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Abstract

Distributed sparse Gaussian process (dGP) models provide an
ability to achieve accurate predictive performance using data
from multiple devices in a time efficient and scalable manner.
The distributed computation of model, however, risks expo-
sure of privately owned data to public manipulation. In this
paper we propose a secure solution for dGP regression mod-
els using multi-key homomorphic encryption. Experimental
results show that with a little sacrifice in terms of time com-
plexity, we achieve a secure dGP model without deteriorat-
ing the predictive performance compared to traditional non-
secure dGP models. We also present a practical implementa-
tion of the proposed model using 15 Nvidia Jetson Nano De-
veloper Kit modules to simulate a real-world scenario. Thus,
secure dGP model plugs the data security issues of dGP and
provide a secure and trustworthy solution for multiple devices
to use privately owned data for model computation in a dis-
tributed environment availing speed, scalability and robust-
ness of dGP.

Introduction

Increase in adoption of Internet of Things (IoT) devices for
various tasks has caused explosive growth in the generation
of distributed data in recent years. This phenomenon has the
potential to enable novel machine learning (ML) applica-
tions in domains such as smart healthcare, finance, smart
homes or autonomous vehicles. However, in such applica-
tions, data is distributed among several devices separated in
space, such as different healthcare institutions, financial in-
stitutions, research facilities or the end-users. Training ML
models traditionally requires spatially dispersed, heteroge-
neous data to be collected at a centralized server, entailing
several challenges like high volumes, communication com-
plexity, secure management and processing. Additionally,
competition, bureaucratic red-tape and data security laws,
such as the European Union General Data Protection Regu-
lation (EU GDPR) also restrict collection of distributed data
by centralized servers for training ML models (Horvitz and
Mulligan 2015). Moreover, physical and safety-critical ap-
plications, such as control systems in medical robots or au-
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tonomous vehicles, require high quality models that guar-
antee reliable solutions without compromising security and
privacy of local data (Lederer et al. 2021).

Gaussian Process (GP) models have very good prediction
accuracy and provide accurate estimates of uncertainty in
prediction, hence proving to be one of the best candidates
in critical applications such as healthcare or finance which
require risk-averse solutions. However, achieving data secu-
rity in full Gaussian process (FGP) model is expensive in
terms of computation because it involves a large number of
arithmetic operations with increase in data size. A secure
FGP model proposed by (Fenner and Pyzer-Knapp 2020)
uses fully homomorphic encryption (FHE) (Brakerski 2012)
in a client-server scenario, where a GP model at server com-
putes predictions for client using client’s data. However, de-
spite careful implementation, secure FGP model is imprac-
tical in real-world applications due to its very poor scalabil-
ity and high memory and time complexity. In an approach
to approximate the GP model in a distributed setting, (Chen
et al. 2013) proposed dGP models computed over a cluster of
computing devices thus providing access to data for model
computation without the need to share it on a central server.
Compared to traditional sparse GP approximation (Snelson
and Ghahramani 2005; Rasmussen 2003; Seeger, Williams,
and Lawrence 2003; Csaté and Opper 2002), dGP models
are more efficient because computation load is shared among
a set of collaborating computing devices which enables ap-
plication of such models in real-time. In dGP computation,
each device uses its local data to compute a local sum-
mary which is a data structure comprising of a mean vec-
tor and covariance matrix comprising of the expected values
and covariances among realized outputs respectively. The lo-
cal summaries of all the devices involved in computation of
dGP model are aggregated into a global summary, which is
then used for predictions on unobserved data. This setting
reduces the time and memory complexity compared to cen-
tralized full and sparse GP models. The predictive posterior
distribution has lower uncertainty around the region closer to
observed data points due to higher covariance among unob-
served and observed points in close proximity realized data,
therefore, in this setting, privacy of the local data of each de-
vice is not preserved, where an adversary can use the local
summary structure to predict particular devices’ local data.
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Intuitively, a third-party server can be introduced to hold lo-
cal summaries from each device and compute a global sum-
mary for predictions. However, legislation like EU GDPR
and threat of data privacy breach at server may hinder the de-
vices from sharing local summaries with centralized server.

An intuitive solution to ensure the security of local data
used for local summary computation is to encode the lo-
cal summary in such a way that it cannot be decoded by
any other device. Moreover, global summary computed from
the encoded local summaries is collaboratively decoded by
all the devices. However, achieving security for distributed
computation model is challenging and non-trivial task. The
distributed nature of data and local and global computation
of the model introduces the risk of privacy leakage at multi-
ple levels. This work proposes a method to achieve privacy
in local as well as global computation of dGP model by uti-
lizing homomorphic encryption (HE) (Gentry 2009) scheme
adapted for the distributed computation scenario (Chen et al.
2019; Ma et al. 2022). The privacy of local data used in com-
putation is preserved by leveraging HE in Secure Distributed
Sparse GP (SDS-GP) framework. In addition to preserving
privacy of the local data, the proposed scheme does not de-
grade the model performance in terms of predictive perfor-
mance as well as computation and memory complexity. In
summary, following are the main contributions of this work:

e We propose the SDS-GP framework implementing dGP
algorithms with HE to perform secure computation over a
network which is the first such scheme to the best of our
knowledge.

e Furthermore, to provide evidence of its accuracy, scal-
ability and efficiency in distributed computation setting and
simulate real-world application scenario, we also provide a
practical implementation of the proposed scheme over a set
of 15 Nvidia Jetson Nano devices.

e Finally, we present empirical evidence to demonstrate
the superiority of the proposed scheme over non-secure GP
models.

Distributed Sparse GP Models

GPs are non-parametric Bayesian models based on the as-
sumption that a set of multivariate random variables fol-
low a multivariate Gaussian distribution. In FGP, a prior
is placed on set of all possible functions for input domain
X. Prior distribution is Gaussian with mean p,, and covari-
ances o, computed by a kernel function k(x,x’) for all
x,x’ € X. An FGP model makes use of the observed points
in (D,yp) C X to predict unobserved data &/ C X using
posterior mean and covariances as follows.

ey
@

where 1i4p and ¥ p denote posterior mean vector and
covariance matrix respectively with p;; and pp comprising
of mean elements py for x € U and x € D respectively.
3p comprises of covariance elements oy for x € U and
x' €D, EE% with elements oy for x,x’ € D.

The FGP models however prove to be impractical in most
real-world applications due to their prohibitive computation

tup = s+ SupEpp(yp — pp),

Suup = S — SupEppEpu
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cost (i.e. O(|D|?) in Egs. (1) and (2). Instead of using FGP,
sparse GP models (Snelson and Ghahramani 2005) make use
of a support set S C X to approximate the FGP, thus de-
creasing the computation cost. Sparse GP approximation re-
duces the computation cost of FGP models, but still requires
centralized computation of the model to fit data. On the other
hand, dGP approximation (Chen et al. 2013) provides a way
to fit the local data to compute a global sparse GP approxi-
mation in a distributed computation setting where a number
of collaborating computing devices can take part in compu-
tation without need to share the local training data. The dGP
models, therefore provide flexibility (in terms of number of
computing devices and distance) while maintaining the per-
formance of highly accurate GP models.

Secure Distributed Sparse GP Models
Security Analysis of Distributed Sparse GP

Distributed sparse GP model is an approximation of FGP
where several devices collaborate to compute a global sum-
mary which is used for making the predictions. Each col-
laborating device acquires local data, e.g., client records of
a financial organization to fit a dGP model. Mathematically,
local data for each device is defined as follows.

Definition 1 (Local Data). Local data at each device i com-
prises of (D;,yp, ), such that D; C X, X being the input
domain and yp, corresponds to the realized outputs in D;.

A common support set S C X for |S| < | D] is selected
prior to local summary computation. Each device uses the
support set and local data to compute a local summary which
is defined as follows.

Definition 2 (Local Summary (Chen et al. 2013)). Given
local data (D;, yp, ) and support set S, each device computes
s (4)

a local summary L; £ (rhg ,Kg}s) comprising of a mean

s (4)

vector mg’ and a covariance matrix Ké%
g £ Ssp,Bpl, s (W, — ip,) 3)
Kk 2 Ssp, Bl sEnis )

where pp, comprises of the expected values of outputs in
D;, 251-1Di| s 1s defined in similar manner as in Eqs. (1) and
(2) and X gp, is transpose of Xp,s.

The local summary is independent of ys as evident from
Egs. (3) and (4), therefore S can be predefined based on do-
main knowledge prior to observing the D; and shared with
the collaborating devices. The server computes global sum-
mary using the local summaries of all devices as follows.
Definition 3 (Global Summary (Chen et al. 2013)). Given
the support set S and the local summaries L; from collabo-
rating devices, the server computes global summary G such
that G £ (ﬁS,KSS) for

M
— A . (7)
mgs = E IIlS s
i=1

where Iilg) and KES% are the elements of local summary
L; as defined in Egs. (3) and (4) and M is the number of

collaborating computing devices (Machines).

M
Kss £ Zss + Z Kg}; ®)

i=1
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Figure 1: Schematic diagram of Secure Distributed Sparse GP (SDS-GP) framework involving four stages.

The global summary G is then used to make predictions
on unobserved points using distributed PITC (dPITC) algo-
rithm as follows.

Definition 4 (dPITC (Chen et al. 2013)). Given global sum-
mary G, support set S, predictive Gaussian distribution for

dPITC is N (1, , IA{uiui) for unobserved points in ; C X
where

©)
- I —
Rua 2 Suu, — Zus (T5b - Kss) Zou. O

A =1
my, = py, + Xy,sKssMs,

where L, , Xuu;, Egé and 3y, s are defined as in Egs. (1)

and (2) and Ky, is transpose of Ky, s, whereas K;é and
mg are defined in Eq. (5).

In posterior, the uncertainty around the observed data
points is very low as compared to the uncertainty around
the unobserved data. Mathematically, since my,, is depen-
dent on ms which is obtained by aggregating the local sum-
maries rhg) summarizing the local data D; hence the mean
function passes through the data points in yp,. Similarly,
covariance among the points closer to the points in D; is
higher hence results in low uncertainty around observed data
points.

Considering a scenario where a user with device ¢ shares
its local summary L; with another user having device j. In
this case, if j provided with L, computes a global summary
G from L; and then uses G to make predictions on unob-
served (test) points, it may reveal the local training points of
1. For example, two users collaborate to compute a model to
predict about prevalence of a disease in a particular area. The
user with device j, given L;, can infer about some patients
included in D; by using some publicly available information
of that area. Since the data points which belong to the local
training data D; have low uncertainty, therefore can be pre-
dicted with higher confidence. In such case, the privacy of
local user’s data is not ensured. Alternatively, if a third-party
server is introduced to compute the global summary G, in-
stead of all devices computing G independently. The privacy
of the local user data is only ensured if the third-party server
is a trusted party. However, such a setting poses risk of pri-
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vacy leakage for all the devices involved in the computation
if integrity of the third-party server is compromised.

Secure Distributed Sparse GP Framework

Privacy leakage issue in the dGP models is resolved by us-
ing a multi-party HE-based scheme (Cheon et al. 2017; Ma
et al. 2022) for the distributed computation scenario. Dis-
tributed computation in dGP approximation involves differ-
ent tasks to be completed by the collaborating computing
devices, therefore, the whole process of SDS-GP framework
is decomposed into four stages as shown in Figure 1.

Preparing the Environment: Our scheme assumes that
the homomorphic evaluation of functions in the encrypted
form is secure because of the hardness of underlying ring
learning with error problem, thus providing security for the
training data by allowing us to evaluate functions without
the need for an intermediate decryption. The security pa-
rameters for computation of SDS-GP framework are setup
as follows.

Definition 5 (Setup HE Parameters). For a positive integer

q, set N to be a power of two for security and simplicity, a

positive integer h and a positive real value for o. Generate

a random vector a € Rév with the elements drawn from

R, uniformly. Output public parameter & = (p, a), where
A

p = (N.q,0.h).

Public parameter & is same for all collaborating comput-
ing devices in SDS-GP framework. Mathematical construc-
tions for the ring and the distributions for implementing HE
are as follows.

s i (X) is the K" cyclotomic
nomial of degree N o(K)
e(K) = {p:1<p< K Aged(p, K) =1}].
R = Z[X]/Pk(X) is ring of integers where ring com-
prises of polynomials Z[X], with integer coefficients
modulo an ideal generated by @ x (X).

R4 = R/qR is the quotient ring of R by ideal generated
by a positive integer g, so that R, comprises of residue
classes of R modulo q.

G(0,0?) denotes discrete Gaussian distribution with vari-
ance o2 for ¢ > 0. During the encryption, noise

poly-
where
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e ~ G(0,0?) in Z" is added for ciphertext indistin-
guishability.

KC(h) is the set comprising of signed binary vectors
in {0,£1}" of Hamming weight h, where, hamming
weight is defined as the count of non-zero entries in a
vector. Each device chooses its secret key from the set
K(h).

Categorical distribution £(p) for 0 < p < 1 draw ele-
ments in a binary vector {0, =1}, where probability of
drawing +1 or —1is p/2 and 1 — p for 0.

After setting up security parameter &, all the devices com-
pute a pair of public and secret key for encryption and de-
cryption respectively as follows.

Definition 6 (Local Key Generation). Given @ each device
1 generates a pair of public and secret keys (b(l), s(l)) where

b = (—s(i) -a+ e((f)) mod(q), for s € K(h), a € 2,

eg) ~ G(0,0?) and mod(q) denotes arithmetic modulus
operation with ¢ as modulus.

Homomorphic computation property in the distributed
computation scenario is ensured only when all the collab-
orating devices encrypt their local data using common en-
cryption key. Therefore, we generate a global public key for
encryption of the local summaries. Global public key is the
sum of the public keys generated by each device as follows.
Definition 7 (Global Key Generation). Given all the pub-
lic keys b(*), server generates a global public key b for M
devices such that, b = S b mod(q)

We assume an Honest but Curious (HbC) server which
doesn’t interfere in the global key generation process. How-
ever, a malicious server can generate its own public key as
the global public key and send it to the devices to decrypt lo-
cal summaries. In such a threat model, all the devices broad-
cast their respective public key to the collaborating devices
and generate global public key in a decentralized manner
thus eliminating the security risk posed by the malicious
server.

Secure Local Computation: The secure local computa-
tion starts with the selection of an informative support set
at the server which is shared with all the devices. All of the
collaborating devices compute a local summary using their
respective local data and the common support set (see Def-
inition 2). Subsequently, the local summary is encrypted to
obtain a secure local summary as follows.

Definition 8 (Secure Local Data Summarization). Given lo-

(m‘(;)7K‘(S%‘)S«' c R‘SV(‘SH‘U’ each

device ¢ encodes all the elements of local summary [L;] ;. €

R into a plaintext polynomial t(*) € R which is encrypted

into secure local summary T £ (tg(i), tl(i)) € RZ with
to 2 v . b+t + e mod(q),

£, 2y . a4 e

cal summary L;

(3)
where to,t,() € R,, whereas v(?) E(p) and
e;) ~ G(0,0?). Encoding (Ecd(-; A,)) of a message into
the plaintext is elaborated in (Cheon et al. 2017).

mod(q)

~
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Lemma 9 (Encryption Noise (Cheon et al. 2017)). If
Ecd(-; Ay) and Enc(-) denote encoding and encryption re-
spectively and [TW];; < Enc([tW];;) and [tD];, «
Ecd([L;]jx; As) for Ay > N + 2Ben, where Ay is scal-
ing factor for encoding, B, is the noise bound for encryp-
tion given by, Bepe = 820N + 60N + 160vVhN, then,
Ded(Dec([T™);x)) = [Li]; where Ded(.) and Dec(.) re-
fer to decoding and decryption respectively.

Secure Global Computation: Server receives secure lo-
cal summary T from each device i and computes a secure
global summary as follows:
Lemma 10 (Secure Global Summary). Given secure local
summaries T from each device, server computes the se-
cure global summary G’ 2 (Gg, G1) with noise bounded
by Zf\il B, where Go Zf\il to®
G1 = Zz]\il tl(i) mod(q) .

Subsequent to the computation of G, server initiates the
distributed decryption where each device collaborates with

the server to compute the decryption of the secure global
summary.

mod(q) and

Decryption & Distributed Predictions: The collaborat-
ing computing devices compute the decryption of secure
global summary G’ in a collaborative decryption process.
Subsequent to successful decryption of the global summary
each device uses it to make predictions on its local test data.

Theorem 11 (Decryption & Distributed Prediction). Given
secure global summary G', server computes the full de-
cryption of the global summary G 2 G+ 7T forT &
ngl I'® mod(q), where T = s() . Gy +& mod(q)
is the decryption share computed independently by each de-
vice, then G = G < A, > N+2Bfor B = Zf\il B

Each device © given decrypt global summary G, unob-
served data U;, support set S and local data (D;,yp,)
computes predictive mean and covariances for secure dis-
tributed sparse PITC (sPITC) as defined in Egs. (6) and (7)
(see Definition 4) and secure distributed sparse PIC (sPIC)
(Chen et al. 2013).

This setting resolves the privacy issue in sparse dGP ap-
proximation. Firstly, since the local summary of each device
is encrypted and it can not be decrypted without the secret
key of that particular device, hence all other devices working
in collaboration with the server are unable to decrypt a par-
ticular local summary and use it for the analysis and attack.
Secondly, since decryption of the global summary requires
the secret keys of all the collaborating devices, hence the
server is unable compute the global summary of M — 1 de-
vices and use it to compute the local summary of one device,
thus ensuring the confidentiality of each of the collaborating
devices in a malicious threat model. Despite these security
guarantees, collaboratively decrypted global summary can
still reveal some information about the dGP model, how-
ever, the identity of the local user is kept anonymous thus
ensuring local user’s privacy. Complete immunity from the
inference attack will be considered in an extension of the
SDS-GP framework.
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Figure 3: RMSE and compute times for varying size of support set for SDS-GP framework.

Time Complexity of Secure Distributed Sparse GP:
The additional computation cost for SDS-GP models come
from the homomorphic encryption, addition and decryp-
tion algorithms. However, since all the algorithms in-
volve operations on polynomials, hence only incur polyno-
mial time increase in computation complexity. The encryp-
tion and decryption entails computation overload of order
O(N log(N)). The addition operation simply adds the val-
ues in corresponding ciphertexts, hence only adds O(N) to
the computation cost.

Experiments and Results
Implementation

In this section, we present the implementation of the SDS-
GP framework. The source code for the framework is de-
veloped in C++ with HE implementation based on HEAAN
V2.1.0. HE operations involve computation on big num-
bers and modulo arithmetic which is implemented using
NTL 11.5.1 built in conjunction with GMP 6.2.1. All ex-
periments are implemented using 15 Nvidia Jetson Nano
4GB developer kit modules as the client nodes and an In-
tel(R) Core(TM) i5-5500U CPU @ 2.40GHz with 8GB
RAM as a server connected via a 10/100Mbps standard Eth-
ernet WLAN network. The parameters for HE, N = 216,
qg = 800, h = 64, p = 0.5 and o = 3.2. In all the exper-
iments, after standardizing the datasets, we split them into
training and test sets, where test set in each case comprises
of 10% of the whole dataset. The datasets are modelled
as GP specified by the squared exponential kernel k(u,u’)
such that, k(u,u’) N (

’2
1 Ujg 7’U,7»/
2 i=1

£

A

= g exp(— )+ 030w,
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where u;, u} denote the i-th feature(s) of d-dimensional input
vector(s) u, u’ respectively. o,, 0, and [; are the hyperpa-
rameters representing function variance, noise variance and
length-scales respectively. d,,, is the Kronecker delta which
is 1if u = u’ and 0 otherwise. Hyperparameter values are
learned by Maximum Likelihood Estimation (MLE) (Ras-
mussen 2003).

Datasets and Evaluation Metrics

The proposed scheme is evaluated on the three publicly
available regression datasets, i.e, Sarcos (Vijayakumar and
Schaal 2000), Power Consumption (PowCons) (Salam and
Hibaoui 2018) and SGEMM GPU kernel performance
(Nugteren and Codreanu 2015) dataset.

We use root mean square error (RMSE) as the evalu-
ation metric for both sPITC and sPIC algorithms, where,

RMSE £ \/|L{i|*1 > xeut; Yz — y;, )* where iy, is de-
fined in Eq. (6) and U; is unobserved data of ¢th device. We
also analyze the performance of the proposed scheme for
computation and communication complexity with respect to

varying the size of data and number of collaborating devices
and compare the results against non-secure GP models.

Results and Discussion

Accuracy: Predictive accuracy is one of the most impor-
tant metrics in ML tasks, especially when applied in the
critical decision making systems. Security of the encrypted
global summary depends on the noise added during the com-
putation of ciphertext. Since noise is added to the plaintext
as part of the message, we conduct an experiment to analyse
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Figure 4: Variation in computation time by varying number of collaborating devices

the accuracy of the secure global summary vs non-secure

global summary. The maximum error, i.e., max (é — G)

for mg and Kss is 5.29 x 107 and 1.45 x 10~ !*, respec-
tively. We also compute the mean error, i.e., the overall error
introduced by the encoding and the encryption operations in
SDS-GP for secure global summary computation. The mean
error for global covariance matrix Kgss is 2.89 x 10~7 and
for the global mean vector mg is 4.16 x 10~ '2 which is neg-
ligible. The error added to the local summary during encryp-
tion and homomorphically evaluated global summary can be
considered as the rounding off error which occurs during the
real-value arithmetic.

Moreover, error performance of SDS-GP is similar to the
traditional non-secure dGP and FGP models. It is evident
from the error performance of the proposed scheme, as il-
lustrated in Figure 2. The RMSE of the proposed scheme
for all three datasets is similar to traditional non-secure dGP
models.

Computation Time vs Data Size: Size of the support set
plays a critical role in performance of the SDS-GP frame-
work. Larger size of the support set improves the accuracy
of the models, however due to increase in amount of the
data, the communication cost increases, hence increasing the
overall computation time. Therefore, it is important to se-
lect an adequate size of the support set so as to minimize
the communication cost while maintaining high accuracy.
To this end we perform a number of experiments varying
the size of the support set |S|. As evident from the results
shown in Figure 3, the large |S| improves the accuracy while
also increasing the time requirement and vice-versa. It is ev-
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ident from the reported results that the computation time of
SPITC(sPIC) scales linearly with the increase in size of data.
It is consistent with the results previously reported by (Chen
et al. 2012, 2013) for the non-secure dGP models.

Moreover, Since SDS-GP scheme comprises of the poly-
nomial time algorithms as stated in Section , the end-to-end
compute time does not increase significantly as compared
non-secure dGP models. Figure 2 gives the end-to-end com-
putation times for all the datasets which are comparable to
the compute times of non-secure dGP methods.

Computation Time vs No. of Devices: Number of col-
laborating computing devices affect the computation time of
SDS-GP. As shown in Figure 4, the computation of local
summary largely affects the overall computation time. Less
number of devices having large amount of data (as shown in
Figure 4(SGEMM+sPITC) and Figure 4(SGEMM+sPIC))
the increase in overall computation time is significant which
decrease with increasing the number of devices. However,
for small datasets, the computation times for increasing
number of devices first decreases because computation time
for local summary decreases and then increases for further
increasing the no. of devices because of additional commu-
nication time for global summary computation.

Communication Time vs Data Size & No. of Devices:
Since the collaborating computing devices communicate
with each other and the server during the secure model
computation hence communication time is also an impor-
tant metric to measure the performance and efficiency of our
scheme. The communication between the devices only oc-
curs during the key generation and secure global summary



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

computation stage of the secure model computation hence
we see a linear increase in the communication time while
increasing the number of devices as shown in Figure 4. How-
ever, on the other hand, increasing the data size does not af-
fect the overall communication overhead in the model com-
putation because the key generation stage is independent of
the size of the data on each device and so is the global sum-
mary matrix which remains constant in size for a particu-
lar computation session. Hence the communication time re-
mains constant for increase in the data on each device.

Related Works

The tremendous growth of data in terms of speed and vol-
ume have made it inevitable for most of the machine learn-
ing applications to adopt the distributed computation ap-
proach. The distributed machine learning (AML) however
suffers from the privacy threats from both inside i.e., col-
laborating computing devices as well as outside i.e., from
outside adversaries (Liu et al. 2022). Local data of the
collaborating device is prone to privacy leakage in a dis-
tributed learning setting through its contribution in global
model computation (Yao 1982). There are several tech-
niques that ensure the security of local data in distributed
ML computation including the secure multiparty computa-
tion (SMPC), differential privace (DP) and HE based se-
cure computation models. SMPC involves secret sharing
among parties while the computation of a function in a
collaborative manner, however, completely secure multi-
party computation requires complicated computation pro-
tocols which are achieved at cost of the reduced efficiency
(Yang et al. 2019). (Mohassel and Rindal 2018) proposed
a method to achieve data security under assumption of the
honest & the semi-honest majority, complete security how-
ever is not considered against an honest-but-curious majority
in the collaborative computation. Differential privacy is an-
other method which uses “data-anonymisation” techniques
to achieve data security in the collaborative model computa-
tion. In the prevalent DP methods, noise is added to the data
in such a manner that a third party is unable to distinguish an
individual data point, however, in such a setting the original
data can not be restored and hence efficiency is sacrificed
for achieving the security (Dwork 2008; Melis et al. 2019).
Trade-off between the privacy protection and the accuracy of
the model reduces the quality of the model outcomes which
is not desirable in the critical applications (Naseri, Hayes,
and De Cristofaro 2022).

On the other hand, strength of privacy-preservation in HE
based dML methods is dependent on the underlying cryp-
tographic scheme, therefore the models based on the ro-
bust cryptographic schemes ensure strong security guaran-
tees without deteriorating the overall model accuracy. Ho-
momorphic property of HE is only determined if the cipher-
texts are evaluated using a common encryption key, thus
sharing of the secret key determines the threat model in dis-
tributed computation. In one setting where the secret key is
only known to the collaborating devices, server is unable
to compromise the local data privacy (Tang et al. 2019; Xu
et al. 2021; Zhang et al. 2020; Zhou et al. 2020; Chen, Li,
and Miyazaki 2021; Phong et al. 2018). However, the secu-
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rity of the local data is dependent on the assumption that col-
laborating computing devices are honest and non-colluding.
Moreover, server can also gain access to the secret key by
creating a ‘fake user’ and decrypt the local data. (Phong et al.
2018) proposed a scheme that makes use of additive HE to
collaboratively compute a deep learning model. However,
this scheme suffers a serious drawback, i.e., all the devices
use a common decryption key, therefore a strongly secure
communication between the collaborating devices and the
cloud server is needed to protect the privacy of the local data.
In another setting where the secret key is not known to any
of the collaborating devices except the server (Mandal and
Gong 2019; Zhu et al. 2021), such a setting assures the pri-
vacy of the local devices’ data only if the server is honest.
This scenario is particularly applicable in the applications
where an institution needs to improve model performance
while protecting the model privacy. Since the server knows
the secret key in this setting, therefore it does not ensure
the privacy of the local users data/models. Some methods
achieve privacy for local devices in this setting by adopting
different privacy preserving methods for the local devices,
such methods including SecAgg (Mandal and Gong 2019),
PIVODL (Zhu et al. 2021) etc., require users to evaluate the
local data in an encrypted form hence increasing the compu-
tation, communication and the memory complexity. In an-
other setting, the secret key is shared among a number of
users, hence the server requires to collude with all the de-
vices having share of the secret key to be able to breach
the local data privacy. This improves the security guarantee
for the first setting at the expense of an increased commu-
nication cost. These schemes also incur extra computation
cost where the users have to evaluate complex functions on
the ciphertexts hence rendering them impractical in many
applications requiring real-time performance. Other privacy
preserving ML applications (Yuan and Yu 2014) use cloud
based model where the users encrypt the raw training data
using a public encryption key and the powerful cloud com-
puting server performs the computation on data in encrypted
form to achieve a converged model, however, it is prohibitive
in many practical real-time application scenarios due to its
financial cost.

Conclusion

This work presents a multi-key HE-based distributed sparse
GP regression which breaks the process of model compu-
tation into stages and perform HE only where the data is
shared among the devices. We also demonstrate the practi-
cal implementation of the scheme which shows that efficient
and accurate predictive model can be computed using de-
vices with the limited computational resources without com-
promising the security and integrity of the local data. The
experimental data reveals that the secure distributed sparse
GP approximation achieves better performance in terms of
computational time compared to its centralized counterparts,
while adding a small fraction of latency compared to the
non-privacy preserving distributed schemes. In the future,
the proposed method will be extended and applied to prac-
tical applications which require learning with strict security
and a high accuracy.
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