
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ELAS: EFFICIENT PRE-TRAINING OF LOW-RANK
LARGE LANGUAGE MODELS VIA 2:4 ACTIVATION
SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable capabilities, but their
immense computational demands during training remain a critical bottleneck for
widespread adoption. Low-rank training has received attention in recent years due
to its ability to significantly reduce training memory usage. Meanwhile, applying
2:4 structured sparsity to weights and activations to leverage NVIDIA GPU support
for 2:4 structured sparse format has become a promising direction. To achieve
efficient pre-training of LLMs, this paper proposes ELAS: Efficient pre-training
of Low-rank LLMs via 2:4 Activation Sparsity, a novel framework for low-rank
models via 2:4 activation sparsity. ELAS applies squared ReLU activation functions
to the feed-forward networks in low-rank models and implements 2:4 structured
sparsity on the activations after the squared ReLU operation. We evaluated ELAS
through pre-training experiments on LLaMA models. The results demonstrate
that ELAS maintains performance with minimal degradation after applying 2:4
activation sparsity, while achieving training and inference acceleration. Moreover,
ELAS reduces activation memory overhead—particularly with large batch sizes.
Code will be made available.

1 INTRODUCTION

Large language models (LLMs) have revolutionized numerous domains, from natural language
processing and code generation to scientific discovery and multimodal understanding Brown et al.
(2020); Touvron et al. (2023); OpenAI (2023). However, the computational demands of training
these models have grown exponentially, with state-of-the-art systems requiring thousands of GPUs
in compute resources Patterson et al. (2021); Samsi et al. (2023). This has motivated extensive
research into efficient pre-training methods that can reduce memory consumption and training costs
while maintaining model performance. Among these approaches, low-rank training methods have
emerged as a promising direction, offering significant reductions in memory usage through low-rank
representations in weights or gradients. Notable examples include GaLore Zhao et al. (2024), which
projects gradients into low-rank subspaces to achieve memory efficiency while maintaining full-rank
weights during training; LORO Mo et al. (2025a), which employs Riemannian optimization for
genuinely low-rank weight training; CoLA Liu et al. (2025), which introduces non-linear activations
between low-rank weights to enhance the model’s expressiveness; and LOST Li et al. (2025), which
combines low-rank and sparse structures through SVD-based initialization.

However, while these low-rank parameterizations reduce the memory footprint of weights and
gradients, the resulting activation tensors remain full-rank, presenting a significant computational
bottleneck. This limitation becomes particularly pronounced for large-scale models or large batch
sizes, where activation storage and computation dominate the overall memory consumption and
runtime complexity. The emergence of hardware-accelerated sparse computation offers a promising
solution for efficient model training. Modern NVIDIA GPUs, starting from the Ampere architecture,
provide native support for 2:4 structured sparse matrix multiplication. In this sparsity pattern, exactly
2 out of every 4 consecutive elements are non-zero to achieve 2× speedup compared with its dense
equivalent Mishra et al. (2021).
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Recent efforts have shed light on the potential advantages of incorporating 2:4 sparsity for neural
network acceleration. Haziza et al. (2025) demonstrated that applying 2:4 sparsity to activations in
models using Squared-ReLU can accelerate both training and inference of transformers, achieving up
to 1.3× speedup in feed-forward networks. However, their approach focuses exclusively on full-rank
models rather than low-rank training methods. As an orthogonal aspect, methods that apply 2:4
sparsity to weight matrices to gain pre-training efficiency generally sacrifice model accuracy. For
example, Hu et al. (2024c) proposed S-STE with a continuous pruning function to achieve 2:4 sparsity
on weight matrices during pre-training. Despite S-STE’s promising results, directly pruning weight
matrices with 2:4 sparsity faces fundamental limitations. This is because weight matrices lack the
natural sparsity characteristics that emerge in activations following non-linear transformations.

To address these challenges, we propose Efficient pre-training of Low-rank LLMs via 2:4 Activation
Sparsity (ELAS), which strategically combines the parameter efficiency of low-rank training with the
computational acceleration of structured activation sparsity. ELAS first applies low-rank decompo-
sition to weight matrices using the Low-rank Riemannian Optimizer (LORO) Mo et al. (2025a) to
reduce parameter memory requirements. Then, ELAS employs Squared-ReLU activation functions
So et al. (2021) to naturally induce high sparsity levels in activations and applies magnitude-based 2:4
structured sparsity to these activations during forward passes. To maintain gradient flow during back-
propagation, ELAS utilizes straight-through estimation to handle the non-differentiable sparsification
operation. Our key contributions are:

① We propose ELAS, a novel algorithm that seamlessly integrates low-rank weight training
with 2:4 structured activation sparsity. Our method introduces a magnitude-based 2:4 sparsi-
fication algorithm for activations combined with straight-through estimation for gradient
flow, enabling efficient sparse-dense matrix multiplication acceleration while maintaining
low-rank training benefits.

② We demonstrate that applying 2:4 sparsity to activations rather than weights in low-rank
models provides substantial acceleration for inference while reducing memory consumption,
particularly with large batch sizes. By employing Squared-ReLU activation functions So
et al. (2021), we naturally induce high sparsity levels in activations (84-98% sparse after
warmup) Haziza et al. (2025). ELAS minimizes performance loss when applying the 2:4
sparsity.

③ We validate ELAS through comprehensive experiments on LLaMA models ranging from
60M to 1B parameters on the C4 dataset Raffel et al. (2020), demonstrating that our
method maintains competitive perplexity compared to full-rank baselines while achieving
meaningful speedups and activation memory reduction.

2 RELATED WORK

2.1 LOW-RANK PRE-TRAINING

The development of memory and parameter-efficient training methods for LLMs has gained lots of
attention over recent years. Early foundational work by Khodak et al. (2021) established spectral
initialization and Frobenius decay for factorized neural layers. Additionally, they demonstrated that
proper initialization using SVD and regularizing matrix products could make factorized networks
competitive with full-rank counterparts. Kamalakara et al. (2022) provided an extensive empirical
study of low-rank training, and showed that pre-training offers significant speedups in language
models but limited gains in vision tasks. Saada & Tanner (2023) extended edge-of-chaos initialization
theory to low-rank networks, revealing increased training variability as a fundamental limitation.
Lialin et al. (2023) introduced high-rank training through sequences of low-rank updates with periodic
merging, achieving substantial computational savings. Zhang et al. (2024) demonstrated that low-rank
parametrization in Transformers exhibits steeper scaling curves with significant efficiency gains.
Zhao et al. (2024) took a different approach by projecting gradients into low-rank subspaces rather
than constraining parameters, enabling 7B model training on consumer hardware. Recent advances
include Mo et al. (2025a) which applied Riemannian optimization principles to ensure optimal
gradient descent paths in low-rank training, Liu et al. (2025) which replaced linear layers with low-
rank compositions separated by non-linear activations, Han et al. (2024) which combined low-rank
and sparse factorization with random support strategies, and Zhang & Papyan (2024) which achieved
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state-of-the-art post-training compression through outlier-aware sparse and low-rank decomposition.
Building upon these developments, Li et al. (2025) presented a novel approach that uses SVD to
initialize complementary low-rank and sparse components, achieving superior performance while
maintaining significant computational and memory efficiency compared to existing methods.

2.2 SPARSE TRAINING AND N:M STRUCTURED SPARSITY

The application of sparse training to LLMs initially focused on post-training pruning methods before
advancing to more sophisticated training processes. Sun et al. (2023) introduced a simple and
effective pruning approach that evaluates weight importance by multiplying weight magnitudes with
corresponding input activation norms. It achieved competitive results with SparseGPT Frantar &
Alistarh (2023) while being faster. Outlier Weighed Layerwise Sparsity Yin et al. (2024) changed the
conventional practice of uniform layerwise sparsity by proposing non-uniform sparsity ratios based
on each layer’s outlier distribution.

Various approaches have emerged for training structured sparse networks to harness GPU acceleration
capabilities. Zhou et al. (2021) trained sparse networks with N:M patterns, where the Sparse-Refined
Straight-Through Estimator and the Sparse Architecture Divergence metric are introduced to stabilize
sparse structure updates during training. However, early attempts at structured sparsity struggled
to train reliably with modern optimizers. Lu et al. (2023) proposed a two-phase training approach
with reliable variance estimates to address the incompatibility of existing sparse training techniques
with the Adam optimizer. Hu et al. (2024a) proposed to accelerate transformer pre-training using
2:4 structured sparsity. It introduced a transformer-specific masked decay and practical acceleration
methods that achieved speedups of up to 1.2x when training GPT-2 models. Subsequently, Hu
et al. (2024b) addressed optimization difficulties in 2:4 sparse training by proposing a continuous
soft-thresholding pruning function that maintains 2:4 sparsity while enabling smooth optimization.

Several approaches emerged to achieve bidirectional acceleration, i.e., forward and backward passes,
during structured sparse neural network training. Zhou et al. (2021) introduce N:M transposable
fine-grained sparsity masks to formulate the problem as a minimum-cost flow optimization with a
2-approximation algorithm. Alternative solutions included Zhang et al. (2023), which proposed using
separate sparse masks for forward and backward directions rather than requiring a single transposable
mask. The exploration of activation functions has played a crucial role in enabling effective sparse
training. GLU variants Shazeer (2020) demonstrated that gating mechanisms, particularly GEGLU
and SwiGLU, could enhance Transformer performance across various tasks by replacing standard
feed-forward layers with gated architectures. So et al. (2022) further validated the effectiveness of
squared ReLU activations. It revealed that squared ReLU in feed-forward blocks enabled significant
training cost reductions while maintaining or improving performance. Most recently, researchers also
explored the natural sparsity properties of activation functions for training acceleration. Haziza et al.
(2025) applied structured sparsity patterns to model activations rather than weights. This approach
leverages the intrinsic sparsity naturally found in Squared-ReLU activation functions.

3 METHODOLOGY

In this section, we introduce ELAS that combines Low-rank Riemannian Optimizer (LORO) Mo et al.
(2025a) with activation 2:4 sparsity to achieve efficient training. ELAS integrates two key components:
low-rank weight matrices using the LORO optimization framework, and 2:4 sparsification of forward
activations to enable hardware-accelerated sparse matrix multiplication. Figure 1 shows the forward
process of the ELAS’s feed-forward network.

3.1 LOW-RANK TRAINING FRAMEWORK

We adopt the LORO framework as the foundation of our method. The core principle of LORO
is to construct models with low-rank weight matrices while maintaining training stability through
orthogonal gradients update constraints.

For a given linear layer with weight matrix W ∈ Rdout×din , LORO replaces it with two low-rank
matrices:

W = AB (1)
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Figure 1: Feed-forward network architecture of the ELAS method. The input is first multiplied by
the low-rank matrices of the up projection layer, then passes through the ReLU2 activation function.
The activation is applied with 2:4 structured sparsity and then multiplied with the low-rank matrix of
the down layer using sparse matrix multiplication to obtain the output of the FFN layer.

where A ∈ Rdout×r and B ∈ Rr×din with rank r ≪ min(dout, din).

The LORO optimization procedure begins with initialization, where matrices A and B are initialized
using Xavier initialization. LORO alternates between approximate Riemannian updates (most
steps) and exact Riemannian updates (every K steps). The exact updates involve SVD-based
reparameterization that shifts the optimization to new subspaces, requiring optimizer state refresh to
maintain training stability

We apply LORO optimization to both attention and MLP layers, with configurable ranks rattn and
rmlp for low-rank layer. In our experiments, we set rattn = rmlp = 256 to balance parameter
efficiency with model expressiveness.

We specifically choose LORO over other low-rank methods such as CoLA Liu et al. (2025) that adds
activation functions between low-rank factors, or LOST Li et al. (2025) that incorporates additional
sparse matrices for a practical reason: LORO maintains the cleanest inference pathway. After training
completion, there is no additional sparse matrix or activation function between low-rank matrices,
resulting in the fastest inference speed. This is particularly important for applications where both
training efficiency and deployment performance are priorities.

3.2 MODEL ARCHITECTURE MODIFICATION

Following Haziza et al. (2025), we modify the standard LLaMA architecture by replacing the
SwiGLU activation function in MLP layers with a simpler FFN structure using ReLU2 activation.
This architectural change is motivated by the natural sparsity properties of ReLU2, which yields high
activation sparsity levels that are well-suited for 2:4 structured sparsity applications. Additionally, by
removing the gating mechanism present in SwiGLU, this simplified structure reduces computational
overhead while maintaining nonlinearity for model expressiveness.

The modified architecture follows:

MLP(x) = Wdown · ReLU2(Wupx) (2)

where ReLU2(z) = (max(0, z))2. This modification provides a simplified structure by removing the
gating mechanism, which reduces computational overhead while maintaining nonlinearity. It induces
sparsity since ReLU2 naturally produces high activation sparsity, making it suitable for structured
sparsity.

3.3 2:4 ACTIVATION SPARSITY

To leverage the natural sparsity patterns inherent in ReLU2 activations while enabling hardware
acceleration, we apply structured 2:4 sparsity to forward activations of low-rank layers. The 2:4
sparsity pattern requires that out of every consecutive 4 elements, at least 2 are zero, enabling efficient
sparse matrix multiplication on supported GPUs.
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3.3.1 FORWARD PASS SPARSIFICATION

For activation tensor z ∈ RM×N after ReLU2, we apply 2:4 structured sparsity element-wise along
the feature dimension. As shown Algorithm 1, each row is partitioned into non-overlapping groups
of four consecutive elements; within each group, we retain the two entries with the largest absolute
values and set the other two to zero.

Algorithm 1: 2:4 Activation Sparsification

1: Input: Activation tensor z ∈ RM×N

2: Output: Sparsified tensor zsparse ∈ RM×N

3: for i = 1 to M do
4: for j = 1 to N/4 do
5: group = z[i, 4j − 3 : 4j] {Extract group of 4 elements}
6: abs_group = |group| {Compute absolute values}
7: Find indices of top-2 largest values in abs_group
8: Set remaining 2 elements to zero
9: zsparse[i, 4j − 3 : 4j] = groupmasked

10: end for
11: end for

The sparsification operation is implemented using efficient Triton kernels for GPU acceleration:

sparsify2:4(z) = masktop2(z)⊙ z (3)

where masktop2(z) generates a binary mask that preserves only the top-2 elements by absolute value
in each group of 4.

3.3.2 BACKWARD PASS WITH STRAIGHT-THROUGH ESTIMATOR

During backpropagation, we employ the straight-through estimator (STE) to process the non-
differentiable sparsification operation. The STE allows gradients to flow through the sparsified
activations by treating the sparsification operation as an identity function during the backward pass:

∂L
∂z

=
∂L

∂zsparse
(4)

This approximation allows gradient-based optimization to continue despite the discrete nature of the
sparsification operation.

3.4 TRAINING PROCEDURE

The training procedure of ELAS integrates LORO low-rank optimization with activation 2:4 sparsity.
ELAS begins with a dense warmup phase, where the model is trained with dense activations for
Nwarmup steps to establish stable representations. Following this, sparse training is applied using
2:4 activation sparsification to all forward passes while maintaining LORO low-rank constraints on
weight matrices.

For gradient computation, we use the straight-through estimator for activation gradients and standard
backpropagation for LORO parameters. Optimizer updates are handled by the Riemannian Opti-
mizer that respects orthogonality constraints and supports periodic exact Riemannian updates. The
hyperparameters include only dense warmup steps Nwarmup.

This integrated approach enables efficient training by combining parameter reduction through low-
rank decomposition with computational acceleration through sparse activations, while maintaining
competitive model performance. The structured activation sparsification becomes particularly benefi-
cial for large batch training scenarios, where it significantly reduces memory overhead for activation
storage. Algorithm 2 details the complete ELAS training procedure.

5
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Algorithm 2: ELAS
1: Input: Dataset D, warmup steps Nwarmup, total steps Ntotal

2: Input: Ranks rattn, rmlp, refresh frequency frefresh
3: Output: Trained model parameters {Ai,Bi}
4: Initialize low-rank matrices {Ai,Bi} with Xavier initialization
5: step← 0
6: while step < Ntotal do
7: Sample batch (x,y) from D
8: Forward Pass:
9: for each layer i with low-rank weights Wi = AiBi do

10: Compute activation: zi = f(Wihi−1)
11: if step ≥ Nwarmup then
12: zi ← sparsify2:4(zi) {Call Algorithm 1}
13: end if
14: end for
15: Compute loss: L = loss(model(x),y)
16: Backward Pass:
17: Compute gradients w.r.t. {Ai,Bi} using STE for sparse activations
18: Optimizer Update:
19: Apply LORO optimizer updates with orthogonality constraints
20: if step mod frefresh = 0 then
21: Refresh optimizer state to maintain representational capacity
22: end if
23: step← step+ 1
24: end while

4 EXPERIMENTS

We evaluate the performance of ELAS through comprehensive experiments on large language model
pre-training. We conducted detailed ablation studies to further demonstrate ELAS’s effectiveness.
All experiments were performed on NVIDIA 3090/A100 GPU.

4.1 EXPERIMENTS SETUP

Dataset. Our pre-training experiments utilize the Colossal Clean Crawled Corpus (C4) dataset Raffel
et al. (2020). This dataset represents a comprehensive collection of web-scraped text data that
undergoes rigorous cleaning and filtering processes, making it a standard choice for language model
pre-training tasks. Following the common practice from prior work Li et al. (2025); Han et al. (2024),
we train all models for one complete epoch without repetition.

Model Architecture. We refer to Touvron et al. (2023) using a llama-based architecture and
test models ranging from 60M to 1B parameters. This architecture implementation includes pre-
normalization layers, RMSnorm normalization, and the Swiglu activation mechanism Zhang &
Sennrich (2019); Shazeer (2020). Our experimental framework follows established methods from
recent research and utilizes BF16 precision to improve memory utilization. Specific details of our
optimizer settings, cosine annealing learning rate strategy, and warmup procedure are referred to Li
et al. (2025); Zhao et al. (2024). Detailed parameter configurations for each model size are provided
in Table 6.

4.1.1 BASELINES

We benchmark ELAS against several established methods: standard Full-Rank pre-training serves
as our primary baseline, along with LoRA Hu et al. (2021) and other state-of-the-art pre-training
techniques, including ReLoRA Lialin et al. (2023), GaLore Zhao et al. (2024), LORO Mo et al.
(2025b), CoLA Liu et al. (2025), and SLTrain Han et al. (2024). We also compare ELAS with the 2:4
weights pre-training method S-STE Hu et al. (2024c). All comparisons maintain equivalent training
token budgets to ensure fair evaluation.

6
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Table 1: We report the comparative performance in terms of perplexity, along with parameter statistics
(Param, in millions) and memory requirements (G, in gigabytes) for each method. Here, r indicates
the target rank while d refers to the model’s hidden dimension. The memory consumption includes
model parameters and gradients but excludes activations. The reported baseline results are obtained
from Li et al. (2025); Zhao et al. (2024); Han et al. (2024)".

60M 130M 350M 1B

r/d 128/512 256/768 256/1024 512/2048
Tokens 1.1B 2.2B 6.4B 13.1B

Method PPL↓ Param(M) Mem(G) PPL↓ Param(M) Mem(G) PPL↓ Param(M) Mem(G) PPL↓ Param(M) Mem(G)

Full-Rank 34.06 58 0.35 24.36 134 0.81 18.80 368 2.21 15.56 1339 8.04

LoRA 34.99 58 0.36 33.92 134 0.84 25.58 368 1.85 19.21 1339 6.34
ReLoRA 37.04 58 0.36 29.37 134 0.84 29.08 368 1.85 18.33 1339 6.34
GaLore 34.88 58 0.28 25.36 134 0.61 18.95 368 1.59 15.64 1339 4.76
CoLA 34.10 43 0.24 25.61 94 0.57 19.75 185 1.11 15.76 609 3.66
LORO 33.87 43 0.24 24.78 94 0.57 19.66 185 1.11 15.53 609 3.66
ELAS 34.12 43 0.24 24.80 94 0.57 19.94 185 1.11 15.69 609 3.66

4.1.2 HYPER PARAMETERS SELECTION

As we mentioned before, ELAS requires no additional parameter tuning. We implement a dense
warmup period before activating 2:4 sparsity training. For the dense warmup steps, we set the
dense warmup duration to 1000 steps following Haziza et al. (2025). We also follow the common
pre-training settings, which linearly increase the learning rate before the first 10% of training tokens.

4.2 MAIN RESULTS

4.2.1 ELAS SHOWS COMPETITIVE PERFORMANCE WITH BASELINE METHODS

As shown in Table 1, ELAS demonstrates competitive performance across all model sizes while
maintaining the memory efficiency benefits of low-rank training. Specifically, ELAS achieves
perplexity scores very close to the LORO baseline with only minimal degradation ranging from
0.07 to 0.28 perplexity points. Notably, ELAS maintains the same parameter count and memory
footprint as LORO while adding the benefits of activation sparsity for computational acceleration and
activation memory reduction, which will be detailed in the next section.

Compared to full-rank training, ELAS achieves competitive performance while using significantly
fewer parameters and consuming less memory. When compared to other low-rank methods, ELAS
consistently outperforms LoRA and ReLoRA across all model sizes. ELAS achieves comparable
results to more sophisticated methods such as GaLore and CoLA. These results validate that applying
2:4 activation sparsity introduces minimal performance overhead while preserving the substantial
efficiency gains of low-rank training.

4.2.2 ELAS ACHIEVES ACTIVATION MEMORY REDUCTION

ELAS provides substantial memory savings through 2:4 structured sparsity applied to FFN activations.
Table 2 presents the activation memory consumption comparison between LORO and ELAS for the
FFN module of 1B parameter model across various batch sizes.

The results demonstrate that ELAS consistently achieves a reduction in FFN activation memory
consumption regardless of batch size. This memory saving stems from the efficient 2:4 sparse storage
format supported by NVIDIA GPUs, which stores only the non-zero values along with compact
indexing information. The memory reduction becomes valuable for large-batch training scenarios,
where activation memory consumption can become a significant bottleneck during training. This
validates the scalability of our approach and its applicability across different training configurations.

7
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Table 2: FFN activation memory consumption comparison between LORO and ELAS for the 1B
parameter model across different batch sizes. Sequence length is set to 2048. All values are in GB.

Method 1 2 4 8 16 32 64 128

LORO 1.42 2.84 5.68 11.36 22.71 45.43 90.85 181.71
ELAS 0.80 1.59 3.18 6.36 12.72 25.44 50.88 101.76

4.2.3 ELAS AOBTAINS COMPUTATIONAL ACCELERATION

We evaluate the inference phase computational acceleration of ELAS compared to full-rank across
different model sizes and sequence lengths. We focus on the feed-forward network modules where
2:4 activation sparsity is applied. Table 3 presents the speedup results measured as the ratio of ELAS
inference time to full-rank inference time with sequence lengths ranging from 512 to 65,536.

According to the results, we can see that ELAS achieves significant computational acceleration, with
speedups ranging from 1.5× to 2.75× for most configurations. Interestingly, the effectiveness of ELAS
on computational acceleration is positively correlated with model size and sequence length. Larger
models exhibit greater acceleration, with the 1B parameter model achieving the most significant
speedups across all sequence lengths..

Notably, shorter sequences (512 tokens) sometimes exhibit performance degradation compared
to full-rank, especially with smaller models, i.e., 60M and 130M. This can be attributed to the
overhead of kernel initialization and sparse matrix operations, which becomes proportionally smaller
as the computational workload increases. Overall, activation 2:4 sparsity can provide significant
performance acceleration with larger models and longer sequences.

Table 3: Computational speedup of ELAS compared to full-rank training across different model sizes
and sequence lengths. Values represent the speedup ratio of FFN module (ELAS time / Full-rank
time), where values > 1.0 indicate acceleration.

Model 512 2048 4096 8192 16384 32768 65536

60M 0.50× 1.57× 1.75× 1.50× 1.55× 1.59× 1.55×
130M 0.75× 1.56× 1.80× 1.52× 1.51× 1.53× 1.52×
350M 1.29× 1.87× 1.86× 1.82× 1.85× 1.88× 1.88×
1B 2.05× 2.47× 2.48× 2.55× 2.63× 2.73× 2.75×

4.3 ABLATION STUDY

We conduct two ablation studies to investigate the key components of ELAS, i.e., the activation 2:4
dense warmup phase and the activation 2:4 sparse methods. Due to computational constraints, the
first ablation experiments are performed on the 60M and 130M parameter models.

4.3.1 ABLATION ON ACTIVATION 2:4 DENSE WARMUP STEPS

We conduct the ablation on the impact of dense warmup phase before activating 2:4 activation sparsity.
Table 4 presents the final perplexity results for different warmup steps.

The results show the importance of dense warmup for training stability. When no warmup is applied
(0 steps), the 60M model completely fails to converge, while the 130M model shows significantly
degraded performance. This instability arises because in the early training stages, the natural sparsity
of activations after ReLU² is relatively low (around 50%). It makes the 2:4 sparse training prone
to significant information loss that disrupts the learning process. Both models achieve improved
performance with appropriate warmups where further extending the warmup beyond 1000 steps
shows diminishing returns.

These findings confirm that the dense warmup is essential for activation 2:4 sparse training, allowing
the model to establish stable optimization dynamics before introducing the structural constraints of
activation sparsity.
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Table 4: Ablation study on the effect of dense warmup steps before applying activation 2:4 sparsity.
Results show final evaluation perplexity for different warmup steps on 60M and 130M models.

Model 0 500 1000 2000 3000

60M NaN 36.71 34.12 34.48 34.32
130M 29.7 25.76 24.80 24.93 24.83

4.3.2 ABLATION ON ACTIVATION 2:4 SPARSE METHODS

We compare different approaches for applying 2:4 structured sparsity to activations. Our default
method (naive) directly selects the top-2 elements by magnitude within each group of 4 consecutive
values. We also evaluate the soft thresholding approach from S-STE Hu et al. (2024c), which was
originally designed for weight sparsification.

The original S-STE method (soft_weights) subtracts the second-largest weight value from each group
of 4 consecutive weights. It then applies scaling to minimize the Frobenius norm difference between
the original and sparsified weight matrices. However, there is no support for directly applying this
weight-based scaling to activation sparsification, as activations have different statistical properties than
weights. To address this mismatch, we propose an adapted version (soft_activation) that computes
the scaling factor based on a small batch of input activations (input × weights) rather than using
weight statistics. This approach better reflects the true activation distribution when determining the
soft thresholding parameters.

Table 5 presents the experimental results across different model sizes. The naive magnitude-based
approach achieves the best performance and training stability across all model sizes. The original
soft_weights shows performance degradation and training instability, failing to converge for larger
models. Our activation-based adaptation Soft_activation performs better than soft_weights but still
exhibits instability and generally worse performance than the naive approach.

These results suggest that the soft thresholding designed for weight sparsification do not align well to
activation sparsification. The direct magnitude-based selection proves most effective for maintaining
both training stability and model performance when applied to activations.

Table 5: Ablation study on different 2:4 sparse methods applied to activations. Results show evaluation
perplexity across different model sizes. "NaN" indicates training instability leading to divergence.

Model Naive Soft_weights Soft_activation

60M 34.12 39.56 34.01
130M 24.80 27.12 25.36
350M 19.94 NaN 20.55

1B 15.69 NaN NaN

5 CONCLUSION

In this paper, we presented ELAS, a novel framework that combines low-rank weight training with
2:4 structured activation sparsity for efficient LLMs pre-training. By applying the LORO framework
with ReLU² activation functions and structured sparsity of forward activations, ELAS achieves a
balance between training efficiency and model performance.

Our experimental results on LLaMA models ranging from 60M to 1B parameters demonstrate that
ELAS maintains competitive performance with minimal degradation compared to dense baselines
while providing computational and memory benefits. Through ablation studies, we evaluated the
importance of dense warmup for training stability and validated that simple magnitude-based 2:4
sparsity outperforms other methods, such as soft thresholding approaches, when applied to activations.
Future work could be exploring extending ELAS to other model architectures and investigating
advanced sparse methods.
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Table 6: Hyperparameters of the LLaMA model. Training data is specified in tokens.

Params Hidden Intermediate Heads Layers Training Tokens
60M 512 1376 8 8 1.3B

130M 768 2048 12 12 2.6B
350M 1024 2736 16 24 6.4B

1B 2048 5461 24 32 13.1B

A APPENDIX

A.1 LLM USAGE

LLMs were used for grammar checking and language polishing to improve manuscript clarity.

12


	Introduction
	Related work
	Low-rank Pre-training
	Sparse training and N:M structured sparsity

	Methodology
	Low-Rank Training Framework
	Model Architecture Modification
	2:4 Activation Sparsity
	Forward Pass Sparsification
	Backward Pass with Straight-Through Estimator

	Training Procedure

	Experiments
	Experiments setup
	Baselines
	Hyper parameters selection

	Main results
	ELAS shows competitive performance with baseline methods
	ELAS achieves activation memory reduction
	ELAS aobtains computational acceleration

	Ablation study
	Ablation on activation 2:4 dense warmup steps
	Ablation on activation 2:4 sparse methods


	Conclusion
	Appendix
	LLM usage


