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ABSTRACT

Handling missing node features is a key challenge for deploying Graph Neural
Networks (GNNSs) in real-world domains such as healthcare and sensor networks.
Existing studies mostly address relatively benign scenarios, namely benchmark
datasets with (a) high-dimensional but sparse node features and (b) incomplete
data generated under Missing Completely At Random (MCAR) mechanisms. For
(a), we theoretically prove that high sparsity substantially limits the information
loss caused by missingness, making all models appear robust and preventing a
meaningful comparison of their performance. To overcome this limitation, we
introduce one synthetic and three real-world datasets with dense, semantically
meaningful features. For (b), we move beyond MCAR and design evaluation
protocols with more realistic missingness mechanisms. Moreover, we provide a
theoretical background to state explicit assumptions on the missingness process
and analyze their implications for different methods. Building on this analysis,
we propose GNNmim, a simple yet effective baseline for node classification with
incomplete feature data. Experiments show that GNNmim is competitive with re-
spect to specialized architectures across diverse datasets and missingness regimes.

1 INTRODUCTION

Learning with missing features is a pervasive and often unavoidable challenge in many real-world
machine learning applications, such as healthcare (Braem et al., [2024; Mirkes et al., 2016)), IoT
sensor networks (Faizin et al., 2019;|Okafor & Delaney, [2021}|Agbo et al.,[2022)), and recommender
systems (Marlin & Zemel, [2009; He et al., 2017;|Marlin et al., 2011). This issue naturally extends to
Graph Neural Networks (GNNs), which are increasingly applied in domains where missing features
are common. In this work, we focus specifically on the problem of missing node feature data, a
setting that has received growing attention in the GNN literature (Um et al., {2023} |Yun et al., 2024;
Rossi et al.| [2022; |Guo et al.| [2023; Taguchi et al.l 2021} [Errica & Niepert, [2024; [Um et al., 2025

A wide range of methods have been proposed, from simple mean imputation (You et al., |2020) to
architectures that jointly impute and predict during training (Guo et al.,|2023). These approaches are
typically evaluated by synthetically removing features from widely used node classification bench-
marks such as CORA, CITESEER, and PUBMED (Yang et al., [2016)). However, despite the growing
number of models, little attention has been paid to the validity of these evaluation protocols. We
argue that two critical issues remained largely unaddressed: (i) the datasets used for evaluation, and
(i1) the missingness mechanisms applied to generate incomplete features.

Regarding (i), existing evaluations rely on datasets with extremely sparse node features, typically
bag-of-words representations where the vast majority of entries are zero. This raises a crucial ques-
tion: can robustness to missing features be meaningfully assessed when most features are already
absent? Our theoretical analysis shows that in highly sparse settings, the mutual information be-
tween features and labels is barely affected by additional missingness, except at extremely high
missing rates. Empirically, we find that all the existing GNN-based methods maintain high perfor-
mance across a wide range of missingness levels on these benchmarks, with performance degrading
only when more than 90% of entries are removed. These results cast serious doubt on the ability of
current benchmarks to meaningfully assess the robustness of the models.
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To move beyond this limitation, we identify a set of datasets, one synthetic and three real-world, with
dense, raw features that are naturally low-dimensional and semantically meaningful (e.g., physical
measurements). These datasets offer a more realistic setting for studying GNNs under feature miss-
ingness. This focus on dataset quality aligns with recent calls for more careful benchmark design in
graph machine learning (Bechler-Speicher et al., 2025} |(Coupette et al.| |[2025).

Regarding (ii), the design of the missingness mechanisms used during evaluation is overly simplistic.
Most prior works consider only Missing Completely At Random (MCAR) mechanisms (Rubin, |1976;
Little & Rubin| [2019), where feature deletion is independent of the data. In practice, however, miss-
ingness is often related to the feature values or prediction target (Carreras et al., 2021} [Hazewinkel
et al., 2022} [Kopra et al.| [2015). For example, a patient might be less likely to report their weight
if it is above a certain threshold. This corresponds to a Missing Not At Random (MNAR) mech-
anism (Rubin| [1976)), in which the probability of missingness depends on the unobserved feature
value itself. A further limitation of existing evaluation protocols is the implicit assumption that the
missingness mechanism remains identical across training and test data. In practice, however, this
is often not the case: for example, training data may be historical and collected with obsolete sen-
sors prone to failures, while test data come from newer sensors with little or no missingness. To
overcome this limitation of the current evaluation procedure, we design more realistic evaluation
protocols. These include new, more representative instances of MCAR and MNAR mechanisms, as
well as train—test distribution shifts. Such conditions more accurately capture real-world deployment
challenges, where both the causes and the distributions of missing data may vary across stages.

Finally, we introduce a simple yet effective GNN model, GNNmim, based on the Missing Indicator
Method (MIM) (Van Ness et al., [2023). GNNmim augments the node feature matrix with a binary
mask indicating which features are missing. The resulting representation is processed by a standard
GNN without requiring any learned imputation. GNNmim does not rely on any assumption on the
distribution of the missingness and, despite its simplicity, it is competitive with respect to several
state-of-the-art methods showing robustness under a variety of missingness settings.

Contributions. To summarize, our main contributions are:

1. We provide a theoretical analysis showing that the impact of missing features depends strongly
on feature sparsity, and derive an information-theoretic bound on the resulting loss.

2. We introduce one synthetic and three real-world datasets with dense, informative features, and
show experimentally that models appearing robust on sparse benchmarks fail on these datasets.

3. We propose realistic evaluation protocols, including new, more representative instances of
MCAR and MNAR mechanisms and train—test distribution shifts, and demonstrate that existing
methods are not robust to all the possible settings.

4. We introduce GNNmim, a simple yet effective method, and show that it is competitive with
respect to existing approaches across datasets, missingness types, and distribution shifts.

The core aim of this paper is to redefine how research on GNNs with missing features should move
forward. We show that apparent progress in this area has been largely constrained by the evaluation
itself: existing benchmarks rely on sparse, weakly informative features and overly benign missing-
ness mechanisms, making current results difficult to interpret and obscuring the true robustness of
existing methods. By introducing dense, semantically meaningful datasets, realistic missingness
protocols, and a clear theoretical framing, we establish a foundation that enables more meaningful
and reliable research directions. Within this improved evaluation setup, GNNmim is intentionally
simple: once evaluation artifacts are removed, a lightweight, assumption-free model can outper-
form more complex approaches. Thus, GNNmim serves as an effective baseline that naturally arises
from the identification and analysis of the limitations of the current evaluation setup. The broader
contribution of this work lies in establishing a principled and realistic evaluation framework, with
GNNmim serving as a clear baseline within it.

2 LEARNING FROM INCOMPLETE GRAPH DATA

We consider an attributed graph G = (V, E,X,Y), where V. = {1,...,n} is the set of nodes,
E C V x V is the set of edges represented by the adjacency matrix A € {0,1}"*", X € R"*4 is
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the node feature matrix with entry X;; denoting feature j of node i, and Y € Y™ is the vector of
node labels.

When data is incomplete, some entries of X are unobserved. Let M € {0, 1}"*< be the missingness
indicator matrix that has M;; = 1 if x;; is missing and 0 otherwise. In our setting, the missingness
indicator matrix M is directly and deterministically constructed from the observed dataset. Missing
values are explicitly marked in the raw data, so the mask M is uniquely defined and contains no
uncertainty. Let X5 be the elements of X for which M;; = 0, and X™iss the elements for which
M;; = 1. The observed data from which we learn then can be written as Xobs Y M. We note
that we here make the assumption that Y is fully observed in the (training) data, and that there is no
uncertainty about the graph structure E. The distribution of the data then can be parameterized as

Pg,%)‘(X(’bﬁY,M) = Po(X)Py(Y|X)PA(M|X,Y), (1)
me.m‘
where X = X X" Py is the node feature distribution, P, is the conditional label distribution,
and P represents the missingness mechanism. Though not explicitly reflected in the notation, all
these distributions will usually depend on the underlying graph structure, which will typically induce
dependencies among the rows of X, and among the elements of Y.

A GNN for node classification with complete feature data is a model Py (Y|X) with -+ the weights
of the GNN. For classification with incomplete data we need to learn the conditional model

Po 4 A(Y|X M) = - Poy A(Y|X, M)Pg (XX M). 2)
The classical missing (completely) at random (M(C)AR) assumptions (Rubin, [1976) simplify this
problem. The original M(C)AR assumptions have been formulated in the context of estimating the
parameter of a generative distribution. It has been observed that more specialized variations of the
original definitions can be more pertinent in the context of classification (Ding & Simonoff, 2010;
Ghorbani & Zoul 2018)). In the following we give formulations of M(C)AR for classification that
provide the foundations for our theoretical analysis.

Definition 1. The joint distribution Py  x is feature-MAR, if
P%A(M\X””’”, Xubs) _ PQ”Y’)\(M|X0bS). (3)

It is label-MAR if

Py(M|X,Y) = P, x(M|X). 4)
The distribution is MCAR, if

Px\(M|X,Y) = Ppyx(M). 5

In (3)-(5) all probability functions are indexed with the parameters they actually depend on. Note,
for example, that the conditional of M given X requires marginalization over Y, and thereby also
depends on the parameter v. MCAR implies both feature- and label-MAR.

The simplest realization of an MCAR mechanism is uniform missingness (U-MCAR) in which en-
tries of X are independently missing with a fixed missingness probability u. This can be generalized
by defining a missingness probability matrix g € [0, 1]"*¢ specifying potentially different missing-
ness probabilities for different entries of X.

MAR assumptions allow us to eliminate the missingness model Py from (2)). The following propo-
sition states this classical ignorability result in a version most suitable in our context.
Theorem 1. If Py . » is feature-MAR and label-MAR, then simplifies to

/ Py (Y| X)) Py (X5 X ). (6)
Xmi.v.v

Intuition. Under feature-MAR and label-MAR, the missingness pattern carries no predictive in-
formation. The learning problem reduces to the usual classification task with imputed features,
meaning that methods explicitly modeling the missingness mask do not gain theoretical advantage
in this regime.
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The proof is straightforward by rewriting the two factors on the right of () using Bayes’s rule,
and plugging in and (). Formulation (6) still poses two major challenges: it requires a fea-
ture distribution model Py when in reality we only are interested in the conditional model P, and
the integration over X" is usually intractable (Ipsen et al., [2022). The simplest approach to ad-
dress these problems is to approximate the integral @ by evaluating P, (Y| X) at a single imputed
value X = impute(X’"m) (Rubin, [1988). This does not require an explicit model for Py, but re-
lies on the implicit assumption that the imputed value impute(X™5*) has high probability under
Pp. A simple example is mean-imputation, in which missing values of a given feature are filled
with the mean of that feature; we will refer to this approach combined with a standard GNN as
GNNmi (You et al.,[2020). In addition, we also consider zero-imputation, where missing entries are
replaced with zeros (GNNzero), and median-imputation, where they are filled with the feature me-
dian (GNNmedian). Similarly, PCFI (Um et al.l 2023)) does not require an explicit model for Pp;
it introduces a confidence-guided imputation scheme where pseudo-confidence is derived from the
shortest-path distance to observed features, and combines channel-wise diffusion with inter-channel
propagation to recover a single estimate of X. GOODIE (Yun et al. |[2024) approximates the inte-
gral in () using a combination of label propagation and FP (Rossi et al., 2022), which propagates
features by minimizing a Dirichlet energy function, whereas FairAC (Guo et al.,2023) does so by
aggregating, via an attention mechanism, the representations from neighbors of nodes with missing
features.

Other methods explicitly model Pp. The GCNmf approach of Taguchi et al.| (2021) introduces a
model of Py in the form of a mixture of Gaussians, and approximates @) by Py (Y, [, Eg[L1 | X)),
where Eg[L; | X°¥] is the expected activation at the first layer of the GNN defining P. Finally,
GSPN (Errica & Niepert, 2024) explicitly models Py with graph-induced sum—product networks, so
missing features are handled by exact marginalization.

An alternative to all these approaches that work entirely with models Py, P, for the (complete) data
distribution is to include the missingness mechanism explicitly in a model P+ (Y |X°, M), that
directly captures the left side of . We here write v+ for the parameters of the model to emphasize
that it can be structurally similar to a model Py (Y |X), but different in that it has the missingness
matrix M as an explicit extra input.

This modeling strategy, often referred to as the Missing Indicator Method (MIM), has been studied
in the context of supervised learning with missing features (Van Ness et al., 2023]), but, to the best of
our knowledge, it has not been explored in the context of graph machine learning. In this work, we
propose a GNN-based instantiation of the MIM framework, which we call GNNmim. In GNNmim, we
implement P+ as a GNN, we construct the matrix zero-pad (X°Ps) in which missing values are filled
in by zeros, and use the concatenation zero-pad(X°”)[i,:]||M[i,:] as the feature vector for node i
in an otherwise standard GNN architecture{ﬂ GNNmim does not rely on any MAR assumptions, and
thereby can be expected to perform more robustly than other approaches under different missingness
mechanisms. As our experiments in Section [5|show, this simple yet principled strategy yields robust
performance across a wide variety of missingness scenarios. In Appendix [, we provide additional
analyses where the missing-feature mask is applied not only to zero imputation but also to the
existing models presented in this section.

3 ARE WE EVALUATING GNNS FOR MISSING FEATURES ON THE RIGHT
DATA?

A rigorous evaluation of GNNs under feature missingness requires not only well-designed models,
but also datasets that are suitable for the problem at hand. Recent work in the graph learning commu-
nity has emphasized the importance of dataset suitability in benchmarking (Bechler-Speicher et al.,
2025} |Coupette et al.,2025)). In the context of learning with missing node features, dataset suitability
is even more critical. Models designed to handle missingness should be tested on datasets where the

"We deliberately here say “zero-padding” rather than “zero-imputation”. The latter would imply that we
view the zeros as somehow reasonable stand-ins for the true unobserved values. We view the zeros as arbitrary
placeholders. Ideally, the trained model will learn to ignore these values when the corresponding missingness
indicator is 1.
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presence of missing features meaningfully affects model performance and where reasoning under
missingness is necessary and non-trivial.

The current standard practice in the literature is to evaluate state-of-the-art methods on a set of
widely-used benchmarks for node-level tasks, namely, CORA, CITESEER, PUBMED, AMAZON-
COMPUTERS, and AMAZONPHOTO. In these datasets, node features are constructed as follows:
CoRrA, CITESEER and PUBMED use binary bag-of-words features, while AMAZONCOMPUTERS
and AMAZONPHOTO use TF-IDF vectors (Aizawal, 2003)). These feature matrices are typically very
sparse, which we quantify using the notion of feature sparsity, formally defined as below:

Definition 2 (Feature Sparsity). Given a node feature matrix X € R"*?, the feature sparsity is
defined as the proportion of zero entries: s(X) = -5 > " | Z?zl 1[X,; = 0], where 1[-] denotes
the indicator function.

The sparsity values of the benchmark datasets are

reported in Table[T] (first three rows). All datasets Taple 1: Feature sparsity across benchmarks
exhibit substantial sparsity, with more than 50% 4nd custom datasets.

of features being zero across all the datasets, with

Cites.eer reaching an e.Xtrer'ne SparSitX level Of. AP~ Dataset #Features Sparsity | Type of features
prox1mately 99%. This raises a crucial question: ¢ opy 1433 09373 BoW (binary)
does it make sense to evaluate models designed to  Crreseer 3703 0.9915 BoW (binary)
handle missing features on datasets where the fea-  PUBMED 500 0.8998 BoW (binary)
ture representations are already extremely sparse? ~ SYNTHETIC 5 0.0000 Gaussian

In such sparse settings, a high probability of miss- AR 7 0.1615 Raw

. k . . . ELECTRIC 5 0.2000 Raw
ingness is needed to induce a meaningful infor- 1,501 15 0.0000 Raw

mation loss. Otherwise, the observed model per-
formance under missingness may reflect artifacts
of the dataset rather than the robustness of the method. We formalize this observation in the follow-
ing theorem.

Theorem 2. Let X € R"*% and Y € V" be random variables, M € {0, 1}"Xd be a missingness
mask and X°” denotes the observed (incomplete) data. We encode the pair (X°*, M) with the
random variable X with
~ Xii, M;; =0
X = ij) i )
J {?, Mij =1.

Let the change in the information be defined as A := I(Y;X) — I(Y;X), where I(-;-) denotes
the mutual information. Then,

1. If the missingness is label-MAR, then A < 0.

2. If X € {0,1}"*? and the missingness is U-MCAR with missingness probability z, and
s(X) is the sample sparsity as in Definition[2] then

—ndpho(E[s(X)]) < A <0,
where ho(u) = —ulogu — (1 — u)log(1 — u).

Intuition. When node features are extremely sparse (e.g., BOW/TF-IDF), the information loss
induced by missingness is provably negligible unless missingness is extremely high. As a result,
existing sparse benchmarks inherently make all methods appear robust, preventing meaningful com-
parison.

The proof can be found in Appendix [A] Theorem [2]demonstrates that when feature sparsity is high,
a very large amount of missingness is required to produce a meaningful loss of information. This
confirms that such benchmarks do not meaningfully differentiate between approaches, casting doubt
on their suitability for evaluating GNNs under feature missingness. As a consequence, we argue for
the use of datasets where missingness poses a real challenge. In particular, we introduce a set of
four alternative datasets, one new synthetic and three real-world. More details about the datasets are
reported in Appendix
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(1) A synthetic dataset tailored to controlled missingness. We construct a dataset based on a
Barabasi—Albert graph topology, where node features are sampled from a Gaussian distribution.
Node labels are assigned using a fixed two-layer GCN applied to the full, complete features, en-
suring that a GNN model has the capacity to achieve high classification accuracy in the absence of
missingness. This controlled setting provides a testbed for isolating the effects of missingness under
varying sparsity, while maintaining a well-defined ground truth.

(2) Real-world datasets with semantically meaningful features. We also advocate for the use
of real datasets in which node features correspond to raw, observable properties: 1) AIR (Zheng
et al.||2015), a sensor network dataset from IoT applications, where node features correspond to en-
vironmental measurements and node labels indicate sensor status categories; 2) ELECTRIC (Birch-
field et al., |2016; Baek & Birchfield, [2023)), a dataset of interconnected electrical sensors, with
real-valued measurements as features and operational condition classification as the target task; 3)
TADPOLE (Zhu et al.,|[2019), a medical graph dataset derived from the TADPOLE challenge, where
each node represents a patient, node features include clinical and imaging biomarkers, and the goal
is to predict diagnostic labels.

Table 2: Evaluation of P1 (feature-structure separability) and P2 (feature-structure complementar-
ity) on our custom datasets. Each cell reports the KS statistic and associated p-value for separability
under six perturbation settings. -y; 1 indicates the feature-structure complementarity. Datasets satis-
fying each property (as per|Coupette et al.[(2025)) are marked with v".

Dataset Empty Feat.  Random Feat. Complete Feat. Empty Graph Random Graph Complete Graph | v1,1 | P1 | P2
SYNTHETIC  1.00 (8.80e-62) 1.00 (8.80e-62)  1.00 (1.93e-14)  1.00 (1.03e-17)  1.00 (8.80e-62) 1.00 (8.80e-62) 062 | v | vV
AIR 1.00 (8.80e-62)  1.00 (8.80e-62)  1.00 (8.80e-62)  0.67 (1.53e-30)  1.00 (8.80e-62) 1.00 (8.80e-62) 068 | v | V
ELECTRIC 1.00 (8.80e-62)  1.00 (8.80e-62)  1.00 (8.80e-62)  0.98 (1.90e-57)  1.00 (8.80e-62) 1.00 (8.80e-62) 069 | v | V
TADPOLE 1.00 (8.80e-62)  0.90 (5.31e-44) 0.61 (4.22e-18)  0.77 (1.53e-30)  1.00 (8.80e-62) 1.00 (8.80e-62) 064 | v | V

Both the synthetic and real-world datasets exhibit low feature sparsity (Table [T), a necessary con-
dition for studying missingness. However, sparsity alone is not sufficient: suitable datasets must
also ensure that both features and structure are task-informative and interact non-trivially. We assess
this using the RINGS framework (Coupette et al., [2025), which measures performance separability
via KS statistics under perturbations (e.g., removing all edges or replacing features with noise), and
features-topology complementarity via the normalized Gromov—Wasserstein distance 7;,; between
the structural and feature-induced metric spaces (values above 0.5 are considered satisfacotry). As
shown in Table 2] all proposed datasets satisfy both mode complementarity and performance sepa-
rability. Combined with their low feature sparsity, these properties make the datasets more suitable
than traditional benchmarks for evaluating robustness to incomplete node attributes.

While the real-world datasets we introduce have moderate numbers of nodes and features (Table
[), they satisfy the three key requirements for evaluating robustness to missing node attributes: (i)
dense, semantically meaningful, low-dimensional features; (ii) non-trivial predictive signal under
complete information; and (iii) complementary and separable contributions of features and struc-
ture. To the best of our knowledge, no existing large-scale graph datasets simultaneously meet
all these criteria. This limitation is structural to current benchmarks and has been noted in recent
work (Bechler-Speicher et al., [2025). Importantly, the effect of missingness on model performance
does not depend on graph size: in Appendix [E] we replicate our experiments on a larger variant of
the SYNTHETIC dataset (both in number of nodes and features) and observe trends fully consistent
with those reported in the main analysis.

4 BEYOND UNIFORM MISSINGNESS

Dataset suitability is only one dimension of the evaluation problem. A second, equally important
factor is the choice of the missingness mechanism under which models are tested. In the litera-
ture, nearly all prior works adopt a masking scheme based on U-MCAR mechanism. In other works
(Taguchi et al.| 2021} [Um et al., [2023), a different variant is used where entire feature vectors of
randomly selected nodes are masked. We denote this as Structural MCAR (S-MCAR). These two
settings have become the default evaluation standards in the context of graph learning. We argue
that more challenging and realistic missing data patterns need to be considered for a more infor-
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mative evaluation of different methods’ capabilities. We first introduce a more challenging MCAR
mechanism:

Label-Dependent MCAR (LD-MCAR). Missingness here is applied at the feature (column) level,
assigning higher missingness probability to features X; that are more informative for the label, as
measured by the mutual information I(X;;Y"). Then, each entry X; is masked independently with
probability P(M;; = 1) = p- I(X;;Y), where p € [0,1] is a scaling factor selected to achieve
the overall desired expected missingness rate across the dataset. Importantly, this mechanism is still
MCAR: the probability that a specific entry is missing does not depend on the actual value of the
feature or the label, but only on the mutual information of the feature column and the label.

Outside of graph learning, authors have also emphasized the importance of MAR and MNAR mech-
anisms that reflect more realistically the kinds of missingness encountered in real-world applica-
tions(Ghorbani & Zou, 2018; Mohan & Pearl, 2021} Jaeger, [2022; Van Ness et al.| 2023). In many
practical scenarios, missing features are indeed related to their values or to the prediction target. For
instance, a patient might be less likely to report their weight if it is above a certain threshold. This
corresponds to a Missing Not At Random (MNAR) mechanism (Rubin, [1976)). Testing GNN mod-
els exclusively under MCAR conditions thus fails to capture the challenge of more realistic settings.
We therefore propose two different MNAR scenarios:

Feature-Dependant MNAR (FD-MNAR). In this mechanism the probability of missingness de-

pends on the value of the feature itself. In particular, we assume that extreme feature values, e.g.,

high quantiles, are more likely to be missing, as often observed in real-world settings such as health-
()

care, where abnormal values may be withheld. Formally, for each feature column j, let 4; denote

the T-quantile of the observed values. We define the missingness probability for entry X;; as:

hif X > g7,
P(MZJZI):{NIO J—q]

w° otherwise,

with z" > 4!° and both chosen selected to match a desired overall missingness rate.

Class—-Dependent MNAR (CD-MNAR). In this mechanism, features whose values are informative
for the label, are more likely to be omitted. For example, in medical datasets, patients may be less
likely to disclose whether they smoke, a feature strongly associated with the label indicating a history
of heart attack. To identify such dependencies, we train a decision tree classifier in a one-vs-rest
setting, using the observed features to predict class membership. For each class ¢ € {1,...,C}, we
extract decision paths that lead to leaf nodes predicting c. These paths define a set of feature-value
conditions that contribute to the prediction of class ¢, which we denote as R.. Let Cond,.(7, Xij)
be a predicate that evaluates to true if the value of feature j for node ¢ satisfies at least one condition
in R.. Then, the missingness probability is defined as:

i if cond.(j, Xi;) = true,

I
P(My; =1|Yi=c) = .
(Mi; | °) { plo otherwise,

where z" > 1!°, and both are selected to meet a target overall missingness rate.

In almost all existing experimental studies the missingness mechanism is the same in training and
test data. An exception is (Ding & Simonoff, 2010), where two types of test data are considered:
data that underlies the same missingness as the training data, and complete data. We consider a
possible distribution shift in Px(M|X,Y) to be an important concern for two reasons: first, it
represents a realistic scenario in practical applications. For instance, training data may consist of
historical records collected over time, which may contain missing features due to manual entry or
outdated systems. In contrast, test data are collected in real time with modern infrastructure, and
all feature values are available. This results in a shift from incomplete to complete data between
training and testing. The second reason for considering distribution shifts in Py is to assess a pos-
sible weakness of GNNmim: as a model of the form P+ (Y |X°*, M) it explicitly incorporates a
model of the missingness mechanism, and thereby could be expected to be less robust under miss-
ingness distribution shifts than models that are based on MAR assumptions and (6) (which would
be expected to be robust as long as the mechanism is feature and label MAR in both training and
test data). We therefore define two evaluation regimes (R1 and R2) with and without a shift in the



Under review as a conference paper at ICLR 2026

missingness process. Let (M | X,Y) and e (M | X,Y) denote the missingness distributions
in training and testing, respectively.

R1: iid. missingness (no shift). The same missingness mechanism (U-MCAR, S-MCAR, LD-
MCAR, FD-MNAR, CD-MNAR) and rate are applied to training and test data, i.e., fiy = fie-

R2: missingness distribution shift (train # test). In this setting, we evaluate combinations of
a training missingness mechanism M, € {FD-MNAR, CD-MNAR} with missingness probability
1y = 50%, and a test missingness mechanism M, = U-MCAR with missingness probability p. €
{0%, 25%, 50%}.

5 EXPERIMENTAL RESULTS

We conduct experiments on node classification task using the datasets introduced in Section [3]and
the more realistic missingness protocols described in Sectiond] We compare a range of GNN-based
models specifically designed to handle missing features described in Section 2] namely GNNzero,
GNNmedian, GNNmi, GCNmf, GOODIE, GSPN, PCFI, FP, and FairAC as well as our proposed
method, GNNmim. Following the evaluation protocol adopted by these competitors, we perform all
main experiments in a transductive setting. However, we note that GNNmimcan also be applied in
an inductive scenario; for completeness, in Appendix [H| we report additional experiments conducted
under an inductive setting. For all the experiments, we decide to treat the specific GNN layer type in
GNNmimas a hyperparameter. Full implementation details and hyperparameter settings are provided
in Appendix [Dl The code is provided in the supplementary material. The experiments are designed
to answer the following research questions:

* Q1: Do the datasets of Section 3| provide new and complementary insights regarding the robust-
ness of GNNs under varying rates of missing features?

* Q2: How robust are different models for handling incomplete features to different types of
missingness?

* Q3: Do different models maintain their performance under distribution shifts in missingness
between training and test sets?

Q1: To assess the impact of the dataset on evaluating robustness under different missingness rates,
we compute the F1 score for each model as a function of the missingness rate p. Figure [I] re-
ports these curves under Structural MCAR (S-MCAR) under R1 regimes (see Section [ for both the
standard benchmarks (CORA, CITESEER, PUBMED) and the datasets we propose (ELECTRIC, AIR,
TADPOLE, and SYNTHETIC). Results for other missingness mechanisms lead to equal conclusions
and are included in Appendix [B]

On CORA, CITESEER, PUBMED, all models appear robust, as their F1 score remains high across
a wide range of p, and only drops at very high missingness rates (85-90%). In contrast, on our
proposed datasets, performance drops much earlier, often already at low missingness rates. On
TADPOLE, the degradation is less pronounced at low p overall; however, two models, GOODIE and
GSPN, notably diverge from the rest, showing much weaker performance even with limited miss-
ingness.

These results show that evaluating robustness solely on traditional benchmarks may lead to overly
optimistic conclusions on the robustness of the methods. To properly assess the behavior of GNNs
under different missing rates, it is essential to use more challenging datasets.

Q2: To assess robustness across mechanisms, we compute the area under the F1-missingness curve
(AUC) for each dataset, model, and missingness mechanism under R1 regimes (complete F1 results
by model, dataset, missingness rate, and mechanism are reported in Appendix [F).

Figure[2]reports the AUC scores as heatmaps, where lighter colors indicate better model performance
for each mechanism within each dataset. We observe that many existing methods exhibit strong sen-
sitivity to the missingness type. For example, FairAC performs well under S-MCAR settings on
ELECTRIC (0.870 AUC, ranking first among all the models), but its performance degrades signif-
icantly under FD-MNAR on SYNTHETIC (0.641, ranking second-last). Similarly, GOODIE ranks
highest on SYNTHETIC with uniform missingness (0.771), yet drops to 0.587 under CD-MNAR.
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Figure 1: Mean F1-score across 5 runs as a function of the missingness probability ; on the pro-
posed datasets and established benchmarks. Each panel reports the performance of all models on a
specific dataset under the S-MCAR setting. The complete tables for all missingness mechanisms are
provided in Appendix [B}

These results confirm that performance under U-MCAR is not predictive of robustness under more
realistic FD-MNAR scenarios. This calls into question the validity of evaluations based only on
uniform or structure-based missingness. Our proposed method, GNNmim, exhibits consistently high
AUC across all missingness types and datasets. These results suggest that broad robustness to diverse
and realistic missingness mechanisms is achievable, even with lightweight models that do not rely
on any MAR assumptions.
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Figure 2: Column-normalized heatmaps showing the AUC (area under the F1 vs. missingness rate p
curve) for each model, dataset, and missingness mechanism. Higher values (lighter colors) indicate
better overall robustness across increasing levels of missingness.

Q3: To evaluate model robustness under distribution shifts in missingness, we compute the F1 score
(mean * standard deviation over 5 runs) for each dataset, model, and shift configuration of the R2
regime (Section ). Full results are in Appendix [G} Figure 3] shows a representative subset of the
best-performing models from Q2 (GNNmim, GNNmi, GCNmf, FP, PCFI), trained on FD-MNAR
with g, = 50% and tested on U-MCAR with pe € {0%, 25%,50%}. Similar results hold for other
models and for the case where the training missing mechanisms is CD-MNAR (Appendix [G).

Each panel shows one dataset, with F1 on the x-axis, models on the y-axis, and color indicating f
(yellow 0%, blue 25%, green 50%). Dots show mean F1, horizontal lines the standard deviation,
and the red vertical bar marks the results obtained in the regime R1 with FD-MNAR mechanism on
both training and test and i, = e = 50%. We observe two findings.

1. Distribution shift generalization is challenging: in almost all cases, performance under R2 test
conditions U-MCAR 25% is lower than in the i.i.d. R1 setting, despite the test missingness
being less severe. This is visible when the blue dot (ue = 25%) lies to the left of the red
vertical bar (uy = e = 50%). This shows that distribution shifts in missingness create a
harder generalization challenge that is not explained solely by missingness severity. The effect
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PCFI
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is also dataset-dependent, further reinforcing the need to evaluate robustness under these shifts
and under different datasets.

. GNNmim is competitive with respect to other models even under R2 conditions. Across datasets

and levels of test missingness, GNNmim tends to achieve the highest F1 scores (i.e., yellow,
blue, and green dots are consistently farther to the right). In spite of its potential vulnerability
in the R2 setting, GNNmim is seen to maintain its advantage over the alternative approaches.
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Figure 3: F1 scores (mean + std over 5 runs) under distribution shifts in missingness between training
and test data. All models are trained with FD-MNAR missingness at 50%. Each panel corresponds
to a dataset; each row to a model. Colored dots represent test-time F1 under U-MCAR with varying
missingness rates: yellow = 0%, blue = 25%, green = 50%. Vertical red lines indicate the F1
achieved in the i.i.d. setting (FD-MNAR 50% at both train and test).

6 CONCLUSION AND FUTURE WORK

We revisited the problem of learning GNNs under missing node features, highlighting fundamental
limitations of current evaluation protocols, namely the reliance on benchmarks with sparse features
and oversimplified missingness mechanisms. To address these issues, we introduced new datasets
with dense, informative features and more realistic missingness patterns that go beyond MCAR,
and proposed GNNmim, a simple yet effective method that explicitly models missingness through
the missing-indicator approach. Our experiments show that GNNmim is competitive with respect to
more complex architectures across diverse datasets, missingness types, and train—test shifts. This
work calls for a shift towards more realistic evaluation settings and demonstrates that lightweight
yet principled strategies can achieve strong robustness in challenging missing-feature scenarios.

As a direction for future work, our study underscores the need for larger and more diverse bench-
marks specifically designed for missing features, aligning with recent calls for better datasets in
graph learning (Bechler-Speicher et al.l [2025), and reveals that there remains substantial room for
developing models that are robust to diverse rates and types of missingness. Another promising
direction concerns the development of more realistic MNAR mechanisms, potentially incorporating
graph-specific dependencies where missingness is influenced by structural properties of the graph it-
self. Designing richer, structurally grounded MNAR processes would allow for more faithful stress-
testing of models in settings that better reflect more complex patterns.

10
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USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to improve the readability of the manuscript, rephrase selected passages, and assist
in code debugging. All content was initially written by the authors, with LLMs employed solely to
enhance clarity and presentation.

ETHICS STATEMENT

Our study does not involve human subjects or personally identifiable data. The datasets used are
publicly available benchmarks or synthetically generated. We follow the ICLR Code of Ethics and
note that our work raises no foreseeable ethical concerns beyond those inherent to the general study
of machine learning with missing data.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. Details of the experimental setup are pro-
vided in Section [5] with dataset descriptions in Appendix [3] and complete training configurations
in Appendix [D] All proofs are included in Appendix [A] Anonymous source code to reproduce our
experiments is provided in the supplementary material.
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A PROOFS

Theorem 1. If Py . » is feature-MAR and label-MAR, then simplifies to
/ P»y (Y|X)Pg (Xmixs |X()/7s) ) (6)
X miss

Proof.

P, (Y]X)
Pya(M|X)
PB (Xmisslxobs>
Py A (M]XPs)

(4)
Py A(Y|X, M) = P\(M|X,Y) P, (Y]X)

PB;\/,}\ (Xmiss | )(obs7 M) _ P%)‘ (M | Xubs, Xmis'S) PB (Xmiss ‘ Xobs)

O

Theorem 2. Let X € R"*? and Y € Y™ be random variables, M € {0, 1}"*¢ be a missingness
mask and X°” denotes the observed (incomplete) data. We encode the pair (X%, M) with the

random variable X with
> Xy, Mi; =0,
Xi = {?, M;; = 1.

Let the change in the information be defined as A := I(Y;X) — I(Y;X), where I(-;-) denotes
the mutual information. Then,

1. If the missingness is label-MAR, then A < 0.

2. If X € {0,1}™*¢ and the missingness is U-MCAR with missingness probability z, and
s(X) is the sample sparsity as in Definition[2] then

— nduhg(E[s(X)]) < A <0,
where ho(u) = —ulogu — (1 — u)log(1l — u).

Proof. By construction X = ¢(X, M) for some measurable g. Thus (Y) — (X,M) — X is a
Markov chain, and the data—processing inequality implies

I(Y;X) < I(Y;X,M). (7

Moreover, for any three random elements (A, B, C') we have the chain-rule identities
I(A;B,C)=I1(A;,C)+I(A; B | C). (8)
(1) Label-MAR A < 0. Assume label-MAR: P(M | X,Y) = P(M | X), which is equivalent to
Y L M | X. Applying equation[§|with (4, B,C) = (Y, X, M),
I(Y;X,M) = I(Y;X)+ I(Y; M | X).

Under label-MAR, I(Y; M | X) = 0, hence

I(Y;X,M) = I(Y;X). )

Combining equation [7]and equation 9] yields
I(Y;X) < I(V;X) < A= I(Y;X)-I(Y;X) < 0.

(2) Two-sided bound under uniform MCAR and o-( sparsity. Assume uniform MCAR: M;; ~
Bernoulli(1 — 4) independently of (X,Y) and i.i.d. across (4, ), and that P(s(X) > a) > 3,
where s(X) = 5 >, I{X;; = 0}.

Upper side. MCAR implies label-MAR, so by part (1): A < 0.
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Lower side. We start from the chain—rule identity applied to (4, B, C') = (Y, X, X):
I(Y;X,X) = I(Y;X) + I(Y; X | X) = I(Y; X) + [(Y;X | X).
Rearranging gives

A = I(V;X) - I(Y;X) = I(Y;X | X) - I(Y; X | X). (10)
The second term on the right is nonnegative, hence
A < I(Y;X | X). (11)
Using the bound I(U;V | W) < H(V | W), we get
—-A < H(X|X). (12)

Index the matrix entries by a total order < on pairs (¢, j) and apply the chain rule:
H(X |X) = ZH(Xij | X, {Xh s (k1) < (i,4)}).
(4,4)
Since conditioning reduces entropy,

H(X|X) < ZH(XZ»J» | Xij). (13)
iy J

Fix (4, 7) and denote m;; = Pr[X;; = 1]. Under uniform MCAR,
Pr[X;; =7] = p, Pr[X;; =] = (1 — p) Pr[X;; =], z€{0,1}.
Hence: (i) if X}-j € {0, 1} then Xj; is revealed, so H (Xj; | X;; €{0,1}) = 0; (ii) if X;; =?, then
Pr[X;; =1| X;; =7] = m; and H(X;; | X;; =7) = ho(m;;). Averaging over X,; gives
H(Xij | Xij) = pha(mi). (14)

Combining equation[T3|and equation

- 1 1
HX | X) <Y phy(my) = ndﬂ'@ZhZ(Wz’j) < ndp-hs %ij ;
i i i

since hq is concave. Note that

1 1 1
— > my = — > PriX;;=1=E — > X =1} =1-E[s(X)].
(2] 0,J

i
Using the symmetry ho(u) = ho(1 — u), we conclude
H(X|X) < ndp- hy(E[s(X)]).
Combining with —A < H(X | X) gives
— nduhg(E[s(X)]) < A < 0.
This concludes the proof. O

B ADDITIONAL RESULTS ON BENCHMARKS AND PROPOSED DATASETS

This section presents the full plots of the results under the R1 regime introduced in Section [4]

Figure [ shows the complete set of results across all datasets, whose statistics are summarized in
Table |3] The top three rows correspond to the classic benchmarks (CORA, CITESEER, PUBMED).
Consistently with Proposition [2] models maintain nearly constant F1 scores up to extremely high
missingness levels (~ 90%), confirming that these benchmarks are of limited value for evaluating
robustness to missing features.

The bottom four rows correspond to our proposed datasets (SYNTHETIC, AIR, ELECTRIC, TAD-
POLE). In these cases, performance degrades much earlier and more severely, highlighting the higher
realism and difficulty of our benchmarks.
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Table 3: Dataset statistics and feature sparsity. Classic benchmarks (CORA, CITESEER, PUBMED)
exhibit extremely sparse bag-of-words features, while our proposed datasets (SYNTHETIC, AIR,
ELECTRIC, TADPOLE) provide less sparse representations.

Dataset #Nodes #Features Sparsity | Type of features
CORA 2708 1433 0.9873 BoW (binary)
CITESEER 3327 3703 0.9915 BoW (binary)
PUBMED 19717 500 0.8998 BoW (binary)
SYNTHETIC 1000 5 0.0000 Gaussian
AIR 430 7 0.1615 Raw
ELECTRIC 2000 5 0.2000 Raw
TADPOLE 555 15 0.0000 Raw

C MORE CHALLENGING DATASETS

In Section [3] we introduced the synthetic and real-world datasets employed in our experiments. We
now provide additional details on their construction and characteristics.

SYNTHETIC Synthetic dataset based on a Barabési—Albert graph topology. Each node is associ-
ated with five real-valued features sampled from a Gaussian distribution. Node labels are generated
deterministically by applying a fixed two-layer GCN with hard-coded weights to the complete fea-
ture matrix. This construction ensures that the ground-truth labeling function is fully expressible
by a GNN, allowing models to achieve near-perfect accuracy in the absence of missingness. The
resulting task is a binary node classification problem, with classes separated according to struc-
tured feature combinations defined by the fixed GCN. This controlled setup provides a principled
testbed to isolate and analyze the effects of different missingness mechanisms, while preserving a
well-defined ground truth.

AIR Dataset (Zheng et al) 2015) built from a network of air quality monitoring stations de-
ployed in an urban area. Each node corresponds to a station and is associated with a set of en-
vironmental measurements. The node features include both air pollutant concentrations (CO, NO;,
PM; g, O3, SO;) and meteorological variables (temperature, humidity, wind speed, wind
direction). Edges are constructed based on the geographical distance between stations, with
two nodes connected if their distance is below a given threshold. The target variable is derived from
the PM, s concentration, which is discretized into three balanced categories (low, medium, high)
according to the distribution of observed values. This formulation allows us to frame the problem as
a semi-supervised node classification task with three classes.

ELECTRIC Dataset (Birchfield et al., [2016; Baek & Birchfield, |[2023)) derived from a large-scale
model of the Texas power grid. Nodes correspond to buses in the electrical network, each enriched
with both structural and operational attributes. The node features include identifiers (area, zone),
electrical measurements (voltage magnitude, voltage angle), and a topological prop-
erty (betweenness centrality). Edges are constructed directly from the transmission lines
specified in the raw grid data, connecting pairs of buses. The classification target is the nominal
voltage level of each bus (base kV), which we discretize into three categories: low voltage (<100
kV), medium voltage (100-200 kV), and high voltage (>200 kV). This setup results in a three-class
node classification problem reflecting operational conditions across the grid.

TADPOLE The TADPOLEdataset (Zhu et al.l 2019) originates from the TADPOLE challenge,
which provides longitudinal clinical and imaging data for patients at risk of developing Alzheimer’s
disease. In our graph formulation, each node corresponds to a patient and is associated with a set
of features encompassing clinical scores, cerebrospinal fluid (CSF) biomarkers, and neuroimaging
measures such as MRI- and PET-derived variables. Since the original dataset does not provide graph
connectivity, we construct edges using a k-nearest neighbors approach over the most informative
biomarkers, so that patients with similar profiles are connected. The target variable is the diagnostic
label, categorized into three classes (cognitively normal, mild cognitive impairment, Alzheimer’s
disease). This results in a semi-supervised node classification problem where the goal is to pre-
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Figure 4: F1 score as a function of feature missingness (1) for both classic benchmarks (top three
rows) and our proposed datasets (bottom four rows), under the mechanisms described in Section@
Classic benchmarks show almost no degradation until extremely high p, while the proposed datasets
reveal model weaknesses at more realistic missingness levels. Tables for numeric results are in App.

A

dict the diagnostic status of patients based on multimodal biomedical features and patient similarity
structure.

Table Elreports, for each dataset, the number of nodes, number of features, feature sparsity, and the
type of features. While the number of nodes and features may seem small compared to standard
benchmark graph datasets, we emphasize that using real features (as in AIR, ELECTRIC, and TAD-
POLE) is more realistic in the context of feature missingness. In fact, it is not meaningful to study
missingness on pre-computed embeddings, since embeddings are typically high-dimensional repre-
sentations mapped to wide feature spaces and are not expected to exhibit missingness in practice.
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D EXPERIMENTAL DETAILS

All baseline and competitor methods are implemented using the official code released in their re-
spective repositories, following the recommended training protocols and hyperparameter settings.
For GNNm1i and GNNmim, we adopt a standard GNN architecture where the convolutional layer type
(Table [4), the number of layers (1-3), the learning rate (10~4-10~2), and the weight decay (10~°-
10~2) are tuned via grid search on the validation set. All models are trained on the same data splits
with early stopping to ensure a fair comparison.

Table 4: Best GNN encoder selected within GNNmim for each dataset and missingness mechanism.

Dataset U-MCAR S-MCAR LD-MCAR FD-MNAR CD-MNAR
SYNTHETIC GCN GCN GraphSAGE GCN GCN
AIR GraphSAGE GraphSAGE GraphSAGE GraphSAGE GraphSAGE
ELECTRIC GIN GIN GraphSAGE GIN GIN
TADPOLE GCN GraphSAGE GraphSAGE GraphSAGE GCN

E SCALING THE SYNTHETIC DATASET

In this section, we analyze what happens when either the number of features or the number of nodes
in the synthetic dataset is increased. To this end, we constructed three additional synthetic datasets
(SYNTHETIC2, SYNTHETIC3, SYNTHETIC4) following the same design principles as SYNTHETIC.
Table 5] reports their statistics.

As shown in Figure[3] the behavior of the models in this larger-scale setting is consistent with the one
observed in our original setup. In this case, we experimented with the uniform random missingness
mechanism, and we observe a monotonic decrease in performance for all models as the missingness
rate 4 increases. This confirms that dataset size does not affect the overall trend of performance
degradation under feature missingness.

To further support this point, we also report the runtime and GPU memory consumption of all models
on both the main synthetic dataset (SYNTHETIC) and its larger-scale counterpart (SYNTHETIC3),
which features an increased number of features. As shown in Table [] the runtime and memory
requirements remain substantially stable across datasets, with negligible variations between models.
This behavior confirms that our approach scales efficiently with the dataset size, as it only involves a
standard GNN architecture augmented with a simple MIM mask concatenated to the input features,
introducing minimal computational overhead.

SYNTHETIC2 U-MCAR SYNTHETIC3 U-MCAR SYNTHETIC4 U-MCAR —e— GOODIE

—e— GSPN

—o— FairAC
FP

F1 Score
4
|
.

.

0.6 \'§./.\° . —e— GNNmi
ro—0——0 O\

N\ —e— GClmf

0.4 ~: —s— PCFI

—&— GNNmim

Figure 5: F1 score as a function of feature missingness (1) for additional synthetic datasets generated
with the same procedure as SYNTHETIC, but with either an increased number of nodes or features.
For SYNTHETIC4, the model is not reported since training exceeded the 12-hour time limit, while
GOODIE is excluded due to out-of-memory errors.

F COMPLETE RESULT TABLES — R1 REGIME
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Table 5: Datasets information.

Dataset #Nodes #Features Sparsity | Type of features
SYNTHETIC 1000 5 0.0000 Gaussian
SYNTHETIC2 1000 20 0.0000 Gaussian
SYNTHETIC3 1000 50 0.0000 Gaussian
SYNTHETIC4 50000 5 0.0000 Gaussian

Table 6: Runtime and GPU peak memory consumption for the main synthetic dataset (SYNTHETIC)
and the scaled version (SYNTHETIC3). Each value corresponds to the average across all missingness
levels under the UMCAR mechanism.

Model SYNTHETIC SYNTHETIC4
Runtime [s] | GPU Mem [GB]| Runtime [s]| GPU Mem [GB] |

GNNmi 1.7 0.03 5.3 0.78
GNNzero 1.6 0.03 5.0 0.77
GNNmedian 1.6 0.03 5.0 0.77
GNNmim 1.8 0.03 6.3 0.77
GCNmf 4.5 0.02 28.0 0.53
FP 1.5 0.02 5.3 0.77
PCFI 1.8 0.02 5.2 0.77
FairAC 3.9 0.04 - -
GSPN 55.0 0.03 150.0 0.84
GOODIE 2.3 0.06 - -

Table 7: F1 scores for CORA under mechanism U-MCAR and varying i (GSPNis not reported as it
is not designed for categorical features).

n GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 0000 0.863 (001 0.882 (+000 0.873 (0000 0.875 000 0.882 (000 0.862 +002 0.862 (+0.02)
0.10  0.867 (+0.000 0.866 (+000) 0.877 (0000 0.876 (£0.00) 0.856 (+0.00 0.878 (0000 0.868 (+001) 0.868 (+0.01)
0.20  0.875 (+000) 0.862 (+000) 0.878 (+0.00) 0.873 (0000 0.858 (000 0.877 (000 0.864 (+002  0.864 (+0.02)
0.30  0.873 (+000) 0.865 (+000) 0.881 (+000) 0.885 +0.00) 0.860 (+0.00 0.876 (+000 0.863 (+001) 0.863 (+0.01)
0.40  0.869 (+000) 0.857 (+x000) 0.878 (0000 0.873 (+000) 0.860 (+0.00) 0.884 (000 0.860 (+002  0.860 (+0.02)
0.50 0.861 (000 0.856 (0000 0.882 (+0.000 0.867 (0000 0.831(+000) 0.882 0000 0.856 +001) 0.856 (+0.01)
0.60  0.866 (£0.00) 0.847 (0000 0.882 (+0.000 0.871 (=000 0.862 (000 0.881 (000 0.847 +001) 0.847 (+0.01)
0.70  0.866 (+0.00) 0.858 (0000 0.869 (+0.00) 0.865 (0000 0.847 (000 0.877 (0000 0.849 +001) 0.849 (+0.01)
0.80  0.868 (+0.000 0.843 (+000) 0.864 (+000) 0.854 (£000) 0.805 000 0.863 (=000 0.835 001 0.835 001
0.90 0.864 (+0.00 0.845 (+000) 0.860 (+000) 0.848 (0000 0.476 (+000) 0.856 (=000 0.826 (+000 0.826 (+0.00)
0.99  0.776 (+0.000 0.298 (+000) 0.066 (+£0.00) 0.066 (£0.00) 0.183 (+0.00 0.065 (=000 0.655 4003  0.625 (+0.02)

Table 8: F1 scores for CORA under mechanism S-MCAR and varying ; (GSPNis not reported as it
is not designed for categorical features).

I GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 0000 0.863 (001 0.882 (+0.000 0.872 (000 0.875 000 0.868 (000 0.862 +002 0.862 (+0.02)
0.10  0.868 (+0.00) 0.857 (0000 0.869 (+000) 0.862 (0000 0.869 (+0.00 0.872 (0000 0.862 +002 0.862 (+0.02)
0.20  0.872 (+0.000 0.860 (+000) 0.863 (+000) 0.863 (0000 0.858 (000 0.869 (000 0.856 (+002  0.856 (+0.02)
0.30  0.865 (+0.00 0.850 (+000) 0.854 (+000) 0.855 (0000 0.852(+000 0.858 (+000 0.857 +002 0.857 (+0.02)
0.40 0.870 (+0.000 0.857 (+000) 0.859 (+000) 0.848 (+000) 0.848 (000 0.862 (+000) 0.849 (+002  0.849 (+002)
0.50 0.862 (+0.000 0.854 (000 0.854 (+000) 0.844 (+000) 0.839 (+000) 0.858 (+0.00) 0.841 (+001) 0.841 (+0.01)
0.60  0.855 (0000 0.854 (x000) 0.853 (£000) 0.837 (000 0.837 (000 0.856 (0000 0.826 +001) 0.826 (+0.01)
0.70  0.847 (£ 0000 0.836 (+000) 0.845 (£000) 0.817 (000 0.807 (000 0.854 (0000 0.798 +002  0.798 (+0.02)
0.80 0.845 (+0.000 0.815 0000 0.836 (000 0.772 (£000) 0.764 (+ 000 0.845 000 0.760 (+002  0.760 (+ 0.02)
0.90 0.822 (+000) 0.760 (+0.00) 0.806 (+000) 0.696 (+0.00) 0.610 (+0.00 0.836 (000 0.661 (+002 0.661 (+0.02)
0.99  0.609 (+000) 0.300 (+000) 0.606 (000 0.179 (0000 0.132 (+000 0.792 (=000 0.294 (+005 0.294 (+0.05)
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Table 9: F1 scores for CORA under mechanism CD-MCAR and varying p (GSPNis not reported as
it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (+000 0.863 (+001) 0.882 (0000 0.873 (£000) 0.875+000) 0.868 (+0.00) 0.862 (+0.02 0.862 (+0.02)
0.10  0.852 (+0.000 0.851 (0000 0.862 (+0.00) 0.857 (0000 0.846 (000 0.860 (000 0.858 (+002  0.858 (+0.02)
0.20  0.843 (+000) 0.854 (+000) 0.859 (+0.00) 0.854 (+000) 0.850 (+0.00) 0.855 000 0.854 4002 0.854 (+002)
0.30  0.843 (+000) 0.856 (+000) 0.859 (+0.00) 0.855 (0000 0.846 (+000) 0.852 (=000 0.853 (+002 0.853 (+002)
0.40 0.828 (+000) 0.854 (+000) 0.858 (+0.00) 0.853 (£000) 0.838 (+000) 0.849 (000 0.849 (+002 0.849 (+002)
0.50 0.828 (+0.000 0.854 (0000 0.855 (0000 0.855 000 0.848 (+000) 0.852 (x000) 0.844 (+002 0.844 (+0.02)
0.60 0.812 (+000 0.847 (000 0.853 (+0.000 0.844 (+000) 0.837 (+000) 0.841 (+000) 0.825 +002  0.825 (+0.02)
0.70  0.782 (+0.00) 0.841 (0000 0.842 (+0.00) 0.831 (000 0.822 (000 0.827 (000 0.810 +002  0.810 (+0.02)
0.80 0.584 (+000) 0.844 (+0.00) 0.822 (+000) 0.815 000 0.792 (000 0.818 (000 0.761 (+001) 0.761 (+0.01)
0.90 0.297 (+000) 0.824 (0000 0.777 (£000) 0.793 (0000 0.760 (+ 000 0.778 (000 0.653 (+002  0.654 (+0.02)
0.99 0.088 (+000) 0.066 (+000) 0.322 (+000) 0.395 0000 0.113 (+000 0.231 (000 0.204 (+003  0.204 (+0.03)

Table 10: F1 scores for CORA under mechanism FD-MNAR and varying 1 (GSPNis not reported as
it is not designed for categorical features).

m GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (0000 0.863 (+001) 0.882 (+0.00) 0.873 (0000 0.875 000 0.868 (+000 0.864 (+002 0.864 (+0.02)
0.10 0.872 (+o00n 0.862 (+o001) 0.873 (+001n 0.868 (001 0.851 (+001) 0.873 (000 0.862 (+002 0.862 (+0.02)
0.20  0.879 (+0.00 0.870 (+001) 0.874 (+000) 0.865 (+o001) 0.853 (+001) 0.863 (+001) 0.858 (+001) 0.858 (+0.01)
0.30 0.880 (+0.000 0.864 (+001) 0.869 (+0000 0.867 (x001) 0.847 (+001) 0.864 (x001) 0.864 (+001) 0.864 (+0.01)
0.40 0.869 (+0.01) 0.855 (+001) 0.864 (+001) 0.856 (+001) 0.849 (+000) 0.866 (+001) 0.858 (+0.02) 0.858 (+0.02)
0.50  0.865 (+00n 0.860 (x001) 0.866 (+0.01) 0.859 (o001 0.854 (001 0.863 (001 0.854 002 0.854 (+0.02)
0.60 0.866 (+0.01) 0.853 (001 0.865 (001 0.863 (001 0.829 (002) 0.864 001y 0.851 (x001) 0.851 (001
0.70  0.859 (+o00n 0.847 (+000) 0.862 (+0.01 0.853 (0000 0.695 +o0.14) 0.860 (=000 0.846 (+001) 0.846 (+0.01)
0.80 0.865 (001 0.845 (+o001) 0.861 (o001 0.837 (0000 0.785 (+005 0.857 (+001) 0.817 (+002 0.817 (+0.02)
0.90 0.854 (+o001) 0.833 (+o001) 0.855 +0.00) 0.833 (+000) 0.465 +021) 0.854 (001 0.819 +001) 0.819 (+001)
0.99 0.822 (+001) 0.066 (000 0.810 (002 0.098 (x001) 0.230 (+005 0.837 (x0.02) 0.670 (+0.02 0.670 (+0.02)

Table 11: F1 scores for CORA under mechanism CD-MNAR and varying . (GSPNis not reported as
it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (+000) 0.863 (+o001) 0.882 (+0.00) 0.873 (£000) 0.875 000 0.868 (000 0.863 (+002 0.863 (+002)
0.10 0.875 (+0.000 0.864 (+001) 0.870 =001y 0.862 +001) 0.850 (+000) 0.869 (+001) 0.863 (+002) 0.863 (+0.02)
0.20 0.881 (+0.01) 0.865 (000 0.874 (+001) 0.868 (x001) 0.856 (+001) 0.869 (+001) 0.860 (+0.02  0.860 (+0.02)
0.30  0.882 (+0.000 0.858 (0000 0.873 (+000) 0.871 (=001 0.854 (000 0.866 (+001) 0.860 002  0.860 (+0.02)
0.40 0.884 (001 0.862 (+o00n 0.870 (£000) 0.864 (0000 0.853 (001 0.865 001 0.853 +002 0.853 (+002)
0.50 0.867 (o001 0.852 (xo001) 0.867 (+0.00) 0.861 (0000 0.844 (+002 0.861 (+001) 0.855 002 0.855 (+002)
0.60 0.864 (+0.000 0.847 (+000) 0.860 (+o001) 0.856 (+001) 0.849 (000 0.857 (000 0.842 (+002 0.842 (+0.02)
0.70  0.860 (+o001) 0.845 (+o001) 0.864 (001 0.852 (+o001) 0.753 (+0.12) 0.856 (+001) 0.840 (+002  0.840 (+0.02)
0.80 0.853 (+001) 0.844 (002 0.862 (+0.01) 0.852 (+001) 0.551 (+o0.100 0.861 (x001) 0.822 (+003)  0.822 (+0.03)
0.90 0.848 (001 0.835 o001 0.852 (000 0.831 (xo0on 0.271 023 0.855 001 0.771 003 0.771 (+0.03)
0.99 0.836 (+o00n 0.810 xo00n 0.828 (roon 0.788 (002 0.135 005 0.849 (001 0.727 004  0.725 (+0.03)

Table 12: F1 scores for CITESEER under mechanism U-MCAR and varying p (GSPNis not reported
as it is not designed for categorical features).

u GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (0000 0.700 (0000 0.710 (0020 0.704 (+002) 0.707 (000) 0.706 (+0.02) 0.726 (+0.02)  0.726 (+0.02)
0.10  0.682 (+0.000 0.693 (0000 0.707 (0000 0.705 (000 0.692 (000 0.708 (000 0.732 +002 0.732 (+0.02)
0.20  0.684 (+0.00) 0.693 (+000) 0.706 (£0.00) 0.695 (£0.00) 0.698 (+0.00 0.705 =000 0.728 002  0.728 (+0.02)
0.30  0.691 (+000) 0.691 (+000) 0.705 (£000) 0.696 (£0.00) 0.697 (+0.00 0.706 (=000 0.723 003 0.723 (+0.03)
0.40  0.685 (+000) 0.700 (+000) 0.706 (£0.00) 0.698 (+000) 0.684 (000 0.708 (+000 0.724 (+0.02 0.724 (+0.02)
0.50  0.669 (+000) 0.697 (0000 0.702 (+000) 0.695 (+000) 0.675 000 0.711 (=000 0.722 +0.02 0.722 (+0.02)
0.60 0.680 (+0.00 0.695 (+000 0.697 (+000 0.699 (0000 0.700 (+0.00) 0.707 (+0.00) 0.712 (+0.02) 0.712 (+0.02)
0.70  0.699 (+0.00 0.688 (000 0.694 (+000 0.700 (0000 0.507 (0000 0.701 (x0.00) 0.710 (=0.02)  0.710 (+0.02)
0.80  0.675 (0000 0.687 (0000 0.694 (£000) 0.696 (000 0.368 (000 0.707 (0000 0.701 001) 0.701 (+0.01)
0.90 0.684 (+000) 0.680 (+000) 0.686 (+000) 0.680 (000 0.215 000 0.694 (+000) 0.678 +002 0.678 (+0.02)
0.99 0.588 (+000) 0.584 (+000) 0.613 (£000) 0.539 (+000) 0.102 (000 0.636 (=000 0.519 +003 0.519 (+003)
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Table 13: F1 scores for CITESEER under mechanism S-MCAR and varying p (GSPNis not reported
as it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (+0.000 0.700 (+0.00 0.710 (& 0.02) - 0.707 (0000 0.706 (+0.02) 0.726 (+0.02) 0.726 (+0.02)
0.10  0.670 (0000 0.688 (0000 0.711 (0000 0.703 (0000 0.708 (000 0.708 (000 0.726 003  0.726 (+0.03)
0.20  0.675 (+000) 0.685 (+000) 0.707 (0000 0.697 (0000 0.707 (000 0.706 (+000 0.725 + 003  0.725 (+0.03)
0.30  0.673 (+000) 0.681 (0000 0.705 (£000) 0.692 (+000) 0.693 (000 0.701 (000 0.714 (+0.02 0.714 (+0.02)
0.40 0.677 (+000) 0.667 (+000) 0.698 (+000) 0.682 (£0.00) 0.682 (+0.00 0.698 (+000 0.704 (+0.03 0.704 (+0.03)
0.50 0.658 (+0.000 0.659 (+000) 0.685 (000 0.680 (£000) 0.676 (+0.00) 0.683 (+0.00) 0.689 (+0.03 0.689 (+0.03)
0.60  0.667 (£0.00) 0.659 (£000) 0.676 (£0.00) 0.656 (£0.00) 0.659 (+0.00 0.680 (+0.00) 0.659 +002 0.659 (+0.02)
0.70  0.655 (£ 0000 0.646 (0000 0.656 (£0.00) 0.629 (£0.00) 0.624 (000 0.662 (+0.00) 0.617 002 0.617 (+0.02)
0.80  0.621 (+0000 0.593 (+000) 0.629 (+0.00) 0.575 (0000 0.531 (000 0.628 (000 0.553 003  0.553 (+0.03)
0.90 0.568 (+000) 0.508 (+000) 0.552 (£000) 0.449 (£000) 0.352 (+000 0.584 (=000 0.455 003 0.455 (+003)
0.99  0.425 +000) 0.258 (+000) 0.381 (+000) 0.188 (+000) 0.159 (+000 0.495 (+000) 0.186 +001) 0.186 (+0.01)

Table 14: F1 scores for CITESEER under mechanism CD-MCAR and varying p (GSPNis not reported
as it is not designed for categorical features).

m GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (+000) 0.700 (+000) 0.710 (0020 0.704 (002 0.707 (000 0.706 (+ 002 0.726 (+0.02  0.726 (+0.02)
0.10  0.671 (+000) 0.687 (+x000) 0.698 (+000) 0.694 (+000) 0.693 (+000 0.702 (=000 0.723 +0.02 0.723 (+0.02)
0.20  0.670 (+000) 0.686 (+000) 0.699 (£000) 0.691 (£000) 0.696 (+0.00 0.698 (+000 0.713 +0.02 0.713 (+0.02)
0.30 0.666 (+0.00 0.682 (+000 0.697 (0000 0.691 (0000 0.694 (+000) 0.699 (+000) 0.711 (+0.03) 0.711 (+0.03)
0.40 0.652 (000 0.683 (000 0.698 (+000) 0.691 (0000 0.688 (+0.00) 0.701 (+0.00) 0.715 (+0.02) 0.715 (+0.02)
0.50  0.650 (£0.00) 0.690 (0000 0.699 (0000 0.693 (000 0.688 (000 0.702 (0000 0.694 +002 0.694 (+0.02)
0.60  0.622 (+0.00) 0.686 (+000) 0.685 (£000) 0.685 (000 0.681 (000 0.704 (0000 0.684 (+002 0.684 (+0.02)
0.70  0.613 (+000) 0.687 (+000) 0.686 (+000) 0.674 (£000) 0.677 (000 0.700 (+0.00) 0.685 (+003  0.685 (+0.03)
0.80 0.582 (+000) 0.671 (+000) 0.677 (+000) 0.664 (+000) 0.534 (+000 0.686 (+0.00) 0.674 (+002 0.674 (+0.02)
0.90 0.456 (+000) 0.671 (+0.00) 0.650 (+000) 0.650 (+0.00) 0.607 (+0.00) 0.648 (000 0.593 +002 0.593 (+0.02)
0.99 0.171 (000 0.257 (0000 0.298 (+000) 0.346 (£000) 0.195 (+000) 0.348 (+0.00) 0.184 (002  0.194 (+0.03)

Table 15: F1 scores for CITESEER under mechanism FD-MNAR and varying p (GSPNis not reported
as it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (+000) 0.700 (0000 0.710 (£0.02) 0.704 (002 0.707 (000 0.706 (002 0.728 (+0.02 0.728 (+0.02)
0.10  0.689 (+0.03) 0.691 (003 0.706 (+002 0.699 (£002) 0.699 (+0.02) 0.708 (+0.03) 0.729 (+0.02) 0.729 (+0.02)
0.20 0.686 (+0.02) 0.698 (003 0.703 (+002 0.697 (£002) 0.696 (+0.02) 0.704 (+002) 0.720 (+0.02)  0.720 (+0.02)
0.30  0.701 (004 0.690 (x0.03) 0.701 (003 0.693 (002 0.704 (002 0.700 =003 0.721 003 0.721 (+0.03)
0.40  0.696 (+0.04) 0.699 (x004) 0.695 (002 0.695 002 0.692 (+003 0.701 003 0.717 *002 0.717 (+0.02)
0.50 0.707 (£0.03) 0.688 (x004) 0.698 (£003) 0.693 (£003) 0.690 (+0.02 0.702 (=003 0.727 + 002 0.727 (+0.02)
0.60 0.708 (+0.02) 0.694 (+003) 0.691 (+003) 0.693 (£003) 0.696 (+0.02 0.702 (+003) 0.712 003 0.712 (+0.03)
0.70  0.678 (+0.04) 0.688 (+003) 0.688 (+0.03) 0.686 (£0.02 0.649 (+003) 0.690 (+004) 0.705 +0.02 0.705 (+0.02)
0.80 0.695 (+0.03 0.689 (004 0.689 (+002 0.685 002 0.437 (+027) 0.694 (+003) 0.696 (+0.03) 0.696 (+0.03)
0.90  0.653 (£0.03) 0.681 (x004) 0.682 002 0.687 (003 0.257 +017) 0.689 (002 0.676 +002 0.676 (+0.02)
0.99  0.601 (o001 0.566 (+00n 0.611 toon 0.535 002 0.118 (004 0.633 (001 0.538 003  0.538 (+0.03)

Table 16: F1 scores for CITESEER under mechanism CD-MNAR and varying p (GSPNis not reported
as it is not designed for categorical features).

u GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (0000 0.700 (005 0.710 (0020 0.704 (+002) 0.707 (000) 0.706 (+0.02) 0.726 (+0.02)  0.726 (+0.02)
0.10  0.692 (+0.04) 0.696 (x004) 0.708 (002 0.705 (002 0.702 (£ 003 0.705 =002 0.729 002 0.729 (+0.02)
0.20  0.690 (+0.04) 0.689 (+004) 0.703 (£003) 0.702 (£002 0.705 £ 002 0.704 =002 0.727 002  0.727 (+0.02)
0.30  0.700 (+0.02) 0.689 (+004) 0.708 (£003) 0.706 (002 0.708 (+0.02 0.705 =002 0.728 (+ 002 0.728 (+0.02)
0.40 0.687 (+004) 0.695 (+004) 0.707 (£003) 0.704 (002 0.703 (+003) 0.704 (+003) 0.725 + 002 0.725 (+0.02)
0.50  0.675 (+003) 0.692 (+003) 0.699 (+003) 0.700 (£003) 0.697 (+002 0.706 (+003 0.718 (+0.02 0.718 (+0.02)
0.60 0.689 (+0.03 0.689 (+003 0.702 (+003) 0.699 (003 0.693 (+003) 0.706 (+003) 0.714 (+0.02) 0.714 (+0.02)
0.70  0.681 (+0.03) 0.685 (+003 0.692 (+003) 0.691 (£003) 0.522 (+020) 0.696 (+0.03) 0.702 (=003 0.702 (+0.03)
0.80 0.676 (£0.05 0.685 (£003) 0.690 (£003) 0.689 (002 0.359 (015 0.696 (=004 0.689 (003  0.689 (+0.03)
0.90  0.665 (+0.02) 0.681 (+0.03) 0.677 (£003) 0.666 (003 0.113 (+006 0.681 (+003) 0.638 (+002  0.638 (+0.02)
0.99  0.645 (+003) 0.631 (+x002) 0.652 (002 0.621 (002 0.104 (+006 0.660 (+0.02 0.593 +003 0.592 (+0.03)
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Table 17: F1 scores for PUBMED under mechanism U-MCAR and varying o (GSPNis not reported
as it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (+001) 0.831 (000 0.883 (+0.000 0.881 (0000 0.877 (+0.00) 0.882 (+0.00) 0.875 000 0.875 (+0.00)
0.10  0.787 (+0.00) 0.830 (+000) 0.877 (0000 0.879 (0.00) 0.830 (000 0.874 (000 0.871 000 0.871 (& 0.00)
0.20  0.786 (+0.00) 0.831 (+000) 0.868 (+000) 0.873 (+0.00) 0.832 (000 0.868 (+000 0.866 (+000 0.866 (+ 0.00)
0.30  0.785 (+000) 0.830 (+000) 0.870 (+000) 0.872 (+0.00) 0.827 (000 0.864 (+000 0.862 (+000  0.860 (+ 0.00)
0.40 0.782 (+000) 0.828 (+000) 0.861 (+000) 0.869 (+0.00) 0.828 (000 0.858 (000 0.857 (+001) 0.857 (+0.00)
0.50 0.784 (000 0.827 (0000 0.856 (+000) 0.862 (=0.00) 0.778 (+0.00) 0.852 (0000 0.851 (+001) 0.852 (+0.00)
0.60 0.777 (000 0.828 (000 0.851 (+000) 0.855 (+0.000 0.805+000) 0.849 (+000) 0.846 (000 0.845 (+0.00)
0.70  0.772 (£ 0.00) 0.824 (0000 0.847 (+0.00) 0.845 (0000 0.726 (000 0.844 (000 0.834 +001) 0.835 (+0.01)
0.80  0.756 (+0.00) 0.819 (+000) 0.836 (+000) 0.832 (000 0.443 (000 0.837 (=000 0.820 000 0.816 (+0.00)
0.90 0.700 (0000 0.806 (+000) 0.822 (+000) 0.803 (000 0.315 000 0.832 000 0.791 +001) 0.786 (+0.01)
0.99 0452 +000) 0.262 (+000) 0.793 (+000) 0.327 (0000 0.315 000 0.814 (+000) 0.674 (+002 0.693 (+0.01)

Table 18: F1 scores for PUBMED under mechanism S-MCAR and varying . (GSPNis not reported
as it is not designed for categorical features).

m GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (+o00n 0.831 (+000) 0.883 (+ 0.00) - 0.877 (+0.00) 0.882 (+000 0.875 + 000 0.875 (+0.00)
0.10 0.786 (+0.00) 0.831 (+000) 0.875 (0000 0.875 0000 0.870 (+000 0.871 (=000 0.868 (+001) 0.866 (+0.01)
0.20  0.783 (+000) 0.827 (+000) 0.869 (+000) 0.870 (+0.00) 0.861 (000 0.867 (000 0.860 (+001) 0.859 (+0.01)
0.30 0.785 (+000 0.832 (+000 0.863 (+000) 0.865 0.00 0.861 (+000) 0.863 (0000 0.853 +001) 0.852 (+0.00)
0.40 0.785 (000 0.828 (000 0.856 (+000) 0.857 (+0.00) 0.848 (+0.00) 0.856 (+0.00) 0.846 (+001) 0.847 (+0.01)
0.50 0.775 (0000 0.827 (+000) 0.853 (£000) 0.854 (+0.000 0.808 (000 0.848 (000 0.838 000 0.837 (+0.00)
0.60  0.774 (£ 0000 0.822 (+000) 0.843 (+000) 0.845 0000 0.798 (000 0.843 (=000 0.829 +000) 0.827 (+0.00)
0.70  0.760 (+0.00) 0.813 (+000) 0.832(+000) 0.827 (0000 0.762 (+0.00 0.836 (=000 0.815 000 0.814 (+0.00)
0.80 0.744 (+000) 0.806 (+000) 0.828 (+000) 0.808 (0000 0.683 (+0.00 0.832 (000 0.785 +001) 0.788 (+0.01)
0.90 0.706 (+0.00) 0.786 (+000) 0.815 (0000 0.743 (+000) 0.421 (+000 0.825 0000 0.727 (+001) 0.729 (+0.00)
0.99 0441 +000 0.259 (000 0.765 (0000 0.333 (£000) 0.310 (+0.00) 0.794 (+0.00) 0.446 (003  0.458 (+0.02

Table 19: F1 scores for PUBMED under mechanism CD-MCAR and varying ;. (GSPNis not reported
as it is not designed for categorical features).

o GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (+o001) 0.831 (+000) 0.883 (+0.00) 0.881 (+000) 0.877 (000 0.882 (=000 0.875 000 0.876 (+0.00)
0.10 0.738 (+000) 0.824 (+000) 0.855 (+000) 0.857 (+0.00) 0.830 (+000) 0.852 (=000 0.848 (+000) 0.846 (+0.00)
0.20 0.700 (+0.00 0.820 (0000 0.845 (+000) 0.851 (+0.000 0.828 (+0.00) 0.844 (+0.00) 0.837 (=000  0.836 (+0.00)
0.30  0.607 (0000 0.823 (0000 0.843 (0000 0.844 (+0.00) 0.823 (000 0.836 (=000 0.822 +000) 0.822 (+0.00)
0.40  0.534 (+0000 0.821 (0000 0.834 (+000) 0.842 (0000 0.818 (000 0.830 (000 0.821 +001) 0.821 (+0.01)
0.50  0.509 (+000) 0.814 (+000) 0.818 (+000) 0.823 (+0.00) 0.797 (000 0.820 (000 0.808 (+001) 0.806 (+0.01)
0.60 0.422 (+000) 0.812 (+000) 0.808 (+000) 0.816 (+0.00) 0.787 (+000 0.812 (=000 0.790 (+000  0.793 (+0.01)
0.70  0.415 (+000) 0.802 (+000) 0.797 (0000 0.811 (+0.00) 0.779 (+000) 0.801 (=000 0.778 (+001) 0.774 (+0.01)
0.80 0.396 (000 0.779 (0000 0.749 (0000 0.783 (0000 0.713 (+000) 0.754 (+000) 0.738 (=0.01) 0.749 (+0.02)
0.90  0.306 (0000 0.574 £000) 0.693 (£000 0.700 (= 0.00) 0.391 (000 0.683 (=000 0.664 +001) 0.667 (+0.02)
0.99  0.198 (0000 0.266 (+000) 0.303 (0000 0.330 (000 0.306 (+000 0.305 000 0.346 (002 0.345 (+0.02)

Table 20: F1 scores for PUBMED under mechanism FD-MNAR and varying p (GSPNis not reported
as it is not designed for categorical features).

u GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (+001) 0.831 (0000 0.883 (+0.00) 0.881 (0000 0.877 (000) 0.882 (0000 0.875 (000  0.874 (& 0.00)
0.10 0.785 (+0.02) 0.832 (0000 0.876 (001 0.880 (001 0.834 (000 0.874 =001 0.867 +001) 0.868 (+0.00)
0.20  0.785 (+0.02) 0.834 (+000) 0.869 (+000) 0.875 0000 0.832 (000 0.869 (+001) 0.864 +001) 0.864 (+0.00)
0.30  0.785 (+0.02 0.830 (+000) 0.865 (+000) 0.870 (0.00) 0.829 (+0.00 0.860 (000 0.858 (+000) 0.858 (+0.01)
0.40 0.780 (+o001) 0.827 (+000) 0.860 (+0.00) 0.866 (+0.00) 0.733 (+0.11) 0.856 (+000) 0.853 (+001) 0.854 (+0.00)
0.50 0.775 (+002) 0.822 (+000) 0.853 (+000) 0.859 (+0.00) 0.720 (+0.12) 0.850 (+000) 0.844 (+001) 0.846 (+0.00)
0.60 0.763 (+0.02 0.824 (+001) 0.847 (+001) 0.850 (0000 0.746 (+0.04) 0.842 (+0.00) 0.836 (+001) 0.836 (+0.00)
0.70  0.745 (003 0.813 (=000 0.836 (+000) 0.834 (0000 0.579 (+025 0.837 (x0.000 0.827 (=000 0.826 (+0.00)
0.80 0.745 (£0.03) 0.819 (x0000 0.759 (£0.04) 0.829 (£ 0.00) 0.555 014 0.764 =000 0.805 +001) 0.805 (+0.01)
0.90 0.336 (o001 0.806 (+000) 0.693 (+o00n 0.812 (0000 0.529 (+0.13) 0.653 (=000 0.780 (+001)  0.777 (+0.01)
0.99 0278 (+o00n 0282 (+o001) 0.303 (+005 0.347 (0000 0.399 (+033) 0.335 001 0.659 +002  0.669 (+ 0.02)

22



Under review as a conference paper at ICLR 2026

Table 21: F1 scores for PUBMED under mechanism CD-MNAR and varying ;. (GSPNis not reported
as it is not designed for categorical features).

n GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero  GNNmedian

0.00 0.784 (+o001) 0.831 (+000) 0.883 (+0.00) 0.881 (+000) 0.877 (000 0.882 (000 0.874 (+000 0.875 (+0.00)
0.10 0.789 (+0.02) 0.829 (+000) 0.878 (0000 0.880 (+0.00) 0.835 (+000 0.877 (000 0.866 (+001) 0.869 (+0.00)
0.20 0.783 (+0.01) 0.830 (000 0.870 (+000) 0.876 (=0.00) 0.834 (+000) 0.867 (x001) 0.862 (+000 0.861 (+0.00)
0.30  0.783 (+0.02) 0.828 (0000 0.863 (0000 0.871 (=0.00) 0.823 (000 0.866 (=000 0.860 (+0.00  0.859 (= 0.00)
0.40  0.777 002 0.826 (+000) 0.858 (0000 0.863 (=0.00) 0.830 (+0.00 0.857 (001 0.854 +000) 0.852 (+0.00)
0.50  0.779 (+o00n  0.825 (+000) 0.853 (+000) 0.858 (+0.00) 0.826 (+0.00) 0.853 (+000) 0.847 (+000)  0.849 (+ 0.00)
0.60 0.769 (+0.02) 0.824 (+000) 0.847 (001 0.848 (+0.01) 0.784 (+004) 0.848 (000 0.840 (+001)  0.840 (+ 0.00)
0.70  0.752 (+003) 0.816 (+000) 0.837 (+000) 0.835 (£000) 0.765 (+0.02 0.837 (0000 0.827 (+000 0.825 (+0.00)
0.80 0.742 (+0.03 0.813 (0000 0.828 (0000 0.817 (0000 0.323 (+0.100 0.836 (+0.000 0.810 (+001) 0.809 (+0.00)
0.90 0.605 (+0.13) 0.628 (+024) 0.812 (+000) 0.770 (£000) 0.280 (+0.05 0.823 (+0.000 0.760 (+0.01) 0.763 (+0.01)
0.99 0557 014 0.260 (+000) 0.800 (+0.00) 0.689 (o001 0.418 +0.04) 0.818 0000 0.717 001 0.728 (+0.02)

Table 22: F1 scores for SYNTHETIC under mechanism U-MCAR and varying u

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.812=000) 0.865 x000 0.815=000) 0.980 000 0.982 =000 0.978 x000) 0.977 =000 0.978 oo 0.978 oon  0.983 0.1
0.10 0.810 (000 0.822 (+000) 0.825 (=000 0.910 (+0.00) 0.902 (+000) 0.875 £000) 0.898 (0000 0.902 (+002 0.903 (+002) 0.901 (+0.00)
0.20 0.792 (+ 0000 0.759 (000) 0.808 (+000) 0.863 (+000) 0.870 (0000 0.790 (0000 0.855 (+000) 0.853 (+002 0.853 (+002) 0.861 (+0.00)
0.30  0.758 = 000) 0.768 x0.00) 0.762 =000) 0.795 000 0.808 000 0.770 x0.00) 0.805 =000 0.800 x003 0.801 (003 0.815 = 0.00)
0.40  0.758 (£ 000 0.749 (0000 0.759 £000) 0.764 (£ 000 0.771 (0000 0.745 (£000) 0.763 (000 0.766 (+002)  0.766 (£002)  0.791 (= 0.00)
0.50 0.747 (+000) 0.721 (+000) 0.642 (+000) 0.745 (+000) 0.745 (+000) 0.710 (0000 0.748 (+-0.00) 0.732 (+004) 0.730 (+0.04)  0.739 (+ 0.00)
0.60  0.773 =000) 0.708 x000) 0.680 (=000) 0.720 x000) 0.737 000 0.692 x000) 0.717 000 0.714 o004 0.710 004y  0.714 (= 0.00)
0.70  0.742 (= 000)  0.629 (x000) 0.611 =000) 0.683 (£000) 0.689 =000) 0.673 (x000) 0.678 0000 0.687 (£0.03) 0.693 (£003)  0.693 (+0.00)
0.80 0.771 (0000 0.579 (+000) 0.621 (0000 0.632 (+000) 0.638 (0000 0.601 (£000) 0.638 (0000 0.610 (0050 0.621 (005  0.649 (+0.00)
0.90 0.776 (=000) 0.544 x000) 0.567 (=000) 0.605 000 0.602 =000 0.592 +000) 0.588 000 0.589 o004 0.599 004y 0.590 (= 0.00)
0.99  0.762 (=000 0.499 x000) 0.391 =000) 0.542 000 0.367 0000 0.471 000 0.547 0000 0.548 xo04) 0411 (007  0.535 (= 0.00)

Table 23: F1 scores for SYNTHETIC under mechanism S-MCAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (+000 0.865 (0000 0.815 000 0.980 (+000) 0.982 000 0.978 (+000) 0.977 (0000 0.978 (xo001) 0.978 (+001) 0.983 (+ 0.01)
0.10  0.756 (+0.00) 0.748 (+000) 0.723 (+000) 0.903 (+000) 0.912 (+000) 0.903 (0000 0.900 (+000) 0.909 (+001) 0911 (+001) 0.898 (+0.00)
0.20  0.769 000y 0.733 000) 0.727 0.00) 0.883 (0000 0.883 (000 0.872(x£000) 0.870 x000 0.844 o002 0.843 (£002) 0.875 000
0.30  0.742 (0000 0.737 (x000) 0.700 (0000 0.830 (+000) 0.842 (+0.00 0.841 (+000) 0.831 (0000 0.817 (+002 0.813 (+001) 0.833 (+0.00)
040 0.716 (+000) 0.712 (+000) 0.683 (+000) 0.810 (+0.00) 0.798 (000 0.752 (0000 0.793 (+000) 0.775 (+002 0.777 (+0.02)  0.799 (+ 0.00)
0.50 0.700 =000y 0.711 000 0.704 =000) 0.785 x000) 0.788 (=000 0.705 x000) 0.780 =000 0.746 002 0.748 002  0.779 (= 0.00)
0.60  0.658 (000) 0.674 (£000 0.695 =000) 0.747 £000) 0.761 (0000 0.726 (+000) 0.738 (0000 0.718 (£0.03)  0.705 004y  0.756 (+0.00)
0.70  0.618 (0000 0.675 (+000) 0.652 (+000) 0.687 (+000) 0.703 (+000) 0.665 (+000) 0.700 (+000) 0.663 (+003) 0.667 (+002)  0.727 (+ 0.00)
0.80 0.584 (=000 0.649 x000) 0.616 (=000) 0.653 x000) 0.667 (=000) 0.645 000 0.638 000 0.647 005 0.656 (£004)  0.676 (= 0.00)
0.90 0.527 =000) 0.588 (x000) 0.589 =000) 0.597 000 0.597 0000 0.578 x000) 0.591 (0000 0.601 £0.02) 0.593 (002 0.582 (= 0.00)
0.99 0.337 (0000 0.455 (0000 0.338 (0000 0.515 0000 0.425 000 0.403 (£000) 0.513 (000 0.488 (+002) 0.444 (+005) 0.477 (+0.00)

Table 24: F1 scores for SYNTHETIC under mechanism CD-MCAR and varying p

1% GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (000 0.865 (+000) 0.815 000 0.980 (+000) 0.982 (+000) 0.978 (0000 0.977 (+000) 0.978 (x001) 0.978 (+001) 0.886 (+ 0.00)
0.10  0.778 000)  0.785 (000) 0.792 £0.00) 0.860 (x000) 0.857 (000 0.845 x£000) 0.860 (£000) 0.978 0.0 0978 zoon  0.829 000
0.20  0.760 (0000 0.731 (+000) 0.705 (0000 0.788 (+0.00) 0.770 (0000 0.741 (£000) 0.772 (+000) 0.699 (£002)  0.699 (+002)  0.780 (& 0.00)
0.30  0.730 (0000 0.666 (+000) 0.718 (0000 0.736 (£000) 0.733 (0000 0.730 (£0.00) 0.734 (+000) 0.605 (+003) 0.605 (+003)  0.738 (+ 0.00)
0.40  0.736 (=000) 0.625 x000) 0.607 =000) 0.661 000 0.659 =000) 0.673 x000) 0.649 000 0.605 +003) 0.605 003 0.703 (= 0.00)
0.50  0.761 (=000) 0.547 000 0.542 =000) 0.619 000 0.618 =000) 0.628 £0.00) 0.613 (000) 0.605 003 0.605 003  0.682 (+0.00)
0.60  0.768 (+0.00) 0.594 (+000) 0.543 (0000 0.621 (+000) 0.613 (0000 0.619 (+000) 0.605 (+000) 0.528 (+003) 0.528 (+003) 0.667 (+ 0.00)
0.70  0.759 (+0.00 0.603 (+000) 0.586 (£000) 0.617 (+000) 0.607 (000 0.591 (0000 0.594 (+000) 0.536 (£003) 0.536 (+003)  0.675 (+0.00)
0.80  0.758 (=000 0.613 x000) 0.486 ==000) 0.617 000 0.622=000) 0.631 £000) 0.620 (0000 0.536 (003 0.536 (£003)  0.666 (+0.00)
0.90 0.775 (0000 0.544 (+000) 0.529 (0000 0.623 (£000) 0.633 (0000 0.623 (£000) 0.606 (+000) 0.535 (£002) 0.536 (+003) 0.678 (+0.00)
0.99  0.764 (+0.000 0.569 (+000) 0.557 (£000) 0.609 (+000) 0.611 (000 0.643 (0000 0.612 (+000) 0.646 (+003) 0.638 (+003)  0.667 (+ 0.00)

Table 25: F1 scores for SYNTHETIC under mechanism FD-MNAR and varying p

o GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812=000) 0.865 =000 0.815=000) 0.980 000 0.982 =000 0.978 000 0.977 000 0.976 o001 0.976 +oon  0.983 0.1
0.10  0.751 (£ 005 0.750 (+ 003 0.761 002 0.893 (001 0.900 (002 0.878 002 0.895 o001 0.891 (x002) 0.894 (£002)  0.895 (+0.01)
0.20  0.750 (003 0.721 (x001) 0.699 (004 0.836 (+002) 0.845 002 0.785 (to004) 0.847 (002 0.849 (+003) 0.854 (+0.02) 0.843 (+0.04)
030  0.691 =004y 0.678 x002) 0.667 =003 0.810 xo0on 0.812 =001 0.771 003 0.789 o001 0.819 002 0.821 o0on 0812 o001
0.40  0.693 (=003 0.678 x003) 0.682 =003 0.791 002 0.798 =000 0.763 (£002) 0.791 000y 0.785 002 0.793 002  0.806 (= 0.01)
0.50 0.673 (004 0.668 (+o001) 0.676 (003 0.753 (xo001) 0.758 (002 0.713 (£003) 0.752 *+001) 0.741 (002 0.737 (+002)  0.763 (+ 0.01)
0.60 0.620 (+0.02 0.608 (+002 0.610 (£002 0.708 (001) 0.715 000 0.685 (+002) 0.702 (+002) 0.714 o001 0.719 (+001)  0.727 (+ 0.01)
0.70  0.494 =007 0.580 (x006) 0.588 (=002 0.651 003 0.670 004y 0.631 £003) 0.653 004y 0.676 x002) 0.673 (003 0.688 (= 0.02)
0.80 0425007 0.607 (+004) 0.577 (=001) 0.611 (001 0.627 (+002) 0.589 (+003) 0.596 (+001) 0.619 (o001 0.624 (+001)  0.639 (+0.02)
090 0.362 (+002 0.625 (=002 0.512 (005 0.575 002 0.595 002 0.573 £002) 0.582 (+o001) 0.594 004 0.601 (+002) 0.612 (+0.00)
0.99 0429 =013 0570 002 0423 o1 0.547 o002 0.536 =001 0.490 005 0.551 001 0.569 003 0.545 004 0.576 = 0.02)
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Table 26: F1 scores for SYNTHETIC under mechanism CD-MNAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (+000) 0.865 (+000) 0.815 000 0.980 (+000) 0.982 (000 0.978 (t000) 0.977 (0000 0.978 (to001) 0.978 (+001) 0.983 (+ 0.01)
0.10  0.756 =004y 0.757 002 0.752 =002 0913 002 0918 =002 0.882 002 0912 =001 0912002 0912002 0913 002
0.20  0.730 =005) 0.718 (x0.02) 0.674 =005) 0.856 (£003) 0.868 (=003 0.800 o004 0.861 004y 0.864 +002) 0.865 =002 0.865 (+0.03)
0.30  0.663 (005 0.716 (+002) 0.689 (003 0.803 (+002) 0.820 (+002 0.768 (+003) 0.810 (003 0.807 (002 0.804 (+002) 0.830 (+0.03
040 0.530 (+0.16) 0.678 (+001) 0.718 (£003) 0.744 (+001) 0.749 (0000 0.753 (+001) 0.739 (+003) 0.756 (+001) 0.742 (+001)  0.776 (+ 0.01)
0.50 0.487 =012 0.662 003 0.655=004) 0.697 003 0.695 =003 0.683 oo 0.699 =004y 0.689 003 0.657 002 0.725 =001
0.60  0.575 (£ 006 0.696 (003 0.577 (002 0.683 (£003) 0.658 (003 0.666 (£002) 0.645 (003 0.694 (+004) 0.638 (003  0.731 (+0.03)
0.70  0.553 (+0.03) 0.616 (003 0.583 (+002 0.613 (+002 0.600 (+004) 0.617 004y 0.592 (+005) 0.642 (+003) 0.603 (+004) 0.668 (+ 0.01)
0.80 0.486 (=006 0.638 (x003) 0.592 (=003 0.588 002 0.596 =003 0.570 x002) 0.563 003 0.618x002) 0.580 (004 0.655 0.2
0.90 0432 008) 0.618 005 0479 0100 0.586 004 0.607 003 0.556 003 0.553 001 0.598 003 0.557 £004)  0.635 (0.04)
0.99 0468 (003 0.545 (+006) 0.396 (+008) 0.594 (+001) 0.537 (+001) 0.475 t006) 0.549 (+003) 0.550 (+003) 0.485 (+006) 0.568 (+0.01)

Table 27: F1 scores for AIR under mechanism U-MCAR and varying p

o GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 =000 0.798 002 0.733 =000 0.918 000y 0.922 =001 0.922 000 0.891 (000 0916002 0.916 002 0.930 = 0.00)
0.10  0.665 =000) 0.710 000 0.733 =000) 0.895 x000) 0.891 =000) 0.768 (000 0.883 (=000 0.904 (£0.03 0.902 (003 0.899 +0.00)
0.20  0.669 (+000) 0.582 (+000) 0.709 (0000 0.848 (+000) 0.833 (0000 0.747 (£000) 0.852 (+000) 0.874 (+0.03) 0.865 (+003)  0.859 (+0.00)
0.30  0.669 (=000 0.502 (+000) 0.715 (£000) 0.836 (+000) 0.837 (000 0.712 (+000) 0.836 (+000) 0.837 (+004) 0.857 (+0.03)  0.852 (+0.00)
0.40  0.714 =000) 0.532 (000 0.700 =000) 0.805 000 0.829 000 0.712 000 0.797 (000 0.813 002 0.839 002 0.833 = 0.00
0.50  0.666 (+000) 0.553 (+000) 0.669 (000 0.801 (+000) 0.805 000 0.711 (+000) 0.802 (+000) 0.832(+0.04) 0.815(+003) 0.767 (+0.00)
0.60 0.663 (+000) 0.452 (+000) 0.691 (£000) 0.775 +000) 0.762 (000 0.701 (0000 0.767 (+000) 0.795 +004)  0.807 (+0.06) 0.744 (+ 0.00)
0.70  0.714 =000) 0.495 000 0.686 (=000) 0.724 x000) 0.736 =000) 0.656 £0.00) 0.754 (=000 0.753 007 0.746 (005  0.736 (= 0.00)
0.80  0.666 (+000) 0.559 (000 0.667 =000) 0.712 x000) 0.677 (0000 0.647 (£000) 0.637 (0000 0.709 003  0.715 003  0.713 0.0
0.90 0.700 (0000 0.541 (+000) 0.670 (0000 0.585 (£000) 0.593 (+000) 0.669 (+£000) 0.619 (000 0.598 (+006) 0.628 (+004) 0.705 (+ 0.00)
0.99  0.693 =000) 0.409 000 0.658 =000) 0.436 000 0.384 (=000 0.651 x000) 0.431 =000 0.440 x005) 0.397 004y 0.664 (= 0.00)

Table 28: F1 scores for AIR under mechanism S-MCAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.724 =000) 0.798 (x0.02) 0.733 =000 0.918 x000) 0.922 001 0.922 000 0.891 (0000 0.916 002 0.916 (002  0.930 (= 0.00)
0.10 0.568 (0000 0.644 (+000) 0.733 (0000 0.891 (+000) 0.899 (+000) 0.895 (+000) 0.872 (000 0.879 (t002 0.900 (+0.02 0.891 (+0.00)
0.20 0.573 =000 0.597 =000 0.733 =000) 0.860 x000) 0.883 (=000 0.851 x000) 0.899 =000 0.860 003 0.865 003 0.890 (= 0.00)
030 0.630 (=000) 0.527 (x000) 0.665 =000) 0.850 000 0.847 0000 0.820 (x000) 0.852 (000 0.838 o004 0.853 003 0.835 0.0
0.40 0.571 (000 0.508 (+000) 0.728 (0000 0.819 (+000) 0.819 (0000 0.795 (+000) 0.826 (+000) 0.812 (+£003) 0.796 (+004)  0.842 (+ 0.00)
0.50 0.562 (+000) 0.530 (+000) 0.742 (£000) 0.787 (+000) 0.770 (+000) 0.829 (£0.00 0.799 (+000) 0.769 (003 0.778 (+0.03)  0.817 (+0.00)
0.60  0.549 =000) 0.532 =000 0.739 =000) 0.750 000 0.737 000 0.809 x0.00) 0.761 =000 0.736 x006 0.718 004y  0.797 (= 0.00)
0.70  0.603 (£ 000 0.532 (000 0.706 (£000) 0.686 (+0.00 0.661 (000 0.767 (£0.00) 0.666 (000 0.709 (+005 0.693 (£003)  0.756 (+0.00)
0.80 0.610 (+000) 0.476 (+000) 0.657 (+000) 0.607 (+000) 0.605 (000 0.721 (0000 0.601 (+000) 0.614 (+004  0.603 (+0.04)  0.734 (+ 0.00)
0.90 0.504 =000 0.389 x000) 0.692=000) 0.549 000 0.505=000) 0.677 000 0.522 =000 0.537 003 0.511 (002 0.699 = 0.00)
0.99 0435000 0332 (x000) 0.652 (=000 0.350 000 0.333 000 0.643 £000) 0.353 (0000 0.351 oo 0.35400n  0.652 (+0.00)

Table 29: F1 scores for AIR under mechanism CD-MCAR and varying p

o GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (0000 0.798 (+002) 0.733 (0000 0.918 (+000) 0.922 (+001) 0.922 (+000) 0.891 (0000 0.916 (t002 0.916 (+002) 0.930 (+ 0.00)
0.10  0.714 =000 0.730 000 0.706 (=000) 0.804 000 0.819 =000) 0.700 000 0.820 000 0.825 005 0.825 =005 0.876 (= 0.00)
0.20  0.714 000)  0.730 000 0.703 =000) 0.804 £0.00) 0.819 0000 0.677 £000) 0.820 000) 0.825 005 0.825 005  0.887 (= 0.00)
0.30  0.710 (0000 0.651 (+000) 0.613 (0000 0.721 (£000) 0.697 (+000) 0.696 (+000) 0.726 (000 0.725 (007 0.725 (+007)  0.744 (+ 0.00)
040 0.701 (+ 0000 0.587 (+000) 0.617 (£000) 0.717 (+000) 0.687 (000 0.691 (0000 0.701 (+000) 0.719 (£005 0.719 (+005)  0.794 (+ 0.00)
0.50  0.717 =000y  0.504 000 0.458 =000) 0.528 £000) 0.571 0000 0.625 000 0.564 (0000 0.556 +£008) 0.556 (£008) 0.722 (= 0.00)
0.60 0.717 (000 0.504 (+000) 0.450 (0000 0.528 (+000) 0.571 (0000 0.625 (£000) 0.564 (+000) 0.556 (+008) 0.556 (+008) 0.737 (+ 0.00)
0.70  0.717 (+0.000 0.498 (+000) 0.446 (£000) 0.540 (+000) 0.553 (+000) 0.668 (0000 0.518 (+000) 0.498 (+004) 0.498 (+0.04)  0.662 (+ 0.00)
0.80  0.703 =000) 0.557 0000 0.430 =000) 0.515 000 0.481 =000 0.676 x000) 0.457 0000 0.495 x005) 0.495 005 0.680 (= 0.00)
090 0.703 (+ 000 0.498 (000 0.338 (000 0.515 000 0.481 (000 0.676 (£000) 0.457 (000 0.495 005 0.495 005  0.674 (+0.00)
0.99  0.660 (+000) 0.468 (+000) 0.338 (0000 0.515 +000) 0.481 (+000) 0.682 (t000) 0.457 (+000 0.675 (0050 0.688 (+0.05 0.673 (+0.00)

Table 30: F1 scores for AIR under mechanism FD-MNAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 =000 0.798 002 0.733 =000 0918 x000) 0.922 =001 0.922 000 0.891 (000 0911 x003) 0.914 =002 0.930 = 0.00)
0.10  0.618 (=0.10) 0.758 (£ 005 0.709 (=003 0.895 o001 0.891 004y 0.772 (002 0.883 (003 0.890 (+003) 0.897 (+003  0.906 (+0.02)
0.20  0.595 (0100 0.776 (+005) 0.668 (+008) 0.883 (+003) 0.879 (+001) 0.756 (+003) 0.867 (002 0.852(+002 0.888 (+0.02 0.887 (+o0.01)
030 0.580 =012 0.536 015 0.721 =001 0.852 003 0.859 o001 0.745 x003) 0.833 (=002 0.845 002 0.864 (003 0.875 =001
0.40  0.677 =003 0.575 009 0.716 =002 0.852 x002) 0.855 =003 0.725 +002) 0.840 004y 0.839 002 0.848 004y 0.852 (+0.02)
0.50 0.587 (013 0.620 (+008 0.719 (002 0.837 (+001) 0.832 (+003) 0.698 (+004) 0.829 (004 0.806 (to001) 0.822 (+005)  0.852 (+0.03)
0.60 0.556 (+0.16) 0.686 (=005 0.692 (+002 0.837 (+0.02) 0.808 (+006 0.711 (£003) 0.793 (+002) 0.780 (+004 0.783 (+005)  0.817 (+0.03)
0.70  0.556 (=0.16) 0.634 002 0.717 =002 0.769 003 0779 =005 0.685 oo 0.750 004y 0.745 005 0.771 005  0.770 (= 0.03)
0.80 0.556 (+0.16) 0.665 (002 0.665 (+£003) 0.654 (005 0.709 (003 0.667 (£003) 0.660 (+008) 0.718 (x007) 0.719 £004)  0.786 (+0.02)
0.90 0.582 (009 0.645 (+004) 0.662 (£001) 0.658 (+005) 0.661 (+002 0.659 (+003) 0.530 (+005) 0.670 (£006) 0.655 (+005)  0.710 (+ 0.05)
0.99  0.638 =005) 0.635 002 0.637 =004y 0.557 o004 0.528 (=003 0.674 x0.02) 0.508 =007 0.549 006 0.565 004y 0.616 (0.5
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Table 31: F1 scores for AIR under mechanism CD-MNAR and varying 1

I

GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.724 (+000) 0.798 (002 0.733 (+000) 0918 (000 0.922 (+001) 0.922 (+000) 0.891 (+000) 0.916 (002 0.916 o002 0.930 (+ 0.00)
0.598 o011 0.667 (002 0.722 (£002) 0.888 (£005) 0.887 004y 0.851 o001 0.891 (£003) 0.860 (x004) 0.883 o004 0.895 (x0.09
0.556 x016)  0.632 (019 0.697 (=002 0.864 =002 0.848 006) 0.778 xo004 0.841 oon 0.853 xoos 0.836 (004 0.864 (o001
0.556 (+0.16) 0.526 (+0.13) 0.722 (+003) 0.845 (+001) 0.825 (+004) 0.689 (+002 0.841 (+003) 0.855 002 0.806 (+004) 0.891 (+ 0.04)
0.480 (+0.16) 0.691 (+0.14) 0.601 (+0.12) 0.833 (002 0.805 (+003) 0.722 (+002) 0.860 (+003) 0.856 (+002) 0.811 (+002  0.860 (+ 0.03)
0.536 (£ 016)  0.607 009 0.705 =002 0.813 002 0.769 004 0.674 o001 0.783 004 0.790 005  0.777 005  0.833 (x0.03)
0.622 (+006) 0.636 (£ 004 0.694 (+001) 0.758 (+005 0.708 (+007) 0.681 (+001) 0.766 (+006) 0.814 (+0.03 0.774 (£ 007  0.766 (+ 0.06)
0.580 (+0.10) 0.672 (+007) 0.681 (+001) 0.757 (003 0.724 (+004 0.644 (+002) 0.753 (005 0.755 (+006)  0.720 (+002)  0.726 (+ 0.05)
0.563 (x012)  0.681 =005 0.676 =001 0.733 002 0.655 002 0.658 =002 0.712 00y 0.735 005  0.686 =006  0.769 (x0.03)
0.655 (003)  0.615 004 0.653 =001 0.693 004 0.579 +004) 0.643 £004 0.692 006 0.678 (£003) 0.613 (004 0.668 (+0.02)
0.654 (+003) 0.522 (+ 004 0.660 (+0.05) 0.524 (+007) 0.473 (+005) 0.650 (+006) 0.424 (+006) 0.523 (+006) 0.411 (+003) 0.631 (+0.07)

Table 32: F1 scores for ELECTRIC under mechanism U-MCAR and varying p

GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.588 (£000) 0.915 =000 0.963 =001 0.885 000 0.929 000 0.861 000 0.903 000 0.912 x00on  0.909 oo  0.938 (x o001
0.589 (x000) 0.827 (000 0.931 (=0.00) 0.865 (£0.00) 0.864 000) 0.887 (000 0.889 £0.00) 0.855(x003 0.854 002 0.923 (x0.00
0.589 (+000) 0.806 (+000 0.935 (+0.00 0.821 (000 0.807 (+000) 0.876 (+000) 0.877 (+000) 0.805 (003 0.807 (£003) 0.877 (+0.00)
0.588 (+000) 0.770 (0000 0.924 (+0.00) 0.758 (0000 0.780 (0000 0.889 (+0.00) 0.872 (0000 0.742 (+003) 0.781 (+004) 0.868 ( 0.00)
0.590 =000  0.703 (0000 0.906 (=000 0.711 =000 0.728 (0.00) 0.874 (£000) 0.865 000) 0.710 £002) 0.746 =004y  0.859 (= 0.00)
0.587 (+000) 0.626 (+ 000 0.922 (+0.00) 0.676 (+000 0.693 (+000) 0.864 (+000) 0.841 (+000) 0.676 (+003 0.721 (+004)  0.804 (+0.00)
0.584 (+000) 0.567 (+000) 0.881 (+0.00) 0.598 (000 0.614 (0000 0.877 (+000) 0.793 (+000) 0.597 (+0.04) 0.663 (+006) 0.779 (+ 0.00)
0.582 (x000)  0.506 (=000 0.868 (0.00) 0.548 £0.00) 0.553 000) 0.831 000 0.771 x£000) 0.528 (002 0.601 (=006  0.766 (£ 0.00)
0.592 (000  0.397 (000 0.852 (=000 0.496 (£000) 0.522 *000) 0.807 (£000) 0.730 (+000) 0.465 (£0.03) 0.509 (006  0.728 (+0.00)
0.593 (+000) 0.389 (+000 0.744 (0000 0.361 (000 0.423 (+000) 0.701 (000 0.628 (+000) 0.407 (004 0.395 (£002) 0.646 (+ 0.00)
0.592 (£ 000) 0.289 (=000 0.260 (=000) 0.285 (£0.00) 0.282 =000 0.630 (= 0.000 0.333 000 0.278 x0on  0.276 (o001  0.412 (x0.00)

Table 33: F1 scores for ELECTRIC under mechanism S-MCAR and varying p

GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.588 (000 0.915 000 0.963 (=001 0.885 000 0.929 000 0.861 (£000) 0.903 +000) 0.909 xoon 0.912 o001  0.938 (+0.01)
0.493 (+000) 0.891 (000 0.959 (0000 0.831 (+000 0.853 (0000 0.862 (+000) 0.854 (+000) 0.872(+001) 0.873 (002 0.904 (+0.00)
0.484 (£000) 0.855 (=000 0.945 000 0.821 £000) 0.851 000) 0.867 (000 0.870 £000) 0.833 (xoon 0.842 003 0.878 (x0.00
0.478 x000)  0.816 (=000 0.935 000 0.768 £0.00) 0.796 000) 0.872 000 0.856 (£0.00) 0.776 (002  0.805 £ 002)  0.855 (£ 0.00)
0.483 (+000) 0.756 (0000 0.940 (+0.00) 0.703 (000 0.734 (+000) 0.842 (+000) 0.871 (+000) 0.736 (+003 0.754 (+o001)  0.801 (+0.00)
0.431 (+000) 0.708 (£000) 0.926 (+0.00) 0.656 (000 0.665 (+000) 0.839 (+000) 0.844 (+000) 0.682 (+002 0.712 001y 0.810 (+0.00)
0.397 £ 000)  0.632 =000 0.898 =0.00) 0.619 000 0.617 000y 0.813 =000 0.808 £0.00) 0.627 (£003 0.651 o001  0.787 (x0.00
0.435 (0000  0.563 (£000) 0.870 (=000 0.528 (000 0.545 £000) 0.799 (000 0.776 (+000) 0.543 (£004) 0.586 (005  0.711 (0.00
0.490 (+000) 0.522 (+000) 0.806 (+0.00) 0.475 (000 0.455 (+000) 0.764 (+000) 0.770 (+000) 0.477 (+003)  0.493 (+002) 0.676 (+0.00)
0.374 000y  0.392 =000 0.771 = 0.00) 0.420 £0.00) 0.394 000) 0.738 000) 0.496 (£0.00) 0.374 (£003) 0.381 =003  0.567 (£ 0.00)
0.260 (000  0.265 (£000  0.260 (=000 0.269 (£000) 0.277 (+000) 0.639 (£0.00) 0.285 +000) 0.267 o0  0.267 (o001  0.479 (+0.00)

Table 34: F1 scores for ELECTRIC under mechanism CD-MCAR and varying p

GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.588 (+000) 0.915 (+000 0.963 (+0.01) 0.885 (000 0.929 (+000) 0.861 (000 0.903 (+000) 0.908 (+001) 0911 o001y 0.920 (+0.00)
0.585 (£ 000)  0.794 =000 0.910 (0.00) 0.828 (£0.00) 0.843 =000) 0.890 (000 0.894 (£000) 0.804 (x£003 0.804 (=003 0.867 (000
0.584 (£000)  0.687 000 0.920 0.00) 0.710 £0.00) 0.762 000) 0.860 000 0.842 (£0.00) 0.804 (003  0.805 003  0.815 (£ 0.00
0.591 (+000) 0.604 (+000 0.650 (+000) 0.672 (£000 0.693 (+000) 0.815 000 0.820 (+0.00) 0.635+o001) 0.635 o001  0.793 (+0.00)
0.587 (+000) 0.475 (0000 0.630 (+000) 0.475 000 0.494 (+000) 0.729 (+0.00) 0.723 (+000) 0.263 (+001) 0.263 (+001)  0.685 (+0.00)
0.589 (x000)  0.301 (=000 0.630 = 0.00) 0.260 (£0.00) 0.260 =000 0.630 (=000 0.260 (£0.00) 0.265 001  0.265 =001  0.532 (£ 0.00)
0.593 (+000) 0.271 (000 0.630 (+0.00) 0.260 (+ 000 0.260 (+000) 0.630 (000 0.260 (+000) 0.265 (+001) 0.265 (+o001)  0.517 (+0.00)
0.589 (+000) 0.310 (0000 0.260 (+000) 0.260 (+-000) 0.260 (000 0.629 (+-0.00) 0.260 (+000) 0.267 (+001) 0.267 (+001)  0.571 (0.00)
0.593 (£ 000) 0.343 (=000 0.260 =000 0.260 £0.00) 0.263 =000 0.630 (=0.00) 0.260 (£0.00) 0.260 (0000  0.260 (=000  0.544 (£ 0.00)
0.589 (000 0.315 000 0.260 (=000 0.260 (£000) 0.263 (+0.00) 0.630 (£0.000 0.260 (+000) 0.260 (£0.00)  0.260 (+000)  0.538 (+0.00)
0.589 (+000) 0.330 (000 0.260 (+000) 0.260 (£ 000 0.260 (+000) 0.630 (+0.000 0.260 (+000) 0.382 (+001) 0.423 (+002) 0.552 (+0.00)

Table 35: F1 scores for ELECTRIC under mechanism FD-MNAR and varying p

GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.588 (0000 0.915 =000 0.963 001 0.885 000 0.929 000 0.861 000 0.903 000 0.911 xoon 0.913 ooy  0.938 xoon
0.468 (015 0.879 (001 0.944 (002 0.862 (£003) 0.844 +002 0.878 (£003) 0.870 +004) 0.840 (+003) 0.851 (002 0.916 (+o0.01)
0.491 (013  0.850 (+001) 0.938 (+001) 0.808 (002 0.813 (+002) 0.867 (+001) 0.859 +002) 0.789 (+002 0.802 (+003)  0.906 (+ 0.00)
0.496 (013  0.800 (=002 0922 (003 0.744 £002 0.793 oo 0.864 003 0.861 ooy 0.727 002 0.798 (003  0.877 (x 001
0.506 x012)  0.772 =004 0906 (003 0.701 =003 0.751 003 0.850 002 0.839 o001 0.674 002 0.726 (003  0.864 (=001
0.438 (+0.12) 0.743 (x001) 0.877 (001 0.648 (+003) 0.707 (x002) 0.842 (+002 0.817 (£003) 0.642 (+005 0.699 (+o008)  0.837 (+0.02)
0.331 (+005) 0.688 (+002 0.836 (+0.03) 0.594 (002 0.663 (+001) 0.807 (+005) 0.775 +002 0.590 (+003 0.607 (+003)  0.806 (+0.01)
0.461 x0.14)  0.626 001 0.834 004y 0.514 0049 0.590 002 0.776 £002) 0.761 002 0.482 x003) 0433 (009 0.760 0.02)
0.435 (+012)  0.570 (002 0.742 (+006) 0.463 (+001) 0.490 (+004) 0.743 (004 0.700 (+o001) 0436 +001) 0.328 (+004) 0.707 (+0.01)
0.275 001y 0.484 (001 0.560 (+022) 0.330 (006 0.426 (+003) 0.663 (+0.03) 0.500 (+0.17) 0.352 (£003) 0.276 (+001)  0.620 (+0.02)
0.342 x012)  0.377 =003 0.260 =000) 0.260 £0.00) 0.347 oon 0.629 000 0274 xoon 0.286 002 0.273 oo  0.537 (£ 008)
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Table 36: F1 scores for ELECTRIC under mechanism CD-MNAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (0000 0.915 (0000 0.963 (+0.01) 0.885 (+000) 0.929 (+000) 0.861 (+000) 0.903 (+000 0.908 (+o001) 0.908 (+001) 0.938 (+o0.01)
0.10 0.486 (=012 0.888 00 0.962 =001 0.869 oo 0.874 o001 0.908 002 0.885 =003 0.839 +003) 0.860 002 0.922 =+ 0.00)
0.20 0476 =015) 0.851 x002) 0931 (=002 0815003 0.802 =001 0.879 oo 0.879 o001 0.805 003 0.801 000 0.902 (0.03)
0.30 0478 (+016) 0.819 (+004) 0.922 (+000) 0.789 (+003) 0.789 (+001) 0.872 o001y 0.880 (+001) 0.770 (0050 0.736 (+001)  0.890 (+ 0.00)
040 0.431 o1  0.807 (002 0902 (o001 0.775 =001 0.762 (+001) 0.835 (+002) 0.865 (002 0.749 003 0.685 (+005) 0.869 (+0.02)
0.50 0.450 =009 0.758 002 0.867 (=003 0.722 002 0.748 =001 0.835 x003) 0.827 (003 0.656 +003) 0.633 004 0.850 (= 0.02
0.60 0.436 (+0.10) 0.706 (+001) 0.853 (£ 005 0.663 (+002) 0.608 (001 0.847 (£003) 0.780 (£ 002 0.664 (+003) 0.593 004y 0.836 (+0.02)
0.70 0337 (+0.03) 0.604 (+003) 0.812 (003 0.585 (+003) 0.538 (003 0.770 (+009 0.729 (+001) 0.560 (+002 0.514 (+002)  0.765 (+0.01)
0.80 0411 =009 0.594 002 0.824 =008 0.540 oo 0.486 =001 0.703 oo 0.671 =001 0513 ooy 0.469 002  0.742 (=002
0.90 0.392 01 0.531 002 0735007 0473 003 0449 002 0.686 (£006) 0.600 +004) 0.434 002 0.445 004 0.683 (+0.02)
0.99 0.304 (002 0.329 (+004) 0.264 (+001) 0.303 (+002) 0.294 (+001) 0.629 (+0.00) 0.312 (+004 0.305 (+002 0.292 (+002) 0.561 (+0.02)

Table 37: F1 scores for TADPOLE under mechanism U-MCAR and varying p

o GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (=000) 0.648 =001 0.790 =000) 0.806 000 0.832 =002 0.786 000 0.792 =000 0.847 +0.03) 0.847 £003  0.809 (= 0.00)
0.10  0.789 (000) 0.590 000 0.795 =000) 0.801 000 0.832 =000 0.809 £000) 0.821 000 0.841 003 0.837 £003  0.820 (= 0.00)
0.20 0.808 (0000 0.590 (+000) 0.803 (000 0.823 (+000) 0.836 (+0.00 0.779 (+000) 0.802 (+000) 0.833 (003 0.827 (+004) 0.799 (+ 0.00)
0.30 0.814 (0000 0.567 (+000) 0.791 (£000) 0.806 (+0.00) 0.825 (0000 0.757 (0000 0.803 (+000) 0.811 (003 0.813 (+003)  0.802 (+0.00)
0.40  0.804 (=000) 0.610 =000 0.831 (=000 0.800 000 0.820 0000 0.794 000 0.799 0000 0.830 oo 0.819 (002  0.805 (= 0.00)
0.50  0.752 (0000 0.581 (+000) 0.813 (000 0.809 (+000) 0.830 (+0.000 0.799 (+000) 0.810 (+000) 0.797 (003 0.790 (+003)  0.814 (+0.00)
0.60 0.756 (+000) 0.575 (+000) 0.808 (£000) 0.785 (+000) 0.797 (0000 0.722 (0000 0.791 (+000) 0.810 (£ 005 0.771 (+0.04)  0.799 (+ 0.00)
0.70  0.610 =000) 0.552 000 0.795=000) 0.740 000 0.772 =000) 0.729 x000) 0.762 0000 0.779 o004 0.767 003  0.802 (= 0.00)
0.80  0.669 (+000) 0.552 x000) 0.804 (=000) 0.757 000 0.728 0000 0.669 (000 0.775*000) 0.760 (005  0.736 (£ 004y  0.764 (+0.00)
0.90 0.759 (+000) 0.590 (+000) 0.241 (0000 0.758 (+000) 0.408 (+:000) 0.608 (£0.00) 0.767 (000 0.786 (+0.02) 0.704 (+002) 0.763 (+ 0.00)
0.99  0.707 =000) 0.523 000 0.241 =000) 0.241 o000 0.241 =000 0.353 x000) 0.241 =000 0.507 0220 0.241 0000  0.700 (= 0.00)

Table 38: F1 scores for TADPOLE under mechanism S-MCAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.804 (=000) 0.648 001 0.790 (=000) 0.806 (£000 0.832 =002 0.786 000 0.792(+000) 0.847 (+0.03) 0.847 (£003 0.831 (+0.04)
0.10  0.554 (0000 0.542 (+000) 0.805 (+000) 0.803 (+000) 0.815 000 0.751 (t000) 0.804 (+000) 0.848 (+0.02) 0.846 (+002) 0.810 (+0.00
0.20 0.497 =000 0.486 (x000) 0.818 =000 0.818 x000) 0.811 =000 0.737 x000) 0.814 000 0.846 +0.02) 0.845 003 0.794 = 0.00)
030 0.523 =000) 0.502 000 0.775 000) 0.799 000 0.825 0000 0.777 x000) 0.818 (0000 0.837 (+0.02) 0.838 002 0.775 (0.0
040 0482 (+000 0.581 (+000) 0.800 (+000) 0.797 (£000) 0.794 (0000 0.719 (£000) 0.784 (0000 0.820 (+003) 0.823 (+004) 0.790 (+ 0.00)
0.50 0.501 (#0000 0.523 (+000) 0.757 (0000 0.777 (+000) 0.769 (+000) 0.739 (0000 0.798 (+000) 0.803 (+0.02 0.797 (+003)  0.795 (+ 0.00)
0.60  0.539 =000) 0.498 000 0.802==000) 0.769 000 0.734 =000) 0.693 x000) 0.804 000 0.804 x005) 0.799 004y 0.816 = 0.00)
0.70  0.480 (0000 0.453 (+000) 0.748 (0000 0.719 (£000) 0.738 (0000 0.642 (£000) 0.752 (+000) 0.784 (+003) 0.777 (+005)  0.795 (+ 0.00)
0.80 0.502 (+000) 0.422 (+000) 0.689 (+000) 0.736 (+000) 0.703 (0000 0.555 (+000) 0.730 (+000) 0.739 (+002  0.740 (+006)  0.812 (+ 0.00)
0.90 0.377 =000 0.280 000 0.503 =000) 0.680 000 0.650 =000) 0.420 000 0.739 000 0.662 +007) 0.557 006  0.742 (= 0.00)
0.99  0.272 000) 0249 x000) 0.241 =000) 0.384 (£0.00) 0.241 0000 0.241 (£000) 0.241 0000 0.323 (£005) 0.241 0000  0.370 (+0.00)

Table 39: F1 scores for TADPOLE under mechanism CD-MCAR and varying p

o GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (+000) 0.648 (+001) 0.790 (+000) 0.806 (+000) 0.832 (+002 0.786 (0000 0.792 (+-000) 0.847 (+0.03 0.847 (+003)  0.831 (+0.04)
0.10  0.786 (=000) 0.550 =000 0.765 =000) 0.760 000 0.793 =000) 0.789 x000) 0.785 =000 0.809 003 0.809 +003 0.815 = 0.00)
0.20  0.785 = 000) 0.462 (x000 0.758 =000) 0.777 000 0.786 =000) 0.763 (£0.00) 0.804 (+000) 0.810 £0.04) 0.810 004  0.806 (= 0.00)
0.30  0.654 (0000 0.517 (+000) 0.766 (+000) 0.788 (+000) 0.784 (0000 0.779 (£000) 0.782 (+000) 0.802 (+o0.049) 0.802 (+004) 0.800 (+ 0.00)
0.40  0.685 =000 0.550 000 0.780 =000) 0.764 x000) 0.780 =000) 0.779 x000) 0.774 0000 0.795 003 0.795 003  0.780 (= 0.00)
0.50  0.778 x000) 0.558 (000 0.700 £0.00) 0.728 0000 0.776 (000 0.746 £0.00) 0.731 000 0.773 o004 0.773 0.04)  0.785 (& 0.00)
0.60  0.783 (+0.000 0.508 (+000) 0.731 (0000 0.708 (£000) 0.729 (0000 0.760 £000) 0.714 (0000 0.767 (£003) 0.767 (+003)  0.745 (+ 0.00)
0.70  0.725 (+ 0000 0.545 (+000) 0.684 (£000) 0.638 (+000) 0.663 (000 0.704 (0000 0.710 (+000) 0.739 (£003 0.739 (+003)  0.722 (+ 0.00)
0.80  0.656 (0000 0.442 000 0.576 (£000) 0.391 000) 0.442 000 0.543 £000) 0.419 000 0.643 o004 0.643 004y 0.615 000
090 0.704 (+ 000 0419 (000 0.241 0000 0.348 (000 0.361 (0000 0.337 (£000) 0.292 (000 0.327 (003  0.327 (£003)  0.409 (+0.00)
0.99 0.687 (000 0.402 (+000) 0.241 (0000 0.348 (+000) 0.361 (0000 0.337 (£000) 0.292 (+000) 0.730 (+0.03) 0.567 (+0.17)  0.409 (+ 0.00)

Table 40: F1 scores for TADPOLE under mechanism FD-MNAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (=000) 0.648 =001 0.790 =000) 0.806 000 0.832 =002 0.786 000 0.792 0000 0.846 003 0.849 =003 0.831 (= 0.04)
0.10  0.546 =007y  0.643 (001 0.801 001 0.797 o0 0.822 (002 0.830 (+004 0.838 (003 0.841 (+003) 0.842(+£003)  0.846 (+0.04
0.20 0.531 (x011) 0.624 (+005) 0.793 (004 0.836 (001 0.810 (+001) 0.832 002 0.827 (+001) 0.832 (003 0.817 (003 0.796 (+ 0.00)
030 0.573 012 0.580 o004 0.804 (=005) 0.811 x003) 0.806 =004y 0.829 o004 0.831 (002 0.827 003 0.802 003 0.828 (+0.03)
0.40  0.562 =009 0.615 003 0.751 =003 0.803 o009 0.793 004y 0.811 (x0.02) 0.802 003 0.806 003 0.803 003 0.781 (+0.02)
0.50 0.673 (004 0.646 (x007) 0.793 (002 0.789 (+002) 0.796 (005 0.780 (+o0.01) 0.815 (+0.03 0.809 (+004) 0.805 (+004) 0.784 (+0.03)
0.60 0.529 (+009 0.633 (+006) 0.722 (007 0.805 (+004) 0.785 (005 0.758 (+002) 0.810 (+0.03) 0.803 (+004) 0.792 (+0.04)  0.795 (+0.03)
0.70  0.634 =005) 0.571 004 0.804 =003 0.795 o004 0.746 =006 0.720 006 0.795 =005 0.776 (x005) 0.748 005  0.780 (= 0.03)
0.80 0.378 (0100 0.590 (+006) 0.612 (014 0.785 (002 0.692 (+005 0.708 (£0.02) 0.797 (+003 0.776 (004 0.720 (+005)  0.765 (& 0.00)
0.90 0.309 (+0.100 0.597 (=001 0.241 £000) 0.771 (+003) 0.663 (005 0.719 o001y 0.787 (+0.02) 0.779 (£003) 0.703 (+005)  0.777 (+ 0.06)
0.99  0.241 =000y 0.600 £005) 0.241 =000) 0.736 (£003) 0.241 0000 0.584 x005) 0.241 =000 0.733 oo  0.241 0000  0.794 0.4
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Table 41: F1 scores for TADPOLE under mechanism CD-MNAR and varying p

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.804 (=000) 0.648 (001 0.790 (= 000) 0.806 (£000 0.832 =002 0.786 000 0.792(+000) 0.847 £0.03) 0.847 (+003  0.809 (= 0.00)
0.10  0.553 (+006) 0.534 (+009 0.793 (005 0.813 (£003) 0.829 (004 0.792 (+003) 0.806 (+003) 0.842 (+o0.02) 0.826 (+004) 0.803 (+o0.01)
0.20 0.485=006) 0.515 004 0.804 =003 0.812 003 0.832=003 0.810002 0.806 =002 0.849 o001 0.826 004 0.815 002
0.30  0.441 =002 0.584 006 0.805 =003 0.785 x002 0.811 =003 0.786 002 0.812(x002 0.828 003 0.813 (004 0.827 (+0.03)
040 0.502 (007 0.671 (+003) 0.828 (x001) 0.818 (+003) 0.808 (002 0.793 (+002) 0.814 (+003) 0.824 (+002 0.826 (+003)  0.830 (+0.01)
0.50 0.448 (+0.02 0.621 (+004) 0.784 (£002 0.804 (+004) 0.799 (004 0.756 (+003) 0.803 (+005) 0.819 (+002 0.800 (+0.04)  0.828 (+ 0.04)
0.60 0.457 o001 0.529 003 0.791 o001 0.781 003 0.803 003 0.710 007 0.797 003 0.823 004 0.783 (003  0.792 (= 0.03)
0.70  0.485 (007 0.590 (+009 0.639 (029 0.797 (+005) 0.787 (004 0.710 (£ 005 0.822 (+0.02 0.813 (£o003) 0.784 (+007) 0.818 (+o0.01)
0.80 0.376 (+0.100 0.605 (+004) 0.434 (+027) 0.785 (+005) 0.767 (009 0.744 001y 0.798 (+-005) 0.819 (+0.04) 0.776 (+0.04)  0.800 (+ 0.02)
0.90 0.362 =009 0.563 003 0.241 =000) 0.788 xoon 0.730 =008) 0.689 x005) 0.776 006 0.771 x006) 0.704 =005  0.803 (= 0.05
0.99 0.324 012 0.547 x008) 0.241 =000) 0.255 x002) 0.241 =000) 0.348 (£005 0.241 (0000 0.558 (+0.15  0.241 (£000)  0.652 (+0.04)
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G COMPLETE RESULT TABLES — R2 REGIME

This appendix complements the analysis of Research Question 3 (Sectionf). It reports the complete
set of results for the R2 regime, where training and test data are subject to different missingness
mechanisms. We include both numerical tables (F1-score mean =4 std over 5 runs) and extended
visualizations across all models and datasets.

G.1 NUMERICAL RESULTS

Table @ reports the full Fl-scores for all models, datasets, and shift configurations considered in
the R2 regime.

Table 42: F1 (mean =+ std over 5 runs). Setup: R2 missingness distribution shift, where training
data are subject to either FD-MNAR or CD-MNAR, while test data have either no missingness, 25%
or 50% of U-MCAR

Task Train mech. /LTES[‘ GOODIE GSPN FairAC GCNmf PCFI FP GNNmi GNNzero GNNmedian GNNmim
FD-MNAR 0 0.50 (+0.15) 0.68 (£ 0.01) 0.69 (005 0.81 (£0.01) 0.79 (+£0.02) 0.80 (+0.01) 0.80 (x0.01) 0.81 (+0.02) 0.80 (£ 0.02) 0.82 ( 0.01)
FD-MNAR  0.25 | 0.47 (+0.13) 0.64 (£0.03) 0.69 (+0.04) 0.74 (£0.03) 0.75 (£0.03) 0.76 (£0.03) 0.75 (£0.03) 0.76 (£ 0.01) 0.76 (+0.02) 0.77 (= 0.03)
SYNTHETIC FD-MNAR  0.50 |0.47 (£0.13) 0.64 (£0.02) 0.65 (£0.04) 0.71 (£0.03) 0.73 (£0.02) 0.71 (£002) 0.74 (£0.02) 0.71 (£0.03) 0.72 (£ 0.04) 0.73 (£ 0.02)
CD-MNAR 0 0.71 (£ 0.07) 0.70 (£0.03) 0.70 (£0.05) 0.80 (£0.04) 0.81 (£0.02) 0.80 (£0.02) 0.78 (0.02) 0.82 (£0.02) 0.76 (£ 0.02) 0.85 (£ 0.04)
CD-MNAR  0.25 |0.66 (£0.05) 0.68 (£0.05) 0.68 (£0.03) 0.75(£0.06) 0.78 (£0.04) 0.77 (£0.04) 0.77 (£ 0.02) 0.78 (+0.03) 0.72 (£ 0.03) 0.80 (£ 0.03)
CD-MNAR  0.50 |0.56 (£0.10) 0.64 (£0.04) 0.65 (£0.01) 0.73 (£0.02) 0.72 (£0.03) 0.72 (£0.05) 0.72 (= 001) 0.72 (£0.04) 0.70 (£0.01) 0.75 (£ 0.03)
FD-MNAR 0 0.50 (= 0.14) 0.33 (£0.04) 0.66 (£0.07) 0.83 (£0.05 0.88 (£0.01) 0.86(+003) 0.86(=0.03) 0.85 001 0.84(+003) 0.87 (£0.02)
FD-MNAR 025 |0.51 (£0.12) 0.42(£004) 0.65(£008) 0.68 (005 0.83 (x005) 0.81 (+002) 0.81 (=001 0.83 001 0.80(£002) 0.85 =001
AR FD-MNAR 050 |0.52(£0.11) 0.55(£003) 0.70 (£003) 0.71 (=003 0.80 (007 0.79 (006 0.79 (0.05 0.78 (+0.04) 0.78 (£0.01) 0.80 (£ 0.05)
CD-MNAR 0 ]0.56(+0.16) 0.35(£0.02) 0.65(+008) 0.60 (0200 0.88 (+0.01) 0.71 (£007) 0.86 (+0.06) 0.83 (£007) 0.82(£0.03) 0.85 (0.00)
CD-MNAR  0.25 | 0.56 (£0.16) 0.45(+050) 0.70 (£ 005 0.70 (£0.05) 0.84 (£005 0.75(£0.05) 0.84 (+£0.04) 0.80 (£0.05) 0.79 (+0.03) 0.84 (+0.06)
CD-MNAR ~ 0.50 | 0.62 (+£0.07) 0.47 (£0.04) 0.68 (£007) 0.70 (+0.02) 0.80 (005 0.72 (£0.03) 0.76 (005 0.76 (£0.01) 0.74 (+£0.03) 0.76 (+0.02)
FD-MNAR 0 045011 0.67 o011 0.92(+0.02) 0.88 (£0.12) 0.69 (+0.00) 0.76 (£003) 0.80 (+0.02) 0.83 (£005 0.79 (+0.01) 0.92 (+001)
FD-MNAR  0.25 |0.53 (£0.10) 0.68 (+0.06) 0.89 (£ 0.00) 0.80 (+0.02) 0.73 (£0.03) 0.69 (+0.03) 0.74 (£0.02) 0.76 (+0.03) 0.73 (& 0.04) 0.87 (£ 0.01)
ELECTRIC FD-MNAR  0.50 |0.50 (£0.100 0.68 (£0.01) 0.90 (+£0.02) 0.83 (£0.01) 0.75(£003) 0.62 (£0.02) 0.66 (+0.03) 0.68 (& 0.02) 0.66 (£ 0.02) 0.82 (£ 0.02)
CD-MNAR 0 0.52 (+0.10) 0.78 (£0.04) 0.92 (£0.02) 0.86 (£ 0.01) 0.88 (£0.01) 0.83 (005 0.81 (=001 0.81 (£001) 0.79 (0.02) 0.94 (£ 0.00)
CD-MNAR  0.25 |0.50 (=0.100 0.78 (+0.01) 0.88 (+0.01) 0.86 (+0.02) 0.85(+0.02) 0.74 (+0.04) 0.73 (+0.03) 0.72 (+0.01) 0.73 (+0.02) 0.85 (+0.03)
CD-MNAR 050 |0.49 (£0.12) 0.70 (£0.02) 0.87 (£0.02) 0.82 (£0.03) 0.81 (£0.00) 0.66 (+0.01) 0.70 (£0.03) 0.65 (+0.02) 0.68 (£ 0.02) 0.83 (£0.02)
FD-MNAR 0 0.52 (£0.07) 0.53 (£0.00) 0.75 (£0.03) 0.74 (£0.05 0.79 (£0.00) 0.77 (£0.00) 0.76 (=0.01) 0.79 (£ 0.01) 0.77 (£0.02) 0.83 (+0.02)
FD-MNAR  0.25 |0.48 (£0.03) 0.48 (£0.02) 0.77 (£ 001) 0.73 (=0.01) 0.82(£0.02) 0.78 (£0.03) 0.76 (+0.03) 0.78 (£0.03) 0.74 (+0.03) 0.81 (= 0.01)
TADPOLE FD-MNAR  0.50 |0.48 (£0.04) 0.53 (£0.02) 0.79 (£0.02) 0.71 (=004 0.78 (£0.02) 0.74 (£0.02) 0.73 (£0.03) 0.74 (£0.04) 0.71 (£ 0.02) 0.82 (% 0.03)
CD-MNAR 0 ]0.60(£002) 0.26 (£0.02) 0.79 (£005) 0.75 (£0.04) 0.80 (+0.04) 0.80 (£003) 0.79 (£005) 0.79 (£0.04) 0.75 (£0.04) 0.79 (= 0.06)
CD-MNAR 025 | 047 (£0.09 0.52(£002) 0.82(£005 0.78 (=001) 0.80 (£0.04) 0.80 (£0.04) 0.77 (£0.04) 0.78 (£0.04) 0.73 (+£006) 0.75 (£ 0.03)
CD-MNAR ~ 0.50 | 0.49 (£0.07) 0.62(+005) 0.81 (£003) 0.75(£000) 0.79 (£001) 0.82(£0.02) 0.76 (£0.03) 0.76 (£0.05) 0.73 (+£0.06) 0.74 (+0.02)

G.2 EXTENDED VISUALIZATIONS

In addition to Figure[3]in the main paper, Figures [f]and [§]report the full results for all models under
both training mechanisms.
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Figure 6: Full results for all models trained with FD-MNAR at pi, = 50%, tested on U-MCAR with
e € {0%,25%, 50%}. Each panel corresponds to one dataset; each row to one model. Reported
values are mean =+ std over 5 runs.
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Figure 7: Full results for all models trained with CD-MNAR at p,, = 50%, tested on U-MCAR with
e € {0%,25%,50%}. Same layout as Figure@
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H INDUCTIVE SYNTHETIC SETTING

In addition to the transductive experiments reported in the main paper, we also ran a set of experi-
ments in an inductive setting to demonstrate that our model, GNNmim, is not restricted to transductive
scenarios. As shown in Figure[8] GNNmim remains competitive with all other baselines even under
this inductive setup.

SYNTHETIC - Inductive Setting

U-MCAR S-MCAR LD-MCAR FD-MNAR CD-MNAR
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—em,,
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Figure 8: Performance of GNNmim and all competitors in an inductive setting. The synthetic dataset
is constructed so that test nodes form a separate graph component and are never connected to training
nodes, ensuring that no message can propagate between the two sets during training. Despite this
strictly inductive setup, GNNmim remains competitive with all baselines.

Table 43: F1 scores for under mechanism CDMNAR and varying

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.687 (0166 0.713 (+0045)  0.367 (00000 0.972 (= 0.011)  0.968 (0011  0.867 (0023 0.970 £0.011)  0.968 (+0011)  0.968 (+0.011)  0.967 (£ 0.011)
0.10  0.672 (+0.167) 0.708 (£0.022) 0.367 (00000 0.880 (=0.014) 0.881 (+0014) 0.842 (+0010) 0.876 (+0011) 0.875 (+0018) 0.878 (£0.0200 0.883 (+ 0.020)
0.20  0.639 (0151 0.686 (+0048)  0.367 (0000) 0.836 (+ 0015 0.838 (£0022) 0.796 (002 0.825 £0.018) 0.840 (+0022) 0.842 (£ 0.020) 0.832 (0019
0.30  0.595 (01220 0.636 (+0031) 0.367 (00000 0.785 (00200 0.785 (£0034) 0.765 (£0036) 0.782 (£0023)  0.796 (£0029) 0.793 (+0.026) 0.801 (= 0.020)
0.40  0.598 (0119 0.631 (+0043)  0.367 (=0000) 0.734 (0019 0.758 0024y 0.729 £0.021)  0.731 (£0.008) 0.754 0017 0.750 (£ 0.023)  0.759 (= 0.017)
0.50 0.442 (+0092) 0.589 (+0029) 0.367 (00000 0.643 (£0036) 0.628 (£0040) 0.647 (£0041) 0.616 (£0029) 0.668 (0023 0.632 (+0030) 0.680 (+ 0.018)
0.60  0.473 x0063) 0.605 +0034) 0.367 (=0000) 0.629 (=003 0.597 (£0029) 0.649 (£0.041) 0.600 (£0052) 0.687 (0013 0.602 (+£0033)  0.704 (= 0.021)
0.70  0.401 (x0070) 0.592 (+0024)  0.367 (=:0000) 0.574 (= 0016) 0.562 (0007 0.599 (£0064) 0471 (£0.041)  0.656 (+0023) 0.566 (+0.018)  0.664 (- 0.027)
0.80 0.377 (0012) 0.584 0026 0.367 (00000 0.571 (£0026) 0.551 (£0020) 0.567 (£0044) 0.463 0069) 0.634 (+0.025 0.557 (= 0016) 0.638 (+ 0.028)
0.90  0.402 (0062 0.592 +0031)  0.367 (0000) 0.574 (£ 0048) 0.544 (£0020 0.548 (£0052) 0.458 (£0.046) 0.650 (+0033) 0.547 (£0.028)  0.657 (£ 0.020)
0.99  0.395 (+0052) 0.444 (00600 0.367 (00000 0.380 (£0022) 0.467 (£0020) 0.395 (£0035) 0.367 (£0000) 0.524 (£ 0.045) 0.464 (+0013) 0.524 (= 0.045)

Table 44: F1 scores for under mechanism FDMNAR and varying p

14 GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.687 (x0.166) 0.708 (+0045)  0.367 (=0000) 0.972 (= 0.011)  0.967 (0011 0.867 (£0022) 0.968 (£0.013) 0.967 0011y 0.967 xo011)  0.968 (£ 0.011)
0.10  0.679 (+0166) 0.711 (+0012) 0.367 (00000 0.888 (0013) 0.879 (£0024) 0.847 (£0013) 0.885 (£0014) 0.882 (£0022) 0.886 (+0020) 0.889 (= 0.017)
0.20  0.646 (0154  0.686 (+0033)  0.367 (=0000) 0.834 (= 0.024) 0.825 (£0024) 0.799 (0016) 0.832 (£0.026) 0.830 (+0022) 0.825 (£0.025 0.826 (£ 0.028)
0.30  0.569 (+0.133)  0.649 (+0013)  0.367 (+0000) 0.800 (+0.042) 0.786 (+0.034) 0.772 (+0.028) 0.796 (£ 0025 0.789 (+0036) 0.782 (+0032) 0.793 (4 0.036)
0.40  0.522 x0139)  0.608 (0037  0.367 (=0000) 0.759 0021y  0.761 (0.027) 0.732 (£0032) 0.753 (£0.026) 0.757 (+0032) 0.743 (£ 0.028) 0.742 (£ 0.032)
0.50  0.492 (+ 0135 0.618 (0008) 0.367 (0000 0.714 (= 0016) 0.731 (0015 0.692 (£0027) 0.710 (£0.028) 0.724 (0017 0.736 (£ 0.018)  0.730 (£ 0,019
0.60  0.433 (+0084) 0.575 (£0025) 0.367 (00000 0.675 (=0031) 0.699 (+0032) 0.676 (+0022) 0.674 (0039 0.702 (+0.030) 0.687 (£0027) 0.716 (+ 0.031)
0.70  0.464 (£0.000) 0.582 (+0020) 0.367 (0000) 0.630 (= 0031) 0.643 (£0037) 0.594 (00400 0.623 (£0.035) 0.651 (0037 0.635 (£0.033) 0.661 (£ 0.019
0.80 0.429 (+0065 0.540 (0009 0.367 (00000 0.586 (=0021) 0.598 (£0027) 0.527 (£0053) 0.560 (£0030) 0.607 (0029 0.609 (0019 0.620 (= 0.024)
0.90 0.444 0082 0.522 +0039) 0.367 (=0000) 0.508 (= 0.105) 0.558 (£0049) 0.486 (£0.061) 0.460 (£0.129) 0.589 (+0042)  0.575 (£ 0.044)  0.592 (£ 0.023)
0.99  0.370 (+ 0005 0.538 (+0041) 0.367 (00000 0.433 (£0093) 0.515 (0035 0.454 (£0076) 0.420 (£0.105) 0.561 (+£0.03) 0.521 (+0.040) 0.550 (+ 0.040)
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Table 45: F1 scores for under mechanism LDMCAR and varying /.

I GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.687 x0.166) 0.713 (0045)  0.367 (=0000) 0.972 = 0.011)  0.968 (0011 0.867 (0023 0.970 o011y  0.968 o011y  0.968 (xo011)  0.967 (xo.011)
0.10  0.687 (x0.166) 0.713 (+0045)  0.367 (0000) 0.972 (= 0.011)  0.968 (0011  0.867 (0023 0.970 £0.011)  0.968 (+0011)  0.968 (+0.011)  0.967 (£ 0.011)
0.20  0.494 (+o0.17)  0.601 (£0039) 0.367 (00000 0.701 (0023 0.692 (+0.031) 0.673 (+003) 0.705 (£0.019 0.692 (+0031) 0.692 +0031) 0.696 (+0.029)
030 0.415 0076 0.537 (0032  0.367 (=0000) 0.596 (= 0010) 0.624 (=0.010) 0.539 (£0.028) 0.606 (£0.006) 0.624 (+0.010) 0.624 (£ 0.010) 0.615 (£ 0.011)
040 0.415 (+0076) 0.543 (+0037) 0.367 (00000 0.596 (+0010) 0.624 (+0.010) 0.539 (£0028) 0.606 (£0006) 0.624 (+0.010) 0.624 (+-0.010) 0.615 (+0.011)
0.50  0.415 0076 0.537 (0032  0.367 (=0000) 0.596 (=0010) 0.624 (=0.010) 0.539 (£0.028) 0.606 (£0.006) 0.624 (=0.010) 0.624 (£0.010) 0.615 £ 0.011)
0.60  0.409 (+0053) 0.495 (+0044) 0.367 (+0000) 0.497 (+0015 0.555 (+0.019 0.498 (+0022) 0.501 (+0022) 0.555 (+0.019 0.555 (+£0.019 0.552 (+0.027)
0.70  0.398 (x0037) 0.428 (+0030) 0.367 (=0000) 0.410 (£ 0027) 0.524 (£0044) 0.407 0051 0.407 £0.025) 0.524 = 0044) 0.524 (£0.044)  0.538 (£ 0.023)
0.80 0.398 (+0037) 0.428 (+0030)  0.367 (0000) 0.410 (£ 0027) 0.524 (0044 0407 0051 0.407 (£0.025 0.524 (+0044)  0.524 (£ 0.044)  0.538 (£ 0.023)
0.90 0.398 (+0037) 0.428 (£0030) 0.367 (00000 0.410 (=0027) 0.524 (+0.044) 0407 (z0051) 0.407 (£0025 0.524 (£0.044) 0.524 (£0.044) 0.538 (+0.023)
0.99  0.433 (0069 0.549 (+0024)  0.367 (0000) 0.637 (£ 0036) 0.659 (£0029) 0.587 (0031 0.623 (£0.027) 0.660 (0025 0.652 (£0.025 0.658 (£0.023)

Table 46: F1 scores for under mechanism SMCAR and varying p

i GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.687 x0.166) 0.713 (+0045)  0.367 (=0000) 0.972 = 0.011)  0.968 (0011) 0.867 (0023 0.970 £0011)  0.968 =001y  0.968 (xo0011)  0.967 (x0.011)
0.10  0.661 (+o0.148) 0.687 (+0013) 0.434 (0133  0.887 (0012) 0.894 (£ 0.016) 0.847 (0025 0.891 (£0.018) 0.894 (+0017)  0.890 (£ 0.021) 0.881 (£ 0.018)
0.20  0.667 (+0.157  0.675 (0036 0.367 (=0000) 0.850 (=0.017) 0.855 (+0.027) 0.820 (+0030) 0.856 (+0.025 0.847 (+0018) 0.851 (+0027) 0.851 (+0.028)
030  0.664 (0155 0.679 (+0034)  0.367 (0000 0.830 (= 0.016) 0.829 (£0032) 0.804 (0028 0.822 (£0.025) 0.828 (0032) 0.824 (£0.034) 0.827 (£ 0.038)
040 0.557 (+0152)  0.650 (00290 0.367 (00000 0.785 (0030) 0.796 (£0035) 0.769 (£0018) 0.785 (£0029) 0.785 (£0043)  0.790 (+0.039) 0.802 (= 0.032)
0.50  0.521 0152  0.633 (+0045)  0.367 (=0000) 0.757 (£ 0029) 0.758 0018y 0.735 (0019  0.748 (£0.030)  0.760 (0018  0.755 £ 0019  0.756 (£ 0.009
0.60 0.497 (+0135 0.636 (+0058) 0.367 (00000 0.742 (+0.030) 0.722 (+0034) 0.698 (£0021) 0.723 (£0038) 0.724 (£0039) 0.716 (+0031) 0.730 (+ 0.027)
0.70  0.461 0125  0.580 (0062  0.367 (=0000) 0.670 (= 0018) 0.671 (£0029) 0.631 (£0.036) 0.666 (£0.038) 0.673 (+-0.030) 0.672 (£0.028) 0.666 (£ 0.035)
0.80  0.509 (xo0.121)  0.549 (+0071)  0.367 (+:0000)  0.628 (+0053)  0.629 (£0.025 0.563 (£0070) 0.621 (£0.044) 0.623 (+0013) 0.622 (+0.025  0.625 (£ 0.037)
0.90  0.402 (x0071)  0.455 +0068) 0.367 (=0000) 0.487 (£ 0070) 0.580 (£0043) 0.447 (£0.060) 0.474 (£0.092) 0.597 (+0.026) 0.575 (£0.039)  0.580 (= 0.027)
0.99  0.367 (0000 0.372 £ 0010)  0.367 (+0000) 0.367 (£ 00000 0.486 (£0027) 0.380 (£0.019 0.367 (£0.000) 0.509 (+-0.038) 0.476 (£0.024) 0.498 (£ 0.031)

Table 47: F1 scores for under mechanism UMCAR and varying

e GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00  0.715 009 0.705 +0033)  0.414 (=0055)  0.960 (=0.009 0.953 (=0006) 0.811 (£0.030) 0.960 (£0.009 0.953 0006 0.953 (£0.006) 0.944 (x0.017)
0.10  0.572 (+0137)  0.658 (+0031)  0.412 (0057 0.827 (0050 0.851 (0043 0.769 (+0.112)  0.810 (£0.034) 0.855 (+-0.044) 0.846 (+0.047) 0.841 (£ 0.051)
0.20  0.596 (x0.165)  0.638 (+:0025)  0.379 (= 0000) 0.798 (£ 0033  0.799 (£0.0200 0.756 (£0.032) 0.788 (£0.027) 0.790 (=-0.028) 0.788 (x0.021)  0.785 (=0.021)
030  0.594 (0145 0.625 (+0014)  0.359 (= 0040)  0.771 (£ 0.037)  0.757 (0046) 0.674 (£0.133) 0.712 (£0.045  0.758 (+:0.049)  0.771 (£ 0.042)  0.718 (£ 0.047)
0.40  0.596 (+0.132)  0.625 (£0005) 0.379 (00000 0.721 (+0.055 0.702 (£0.044) 0.702 (+0055) 0.664 (+£0080) 0.697 (+0.049) 0.701 (£0.048) 0.718 (& 0.029)
0.50  0.487 0113  0.583 (+0040)  0.379 (= 0000) 0.608 (= 0067) 0.660 (£0027) 0.664 (£0053) 0.568 (£0.074) 0.659 +0.021) 0.674 (£0.022) 0.633 (£ 0.035)
0.60 0.439 (+0118)  0.558 (0034 0.379 (00000 0.572 (00770 0.617 (£0038) 0.606 (£0081) 0.469 (£0.102) 0.617 (£0038) 0.622 (+0.039) 0.622 (+ 0.062)
0.70  0.390 x0074)  0.561 (0019 0.379 (= 0000) 0.451 (0092 0.534(£0073) 0.511 (0095 0.476 £o118) 0.518 0076 0.541 (£0.089)  0.502 (£ 0.092)
0.80 0.418 (+0.123 0.499 (+0029) 0.379 (+0000) 0.459 (+0.074)  0.530 (+0.0600 0.508 (+0088) 0.392 (+0087) 0.490 (+0059) 0.528 (+0.044) 0.473 (+0.052)
0.90  0.340 x0048) 0.493 +0022)  0.379 (= 0000) 0.367 (= 0046) 0.550 (0139 0.511 00820 0.362 (£0.041) 0.532 x0.139)  0.529 0131 0.501 (£ 0.122)
0.99  0.341 (0045 0.400 (+0025)  0.379 (= 0000) 0.379 (£ 00000 0.472 (£0022) 0.380 (0003 0.384 £0.011) 0.476 (+0038) 0.485 (+0.018) 0.483 (£ 0.033)
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I GAIN USING MIM WITH COMPETITORS

Tables 48] through [51] report the performance gain observed when all competitor models described
in the main paper are equipped with the MIM mask, mirroring the setup used for GNNmim. Consis-
tently, basic imputation methods that replace missing features with a constant, such as GNNmiand
GNNmedian, show a positive and comparable performance increase when supplied with the same
mask. This suggests that the improvement comes from the model’s ability to selectively ignore the
padded or imputed feature values indicated by the mask.

Table 48: F1 gain from using mask on SYNTHETIC under mechanism U-MCAR

1 FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFI GNNzero
0.00 -0.087 -0.016  -0.145 0.002 0.003 -0.256 -0.094  -0.020 0.005
0.10 -0.094 -0.022  -0.065 0.006 0.005 -0.253 -0.080 -0.004 0.001
0.20 -0.102 -0.013  -0.005 0.002 0.004 -0.215 -0.052  -0.001 0.008
0.30 -0.078 0.002  -0.021 0.012 0.014 -0.198 -0.068  -0.008 0.015
0.40 -0.082 0.008  -0.022 0.012 0.07 -0.223 -0.075  0.006 0.025
0.50 0.011 -0.006  -0.010 0.005 0.09 -0.268 -0.079  -0.018 0.007
0.60 -0.025 -0.004  -0.029 0.004 0.013 -0.346 -0.072  -0.001 0.000
0.70 0.013 0.001 -0.044 0.005 0.004 -0.321 -0.008  0.006 0.006
0.80 -0.070 -0.008  0.009 0.002 0.015 -0.429 0.015 -0.014 0.039
0.90 -0.020 -0.017  -0.011 0.011 0.014 -0.346 0.053  0.001 0.001
0.99 0.052 -0.007  0.056 -0.020 -0.013 -0.422 0.024 -0.011 -0.013
Table 49: F1 gain from using mask on SYNTHETIC under mechanism S-MCAR
1 FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFI GNNzero
0.00 -0.080 -0.016  -0.145 0.002 0.003 -0.256 -0.091 0.05 0.005
0.10 0.013 0.001  -0.077 0.03 0.04 -0.211 0.005 -0.11 -0.011
0.20 -0.018 -0.039  -0.086 0.003 0.007 -0.245 -0.019  -0.026 0.031
0.30 0.000 -0.026  -0.083 0.006 0.015 -0.234  -0.013 -0.015 0.016
0.40 0.010 -0.034  -0.012 0.002 0.019 -0.185 -0.014  -0.018 0.024
0.50 -0.062 -0.048  0.005 0.006 0.016 -0.207 -0.036  -0.039 0.033
0.60 -0.045 -0.028  -0.038 0.018 0.032 -0.161 0.001  -0.026 0.038
0.70 0.009 -0.007  -0.025 0.011 0.025 -0.153 -0.015 -0.033 0.064
0.80 0.010 -0.011  -0.046 0.011 0.02 -0.136 -0.002  0.004 0.029
0.90 -0.045 0.003  -0.018 0.002 -0.002 -0.071 0.043  -0.000 -0.019
0.99 0.128 -0.024  0.074 0.002 -0.015 0.048 0.033  -0.025 -0.011
Table 50: F1 gain from using mask on SYNTHETIC under mechanism LD-MCAR

o FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.073 -0.016  -0.145 0.002 0.003 -0.256  -0.094 -0.020 0.005
0.10  -0.047 0.104  -0.012 0.026 0.095 -0.222  -0.014 0.097 -0.08
0.20  -0.105 -0.078  -0.081 0.004 0.075 -0.251 -0.092 -0.067 0.081
0.30  -0.106  -0.119 -0.106 0.015 0.101 -0.331 -0.091 -0.118 0.133
0.40 0.014 -0.044  -0.049 0.015 0.039 -0.337 -0.054 -0.033 0.098
0.50 0.080 -0.002  -0.004 0.015 0.002 -0.362 0.027 0.003 0.077
0.60 -0.079 -0.073  -0.068 0.004 0.081 -0.386 -0.046 -0.069 0.139
0.70 -0.111 -0.084  -0.034 0.001 0.070 -0.423 -0.039 -0.060 0.139
0.80 0.001 -0.084  -0.074 0.001 0.085 -0.422 -0.056 -0.086 0.130
0.90 -0.067 -0.090  -0.066 0.001 0.096 -0.439 0.023 -0.072 0.143
0.99 0.046 0.037  -0.054 0.007 0.014 -0.359 0.025 0.039 0.020
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Table 51: F1 gain from using mask on SYNTHETIC under mechanism FD-MNAR

o FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.080 -0.018  -0.141 0.002 0.003 -0.256 -0.081 -0.018 0.005
0.10 -0.035 -0.006  -0.057 0.007 0.013 -0.216 -0.002 -0.001 0.014
0.20 0.018 0.015 0.024 0.06 0.005 -0.193 -0.012 -0.009 -0.005
0.30 0.021 0.002  -0.005 0.002 0.007 -0.138 0.015 0.016 -0.018
0.40 0.001 -0.007  -0.031 0.006 0.011 -0.186 -0.032 0.003 0.021
0.50 -0.025 -0.011  -0.020 0.008 0.013 -0.208 -0.009 -0.007 0.022
0.60 0.011 0.006  -0.019 0.012 0.008 -0.121 0.030 0.013 0.013
0.70 0.022 0.029 0.004 0.000 0.003 -0.063 0.044 0.013 0.012
0.80 0.010 0.013  -0.010 0.002 0.001 -0.006 -0.017 0.033 0.020
0.90 0.053 0.032  -0.032 0.005 0.011 0.048 -0.023 0.020 0.018
0.99 0.156 0.002  -0.008 0.001 0.010 -0.015 0.006 -0.003 0.007

Table 52: F1 gain from using mask on SYNTHETIC under mechanism CD-MNAR

o FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.078 -0.016  -0.145 0.002 0.003 -0.256 -0.091 -0.020 0.005
0.10 -0.025 -0.002  -0.060 0.004 0.010 -0.239 -0.019 -0.005 0.001
0.20 0.023 0.006  -0.003 0.004 0.002 -0.202 -0.029 0.004 0.001
0.30 -0.005 0.017  -0.004 0.009 0.007 -0.121 -0.030 -0.006 0.023
0.40 -0.045 0.017  -0.015 0.014 0.017 0.005 -0.024 0.021 0.020
0.50 -0.035 0.010 0.001 0.048 0.010 -0.035 -0.042 0.009 0.036
0.60 0.054 0.036  -0.011 0.019 0.015 -0.111 -0.047 0.073 0.037
0.70 0.038 0.051 0.001 0.025 0.028 -0.064 0.031 0.072 0.026
0.80 0.045 0.046 0.047 0.017 0.011 -0.028 -0.021 0.086 0.037
0.90 0.136 0.033 0.039 0.011 0.021 -0.009 -0.047 0.075 0.037
0.99 0.098 -0.041  0.057 0.017 0.015 -0.050 0.044 0.013 0.018
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