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Abstract

We present ProtoDepth, a novel prototype-based approach001
for continual learning of unsupervised depth completion,002
the multimodal 3D reconstruction task of predicting dense003
depth maps from RGB images and sparse point clouds. The004
unsupervised learning paradigm is well-suited for continual005
learning, as ground truth is not needed. However, when006
training on new non-stationary distributions, depth comple-007
tion models will catastrophically forget previously learned008
information. We address forgetting by learning prototype009
sets that adapt the latent features of a frozen pretrained010
model to new domains. Since the original weights are not011
modified, ProtoDepth does not forget when test-time domain012
identity is known. To extend ProtoDepth to the challenging013
setting where the test-time domain identity is withheld, we014
propose to learn domain descriptors that enable the model015
to select the appropriate prototype set for inference. We eval-016
uate ProtoDepth on benchmark dataset sequences, where017
we reduce forgetting compared to baselines by 52.2% for018
indoor and 53.2% for outdoor to achieve the state of the art.019

1. Introduction020

In depth completion, the task of predicting a dense depth map021
from an image and an associated sparse point cloud, models022
can be trained in a supervised (using ground truth) or unsu-023
pervised (using Structure-from-Motion) manner. As ground024
truth is prohibitively expensive to acquire, we subscribe to025
the unsupervised learning paradigm, which enables one to026
learn without human intervention. While this suggests the027
potential to continuously learn, existing models are trained028
and evaluated on single datasets under the assumption of a029
stationary data distribution. However, sequences of multiple030
datasets exhibit non-stationary distributions and are captured031
by sensors with varying calibrations. Hence, fitting to new032
data samples inevitably causes the model to “catastrophi-033
cally forget” [17, 43, 51, 67] previously learned information,034
where the model performance degrades significantly on data035
from distributions that it had already observed.036

To enable pretrained models to adapt to new environ-037

ments or domains in an unsupervised manner, we consider 038
continual learning, where training strategies aim to miti- 039
gate catastrophic forgetting of previously observed training 040
distributions when learning from a continuous stream of 041
non-stationary data. We model the change in distribution as 042
a domain-specific bias to be learned by global multiplica- 043
tive and local additive “prototypes” that transform the latent 044
features to fit the new distribution. 045

To this end, we propose ProtoDepth, a novel prototype- 046
based method for unsupervised continual depth completion 047
where we deploy lightweight prototypes to a frozen pre- 048
trained model to encode prototypical information of each 049
domain. These prototypes model global and local biases, 050
where global prototypes learn a transformation from the la- 051
tent pretrained data distribution to that of the new domain, 052
and local prototypes capture fine-grained features that can 053
be selectively queried depending on the input. Naturally, 054
when the test-time domain identity is known, i.e., domain- 055
incremental, ProtoDepth exhibits no forgetting and learns 056
the new data distribution with high fidelity. We further en- 057
code each domain as a descriptor to enable inference when 058
test-time domain identity is withheld, i.e., domain-agnostic, 059
where the prototype set corresponding to the highest affinity 060
domain descriptor for a given sample is chosen. 061

Our contributions: We propose (1) a novel prototype- 062
based paradigm for unsupervised continual depth completion 063
that incurs no forgetting in the domain-incremental setting, 064
and (2) a prototype set selection mechanism that extends 065
the prototype paradigm to domain-agnostic settings with 066
minimal forgetting. This is facilitated by (3) a novel training 067
objective that learns descriptors for each domain, which can 068
be used to determine the prototype set suitable for inference 069
without knowledge of domain identity. (4) Our method, 070
ProtoDepth, reduces forgetting over baselines by over 50% 071
across six datasets; to the best of our knowledge, this is the 072
first unsupervised continual depth completion method. 073

2. Related Work 074

Continual learning is the process of incrementally adapting 075
the weights of a parameterized model to perform new tasks 076
involving non-stationary distributions, while preserving in- 077
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formation learned from previous tasks.078
Regularization-based methods [1, 7, 12, 13, 23, 30, 33,079

35, 45, 49, 56, 99, 100] aim to mitigate forgetting by restrict-080
ing the plasticity of model parameters that are important for081
previously learned tasks. However, while they perform well082
in simpler continual learning settings, regularization-based083
methods can struggle with more challenging tasks [41] and084
larger domain shifts between datasets [52, 86].085

Rehearsal-based methods use a memory buffer to store086
a limited amount of data from previous tasks, allowing the087
model to periodically re-train on this data during continual088
learning. [2, 5–10, 20, 22, 24, 25, 27, 37, 39, 44, 47, 48, 52,089
52–54, 57, 58, 61, 71, 86, 88, 102] use the strategy of retain-090
ing a subset of previous “experiences” (i.e., data) to “replay”091
(i.e., re-train on) while learning new tasks. Rehearsal-based092
methods can reduce forgetting but are unsuitable when data093
storage is limited by memory or privacy constraints [62].094
Additionally, their performance degrades significantly as095
memory buffer size shrinks [6].096

Architecture-based methods [14, 26, 28, 34, 38, 42, 50,097
59, 60, 73, 75, 95, 101] allocate task-specific parameters or098
sub-networks, aiming to enable learning of new tasks while099
minimizing changes to parameters assigned to previous tasks.100
Such methods often introduce a significant number of addi-101
tional parameters for each task [48, 85, 91], which can even102
exceed the parameter count of the original model [26, 73].103
In contrast, our method can be used for inference without104
task identity, does not require a rehearsal buffer, and only105
introduces a very small number of additional parameters106
(<5% of original model) per task.107

3. Preliminaries108

Unsupervised Continual Depth Completion. For con-109
tinual learning, we consider a task sequence of domains110
D1,D2, · · · ,DT . Starting with a depth completion model fθ111
pretrained on the initial dataset D1, we aim to incrementally112
adapt fθ to each subsequent dataset D2, · · · ,Dk, · · · ,DT .113
The key challenge is to learn the data distribution of each114
new dataset Dk without “forgetting,” as measured by perfor-115
mance degradation on previously learned datasets Dj<k. We116

denote each dataset as Dk = {(I(i)k , z
(i)
k ,K

(i)
k )}nk

i=1, which117
comprises nk training samples of image, sparse depth, and118
calibration, with no ground-truth depth. Refer to Sec. A119
in Supp. Mat. for a formalization of unsupervised depth120
completion in the stationary (non-continual) setting.121

4. Method122

We present ProtoDepth, a novel approach for unsupervised123
continual depth completion that mitigates catastrophic forget-124
ting by leveraging prototype sets as selective biases. Given a125
pretrained depth completion model fθ, which we freeze to126
prevent any forgetting, we adapt it to new datasets by deploy-127

ing lightweight, domain-specific prototype sets that learn to 128
selectively bias the latent features; note that this only adds 129
minimal additional parameters per dataset or domain. Our 130
method is applicable to the domain-incremental (“incremen- 131
tal”) setting, where dataset identity is known at test-time, and 132
the more challenging domain-agnostic (“agnostic”) setting, 133
where the test-time domain identity is unknown, through a 134
proposed prototype set selection mechanism (see Sec. 4.3). 135

4.1. Prototype Learning 136

To enable the model to adapt to new datasets without forget- 137
ting, we learn layer-specific prototype sets for each dataset 138
that serve as multiplicative (global) and additive (local) bi- 139
ases in the latent feature space. For simplicity, we consider 140
an input sample from a single dataset Dk at a single layer l, 141
which is encoded into the latent features X ∈ Rh×w×c. We 142
assume a linear transformation from the learned latent space 143
of D1 to that of Dk; hence, we formulate the adaptation as 144

X̂ = A⊙X +B, (1) 145

where ⊙ denotes a (broadcasted) Hadamard product between 146
the global prototype A ∈ Rc and the features X; B is an 147
additive bias constructed from a set of local prototypes P . 148

To this end, we flatten the latent features X to get Q ∈ 149
R(h×w)×c. Since the model fθ is frozen, Q serves as a 150
set of h × w deterministic queries, where each query is a 151
c-dimensional vector. We introduce N learnable additive 152
prototypes P = [p1, p2, · · · , pN ]⊤ ∈ RN×c, where each pi 153
is a c-dimensional vector representing a “prototypical” local 154
feature of the dataset. To learn the keys associated with each 155
prototype, we define a projection matrix W that learns to 156
map the prototypes P back into the query space, i.e., the 157
latent feature space. This yields K ∈ RN×c, where 158

K = StopGrad(P )×W. (2) 159

StopGrad (stop gradient) facilitates decoupled optimiza- 160
tion, enabling prototypes to learn appropriate additive biases 161
while keys learn to assign relevant prototypes to queries. We 162
compute the similarity scores between the queries Q and 163
the keys K using scaled dot-product attention [70]. To ob- 164
tain the additive bias b ∈ R(h×w)×c, the scores are used to 165
compute a convex combination of prototypes P : 166

b = softmax
(
Q×K⊤/√c

)
× P. (3) 167

We reshape b back to the spatial dimensions of X to ob- 168
tain the local additive bias B ∈ Rh×w×c. To model the 169
global transformation, we learn a c-dimensional multiplica- 170
tive prototype A, applied element-wise as A⊙X , which can 171
be efficiently implemented as a 1× 1 depthwise convolution. 172
The result is further adapted to the new dataset distribution, 173
still without altering the original model parameters, by in- 174
corporating the local domain-specific transformation B as 175

2



CVPR
#37

CVPR
#37

CVPR 2025 Submission #37. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Image
Encoder

Depth
Encoder

Decoder

❆❆

❆

Latent
Space

Latent Space

𝑊

(a) Set Selection

(b) Prototype Selection

GAP

Sample Descriptor

Domain Descriptors

co
si

ne
 si

m

Known ID

Queries

Keys Prototypes

Prototype Setsarg max

(a)

(b)

(b)

(b)

(b)

(b)

//
StopGrad

Depthwise Conv

Domain ID

Figure 1. Overview of ProtoDepth. (a) In the agnostic setting, a prototype set is selected by maximizing the cosine similarity between an
input sample descriptor and the learned domain descriptors. In the incremental setting, the domain identity is known. (b) At inference, the
similarity between the frozen queries and the keys of the selected prototype set determines how the learned prototypes contribute as local
(additive) biases to the latent features. Additionally, a global (multiplicative) bias is applied using a 1× 1 depthwise convolution.

an additive bias, i.e., X̂ = A⊙X +B. As fθ is frozen and176
a new prototype set (local and global prototypes Pk and Ak,177
and projection matrix Wk) is learned for each dataset Dk,178
this naturally facilitates continual learning and ensures no179
forgetting in the incremental setting, where the prototype set180
corresponding to the domain identity is selected. We further181
extend this to the agnostic setting in Sec. 4.3.182

4.2. ProtoDepth Architecture183

Current unsupervised depth completion models [79, 81, 82]184
adopt an encoder-decoder CNN architecture, which consists185
of separate image and sparse depth encoders with skip con-186
nections to the decoder. We refer to the bottleneck and the187
skip connections as the latent space layers (see Fig. 1).188

To extend the prototype mechanism (Sec. 4.1) across189
multiple layers, for each new dataset Dk, we introduce a190
prototype set of local and global prototypes P (l) and A(l),191
and projection matrix W (l) for each layer l in the latent192
space. For each new dataset, the latent feature adaptation193
(Eqs. (1) and (3)) is applied independently to each layer l.194

As different modalities in multimodal tasks (e.g., RGB195
image and sparse depth map in depth completion) may ex-196
perience varying degrees of covariate shift across domains,197
we propose to deploy a different number of prototypes N (I)198
and N (z) for the RGB image and sparse depth modalities,199
respectively. Based on the observation that RGB images200
undergo a larger covariate shift than sparse depth [46], we201
choose N (I) > N (z) to capture their prototypical features;202
this choice reduces the parameter overhead.203

The proposed prototype-based continual learning mech-204
anism operates on the latent feature space and does not205
depend on the specific architecture of the model. This206
architecture-agnostic flexibility stems from the fact that our207
queries Q ∈ R(h×w)×c mirror the general structure of latent208
features across commonly used model architectures, where209

h × w can be replaced by the number of tokens n in the 210
case of transformers [70]. Thus, it can be applied generi- 211
cally to models with latent feature representations [31, 89], 212
providing a general framework for mitigating catastrophic 213
forgetting across various tasks and modalities. 214

4.3. Prototype Set Selection 215

As the prototypes are learned for a specific domain, we can- 216
not easily select the appropriate prototype set for inference if 217
the test-time domain identity is withheld, i.e., in the domain- 218
agnostic setting. To address this challenging scenario, we 219
introduce a prototype set selection mechanism that chooses 220
the most relevant prototype set for a given input. 221

During training, we introduce a domain descriptor rk ∈ 222
Rc for each dataset Dk, which adds negligible overhead in 223
terms of number of parameters. For an input from Dk, we ob- 224
tain a sample descriptor sk ∈ Rc by applying global average 225
pooling (GAP) to the bottleneck latent features (with channel 226
dimension c) before applying the prototype set. Importantly, 227
since both encoders are always frozen during continual train- 228
ing, sk is a deterministic mapping of the input. 229

For each new dataset Dk, we deploy a new domain de- 230
scriptor rk and freeze all existing learned domain descriptors. 231
The deployed domain descriptor rk is trained by minimizing 232
cosine distance between itself and sample descriptors sk 233
for Dk, while maximizing the cosine distance to all other 234
learned domain descriptors {rj ̸=k}. This naturally yields 235
domain descriptors that are discriminative across datasets, 236
allowing us to use the projection of sample descriptors onto 237
domain descriptors as a prototype set selection mechanism. 238
To this end, we propose to minimize an additional objective: 239

ℓdr = 1− (
sk

||sk||
· rk
||rk||

) +
1

wjk

∑
j ̸=k

(
rj

||rj ||
· rk
||rk||

), (4) 240

where || · || denotes the L2-norm and wjk ∝ |j ̸= k| is a 241
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Average Forgetting (%) Average Performance (mm) SPTO (mm)

Model Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

VOICED

Finetuned 8.828 6.131 6.951 7.042 63.352 125.28 15.461 35.053 52.453 108.434 15.360 35.357
EWC [30] 9.439 8.014 5.183 6.174 63.787 126.706 15.229 34.367 53.614 110.956 15.091 34.039
LwF [35] 8.591 8.456 9.613 21.774 65.135 126.968 16.221 38.002 53.517 108.845 15.402 34.729
Replay [57] 6.154 4.688 9.471 11.713 64.305 126.714 16.373 36.729 54.326 112.218 16.640 37.671
ProtoDepth-A 2.439 3.598 4.630 4.519 56.971 118.132 13.554 30.554 47.367 103.015 13.517 31.623
ProtoDepth 0.000 0.000 0.000 0.000 56.359 115.153 13.589 30.332 46.934 101.326 13.684 31.925

FusionNet

Finetuned 24.928 9.775 32.333 16.799 66.523 130.142 15.829 33.881 54.252 110.666 15.317 33.726
EWC [30] 11.256 8.782 17.944 17.847 64.487 130.890 15.264 34.203 51.345 109.223 14.276 32.781
LwF [35] 6.863 2.865 7.336 1.939 61.204 123.573 14.075 30.879 50.159 106.386 13.879 31.608
Replay [57] 5.702 2.862 12.196 11.186 61.467 125.587 14.750 33.279 50.273 108.608 14.351 33.658
ProtoDepth-A 1.282 0.686 1.304 0.446 57.742 119.988 13.274 30.139 47.674 104.349 13.128 31.058
ProtoDepth 0.000 0.000 0.000 0.000 57.486 119.168 13.323 29.936 47.335 102.845 13.091 30.474

KBNet

Finetuned 16.080 15.463 8.188 9.170 58.577 124.606 13.474 31.409 47.890 105.807 13.266 31.742
EWC [30] 14.915 11.878 10.398 5.640 57.414 122.075 13.741 31.552 48.031 106.661 14.129 33.096
LwF [35] 9.717 6.324 6.168 5.254 57.511 119.093 14.119 32.165 47.154 103.164 14.304 33.838
Replay [57] 7.200 4.819 9.202 9.539 56.208 117.848 13.983 32.341 46.700 103.631 13.844 33.326
ProtoDepth-A 3.204 1.304 4.911 2.943 54.254 115.548 13.201 30.499 45.264 101.097 13.281 31.718
ProtoDepth 0.000 0.000 0.000 0.000 52.497 113.548 12.845 29.990 44.092 99.788 13.081 31.503

Table 1. Quantitative results on indoor datasets. Models are initially trained on NYUv2 and continually trained on ScanNet, then VOID.
Bold indicates the best performance, while underline indicates the second-best performance. Baseline results are obtained from UnCLe [19].

tunable normalization constant. As the previously learned242
domain descriptors are frozen, their alignment to their re-243
spective datasets or domains is preserved, allowing us to244
continually learn new domain descriptors that can distin-245
guish new datasets. Eq. (4) is incorporated into the overall246
loss function, Eq. (6), for training in the agnostic setting. At247
test-time, we compute the sample descriptor s for an input248
without dataset identity and select the domain descriptor rk∗249
that maximizes cosine similarity with s:250

k∗ = argmax
k

(
s

||s||
· rk
||rk||

). (5)251

For each latent space layer, we use the prototype set252
corresponding to the selected domain descriptor. While253
this does not eliminate forgetting due to the evolving set of254
domain descriptors and possible overlap between domains,255
it does minimize forgetting as each prototype set is learned256
independently for each dataset, but can still be selectively257
used for inference without knowing the test-time dataset258
identity. The trade-off is shown in Tabs. 1 and 2 (ProtoDepth-259
A) where we incur forgetting in exchange for the flexibility260
to support both the incremental and agnostic settings.261

5. Main Results262

We compare our method, evaluated in both the incremental263
(ProtoDepth) and agnostic (ProtoDepth-A) settings, against264
baseline methods for the indoor dataset sequence in Tab. 1265
and for the outdoor dataset sequence in Tab. 2 in Supp. Mat.266
See Sec. B and C for full experimental details and results.267

For the indoor sequence, compared to the best base- 268
line method, ProtoDepth-A improves Average Forgetting 269
by 52.22%, Average Performance by 4.26%, and SPTO 270
by 5.40%, averaged across all models and metrics. No- 271
tably, ProtoDepth-A outperforms ProtoDepth in some met- 272
rics, meaning the model appropriately selects prototypes of 273
different domains when there is domain overlap, thereby 274
enhancing its generalization capabilities (see Fig. 2). 275

Figure 2. t-SNE plot of sample descriptors for indoor validation
datasets (NYUv2, ScanNet, VOID) and their respective domain
descriptors learned during training in the agnostic setting. While
most sample descriptors align most closely with their respective
domain descriptors, some overlap enables cross-domain generaliza-
tion, improving performance in challenging scenarios.
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ProtoDepth: Unsupervised Continual Depth Completion with Prototypes

Supplementary Material

A. Unsupervised Depth Completion741

Assuming we are given an RGB image I : Ω ⊂ R2 → R3742
and its associated sparse depth map z : Ω → R+ obtained743
by projecting the sparse point cloud onto the image plane,744
we wish to train a depth completion model fθ to predict the745
dense depth map d̂ in an unsupervised manner (i.e., without746
access to ground-truth depth). Unsupervised depth com-747
pletion models [40, 79, 81, 82] typically minimize a loss748
function in the form of Eq. (6), which comprises a linear749
combination of three terms:750

L = wphℓph + wszℓsz + wsmℓsm, (6)751

where ℓph denotes photometric consistency, ℓsz sparse depth752
consistency, and ℓsm a local smoothness regularizer.753

Photometric Consistency term leverages image recon-754
struction as the training signal. Specifically, given an image755
It at time t, its reconstruction Îtτ from a temporally adjacent756
image Iτ at time τ for τ ∈ {t− 1, t+ 1} is given by757

Îtτ (x, d̂, gτt) = Iτ
(
πgτtK

−1x̄d̂(x)
)
, (7)758

where x̄ = [x⊤, 1]⊤ is the homogeneous coordinates of759
x ∈ Ω, K is the camera intrinsic calibration matrix, gτt ∈760
SE(3) is the estimated relative camera pose matrix from761
time t to τ , and π is the canonical perspective projection762
matrix. Given It and its reconstruction Îtτ , the photometric763
consistency loss measures the L1 difference and structural764
similarity (SSIM [72]) between It and Îtτ :765

ℓph =
1

|Ω|
∑
τ∈T

∑
x∈Ω

wco|Îtτ (x)− I(x)|+

wst

(
1− SSIM(Îtτ (x), I(x))

)
.

(8)766

Sparse Depth Consistency. However, photometric recon-767
struction recovers depth only up to an unknown scale. To768
ground predictions to a metric scale, we minimize an L1 loss769
between the predicted depth d̂ and sparse depth z for x ∈ Ω770
where points exist as denoted by M : Ω 7→ {0, 1}:771

ℓsz =
1

|Ω|
∑
x∈Ω

|M(x) · (d̂(x)− z(x))|. (9)772

Local Smoothness. To address ambiguities in regions773
where the predicted depth is not constrained by photometric774
or sparse depth reconstruction terms, we rely on a regularizer775
that enforces local smoothness in predictions by applying776
an L1 penalty on the depth gradients in both the x-direction777
(∂X ) and y-direction (∂Y ). To allow for depth discontinuities778

along object boundaries, these penalties are weighted by 779
their corresponding image gradients, λX = e−|∂XIt(x)| and 780
λY = e−|∂Y It(x)|. Larger image gradients result in smaller 781
weights, allowing for sharp transitions in depth along edges: 782

ℓsm =
1

|Ω|
∑
x∈Ω

λX(x)|∂X d̂(x)|+ λY (x)|∂Y d̂(x)|. (10) 783

B. Full Experimental Details 784

Datasets. Indoor dataset sequence: NYUv2 [63] con- 785
tains household, office, and commercial scenes captured 786
with a Microsoft Kinect; ScanNet [11] is a diverse, large- 787
scale dataset captured using a Structure Sensor; VOID [81] 788
contains laboratory, classroom, and garden scenes captured 789
using XIVO. Outdoor dataset sequence: KITTI [68] is a 790
daytime autonomous driving benchmark captured using a 791
Velodyne LiDAR sensor; Waymo [66] contains road scenes 792
with a wide variety of driving conditions; VKITTI [18] is a 793
synthetic dataset that replicates and augments KITTI scenes. 794

Models. We evaluate using three recent unsupervised 795
depth completion models in the continual learning setting: 796
VOICED [81], FusionNet [82], and KBNet [79]. 797

Baseline Methods. We compare ProtoDepth against 798
EWC [30], LwF [35], and Experience Replay (“Re- 799
play”) [57] as milestone works of their respective class of 800
continual learning approaches. We include full finetuning 801
(“Finetuned”) as a baseline of performance with no contin- 802
ual learning strategy. All baseline methods achieve identical 803
performance in the incremental and agnostic settings. 804

Evaluation Metrics are computed across four standard 805
depth completion metrics (MAE, RMSE, iMAE, iRMSE). 806
We define the following evaluation metrics in terms of akj , 807
denoting any one of the four depth completion metrics on 808
dataset Dj after training on Dk. Given T total datasets: 809

Average Forgetting (F̄ ) is the scale-invariant mean of how 810
much performance on previous datasets Dj<k deteriorates 811
(i.e., increases in %) after training on each new Dk: 812

F̄ =
2

T (T − 1)

T∑
k=1

∑
j<k

akj − ajj

ajj
. (11) 813

Average Performance (µ̄) is the mean of performance on 814
all seen datasets Dj≤k after training on each new Dk: 815

µ̄ =
2

T (T + 1)

T∑
k=1

∑
j≤k

akj . (12) 816

Stability-Plasticity Trade-off (SPTO) captures the balance 817
between retaining learned knowledge (stability) and adapting 818
to new domains (plasticity) as a harmonic mean: 819
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Figure 3. Qualitative comparison of ProtoDepth and baseline methods using VOICED on KITTI after continual training on Waymo. (a)
Input sample from KITTI, (b) Baseline methods exhibit significant forgetting, particularly for small-surface-area objects (e.g., street signs
and lamp posts) where sparse depth is limited, and photometric priors from KITTI are critical. In contrast, ProtoDepth produces high-fidelity
depth predictions, effectively mitigating forgetting despite the large domain gap between KITTI and Waymo.

SPTO =
2× S × P

S + P
,

{
S =

∑T
k=1 a

T
k

P =
∑T

k=1 a
k
k ,

(13)820

where S is performance across all datasets after complet-821
ing training on the dataset sequence, and P is performance822
on each new dataset after training on it for the first time.823

C. Main Results (cont.)824

Results in Incremental Setting. In both indoor and outdoor825
settings, ProtoDepth achieves a 100% improvement in Aver-826
age Forgetting compared to all baseline methods across all827
models and metrics. This is, of course, because ProtoDepth828
exhibits zero forgetting as it freezes all model parameters and829
learns dataset-specific prototypes. For the indoor sequence,830
compared to the best baseline method, ProtoDepth improves831
Average Performance by 5.15% and SPTO by 6.59%, aver-832
aged across all models and metrics. Similarly, for the outdoor833
sequence, we improve Average Performance by 6.88% and834
SPTO by 6.94%.835

To demonstrate the reduced forgetting achieved by Pro-836
toDepth, we qualitatively compare against all baseline meth-837
ods using VOICED on KITTI after continual training on838
Waymo (see Fig. 3). ProtoDepth yields better depth pre-839
dictions for small-surface-area objects with limited sparse840
depth measurements for which the model must rely on pho-841
tometric priors learned from images. Unlike KITTI, which842
consists exclusively of daytime scenes, Waymo includes843
many evening and overcast scenes, introducing variations in844
lighting and pixel intensities. Additionally, Waymo was cap-845
tured using a higher-resolution camera which causes objects846
to appear bigger in terms of number of pixels occupied. Due847
to this large distributional shift, the model forgets the pro-848
jected shapes of objects in KITTI after training on Waymo,849
even if the objects exist in both datasets. This forgetting is850

apparent in the highlighted street sign and lamp posts, where 851
baseline methods struggle to accurately predict depth. 852

Results in Agnostic Setting. For the outdoor sequence, 853
ProtoDepth-A shows an average improvement of 53.21% 854
in Average Forgetting across all models and metrics. In 855
contrast to the indoor sequence, ProtoDepth-A does not out- 856
perform ProtoDepth in any metric, likely due to the larger 857
domain gaps between the outdoor datasets. Selecting proto- 858
types from a different outdoor dataset is more likely to be 859
erroneous, leading to performance degradation rather than 860
generalization. 861

Furthermore, we refer back to Fig. 3 (ProtoDepth-A) for 862
head-to-head comparison of our method against other base- 863
lines in the agnostic setting. The error maps for Finetuned, 864
EWC, and LwF display significant errors, indicating sub- 865
stantial forgetting of previously learned information. While 866
Replay yields an improved error map, it still experiences 867
forgetting in small-surface-area objects. For example, Re- 868
play fails to reconstruct the upper portions of the highlighted 869
street sign and lamp posts due to forgetting of learned pho- 870
tometric priors from KITTI, whereas ProtoDepth-A recalls 871
them from KITTI prototypes. Additionally, ProtoDepth-A 872
predicts the depth of the highlighted small fence poles with 873
higher fidelity than the incoherent prediction of Replay. 874

D. Design Choice Studies 875

Prototype Set Sizes. We investigate the impact of vary- 876
ing the prototype set sizes (i.e., number of prototypes) for the 877
image and sparse depth layers (denoted as N (I) and N (z), 878
respectively) on the performance of our method. The set size 879
experiments for the indoor sequence are shown in Tab. 3, 880
based on which we selected N (I) = 10, N (z) = 5 for the 881
main experiments. Smaller set sizes perform worse as there 882
is insufficient capacity to capture the diversity of features in 883
each dataset. There is also performance degradation with 884

11



CVPR
#37

CVPR
#37

CVPR 2025 Submission #37. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Average Forgetting (%) Average Performance (mm) SPTO (mm)

Model Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

VOICED

Finetuned 499.598 162.188 467.472 208.693 1620.429 3072.129 4.040 6.144 914.223 2993.228 1.955 4.503
EWC [30] 555.925 190.152 540.109 247.943 1796.300 3346.057 4.490 6.685 962.937 3209.759 1.962 4.739
LwF [35] 631.119 221.535 524.976 233.758 1973.972 3612.700 4.533 6.648 985.995 3236.244 2.062 4.722
Replay [57] 17.241 4.050 16.662 5.478 524.114 1875.897 1.333 3.359 618.668 2366.577 1.292 3.348
ProtoDepth-A 2.427 2.863 2.079 2.153 458.520 1832.690 1.133 3.213 548.240 2294.399 1.080 3.159
ProtoDepth 0.000 0.000 0.000 0.000 445.419 1804.158 1.106 3.169 531.689 2262.943 1.043 3.110

FusionNet

Finetuned 11.336 8.435 17.447 17.991 437.730 1785.212 1.193 3.724 501.362 2138.422 1.111 3.978
EWC [30] 21.006 10.494 20.431 16.535 431.440 1760.460 1.144 3.181 486.170 2117.030 1.029 2.986
LwF [35] 12.368 5.202 13.593 13.117 442.878 1759.202 1.178 3.352 526.528 2168.961 1.156 3.451
Replay [57] 8.290 11.134 2.769 7.975 419.044 1774.361 1.044 3.032 479.168 2122.997 0.966 2.906
ProtoDepth-A 2.200 2.282 2.602 7.203 404.956 1702.945 1.041 3.028 464.976 2052.413 0.952 2.864
ProtoDepth 0.000 0.000 0.000 0.000 400.888 1683.202 1.022 2.899 461.043 2048.942 0.932 2.792

KBNet

Finetuned 27.153 18.208 52.969 33.370 469.658 1943.259 1.338 3.683 541.383 2411.169 1.144 3.505
EWC [30] 23.517 8.583 30.077 18.991 456.828 1806.761 1.221 3.321 526.366 2210.424 1.133 3.158
LwF [35] 21.184 4.049 43.500 19.951 460.097 1749.734 1.362 3.555 541.932 2142.999 1.359 3.731
Replay [57] 25.423 29.303 6.362 7.274 454.896 1935.667 1.102 3.203 525.696 2318.363 1.094 3.246
ProtoDepth-A 4.513 3.100 2.960 1.878 409.903 1730.720 1.045 3.044 478.790 2138.347 1.008 3.066
ProtoDepth 0.000 0.000 0.000 0.000 401.075 1710.074 1.029 2.993 471.437 2125.957 0.996 3.015

Table 2. Quantitative results on outdoor datasets. Models are initially trained on KITTI and continually trained on Waymo, then VKITTI.
Bold indicates the best performance, while underline indicates the second-best performance. Baseline results are obtained from UnCLe [19].

larger set sizes; intuitively, unnecessary additional param-885
eters may learn noise and cause overfitting. Notably, best886
performance is achieved when N (I) > N (z), which can be887
attributed to the larger distributional shift between scenes888
in the image modality compared to the sparse depth modal-889
ity [46]. Since the bottleneck layer fuses both modalities,890
we use N (I) for the bottleneck layer prototypes. As a lower891
bound, we show that the frozen base model pretrained on892
NYUv2 (“Pretrained”) performs poorly, motivating the need893
for continual learning. We perform similar set size exper-894
iments for the outdoor dataset sequence (see Supp. Mat.),895
based on which we choose N (I) = 25, N (z) = 10.896

Ablations. We assess the impact of the components of897
ProtoDepth on both indoor (ScanNet) and outdoor (Waymo)898
in Tab. 4. Removing the 1×1 depthwise convolutions results899
in performance degradation, demonstrating their effective-900
ness as lightweight global prototypes. Learning the keys K901
independently from the prototypes P without the projection902
matrix W hurts performance, suggesting that the projection903
matrix effectively learns to map the prototypes into latent fea-904
ture space, fulfilling the intended role of keys. Furthermore,905
performance decreases without the stop gradient operation906
on P when computing K, indicating the importance of de-907
coupled optimization of keys and prototypes.908

E. Domain Descriptor Analysis909

To better understand the performance of ProtoDepth in the910
agnostic setting, we analyze the relationship between sample911
descriptors and learned domain descriptors using the t-SNE912
visualization shown in Fig. 2. This analysis is based on the913

KBNet model trained on the indoor dataset sequence, and it 914
reveals insights into how ProtoDepth selects prototype sets 915
during inference. 916

Each sample descriptor is computed deterministically 917
using global average pooling (GAP) over the bottleneck 918
features of the frozen model. Since the encoder layers are 919
always frozen during training, the sample descriptors of a 920
certain dataset are a lifelong deterministic function of the 921
features present in that dataset. The domain descriptors, 922
on the other hand, are learned during training to align with 923
the sample descriptors of their respective datasets, enabling 924
effective prototype set selection. 925

The visualization demonstrates that the majority of sam- 926
ple descriptors for each dataset cluster closely around their 927
respective domain descriptors. This alignment confirms that 928
the training process successfully associates each dataset with 929
its corresponding descriptor at test-time, ensuring accurate 930
prototype selection in the agnostic setting. However, it 931
is noteworthy that some sample descriptors are closer to 932
domain descriptors of other datasets. For example, non- 933
negligible subsets of VOID sample descriptors appear to 934
have higher affinity with the NYUv2 and ScanNet domain 935
descriptors. This overlap introduces a degree of generaliza- 936
tion, allowing the model to select prototypes from a different 937
domain if they better align with the input sample’s features. 938

This ability to adaptively select domain descriptors ex- 939
plains why ProtoDepth achieves superior performance in the 940
agnostic setting than in the incremental setting for certain 941
metrics. By relaxing the constraint of fixed domain identity 942
during inference, the agnostic setting enables the model to 943
exploit cross-domain generalization in cases where overlap- 944
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ScanNet VOID

Method N(I) N(z) # Params MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

Pretrained - - 0M (0%) 4114.04 4626.00 390.78 447.31 42.94 106.39 29.26 64.04

ProtoDepth

1 1 0.24M (3.5%) 19.68±0.68 60.10±0.71 10.44±0.48 27.86±0.74 37.81±0.52 93.72±0.90 22.82±0.27 52.58±0.32

5 5 0.25M (3.6%) 16.49±0.15 57.51±0.19 6.84±0.03 22.07±0.03 34.02±0.25 87.72±0.43 17.92±0.14 43.95±0.28

10 5 0.25M (3.6%) 14.59±0.17 42.20±0.09 5.57±0.14 17.10±0.15 33.63±0.23 87.30±0.57 17.55±0.32 43.24±0.63

10 10 0.25M (3.7%) 15.25±0.39 43.31±0.72 5.85±0.22 17.57±0.38 34.39±0.82 88.73±1.83 18.49±0.85 45.23±1.60

100 100 0.38M (5.5%) 16.35±0.37 47.61±0.16 5.90±0.17 20.11±0.19 34.29±0.58 88.22±0.86 18.16±0.62 44.51±1.07

Table 3. Sensitivity study of prototype set sizes (N (I) and N (z)) on ProtoDepth using KBNet for indoor datasets (ScanNet and VOID).
KBNet is pretrained on the initial dataset (NYUv2). Parameter overhead is reported as a percentage of the full KBNet model’s parameters.

ScanNet Waymo

Ablated Component MAE RMSE MAE RMSE

global prototypes 18.12 58.91 505.01 1715.21
projection matrix W 17.59 57.61 495.05 1690.51
decoupled K and P 16.36 45.10 491.59 1675.57

no ablations 14.59 42.20 486.95 1664.18

Table 4. Ablation studies using KBNet for indoor and outdoor.

ping features exist between datasets. While this occurs in945
only a minority of scenarios, it underscores the utility of al-946
lowing the model to flexibly choose prototypes, particularly947
in instances where the distributional characteristics of one948
domain may overlap with those of another.949

Most importantly, the t-SNE plot clearly illustrates that,950
despite the presence of some overlap, the domain descriptors951
remain sufficiently distinct to avoid significant performance952
degradation due to incorrect prototype selection. Instead, this953
overlap even facilitates generalization (see Tab. 8), enabling954
the model to leverage features from neighboring domains to955
improve depth completion on difficult samples. This balance956
between dataset alignment and cross-domain generalization957
is central to ProtoDepth’s ability to adapt to the challenging958
domain-agnostic setting.959

F. Transformer Experiments960

Prompt-based methods introduce learnable prompts that en-961
code task-specific information. [77] learns a pool of tokens,962
from which a set is selected using a query mechanism and963
prepended to the input. [76] refines this by using both task-964
specific and shared prompts. Subsequent approaches re-965
place prompt selection with an attention mechanism [65] or966
with intermediate embeddings [29]. However, these prompt-967
based methods are designed for 2D classification tasks that968
use vision transformers (ViTs), borrowing the concept of969
prompting from the field of natural language processing970
(NLP). The idea of prepending prompts to tokenized inputs971
does not naturally extend to convolutional neural networks972

(CNNs), limiting their applicability to 3D vision tasks where 973
CNNs are primarily used. In contrast, our method learns 974
prototypes, which serve as representative features, offering a 975
more intuitive mechanism for adding a lightweight selective 976
bias than prepending abstract prompts in image space. Un- 977
like prompt-based methods, our method is fully architecture- 978
agnostic and can be applied to any model that has a latent 979
space without modifying the underlying architecture. 980

To explore the applicability of ProtoDepth to transformer- 981
based architectures, we adapted Uformer [74], a simple 982
encoder-decoder model consisting entirely of transformer 983
blocks, for depth completion. The model takes as input 984
patchified versions of the image and sparse depth, where 985
inputs from each modality are split into 14× 14 patches and 986
embedded as N × C tokens. We adapted Uformer for depth 987
completion by implementing a dual-encoder structure, with 988
one encoder processing image tokens and the other process- 989
ing sparse depth tokens. Each encoder contains four trans- 990
former blocks. After being processed by the encoders, the 991
tokens from both modalities are concatenated and fed into a 992
shared decoder with four additional transformer blocks. Con- 993
sistent with the CNN-based models used in the main paper, 994
skip connections are included between each encoder block 995
and its corresponding decoder block, allowing multi-scale 996
features to flow between the encoders and decoder. 997

For ProtoDepth-A and ProtoDepth, we implemented our 998
method in the exact same way as we do for CNN-based 999
models, applying prototype sets to the latent space layers, 1000
i.e., the bottleneck and skip connections. The prototype sets 1001
learn global (multiplicative) and local (additive) biases for 1002
each layer, adapting the frozen transformer layers to each 1003
new dataset while mitigating forgetting. This demonstrates 1004
that ProtoDepth is fully architecture-agnostic and can be 1005
seamlessly applied to both CNNs and transformers. 1006

A notable inclusion in this section is the prompt-based 1007
method L2P [77] (Learning to Prompt), which serves as a 1008
representative baseline for prompt-based methods. Prompt- 1009
based continual learning methods were not included in the 1010
main experiments because all existing unsupervised depth 1011
completion models are CNN-based, and prompt-based ap- 1012
proaches, which operate by prepending prompts to tokenized 1013
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Average Forgetting (%) Average Performance SPTO
Setting Method MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

(1)
KBNet

ANCL [28] 9.73 10.75 5.58 16.38 56.89 120.30 13.77 31.85 47.32 103.42 13.88 32.76
CMP [25] 5.39 5.11 8.25 7.90 55.92 117.83 13.74 31.43 46.03 102.36 13.55 32.03
Ours 3.20 1.30 4.91 2.94 54.25 115.55 13.20 30.50 45.26 101.10 13.28 31.72

(2)
Uformer

Finetuned 87.94 73.61 110.98 852.79 183.24 302.99 51.07 297.92 137.20 238.95 49.54 142.33
L2P [77] 57.07 43.84 50.82 58.24 171.74 273.75 46.90 121.30 139.08 231.88 51.98 156.41
Ours 37.15 25.50 31.86 17.04 161.62 255.54 42.38 79.34 133.36 220.68 44.74 84.31

(3)
KBNet

ANCL [28] 20.49 8.94 23.11 27.73 438.05 1795.76 1.21 3.56 503.53 2203.44 1.18 3.53
CMP [25] 15.95 15.47 6.90 7.39 447.09 1887.14 1.09 3.19 507.90 2262.46 1.06 3.21
Ours 4.51 3.10 2.96 1.88 409.90 1730.72 1.04 3.04 478.79 2138.35 1.01 3.07

(4)
KBNet

ANCL [28] 35.10 35.31 18.13 10.04 313.71 1067.35 18.89 30.39 343.06 1129.85 18.66 30.20
CMP [25] 31.60 36.04 12.63 9.90 307.87 1117.91 16.71 30.41 336.08 1142.94 16.66 30.23
Ours 20.61 18.75 9.79 6.25 277.04 985.58 15.07 28.42 309.57 1035.55 15.05 28.24

(5) L2P [77] 69.28 23.25 81.95 48.78 519.72 1458.78 25.65 36.21 470.84 1407.23 25.38 35.45
Uformer Ours 45.42 7.67 46.18 22.05 451.08 1252.88 22.34 32.00 401.95 1220.67 21.97 31.63

Table 5. Additional quantitative results comparing to recent baselines on indoor, outdoor, and mixed sequences with backbone as denoted:
(1,2) Indoor: NYUv2 → ScanNet → VOID (3) Outdoor: KITTI → Waymo → VKITTI (4,5) Mixed: KITTI → NYUv2 → Waymo

MAE RMSE iMAE iRMSE

Depth Anything [93] 49.22 88.74 21.22 51.22
Depth Pro [4] 43.06 93.36 20.80 52.24
Ours 33.66 86.99 17.48 43.02

Table 6. Comparison against depth estimation foundation models.

MAE RMSE iMAE iRMSE

Ours 686.86 2024.42 1.58 3.52
Upper Bound 671.95 2231.97 1.34 3.52

Table 7. Comparison against joint training (upper bound).

MAE RMSE iMAE iRMSE

Joint Training 2800.27 6284.63 6.06 11.23
ANCL [28] 2753.07 6195.09 5.69 10.86
CMP [25] 2885.82 6234.33 7.12 13.57
Ours 2697.47 5966.57 5.40 10.58

Table 8. Zero-shot generalization to nuScenes.

inputs, are not applicable to CNNs, which operate directly1014
on images without tokenization, which prevents the straight-1015
forward insertion of prompts into the input space. However,1016
with the implementation of Uformer, a transformer-based1017
model, we are now able to evaluate L2P, which is a founda-1018
tional method for prompt-based continual learning.1019

For L2P, we implement the method as described in the1020
original paper. Specifically, we use a prompt pool of size1021
M = 20 and select N = 5 prompts for each input during1022
training and inference. To adapt L2P for depth completion,1023

we implement their loss term, which pulls selected keys 1024
closer to their corresponding queries, and incorporate it into 1025
our overall loss function (Eq. (1) in the main paper) with 1026
a weight of 0.5, as suggested in [77]. To evaluate in the 1027
domain-agnostic setting, where dataset identity is withheld 1028
at test time, we train M = 20 new prompts for each new 1029
dataset during continual training. At test-time, the model 1030
queries all existing learned prompts. 1031

G. Additional Experiments 1032

In Tab. 5-(2), we compare to L2P [Wang et al., CVPR 1033
’22] [77], a prompt-based method, where we adapt Uformer 1034
for unsupervised depth completion as no transformer-based 1035
model currently exists for this task. We have added compar- 1036
isons to ANCL [Kim et al., CVPR ’23] [28], an architecture- 1037
based method, and CMP [Kang et al., CVPR ’24] [25], 1038
a rehearsal-based method, on the indoor Tab. 5-(1) and 1039
outdoor Tab. 5-(3) sequences using the KBNet backbone. 1040
ProtoDepth-A (Ours) outperforms all of these recent meth- 1041
ods, reaffirming our findings. 1042

In Tab. 5-(4,5), we add experiments in a mixed setting, 1043
where the dataset sequence transitions from outdoor to in- 1044
door and back to outdoor. We compare to ANCL, CMP, 1045
and L2P in this mixed setting and show that ProtoDepth-A 1046
outperforms all of these recent methods. 1047

Tab. 6 shows that recent depth estimation uni- 1048
fied/foundation models, Depth Pro [Bochkovskii et al., 1049
2024] [4] and Depth Anything [Yang et al., CVPR ’24] [93] 1050
(fit to metric scale via median scaling) do not outperform 1051
ProtoDepth-A (NYU → VOID) when evaluated on VOID. 1052
This validates the advantage of our method over direct depth 1053
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estimation. Also of note, Depth Pro and Depth Anything are1054
supervised and semi-supervised, while we are unsupervised.1055

In continual learning, joint training a larger model (e.g.,1056
transformer) on all datasets simultaneously serves as a per-1057
formance upper bound. Tab. 7 shows that ProtoDepth-A1058
achieves comparable mean performance to this upper bound1059
on {KITTI, Waymo, VKITTI} using the adapted Uformer.1060
Importantly, we address the scientific question of learning1061
in a sequential manner, where one does not have access to1062
all data at once or must learn a new dataset without breaking1063
backwards-compatibility – a common real-world scenario.1064

Improved generalization to unseen datasets in the inter-1065
section of observed domains helps to motivate our method.1066
Tab. 8 shows generalization to nuScenes (outdoor) after1067
training on KITTI → Waymo → VKITTI. ProtoDepth-A1068
outperforms joint training, ANCL, and CMP, demonstrating1069
its ability to leverage domain-specific prototypes to enhance1070
zero-shot generalization.1071

H. Dataset Details1072

Indoor datasets: The NYU Depth V2 [63] (“NYUv2”)1073
dataset comprises 464 diverse indoor scenes from residen-1074
tial, office, and commercial environments captured using1075
a Microsoft Kinect. It contains approximately 400,0001076
aligned RGB and depth image pairs with a resolution of1077
640× 480. About 1,500 points are sampled for each sparse1078
depth map using the Harris corner detector [21]. This dataset1079
serves as a standard benchmark for indoor depth estimation1080
tasks. For our indoor dataset sequence, we utilize NYUv2 as1081
the initial dataset D1 for pretraining our depth completion1082
models that are subsequently applied to indoor continual1083
learning scenarios. The VOID [81] dataset presents sparse1084
depth maps with ≈ 0.5% density (≈1,500 points), alongside1085
RGB frames from various indoor settings such as laborato-1086
ries, classrooms, and gardens, totaling approximately 58,0001087
frames (640 × 480) captured via XIVO [16]. VOID is de-1088
signed to address challenges in areas with minimal texture1089
and significant camera motion, key factors for assessing ro-1090
bustness in indoor depth completion tasks. ScanNet [11], a1091
comprehensive indoor dataset, encompasses over 2.5 million1092
frames paired with RGB-D data. Depth frames in ScanNet1093
are captured at a resolution of 640× 480 pixels, whereas the1094
color frames have a higher resolution of 1296× 968 pixels.1095
Again, we use the Harris corner detector [21] to subsample1096
≈ 1,500 points for the sparse depth maps. We use a subset1097
of the dataset with approximately 250,000 frames across 7061098
scenes. For all indoor datasets, we use a training crop size of1099
416× 576. For evaluation, depth values across all of these1100
indoor datasets are constrained between 0.2 and 5 meters.1101

Outdoor datasets: The KITTI [68] dataset is an estab-1102
lished benchmark in autonomous driving that comprises over1103
93,000 stereo image pairs with a resolution of 1240× 3761104
and sparse LiDAR depth maps (≈ 5% density), all synchro-1105

nized and captured across diverse urban and rural landscapes 1106
using a Velodyne LiDAR sensor. KITTI is the initial dataset 1107
D1 for pretraining our depth completion models for the out- 1108
door dataset sequence. The Waymo Open Dataset [66] 1109
(“Waymo”) provides roughly 230,000 high-resolution frames 1110
(1920 × 1280 and 1920 × 1040) along with LiDAR point 1111
clouds, captured from scenes that encompass a broad spec- 1112
trum of driving scenarios and conditions. For Waymo, the 1113
depth values during evaluation are capped between 0.001 and 1114
80 meters and during training, a crop size of 800×640 is em- 1115
ployed. The Virtual KITTI [18] (“VKITTI”) dataset offers 1116
synthetic, altered re-creations of KITTI scenes captured from 1117
virtual worlds created in Unity, with over 21,000 frames at 1118
1242× 375 resolution and dense ground truth depth, facili- 1119
tating the study of domain adaptation. We apply synthetic 1120
weather conditions and view rotations to simulate domain 1121
shifts that lead to forgetting. For KITTI and VKITTI, we 1122
restrict the depth values during evaluation to between 0.001 1123
and 100 meters and utilize a depth cropping of 240× 1216. 1124
During training, we use a crop size of 320× 768. 1125

Given the differences in image resolutions, crop sizes, 1126
and evaluation depths, in addition to the different types of 1127
scenes captured and sensors used to collect the datasets, we 1128
observe large domain gaps between datasets within each 1129
sequence, motivating the need for continual learning. We 1130
will release code for reproducibility. 1131

I. Depth Completion Metrics 1132

When we reference depth completion metrics in the main 1133
paper, we specifically mean the error metrics outlined be- 1134
low and formulated in Tab. 9. The metrics include Mean 1135
Absolute Error (MAE), Root Mean Squared Error (RMSE), 1136
Inverse Mean Absolute Error (iMAE), and Inverse Root 1137
Mean Squared Error (iRMSE). MAE measures the average 1138
L1 difference between predicted and ground-truth depths, 1139
providing a straightforward indication of prediction accuracy. 1140
RMSE measures L2 difference which gives higher weight to 1141
larger errors, making it sensitive to outliers and thus a robust 1142
measure for practical applications. iMAE and iRMSE, on the 1143
other hand, are particularly useful for scenarios where errors 1144

Metric Definition

MAE ↓ 1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|

RMSE ↓
(

1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|2

)1/2
iMAE ↓ 1

|Ω|
∑

x∈Ω |1/d̂(x)− 1/d(x)|
iRMSE ↓

(
1
|Ω|

∑
x∈Ω |1/d̂(x)− 1/d(x)|2

)1/2
Table 9. Error metrics for depth completion. These metrics
evaluate the accuracy of predicted depth values d̂(x) compared to
ground truth depth values d(x) over the set of pixels Ω.
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Waymo VKITTI

Method N(I) N(z) # Params MAE RMSE iMAE iRMSE MAE RMSE iMAE iRMSE

Pretrained - - 0M (0%) 3930.68 6405.75 9.55 14.34 10527.70 18086.22 17.45 31.50

ProtoDepth

1 1 0.24M (3.5%) 587.92 1900.96 1.41 2.96 937.18 4027.53 1.92 5.82
±61.20 ±145.34 ±0.12 ±0.17 ±60.31 ±47.08 ±0.38 ±0.42

10 10 0.25M (3.7%) 524.76 1667.74 1.28 2.74 686.22 3638.20 0.90 3.50
±37.18 ±27.98 ±0.06 ±0.03 ±3.42 ±12.29 ±0.04 ±0.07

25 10 0.27M (3.9%) 483.92 1656.33 1.19 2.68 676.28 3608.42 0.80 3.25
±27.59 ±16.34 ±0.04 ±0.02 ±4.64 ±16.61 ±0.07 ±0.24

25 25 0.28M (4.0%) 508.60 1688.09 1.23 2.72 680.65 3614.61 0.87 3.51
±20.36 ±10.88 ±0.04 ±0.03 ±3.40 ±14.82 ±0.05 ±0.19

100 100 0.38M (5.5%) 522.39 1711.44 1.27 2.76 686.89 3635.01 0.93 3.53
±50.06 ±72.41 ±0.10 ±0.09 ±5.45 ±27.57 ±0.09 ±0.08

Table 10. Sensitivity study of prototype set sizes (N (I) and N (z)) on ProtoDepth using KBNet for outdoor datasets (Waymo and VKITTI).
KBNet is pretrained on the initial dataset (KITTI). Parameter overhead is reported as a percentage of the full KBNet model’s parameters.
Smaller set sizes show suboptimal performance due to insufficient capacity to capture feature diversity, while larger set sizes also degrade
performance, likely from overfitting and learning noise.

in smaller depth values are more critical, as they focus on1145
the relative error in inverse depth. Collectively, these metrics1146
allow for a comprehensive evaluation of a model’s capability1147
to predict depth from input data under varied environmental1148
settings, e.g., indoor and outdoor. We note that lower values1149
indicate better performance for all four error metrics. All1150
results are reported in ‘mm’ (millimeters) unless otherwise1151
specified, providing a clear metric standardization.1152

The results of our experiments are shown in Tab. 5, which1153
compares ProtoDepth, ProtoDepth-A (agnostic setting), L2P,1154
and full finetuning (“Finetuned”) on the indoor dataset se-1155
quence. ProtoDepth achieves superior performance across1156
all metrics, with zero forgetting in the incremental setting,1157
with one exception: ProtoDepth-A outperforms ProtoDepth1158
in one measure, SPTO for iRMSE, highlighting the benefits1159
of its generalization capability. This result is consistent with1160
our earlier observations: by allowing the model to select1161
domain descriptors and prototype sets dynamically at test1162
time, ProtoDepth-A can leverage features from overlapping1163
domains to improve performance on ambiguous samples.1164
This flexibility enables better generalization, which, in cer-1165
tain scenarios, can lead to improved outcomes compared to1166
the fixed domain identity approach used in ProtoDepth.1167

Notably, ProtoDepth-A outperforms L2P in the agnostic1168
setting, demonstrating the strength of prototype-based adap-1169
tation compared to prompt-based approaches. While L2P1170
shows improvements over finetuning, it performs less well1171
than ProtoDepth, which can be attributed to a fundamental1172
limitation of prompt-based methods. These methods rely1173
on learnable prompts or tokens to adapt frozen vision trans-1174
former models for continual learning, but there is no natural1175
scale at which to discretize images or choose an appropriate1176
prompt size, unlike the discrete text tokens used in natural1177
language processing. In contrast, ProtoDepth’s prototype-1178

based approach eliminates the need for tokenized inputs, 1179
enabling it to operate directly in the latent feature space. 1180
This flexibility not only enhances its adaptability across di- 1181
verse datasets but also allows it to be applied seamlessly to 1182
both transformers and convolutional neural networks, which 1183
are prevalent in unsupervised depth completion. 1184

J. Outdoor Prototype Set Sizes 1185

We extend our investigation of prototype set sizes (i.e., num- 1186
ber of prototypes) for the image and sparse depth layers (de- 1187
noted as N (I) and N (z), respectively) to the outdoor dataset 1188
sequence. The results of these experiments are presented in 1189
Tab. 10. Based on the findings, we select N (I) = 25 and 1190
N (z) = 10 for the main experiments on the outdoor dataset 1191
sequence. Smaller set sizes demonstrate suboptimal perfor- 1192
mance, as they lack the capacity to adequately capture the 1193
diversity of features across datasets. Larger set sizes also re- 1194
sult in performance degradation, likely due to the additional 1195
parameters learning noise and overfitting to the training data. 1196
The best performance is achieved when N (I) > N (z), align- 1197
ing with our observations in the indoor experiments. This 1198
can be attributed to the larger distributional shift between 1199
scenes in the image modality compared to the sparse depth 1200
modality [46]. For the bottleneck layer, which fuses features 1201
from both modalities, we again use N (I) as the prototype 1202
set size. As a baseline, we also report the performance of 1203
the frozen base model pretrained on KITTI (“Pretrained”), 1204
which has no additional parameters or further training. The 1205
poor results highlight the necessity of continual learning 1206
to adapt to non-stationary data distributions. For both in- 1207
door and outdoor settings, the prototype set size analysis 1208
is conducted using the KBNet model; we adopt the same 1209
prototype set sizes for all other models, as they all have a 1210
similar number of parameters. 1211
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K. Additional Qualitative Analysis1212

To illustrate the reduced forgetting achieved by ProtoDepth,1213
we provide a qualitative comparison of depth predictions1214
and error maps for all baseline methods on input samples1215
from NYUv2 after continual training on ScanNet (Fig. 41216
and Fig. 5). These figures demonstrate how ProtoDepth and1217
ProtoDepth-A consistently outperform the baselines, specifi-1218
cally in reconstructing crowded indoor scenes with sparse1219
depth measurements and challenging lighting conditions.1220

In Fig. 4, baseline methods such as Finetuned and EWC1221
exhibit substantial forgetting, resulting in high error concen-1222
trations. Finetuned, in particular, struggles to retain pho-1223
tometric priors learned from NYUv2, evident in the poor1224
reconstruction of furniture edges and flat areas with depth1225
gradients. Replay performs marginally better but still fails to1226
recover fine details, as its rehearsal mechanisms are insuffi-1227
cient to address the large distributional shift between NYUv21228
and ScanNet. LwF shows improved performance, with fewer1229
errors compared to Finetuned, EWC, and Replay. However,1230
it fails to accurately reconstruct regions with sparse depth1231
measurements (see Sparse Depth), such as the curtain.1232

ProtoDepth and ProtoDepth-A, on the other hand, pro-1233
duce high-fidelity depth predictions. ProtoDepth benefits1234
from its prototype-based adaptation, effectively preserving1235
features from NYUv2 while adapting to ScanNet. Notably,1236
ProtoDepth-A exhibits comparable performance and even1237
outperforms ProtoDepth in reconstructing certain regions,1238
such as the smooth surface of the curtain. This improvement1239
is due to ProtoDepth-A’s generalization capability, which1240
allows it to dynamically select prototype sets from overlap-1241
ping domains based on the affinity of domain descriptors,1242
thereby enhancing its ability to handle ambiguous inputs.1243

Fig. 5 reinforces these observations with a second ex-1244
ample. Once again, baseline methods exhibit significant1245
forgetting, with Finetuned, EWC, and LwF producing poor1246
depth predictions. In contrast, ProtoDepth and ProtoDepth-1247
A produce high-fidelity reconstructions. The well-defined1248
edges between the furniture, floor, and walls in their pre-1249
dictions highlight their ability to preserve learned features1250
while adapting to new domains. ProtoDepth-A, in particular,1251
demonstrates its generalization strength by leveraging over-1252
lapping domain features to improve predictions in certain1253
areas, such as the bedpost edges.1254

Overall, these qualitative results underscore the ability of1255
ProtoDepth to mitigate catastrophic forgetting and produce1256
high-fidelity depth predictions. By effectively combining1257
domain-specific adaptation and cross-domain generalization,1258
ProtoDepth-A outperforms baseline methods, even under1259
significant domain shifts between NYUv2 and ScanNet.1260

Training Time per Epoch (mins)

Method ScanNet VOID Waymo VKITTI

Finetuned 165.8 35.4 84.7 17.3
EWC 168.2 35.9 85.0 18.5
LwF 170.7 38.1 85.4 20.3
Replay 182.9 40.4 88.8 23.0
ProtoDepth-A 92.5 17.9 40.3 10.7
ProtoDepth 85.3 15.7 37.9 9.6

Table 11. Training times (minutes per epoch) with KBNet for each
continual learning method on both indoor and outdoor datasets.

L. Training Time Comparison 1261

Tab. 11 presents the training time per epoch for each con- 1262
tinual learning method on both indoor (ScanNet and VOID) 1263
and outdoor (Waymo and VKITTI) datasets using KBNet. 1264
These experiments were conducted with a fixed batch size of 1265
12 for indoor datasets and 8 for outdoor datasets, on a single 1266
NVIDIA GeForce RTX 3090 GPU. This standardized setup 1267
ensures a fair comparison across all methods. The training 1268
times vary across datasets because they are measured per 1269
epoch, and each training set contains a different number of 1270
frames, as detailed in Appendix H. 1271

ProtoDepth and ProtoDepth-A demonstrate significant im- 1272
provements in computational efficiency, with training times 1273
roughly half those of the baseline methods. This efficiency 1274
can be attributed to ProtoDepth’s approach of freezing the 1275
backbone model and training only the prototype sets, which 1276
are applied to the latent space layers (i.e., bottleneck and 1277
skip connections). Thus, backpropagation computations are 1278
restricted to parameters from the output layer back only to 1279
the latent space layers. Since the parameters involved are 1280
approximately half of the total parameters, ProtoDepth re- 1281
quires fewer gradient computations compared to methods 1282
like EWC, LwF, and Replay that calculate gradients and 1283
update parameters across the entire model. 1284

ProtoDepth achieves slightly faster training times than 1285
ProtoDepth-A. This difference arises because ProtoDepth-A 1286
requires additional computations to train the domain de- 1287
scriptors, which involves calculating and optimizing cosine 1288
similarity between sample descriptors and domain descrip- 1289
tors during training. ProtoDepth avoids this step, resulting 1290
in a small yet consistent reduction in training time. 1291

Among the baseline methods, Finetuned is the fastest, 1292
training slightly faster than EWC, LwF, and Replay. This 1293
is because finetuning does not involve the additional regu- 1294
larization or distillation used by EWC and LwF, nor does it 1295
use a memory buffer like Replay. However, the simplicity 1296
of full finetuning comes at the cost of increased catastrophic 1297
forgetting, as evidenced by its consistently poor performance 1298
in the main experiments. 1299

The reduced training times of ProtoDepth and 1300
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LwF

Finetuned

Predicted Depth Error Map

EWC

Replay

ProtoDepth-A ProtoDepth

Sparse Depth Ground TruthImage

LwF

Figure 4. Qualitative comparison (1 of 2) of ProtoDepth and baseline methods using FusionNet on NYUv2 after continual training on
ScanNet. Top row: Input sample from NYUv2. Following rows: Output depth and error maps (relative to ground-truth) of same sample
from NYUv2 after continual training on ScanNet using each continual learning method.

ProtoDepth-A are particularly important for real-world ap-1301
plications, where computational efficiency is crucial. By1302
restricting updates to the latent space, ProtoDepth not only re-1303
duces computational overhead but also does so while achiev-1304
ing state-of-the-art performance. This efficiency is critical1305
for resource-constrained environments, or scenarios requir-1306
ing fast adaptation to new datasets. These results highlight1307
ProtoDepth’s ability to deliver both high performance and1308
practical advantages in training time, underscoring its suit-1309
ability for continual learning tasks.1310

M. More Ablation Studies1311

To further evaluate the importance of prototype sets in Pro-1312
toDepth, we conduct additional ablation studies to assess the1313
impact of removing prototype sets from different modalities1314
and latent space layers. Specifically, we analyze the role of1315

prototype sets applied to the image features, sparse depth 1316
features, and the bottleneck features. The results, shown 1317
in Tab. 12, are evaluated on ScanNet (indoor dataset) and 1318
Waymo (outdoor dataset) using KBNet. 1319

The results highlight that removing prototype sets from 1320

ScanNet Waymo

Ablated Component MAE RMSE MAE RMSE

image prototype sets 35.06 88.23 542.16 1703.01
sparse depth prototype sets 32.07 84.39 537.37 1762.31
bottleneck prototype sets 19.03 60.32 502.21 1680.87

no ablations 14.59 42.20 486.95 1664.18

Table 12. Ablation studies on prototype sets for different modali-
ties using KBNet for indoor (ScanNet) and outdoor (Waymo).
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LwF

Finetuned

Predicted Depth Error Map

EWC
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ProtoDepth-A ProtoDepth

Sparse Depth Ground TruthImage

Figure 5. Qualitative comparison (2 of 2) of ProtoDepth and baseline methods using FusionNet on NYUv2 after continual training on
ScanNet. Top row: Input sample from NYUv2. Following rows: Output depth and error maps (relative to ground-truth) of same sample
from NYUv2 after continual training on ScanNet using each continual learning method.

any of these components significantly degrades performance.1321
When image prototype sets are ablated, we observe a sharp1322
increase in both MAE and RMSE, particularly for ScanNet,1323
where MAE rises from 14.59 to 35.06. This degradation1324
demonstrates the importance of capturing domain-specific1325
biases in image features, as images undergo larger distri-1326
butional shifts between domains compared to sparse depth,1327
such as changes in lighting, textures, and color distributions.1328

Similarly, removing the sparse depth prototype sets also1329
results in noticeable performance drops, with MAE increas-1330
ing from 14.59 to 32.07 for ScanNet. While sparse depth1331
features may exhibit smaller distributional shifts compared1332
to image features, these features are crucial for anchoring the1333
model to the metric scale of the depth predictions. Without1334
the sparse depth prototypes, the model struggles to adapt1335
effectively to the unique distribution of sparse point clouds1336

in each new dataset. 1337

The bottleneck prototype sets play a critical role as well, 1338
as they adapt the fused representations of both image and 1339
sparse depth modalities. Ablating the bottleneck prototypes 1340
leads to performance degradation, although the impact is 1341
less severe than removing the image or sparse depth proto- 1342
types. For instance, MAE increases from 14.59 to 19.03 1343
for ScanNet when bottleneck prototypes are removed. This 1344
suggests that while the bottleneck prototypes contribute to 1345
the overall performance, much of the adaptation occurs in 1346
the modality-specific layers. 1347

Notably, when all prototype sets are included (no abla- 1348
tions), ProtoDepth achieves the best performance across both 1349
datasets, with significantly lower error metrics compared to 1350
any ablated configuration. These results validate the design 1351
choice of applying prototype sets to both modality-specific 1352
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features (image and sparse depth) and their fused representa-1353
tions (bottleneck).1354

N. Discussion1355

ProtoDepth leverages prototypes as a mechanism for miti-1356
gating catastrophic forgetting. While we demonstrate it on1357
unsupervised depth completion, ProtoDepth does not assume1358
specific modalities and thus can be relevant to other multi-1359
modal problems [55, 90, 92, 97]. Our promising results on1360
both indoor and outdoor domains illustrate the potential for1361
ProtoDepth to enable unsupervised continual learning for1362
multimodal 3D reconstruction. Our architecture-agnostic ap-1363
proach can also be extended to other tasks involving models1364
that produce latent feature representations [31, 98], offering1365
a general framework for continual learning.1366

Limitations. ProtoDepth relies on knowledge of dataset1367
boundaries to instantiate new prototype sets, which may1368
not be feasible in online training settings where there are1369
no defined boundaries between domains. In the same vein,1370
we do not consider scenarios where domain gaps between1371
datasets are small or where there are significant distributional1372
shifts within a dataset. Addressing these limitations would1373
require mechanisms to dynamically detect domain shifts and1374
instantiate new prototypes when appropriate.1375

O. Future Outlook1376

Accurate 3D reconstruction [31, 69, 90] is crucially impor-1377
tant for applications that rely on precise perception of sur-1378
rounding environments [89, 98]. One key challenge in this1379
domain is monocular depth estimation (MDE) [4, 32, 78, 80,1380
87, 93], which aims to recover metric depth from a single1381
image. However, MDE is fundamentally challenging due to1382
scale ambiguity, making it an inherently ill-posed problem.1383
To overcome this challenge, synchronized complementary1384
modalities—such as LiDAR [15, 79, 81], radar [55, 64],1385
inertial sensors [16], additional cameras [3, 84], and even1386
language [96, 97]—can provide additional cues to resolve1387
scale ambiguity. In particular, LiDAR offers high-precision1388
depth measurements that are relatively dense compared to1389
other time-of-flight sensors such as radar, making it a valu-1390
able modality for resolving scale ambiguity and enhanc-1391
ing metric depth estimation accuracy. This task of LiDAR-1392
Camera depth estimation, specifically, is commonly referred1393
to as depth completion [36, 82, 83, 94]. In our work, Pro-1394
toDepth, we introduce an unsupervised continual depth com-1395
pletion [19] framework that leverages prototypes to con-1396
tinuously learn in challenging and dynamic environments.1397
Unlike traditional approaches that rely on fully supervised1398
training on stationary datasets, ProtoDepth adapts continu-1399
ously across domains, demonstrating improved generaliza-1400
tion without the need for expensive, inaccurate ground truth.1401
Our comprehensive results demonstrate that ProtoDepth ef-1402

fectively mitigates catastrophic forgetting for depth com- 1403
pletion, making it a promising solution for real-world ap- 1404
plications in autonomous driving, augmented/virtual reality, 1405
robotics, and general scene understanding. 1406
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