediction quality decreases with the data likelihood. We showcase this
in Figure 8 for the prior from Section 5.1, where this phenomenon is easy to see. For the high
likelihood data, the approximation still is close to the true posterior, but as we move the lines further
apart, thus making our dataset less likely, the neural network falls back to a nearest-neighbor-based
prediction.

While in the limit, we expect to have correct predictions wherever we have support, we see that in
practice the predictions deteriorate before that.

6.3 ARCHITECTURAL LIMITATIONS

Neural networks are constrained by the limited complexity of functions they can model due to fi-
nite computational resources, thereby unable to accurately represent certain posterior distributions.
Consequently, predictions do not converge to the true posterior despite minimizing the loss function.

We illustrate a recognized limitation in architectures akin to PFNs, which we employ: encoder-
only transformers lacking positional embeddings fail to count repeated inputs (Barbero et al., 2024;
Yehudai et al., 2024). This is due to the nature of self-attention involving weighted averages in
a permutation-invariant fashion. Thus, a posterior that involves counting the number of identical
inputs will not be well approximated by our models.

To demonstrate, we construct a simplistic prior focused solely on estimating the probability of a
coin landing heads, devoid of any additional features. Coins are sampled each with a distinct head
probability p ∈ {0.01, 0.02, . . . , 0.99} for different datasets, and data samples are generated by
flipping the coin with the outcome assigned as the target y. The setup is illustrated at the top of
Figure 9 (left). The posterior corresponding to this prior must incorporate the decrease in uncertainty
as additional samples are observed. Solely heads samples were inputted, as depicted in Figure 9
(left, bottom), to estimate the probability of obtaining heads on a subsequent coin flip. Despite the
influx of identical samples, the neural network’s prediction remains unchanged, as shown in Figure
9 (right), irrespective of the actual variation in the posterior.
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Figure 9: On the left (top), we outline our prior, sampling a probability p for heads (green) and
generating samples by coin flips. At test time (left, bottom), we condition on varying counts of
coins displaying heads. On the right, we can see that the transformer-based PFN model is not able to
approximate the posterior, as it would need to count the number of examples, which all are identical,
in the context set.

The inductive biases inherent in neural network architectures manifest less critically in specific
phenomena, such as the consistent errors observed across different models in our experiments on
modeling sloped sines. These models consistently overestimate the sine magnitude relative to the
true posterior as the slope increases. The predictions of the eight best models are presented in Figure
10 in the appendix.

Investigating the precise modeling constraints and inductive biases of contemporary neural networks
constitutes an active research domain (Bhattamishra et al., 2020; Weiss et al., 2021), potentially
augmenting the probabilistic insights obtained from the posterior.

7 RELATED WORK

While interpreting neural network training as posterior approximation in ICL was established in
previous work (Xie et al., 2022; Müller et al., 2022), this study investigates its explanatory power in
single-epoch ICL setups and identifies its limitations.

Yadlowsky et al. (2023) previously discussed the generalization behavior of ICL models. They
found that transformers do not have particular inductive biases making them especially strong on
out-of-distribution ICL. What we have added to their analyses is that data alone, defining a posterior,
enables generalization to new input-output mappings.

Finally, there is a line of work using the interpretation of neural network training as posterior approx-
imation, namely PFNs (Müller et al., 2022; Hollmann et al., 2023; Müller et al., 2023; Rakotoarison
et al., 2024; Adriaensen et al., 2023), which are trained on data sampled from a prior as an approx-
imation to the posterior. PFNs are a form of amortized inference, where the PPD (mapping from
training data and test example to test output) is learned directly. Thus, they heavily rely on the
posterior approximation interpretation.

8 CONCLUSION & FUTURE WORK

In this paper, we demonstrate that transformers trained for in-context learning (ICL) can achieve
notable out-of-distribution generalizations, that are unlike a nearest-neighbor matching, and involve
the composition of training examples. We found that these generalizations can be explained by the
posterior that the transformer learns to approximate implicitly in many cases. We did also find,
though, that these generalizations exhibit clear limitations and may not function intuitively in all
scenarios. If the data-generating function does not have support in the prior distribution, model
predictions tend to converge to incorrect solutions. Moreover, when conditioning on data that lies
outside the support of the prior, neural network behavior becomes less reliable and predictable.

Open future work are the following points. i) Develop a practical definition of support in neural
network training, considering that most data within the support is not sampled during training. ii)
Understand what types of priors models prefer to approximate. This is interesting because the data
sampled from the prior typically does not identify the prior. iii) Finally, we would like to learn if
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this interpretation can be useful for understanding more about the behavior of language models in
general sequence settings.
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A APPENDIX
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Figure 10: We show the predictions of the 8 strongest models from our grid search. We see that all
models tend to make similar mistakes on this task, which is likely due to a bias in the architecture.
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Figure 11: The prior combining sines and lines introduced in Section 4.3 deteriorates in accuracy
as more data points are conditioned upon, as detailed in Section 5.2. Notably, the neural network
approximation makes an erroneous approximation here and still predicts a sloped sine. This model
was trained on dataset with up to 100 examples, thus this is not due to length generalization.
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Figure 12: We show a simple Gaussian Process (GP) conditioned on 10 to 400 linearly spaced
context points of a step function. The GP, with an RBF kernel (lengthscale 0.4, outputscale 1.0),
a constant mean function, and Gaussian noise (σ = 0.1), mostly models the step within its 95%
confidence interval at first but increasingly becomes over-confident in an over smooth function as
more points are added. Reproduce this experiment with our notebook https://anon-github.
automl.cc/r/BayesGeneralizations-19B2/GP_fitting_a_step.ipynb.
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