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ABSTRACT

Handling missing node features is a key challenge for deploying Graph Neural
Networks (GNNs) in real-world domains such as healthcare and sensor networks.
Existing studies mostly address relatively benign scenarios, namely benchmark
datasets with (a) high-dimensional but sparse node features and (b) incomplete
data generated under Missing Completely At Random (MCAR) mechanisms. For
(a), we theoretically prove that high sparsity substantially limits the information
loss caused by missingness, making all models appear robust and preventing a
meaningful comparison of their performance. To overcome this limitation, we
introduce one synthetic and three real-world datasets with dense, semantically
meaningful features. For (b), we move beyond MCAR and design evaluation
protocols with more realistic missingness mechanisms. Moreover, we provide a
theoretical background to state explicit assumptions on the missingness process
and analyze their implications for different methods. Building on this analysis,
we propose GNNmim, a simple yet effective baseline for node classification with
incomplete feature data. Experiments show that GNNmim is competitive with re-
spect to specialized architectures across diverse datasets and missingness regimes.

1 INTRODUCTION

Learning with missing features is a pervasive and often unavoidable challenge in many real-world
machine learning applications, such as healthcare (Braem et al., 2024; Mirkes et al., 2016), IoT
sensor networks (Faizin et al., 2019; Okafor & Delaney, 2021; Agbo et al., 2022), and recommender
systems (Marlin & Zemel, 2009; He et al., 2017; Marlin et al., 2011). This issue naturally extends to
Graph Neural Networks (GNNs), which are increasingly applied in domains where missing features
are common. In this work, we focus specifically on the problem of missing node feature data, a
setting that has received growing attention in the GNN literature (Um et al., 2023; Yun et al., 2024;
Rossi et al., 2022; Guo et al., 2023; Taguchi et al., 2021; Errica & Niepert, 2024; Um et al., 2025)

A wide range of methods have been proposed, from simple mean imputation (You et al., 2020) to
architectures that jointly impute and predict during training (Guo et al., 2023). These approaches are
typically evaluated by synthetically removing features from widely used node classification bench-
marks such as CORA, CITESEER, and PUBMED (Yang et al., 2016). However, despite the growing
number of models, little attention has been paid to the validity of these evaluation protocols. We
argue that two critical issues remained largely unaddressed: (i) the datasets used for evaluation, and
(ii) the missingness mechanisms applied to generate incomplete features.

Regarding (i), existing evaluations rely on datasets with extremely sparse node features, typically
bag-of-words representations where the vast majority of entries are zero. This raises a crucial ques-
tion: can robustness to missing features be meaningfully assessed when most features are already
absent? Our theoretical analysis shows that in highly sparse settings, the mutual information be-
tween features and labels is barely affected by additional missingness, except at extremely high
missing rates. Empirically, we find that all the existing GNN-based methods maintain high perfor-
mance across a wide range of missingness levels on these benchmarks, with performance degrading
only when more than 90% of entries are removed. These results cast serious doubt on the ability of
current benchmarks to meaningfully assess the robustness of the models.
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To move beyond this limitation, we identify a set of datasets, one synthetic and three real-world, with
dense, raw features that are naturally low-dimensional and semantically meaningful (e.g., physical
measurements). These datasets offer a more realistic setting for studying GNNs under feature miss-
ingness. This focus on dataset quality aligns with recent calls for more careful benchmark design in
graph machine learning (Bechler-Speicher et al., 2025; Coupette et al., 2025).

Regarding (ii), the design of the missingness mechanisms used during evaluation is overly simplistic.
Most prior works consider only Missing Completely At Random (MCAR) mechanisms (Rubin, 1976;
Little & Rubin, 2019), where feature deletion is independent of the data. In practice, however, miss-
ingness is often related to the feature values or prediction target (Carreras et al., 2021; Hazewinkel
et al., 2022; Kopra et al., 2015). For example, a patient might be less likely to report their weight
if it is above a certain threshold. This corresponds to a Missing Not At Random (MNAR) mech-
anism (Rubin, 1976), in which the probability of missingness depends on the unobserved feature
value itself. A further limitation of existing evaluation protocols is the implicit assumption that the
missingness mechanism remains identical across training and test data. In practice, however, this
is often not the case: for example, training data may be historical and collected with obsolete sen-
sors prone to failures, while test data come from newer sensors with little or no missingness. To
overcome this limitation of the current evaluation procedure, we design more realistic evaluation
protocols. These include new, more representative instances of MCAR and MNAR mechanisms, as
well as train–test distribution shifts. Such conditions more accurately capture real-world deployment
challenges, where both the causes and the distributions of missing data may vary across stages.

Finally, we introduce a simple yet effective GNN model, GNNmim, based on the Missing Indicator
Method (MIM) (Van Ness et al., 2023). GNNmim augments the node feature matrix with a binary
mask indicating which features are missing. The resulting representation is processed by a standard
GNN without requiring any learned imputation. GNNmim does not rely on any assumption on the
distribution of the missingness and, despite its simplicity, it is competitive with respect to several
state-of-the-art methods showing robustness under a variety of missingness settings.

Contributions. To summarize, our main contributions are:

1. We provide a theoretical analysis showing that the impact of missing features depends strongly
on feature sparsity, and derive an information-theoretic bound on the resulting loss.

2. We introduce one synthetic and three real-world datasets with dense, informative features, and
show experimentally that models appearing robust on sparse benchmarks fail on these datasets.

3. We propose realistic evaluation protocols, including new, more representative instances of
MCAR and MNAR mechanisms and train–test distribution shifts, and demonstrate that existing
methods are not robust to all the possible settings.

4. We introduce GNNmim, a simple yet effective method, and show that it is competitive with
respect to existing approaches across datasets, missingness types, and distribution shifts.

The core aim of this paper is to redefine how research on GNNs with missing features should move
forward. We show that apparent progress in this area has been largely constrained by the evaluation
itself: existing benchmarks rely on sparse, weakly informative features and overly benign missing-
ness mechanisms, making current results difficult to interpret and obscuring the true robustness of
existing methods. By introducing dense, semantically meaningful datasets, realistic missingness
protocols, and a clear theoretical framing, we establish a foundation that enables more meaningful
and reliable research directions. Within this improved evaluation setup, GNNmim is intentionally
simple: once evaluation artifacts are removed, a lightweight, assumption-free model can outper-
form more complex approaches. Thus, GNNmim serves as an effective baseline that naturally arises
from the identification and analysis of the limitations of the current evaluation setup. The broader
contribution of this work lies in establishing a principled and realistic evaluation framework, with
GNNmim serving as a clear baseline within it.

2 LEARNING FROM INCOMPLETE GRAPH DATA

We consider an attributed graph G = (V,E,X,Y), where V = {1, . . . , n} is the set of nodes,
E ⊆ V × V is the set of edges represented by the adjacency matrix A ∈ {0, 1}n×n, X ∈ Rn×d is
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the node feature matrix with entry Xij denoting feature j of node i, and Y ∈ Yn is the vector of
node labels.

When data is incomplete, some entries of X are unobserved. Let M ∈ {0, 1}n×d be the missingness
indicator matrix that has Mij = 1 if xij is missing and 0 otherwise. In our setting, the missingness
indicator matrix M is directly and deterministically constructed from the observed dataset. Missing
values are explicitly marked in the raw data, so the mask M is uniquely defined and contains no
uncertainty. Let Xobs be the elements of X for which Mij = 0, and Xmiss the elements for which
Mij = 1. The observed data from which we learn then can be written as Xobs,Y,M. We note
that we here make the assumption that Y is fully observed in the (training) data, and that there is no
uncertainty about the graph structure E. The distribution of the data then can be parameterized as

Pθ,γ,λ(X
obs,Y,M) =

∫
Xmiss

Pθ(X)Pγ(Y|X)Pλ(M|X,Y), (1)

where X = Xobs ∪Xmiss, Pθ is the node feature distribution, Pγ is the conditional label distribution,
and Pλ represents the missingness mechanism. Though not explicitly reflected in the notation, all
these distributions will usually depend on the underlying graph structure, which will typically induce
dependencies among the rows of X, and among the elements of Y.

A GNN for node classification with complete feature data is a model Pγ(Y|X) with γ the weights
of the GNN. For classification with incomplete data we need to learn the conditional model

Pθ,γ,λ(Y|Xobs,M) =

∫
Xmiss

Pθ,γ,λ(Y |X,M)Pθ,γ,λ(X
miss|Xobs,M). (2)

The classical missing (completely) at random (M(C)AR) assumptions (Rubin, 1976) simplify this
problem. The original M(C)AR assumptions have been formulated in the context of estimating the
parameter of a generative distribution. It has been observed that more specialized variations of the
original definitions can be more pertinent in the context of classification (Ding & Simonoff, 2010;
Ghorbani & Zou, 2018). In the following we give formulations of M(C)AR for classification that
provide the foundations for our theoretical analysis.
Definition 1. The joint distribution Pθ,γ,λ is feature-MAR, if

Pγ,λ(M|Xmiss,Xobs) = Pθ,γ,λ(M|Xobs). (3)

It is label-MAR if
Pλ(M|X,Y ) = Pγ,λ(M|X). (4)

The distribution is MCAR, if
Pλ(M|X,Y ) = Pθ,γ,λ(M). (5)

In (3)-(5) all probability functions are indexed with the parameters they actually depend on. Note,
for example, that the conditional of M given X requires marginalization over Y, and thereby also
depends on the parameter γ. MCAR implies both feature- and label-MAR.

The simplest realization of an MCAR mechanism is uniform missingness (U-MCAR) in which en-
tries of X are independently missing with a fixed missingness probability µ. This can be generalized
by defining a missingness probability matrix µ ∈ [0, 1]n×d specifying potentially different missing-
ness probabilities for different entries of X.

MAR assumptions allow us to eliminate the missingness model Pλ from (2). The following propo-
sition states this classical ignorability result in a version most suitable in our context.
Theorem 1. If Pθ,γ,λ is feature-MAR and label-MAR, then (2) simplifies to∫

Xmiss
Pγ(Y |X)Pθ(X

miss|Xobs). (6)

Intuition. Under feature-MAR and label-MAR, the missingness pattern carries no predictive in-
formation. The learning problem reduces to the usual classification task with imputed features,
meaning that methods explicitly modeling the missingness mask do not gain theoretical advantage
in this regime.
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The proof is straightforward by rewriting the two factors on the right of (2) using Bayes’s rule,
and plugging in (3) and (4). Formulation (6) still poses two major challenges: it requires a fea-
ture distribution model Pθ when in reality we only are interested in the conditional model Pγ , and
the integration over Xmiss is usually intractable (Ipsen et al., 2022). The simplest approach to ad-
dress these problems is to approximate the integral (6) by evaluating Pγ(Y |X) at a single imputed
value X = impute(Xmiss) (Rubin, 1988). This does not require an explicit model for Pθ, but re-
lies on the implicit assumption that the imputed value impute(Xmiss) has high probability under
Pθ. A simple example is mean-imputation, in which missing values of a given feature are filled
with the mean of that feature; we will refer to this approach combined with a standard GNN as
GNNmi (You et al., 2020). In addition, we also consider zero-imputation, where missing entries are
replaced with zeros (GNNzero), and median-imputation, where they are filled with the feature me-
dian (GNNmedian). Similarly, PCFI (Um et al., 2023) does not require an explicit model for Pθ;
it introduces a confidence-guided imputation scheme where pseudo-confidence is derived from the
shortest-path distance to observed features, and combines channel-wise diffusion with inter-channel
propagation to recover a single estimate of X. GOODIE (Yun et al., 2024) approximates the inte-
gral in (6) using a combination of label propagation and FP (Rossi et al., 2022), which propagates
features by minimizing a Dirichlet energy function, whereas FairAC (Guo et al., 2023) does so by
aggregating, via an attention mechanism, the representations from neighbors of nodes with missing
features.

Other methods explicitly model Pθ. The GCNmf approach of Taguchi et al. (2021) introduces a
model of Pθ in the form of a mixture of Gaussians, and approximates (6) by Pγ(Y , |,Eθ[L1 | Xobs]),
where Eθ[L1 | Xobs] is the expected activation at the first layer of the GNN defining Pγ . Finally,
GSPN (Errica & Niepert, 2024) explicitly models Pθ with graph-induced sum–product networks, so
missing features are handled by exact marginalization.

An alternative to all these approaches that work entirely with models Pθ, Pγ for the (complete) data
distribution is to include the missingness mechanism explicitly in a model Pγ+(Y |Xobs,M), that
directly captures the left side of (2). We here write γ+ for the parameters of the model to emphasize
that it can be structurally similar to a model Pγ(Y |X), but different in that it has the missingness
matrix M as an explicit extra input.

This modeling strategy, often referred to as the Missing Indicator Method (MIM), has been studied
in the context of supervised learning with missing features (Van Ness et al., 2023), but, to the best of
our knowledge, it has not been explored in the context of graph machine learning. In this work, we
propose a GNN-based instantiation of the MIM framework, which we call GNNmim. In GNNmim, we
implement Pγ+ as a GNN, we construct the matrix zero-pad(Xobs) in which missing values are filled
in by zeros, and use the concatenation zero-pad(Xobs)[i, :]||M [i, :] as the feature vector for node i
in an otherwise standard GNN architecture1. GNNmim does not rely on any MAR assumptions, and
thereby can be expected to perform more robustly than other approaches under different missingness
mechanisms. As our experiments in Section 5 show, this simple yet principled strategy yields robust
performance across a wide variety of missingness scenarios. In Appendix I, we provide additional
analyses where the missing-feature mask is applied not only to zero imputation but also to the
existing models presented in this section.

3 ARE WE EVALUATING GNNS FOR MISSING FEATURES ON THE RIGHT
DATA?

A rigorous evaluation of GNNs under feature missingness requires not only well-designed models,
but also datasets that are suitable for the problem at hand. Recent work in the graph learning commu-
nity has emphasized the importance of dataset suitability in benchmarking (Bechler-Speicher et al.,
2025; Coupette et al., 2025). In the context of learning with missing node features, dataset suitability
is even more critical. Models designed to handle missingness should be tested on datasets where the

1We deliberately here say “zero-padding” rather than “zero-imputation”. The latter would imply that we
view the zeros as somehow reasonable stand-ins for the true unobserved values. We view the zeros as arbitrary
placeholders. Ideally, the trained model will learn to ignore these values when the corresponding missingness
indicator is 1.
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presence of missing features meaningfully affects model performance and where reasoning under
missingness is necessary and non-trivial.

The current standard practice in the literature is to evaluate state-of-the-art methods on a set of
widely-used benchmarks for node-level tasks, namely, CORA, CITESEER, PUBMED, AMAZON-
COMPUTERS, and AMAZONPHOTO. In these datasets, node features are constructed as follows:
CORA, CITESEER and PUBMED use binary bag-of-words features, while AMAZONCOMPUTERS
and AMAZONPHOTO use TF-IDF vectors (Aizawa, 2003). These feature matrices are typically very
sparse, which we quantify using the notion of feature sparsity, formally defined as below:
Definition 2 (Feature Sparsity). Given a node feature matrix X ∈ Rn×d, the feature sparsity is
defined as the proportion of zero entries: s(X) = 1

nd

∑n
i=1

∑d
j=1 1[Xij = 0], where 1[·] denotes

the indicator function.

Table 1: Feature sparsity across benchmarks
and custom datasets.

Dataset #Features Sparsity ↓ Type of features
CORA 1433 0.9873 BoW (binary)
CITESEER 3703 0.9915 BoW (binary)
PUBMED 500 0.8998 BoW (binary)

SYNTHETIC 5 0.0000 Gaussian
AIR 7 0.1615 Raw
ELECTRIC 5 0.2000 Raw
TADPOLE 15 0.0000 Raw

The sparsity values of the benchmark datasets are
reported in Table 1 (first three rows). All datasets
exhibit substantial sparsity, with more than 50%
of features being zero across all the datasets, with
Citeseer reaching an extreme sparsity level of ap-
proximately 99%. This raises a crucial question:
does it make sense to evaluate models designed to
handle missing features on datasets where the fea-
ture representations are already extremely sparse?
In such sparse settings, a high probability of miss-
ingness is needed to induce a meaningful infor-
mation loss. Otherwise, the observed model per-
formance under missingness may reflect artifacts
of the dataset rather than the robustness of the method. We formalize this observation in the follow-
ing theorem.
Theorem 2. Let X ∈ Rn×d and Y ∈ Yn be random variables, M ∈ {0, 1}n×d be a missingness
mask and Xobs denotes the observed (incomplete) data. We encode the pair (Xobs,M) with the
random variable X̃ with

X̃ij =

{
Xij , Mij = 0,

?, Mij = 1.

Let the change in the information be defined as ∆ := I(Y; X̃) − I(Y;X), where I(·; ·) denotes
the mutual information. Then,

1. If the missingness is label-MAR, then ∆ ≤ 0.

2. If X ∈ {0, 1}n×d and the missingness is U-MCAR with missingness probability µ, and
s(X) is the sample sparsity as in Definition 2, then

− ndµh2

(
E[s(X)]

)
≤ ∆ ≤ 0,

where h2(u) = −u log u− (1− u) log(1− u).

Intuition. When node features are extremely sparse (e.g., BoW/TF-IDF), the information loss
induced by missingness is provably negligible unless missingness is extremely high. As a result,
existing sparse benchmarks inherently make all methods appear robust, preventing meaningful com-
parison.

The proof can be found in Appendix A. Theorem 2 demonstrates that when feature sparsity is high,
a very large amount of missingness is required to produce a meaningful loss of information. This
confirms that such benchmarks do not meaningfully differentiate between approaches, casting doubt
on their suitability for evaluating GNNs under feature missingness. As a consequence, we argue for
the use of datasets where missingness poses a real challenge. In particular, we introduce a set of
four alternative datasets, one new synthetic and three real-world. More details about the datasets are
reported in Appendix C.
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(1) A synthetic dataset tailored to controlled missingness. We construct a dataset based on a
Barabási–Albert graph topology, where node features are sampled from a Gaussian distribution.
Node labels are assigned using a fixed two-layer GCN applied to the full, complete features, en-
suring that a GNN model has the capacity to achieve high classification accuracy in the absence of
missingness. This controlled setting provides a testbed for isolating the effects of missingness under
varying sparsity, while maintaining a well-defined ground truth.

(2) Real-world datasets with semantically meaningful features. We also advocate for the use
of real datasets in which node features correspond to raw, observable properties: 1) AIR (Zheng
et al., 2015), a sensor network dataset from IoT applications, where node features correspond to en-
vironmental measurements and node labels indicate sensor status categories; 2) ELECTRIC (Birch-
field et al., 2016; Baek & Birchfield, 2023), a dataset of interconnected electrical sensors, with
real-valued measurements as features and operational condition classification as the target task; 3)
TADPOLE (Zhu et al., 2019), a medical graph dataset derived from the TADPOLE challenge, where
each node represents a patient, node features include clinical and imaging biomarkers, and the goal
is to predict diagnostic labels.

Table 2: Evaluation of P1 (feature-structure separability) and P2 (feature-structure complementar-
ity) on our custom datasets. Each cell reports the KS statistic and associated p-value for separability
under six perturbation settings. γ1,1 indicates the feature-structure complementarity. Datasets satis-
fying each property (as per Coupette et al. (2025)) are marked with ✓.

Dataset Empty Feat. Random Feat. Complete Feat. Empty Graph Random Graph Complete Graph γ1,1 P1 P2
SYNTHETIC 1.00 (8.80e-62) 1.00 (8.80e-62) 1.00 (1.93e-14) 1.00 (1.03e-17) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.62 ✓ ✓
AIR 1.00 (8.80e-62) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.67 (1.53e-30) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.68 ✓ ✓
ELECTRIC 1.00 (8.80e-62) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.98 (1.90e-57) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.69 ✓ ✓
TADPOLE 1.00 (8.80e-62) 0.90 (5.31e-44) 0.61 (4.22e-18) 0.77 (1.53e-30) 1.00 (8.80e-62) 1.00 (8.80e-62) 0.64 ✓ ✓

Both the synthetic and real-world datasets exhibit low feature sparsity (Table 1), a necessary con-
dition for studying missingness. However, sparsity alone is not sufficient: suitable datasets must
also ensure that both features and structure are task-informative and interact non-trivially. We assess
this using the RINGS framework (Coupette et al., 2025), which measures performance separability
via KS statistics under perturbations (e.g., removing all edges or replacing features with noise), and
features-topology complementarity via the normalized Gromov–Wasserstein distance γ1,1 between
the structural and feature-induced metric spaces (values above 0.5 are considered satisfacotry). As
shown in Table 2, all proposed datasets satisfy both mode complementarity and performance sepa-
rability. Combined with their low feature sparsity, these properties make the datasets more suitable
than traditional benchmarks for evaluating robustness to incomplete node attributes.

While the real-world datasets we introduce have moderate numbers of nodes and features (Table
3), they satisfy the three key requirements for evaluating robustness to missing node attributes: (i)
dense, semantically meaningful, low-dimensional features; (ii) non-trivial predictive signal under
complete information; and (iii) complementary and separable contributions of features and struc-
ture. To the best of our knowledge, no existing large-scale graph datasets simultaneously meet
all these criteria. This limitation is structural to current benchmarks and has been noted in recent
work (Bechler-Speicher et al., 2025). Importantly, the effect of missingness on model performance
does not depend on graph size: in Appendix E we replicate our experiments on a larger variant of
the SYNTHETIC dataset (both in number of nodes and features) and observe trends fully consistent
with those reported in the main analysis.

4 BEYOND UNIFORM MISSINGNESS

Dataset suitability is only one dimension of the evaluation problem. A second, equally important
factor is the choice of the missingness mechanism under which models are tested. In the litera-
ture, nearly all prior works adopt a masking scheme based on U-MCAR mechanism. In other works
(Taguchi et al., 2021; Um et al., 2023), a different variant is used where entire feature vectors of
randomly selected nodes are masked. We denote this as Structural MCAR (S-MCAR). These two
settings have become the default evaluation standards in the context of graph learning. We argue
that more challenging and realistic missing data patterns need to be considered for a more infor-
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mative evaluation of different methods’ capabilities. We first introduce a more challenging MCAR
mechanism:

Label–Dependent MCAR (LD-MCAR). Missingness here is applied at the feature (column) level,
assigning higher missingness probability to features Xj that are more informative for the label, as
measured by the mutual information I(Xj ;Y ). Then, each entry Xij is masked independently with
probability P (Mij = 1) = ρ · I(Xj ;Y ), where ρ ∈ [0, 1] is a scaling factor selected to achieve
the overall desired expected missingness rate across the dataset. Importantly, this mechanism is still
MCAR: the probability that a specific entry is missing does not depend on the actual value of the
feature or the label, but only on the mutual information of the feature column and the label.

Outside of graph learning, authors have also emphasized the importance of MAR and MNAR mech-
anisms that reflect more realistically the kinds of missingness encountered in real-world applica-
tions(Ghorbani & Zou, 2018; Mohan & Pearl, 2021; Jaeger, 2022; Van Ness et al., 2023). In many
practical scenarios, missing features are indeed related to their values or to the prediction target. For
instance, a patient might be less likely to report their weight if it is above a certain threshold. This
corresponds to a Missing Not At Random (MNAR) mechanism (Rubin, 1976). Testing GNN mod-
els exclusively under MCAR conditions thus fails to capture the challenge of more realistic settings.
We therefore propose two different MNAR scenarios:

Feature-Dependant MNAR (FD-MNAR). In this mechanism the probability of missingness de-
pends on the value of the feature itself. In particular, we assume that extreme feature values, e.g.,
high quantiles, are more likely to be missing, as often observed in real-world settings such as health-
care, where abnormal values may be withheld. Formally, for each feature column j, let q(τ)j denote
the τ -quantile of the observed values. We define the missingness probability for entry Xij as:

P (Mij = 1) =

{
µhi if Xij ≥ q

(τ)
j ,

µlo otherwise,

with µhi > µlo and both chosen selected to match a desired overall missingness rate.

Class–Dependent MNAR (CD-MNAR). In this mechanism, features whose values are informative
for the label, are more likely to be omitted. For example, in medical datasets, patients may be less
likely to disclose whether they smoke, a feature strongly associated with the label indicating a history
of heart attack. To identify such dependencies, we train a decision tree classifier in a one-vs-rest
setting, using the observed features to predict class membership. For each class c ∈ {1, . . . , C}, we
extract decision paths that lead to leaf nodes predicting c. These paths define a set of feature-value
conditions that contribute to the prediction of class c, which we denote as Rc. Let Condc(j,Xij)
be a predicate that evaluates to true if the value of feature j for node i satisfies at least one condition
in Rc. Then, the missingness probability is defined as:

P (Mij = 1 | Yi = c) =

{
µhi if Condc(j,Xij) = true,
µlo otherwise,

where µhi > µlo, and both are selected to meet a target overall missingness rate.

In almost all existing experimental studies the missingness mechanism is the same in training and
test data. An exception is (Ding & Simonoff, 2010), where two types of test data are considered:
data that underlies the same missingness as the training data, and complete data. We consider a
possible distribution shift in Pλ(M |X,Y ) to be an important concern for two reasons: first, it
represents a realistic scenario in practical applications. For instance, training data may consist of
historical records collected over time, which may contain missing features due to manual entry or
outdated systems. In contrast, test data are collected in real time with modern infrastructure, and
all feature values are available. This results in a shift from incomplete to complete data between
training and testing. The second reason for considering distribution shifts in Pλ is to assess a pos-
sible weakness of GNNmim: as a model of the form Pγ+(Y |Xobs,M) it explicitly incorporates a
model of the missingness mechanism, and thereby could be expected to be less robust under miss-
ingness distribution shifts than models that are based on MAR assumptions and (6) (which would
be expected to be robust as long as the mechanism is feature and label MAR in both training and
test data). We therefore define two evaluation regimes (R1 and R2) with and without a shift in the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

missingness process. Let µtr(M | X,Y) and µte(M | X,Y) denote the missingness distributions
in training and testing, respectively.

R1: i.i.d. missingness (no shift). The same missingness mechanism (U-MCAR, S-MCAR, LD-
MCAR, FD-MNAR, CD-MNAR) and rate are applied to training and test data, i.e., µtr = µte.

R2: missingness distribution shift (train ̸= test). In this setting, we evaluate combinations of
a training missingness mechanism Mtr ∈ {FD-MNAR,CD-MNAR} with missingness probability
µtr = 50%, and a test missingness mechanism Mte = U-MCAR with missingness probability µte ∈
{0%, 25%, 50%}.

5 EXPERIMENTAL RESULTS

We conduct experiments on node classification task using the datasets introduced in Section 3 and
the more realistic missingness protocols described in Section 4. We compare a range of GNN-based
models specifically designed to handle missing features described in Section 2, namely GNNzero,
GNNmedian, GNNmi, GCNmf, GOODIE, GSPN, PCFI, FP, and FairAC as well as our proposed
method, GNNmim. Following the evaluation protocol adopted by these competitors, we perform all
main experiments in a transductive setting. However, we note that GNNmimcan also be applied in
an inductive scenario; for completeness, in Appendix H we report additional experiments conducted
under an inductive setting. For all the experiments, we decide to treat the specific GNN layer type in
GNNmimas a hyperparameter. Full implementation details and hyperparameter settings are provided
in Appendix D. The code is provided in the supplementary material. The experiments are designed
to answer the following research questions:

• Q1: Do the datasets of Section 3 provide new and complementary insights regarding the robust-
ness of GNNs under varying rates of missing features?

• Q2: How robust are different models for handling incomplete features to different types of
missingness?

• Q3: Do different models maintain their performance under distribution shifts in missingness
between training and test sets?

Q1: To assess the impact of the dataset on evaluating robustness under different missingness rates,
we compute the F1 score for each model as a function of the missingness rate µ. Figure 1 re-
ports these curves under Structural MCAR (S-MCAR) under R1 regimes (see Section 4) for both the
standard benchmarks (CORA, CITESEER, PUBMED) and the datasets we propose (ELECTRIC, AIR,
TADPOLE, and SYNTHETIC). Results for other missingness mechanisms lead to equal conclusions
and are included in Appendix B.

On CORA, CITESEER, PUBMED, all models appear robust, as their F1 score remains high across
a wide range of µ, and only drops at very high missingness rates (85-90%). In contrast, on our
proposed datasets, performance drops much earlier, often already at low missingness rates. On
TADPOLE, the degradation is less pronounced at low µ overall; however, two models, GOODIE and
GSPN, notably diverge from the rest, showing much weaker performance even with limited miss-
ingness.

These results show that evaluating robustness solely on traditional benchmarks may lead to overly
optimistic conclusions on the robustness of the methods. To properly assess the behavior of GNNs
under different missing rates, it is essential to use more challenging datasets.

Q2: To assess robustness across mechanisms, we compute the area under the F1–missingness curve
(AUC) for each dataset, model, and missingness mechanism under R1 regimes (complete F1 results
by model, dataset, missingness rate, and mechanism are reported in Appendix F).

Figure 2 reports the AUC scores as heatmaps, where lighter colors indicate better model performance
for each mechanism within each dataset. We observe that many existing methods exhibit strong sen-
sitivity to the missingness type. For example, FairAC performs well under S-MCAR settings on
ELECTRIC (0.870 AUC, ranking first among all the models), but its performance degrades signif-
icantly under FD-MNAR on SYNTHETIC (0.641, ranking second-last). Similarly, GOODIE ranks
highest on SYNTHETIC with uniform missingness (0.771), yet drops to 0.587 under CD-MNAR.
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Figure 1: Mean F1-score across 5 runs as a function of the missingness probability µ on the pro-
posed datasets and established benchmarks. Each panel reports the performance of all models on a
specific dataset under the S-MCAR setting. The complete tables for all missingness mechanisms are
provided in Appendix B.

These results confirm that performance under U-MCAR is not predictive of robustness under more
realistic FD-MNAR scenarios. This calls into question the validity of evaluations based only on
uniform or structure-based missingness. Our proposed method, GNNmim, exhibits consistently high
AUC across all missingness types and datasets. These results suggest that broad robustness to diverse
and realistic missingness mechanisms is achievable, even with lightweight models that do not rely
on any MAR assumptions.
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Figure 2: Column-normalized heatmaps showing the AUC (area under the F1 vs. missingness rate µ
curve) for each model, dataset, and missingness mechanism. Higher values (lighter colors) indicate
better overall robustness across increasing levels of missingness.

Q3: To evaluate model robustness under distribution shifts in missingness, we compute the F1 score
(mean ± standard deviation over 5 runs) for each dataset, model, and shift configuration of the R2
regime (Section 4). Full results are in Appendix G; Figure 3 shows a representative subset of the
best-performing models from Q2 (GNNmim, GNNmi, GCNmf, FP, PCFI), trained on FD-MNAR
with µtr = 50% and tested on U-MCAR with µte ∈ {0%, 25%, 50%}. Similar results hold for other
models and for the case where the training missing mechanisms is CD-MNAR (Appendix G).

Each panel shows one dataset, with F1 on the x-axis, models on the y-axis, and color indicating µte
(yellow 0%, blue 25%, green 50%). Dots show mean F1, horizontal lines the standard deviation,
and the red vertical bar marks the results obtained in the regime R1 with FD-MNAR mechanism on
both training and test and µtr = µte = 50%. We observe two findings.

1. Distribution shift generalization is challenging: in almost all cases, performance under R2 test
conditions U-MCAR 25% is lower than in the i.i.d. R1 setting, despite the test missingness
being less severe. This is visible when the blue dot (µte = 25%) lies to the left of the red
vertical bar (µtr = µte = 50%). This shows that distribution shifts in missingness create a
harder generalization challenge that is not explained solely by missingness severity. The effect
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is also dataset-dependent, further reinforcing the need to evaluate robustness under these shifts
and under different datasets.

2. GNNmim is competitive with respect to other models even under R2 conditions. Across datasets
and levels of test missingness, GNNmim tends to achieve the highest F1 scores (i.e., yellow,
blue, and green dots are consistently farther to the right). In spite of its potential vulnerability
in the R2 setting, GNNmim is seen to maintain its advantage over the alternative approaches.

0.70 0.75 0.80

FP

GNNmi

GCNmf

PCFI

GNNmim

SYNTHETIC

0.65 0.70 0.75 0.80 0.85 0.90

AIR
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ELECTRIC
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R2
µtr = 50%

µte = 0%

R2
µtr = 50%

µte = 25%

R2
µtr = 50%

µte = 50%

R1 µtr = µte = 50%

Figure 3: F1 scores (mean ± std over 5 runs) under distribution shifts in missingness between training
and test data. All models are trained with FD-MNAR missingness at 50%. Each panel corresponds
to a dataset; each row to a model. Colored dots represent test-time F1 under U-MCAR with varying
missingness rates: yellow = 0%, blue = 25%, green = 50%. Vertical red lines indicate the F1
achieved in the i.i.d. setting (FD-MNAR 50% at both train and test).

6 CONCLUSION AND FUTURE WORK

We revisited the problem of learning GNNs under missing node features, highlighting fundamental
limitations of current evaluation protocols, namely the reliance on benchmarks with sparse features
and oversimplified missingness mechanisms. To address these issues, we introduced new datasets
with dense, informative features and more realistic missingness patterns that go beyond MCAR,
and proposed GNNmim, a simple yet effective method that explicitly models missingness through
the missing-indicator approach. Our experiments show that GNNmim is competitive with respect to
more complex architectures across diverse datasets, missingness types, and train–test shifts. This
work calls for a shift towards more realistic evaluation settings and demonstrates that lightweight
yet principled strategies can achieve strong robustness in challenging missing-feature scenarios.

As a direction for future work, our study underscores the need for larger and more diverse bench-
marks specifically designed for missing features, aligning with recent calls for better datasets in
graph learning (Bechler-Speicher et al., 2025), and reveals that there remains substantial room for
developing models that are robust to diverse rates and types of missingness. Another promising
direction concerns the development of more realistic MNAR mechanisms, potentially incorporating
graph-specific dependencies where missingness is influenced by structural properties of the graph it-
self. Designing richer, structurally grounded MNAR processes would allow for more faithful stress-
testing of models in settings that better reflect more complex patterns.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to improve the readability of the manuscript, rephrase selected passages, and assist
in code debugging. All content was initially written by the authors, with LLMs employed solely to
enhance clarity and presentation.

ETHICS STATEMENT

Our study does not involve human subjects or personally identifiable data. The datasets used are
publicly available benchmarks or synthetically generated. We follow the ICLR Code of Ethics and
note that our work raises no foreseeable ethical concerns beyond those inherent to the general study
of machine learning with missing data.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. Details of the experimental setup are pro-
vided in Section 5, with dataset descriptions in Appendix 3 and complete training configurations
in Appendix D. All proofs are included in Appendix A. Anonymous source code to reproduce our
experiments is provided in the supplementary material.

REFERENCES

Benjamin Agbo, Hussain Al-Aqrabi, Richard Hill, and Tariq Alsboui. Missing data imputation in
the internet of things sensor networks. Future Internet, 14(5):143, 2022.

Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Information Processing &
Management, 39(1):45–65, 2003.

Jongoh Baek and Adam B Birchfield. A tuning method for exciters and governors in realistic syn-
thetic grids with dynamics. In 2023 North American Power Symposium (NAPS), pp. 1–6. IEEE,
2023.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine Sir-
audin, Viktor Zaverkin, Michael M Bronstein, Mathias Niepert, Bryan Perozzi, et al. Position:
Graph learning will lose relevance due to poor benchmarks. arXiv preprint arXiv:2502.14546,
2025.

Adam B Birchfield, Ti Xu, Kathleen M Gegner, Komal S Shetye, and Thomas J Overbye. Grid struc-
tural characteristics as validation criteria for synthetic networks. IEEE Transactions on power
systems, 32(4):3258–3265, 2016.

Carlijn IR Braem, Utku S Yavuz, Hermie J Hermens, and Peter H Veltink. Missing data statistics
provide causal insights into data loss in diabetes health monitoring by wearable sensors. Sensors,
24(5):1526, 2024.

Giulia Carreras, Guido Miccinesi, Andrew Wilcock, Nancy Preston, Daan Nieboer, Luc Deliens,
Mogensm Groenvold, Urska Lunder, Agnes van der Heide, Michela Baccini, et al. Missing not at
random in end of life care studies: multiple imputation and sensitivity analysis on data from the
action study. BMC medical research methodology, 21(1):13, 2021.

Corinna Coupette, Jeremy Wayland, Emily Simons, and Bastian Rieck. No metric to rule them
all: Toward principled evaluations of graph-learning datasets. arXiv preprint arXiv:2502.02379,
2025.

Yufeng Ding and Jeffrey S Simonoff. An investigation of missing data methods for classification
trees applied to binary response data. Journal of Machine Learning Research, 11(1), 2010.

Federico Errica and Mathias Niepert. Tractable probabilistic graph representation learning with
graph-induced sum-product networks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=h7nOCxFsPg.

11

https://openreview.net/forum?id=h7nOCxFsPg


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rahmat Nur Faizin, Mardhani Riasetiawan, and Ahmad Ashari. A review of missing sensor data
imputation methods. In 2019 5th International Conference on Science and Technology (ICST),
volume 1, pp. 1–6. IEEE, 2019.

Amirata Ghorbani and James Y Zou. Embedding for informative missingness: Deep learning with
incomplete data. In 2018 56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 437–445. IEEE, 2018.

Dongliang Guo, Zhixuan Chu, and Sheng Li. Fair attribute completion on graph with missing
attributes. arXiv preprint arXiv:2302.12977, 2023.

Audinga-Dea Hazewinkel, Jack Bowden, Kaitlin H Wade, Tom Palmer, Nicola J Wiles, and Kate
Tilling. Sensitivity to missing not at random dropout in clinical trials: Use and interpretation of
the trimmed means estimator. Statistics in Medicine, 41(8):1462–1481, 2022.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
laborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. How to deal with missing data in
supervised deep learning? In 10th International Conference on Learning Representations, 2022.

Manfred Jaeger. The aim and em algorithms for learning from coarse data. Journal of Machine
Learning Research, 23(62):1–55, 2022.

Juho Kopra, Tommi Härkänen, Hanna Tolonen, and Juha Karvanen. Correcting for non-ignorable
missingness in smoking trends. Stat, 4(1):1–14, 2015.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons,
2019.

Benjamin M Marlin and Richard S Zemel. Collaborative filtering and the missing at random as-
sumption. In Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 267–275, 2009.

Benjamin M Marlin, Richard S Zemel, Sam T Roweis, and Malcolm Slaney. Recommender systems,
missing data and statistical model estimation. In IJCAI proceedings-international joint conference
on artificial intelligence, volume 22, pp. 2686, 2011.

Eugenij Moiseevich Mirkes, Timothy J Coats, Jeremy Levesley, and Alexander N Gorban. Handling
missing data in large healthcare dataset: A case study of unknown trauma outcomes. Computers
in biology and medicine, 75:203–216, 2016.

Karthika Mohan and Judea Pearl. Graphical models for processing missing data. Journal of the
American Statistical Association, 116(534):1023–1037, 2021.

Nwamaka U Okafor and Declan T Delaney. Missing data imputation on iot sensor networks: Impli-
cations for on-site sensor calibration. IEEE Sensors journal, 21(20):22833–22845, 2021.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning
on graphs with missing node features. In Learning on graphs conference, pp. 11–1. PMLR, 2022.

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

Donald B Rubin. An overview of multiple imputation. In Proceedings of the survey research
methods section of the American statistical association, volume 79, pp. 84, 1988.

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021.

Daeho Um, Jiwoong Park, Seulki Park, and Jin young Choi. Confidence-based feature imputation
for graphs with partially known features. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=YPKBIILy-Kt.

12

https://openreview.net/forum?id=YPKBIILy-Kt


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daeho Um, Sunoh Kim, Jiwoong Park, Jongin Lim, Seong Jin Ahn, and Seulki Park. Propagate
and inject: Revisiting propagation-based feature imputation for graphs with partially observed
features. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=QfKrcgyase.

Mike Van Ness, Tomas M Bosschieter, Roberto Halpin-Gregorio, and Madeleine Udell. The missing
indicator method: From low to high dimensions. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 5004–5015, 2023.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. CoRR, abs/1603.08861, 2016. URL http://arxiv.org/abs/
1603.08861.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing
data with graph representation learning. Advances in Neural Information Processing Systems, 33:
19075–19087, 2020.

Sukwon Yun, Xin Liu, Yunhak Oh, Junseok Lee, Tianlong Chen, Tsuyoshi Murata, and Chanyoung
Park. Oldie but goodie: Re-illuminating label propagation on graphs with partially observed
features, 2024. URL https://openreview.net/forum?id=TlFDFKyEIQ.

Yu Zheng, Xiuwen Yi, Ming Li, Ruiyuan Li, Zhangqing Shan, Eric Chang, and Tianrui Li. Fore-
casting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 2267–2276, 2015.

Qikui Zhu, Bo Du, and Pingkun Yan. Multi-hop convolutions on weighted graphs. arXiv preprint
arXiv:1911.04978, 2019.

13

https://openreview.net/forum?id=QfKrcgyase
https://openreview.net/forum?id=QfKrcgyase
http://arxiv.org/abs/1603.08861
http://arxiv.org/abs/1603.08861
https://openreview.net/forum?id=TlFDFKyEIQ


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS

Theorem 1. If Pθ,γ,λ is feature-MAR and label-MAR, then (2) simplifies to∫
Xmiss

Pγ(Y |X)Pθ(X
miss|Xobs). (6)

Proof.

Pθ,γ,λ(Y |X,M) = Pλ(M |X,Y )
Pγ(Y |X)

Pγ,λ(M |X)

(4)
= Pγ(Y |X)

Pθ,γ,λ(X
miss|Xobs,M) = Pγ,λ(M |Xobs,Xmiss)

Pθ(X
miss|Xobs)

Pθ,γ,λ(M |Xobs)

(3)
= Pθ(X

miss|Xobs)

Theorem 2. Let X ∈ Rn×d and Y ∈ Yn be random variables, M ∈ {0, 1}n×d be a missingness
mask and Xobs denotes the observed (incomplete) data. We encode the pair (Xobs,M) with the
random variable X̃ with

X̃ij =

{
Xij , Mij = 0,

?, Mij = 1.

Let the change in the information be defined as ∆ := I(Y; X̃) − I(Y;X), where I(·; ·) denotes
the mutual information. Then,

1. If the missingness is label-MAR, then ∆ ≤ 0.

2. If X ∈ {0, 1}n×d and the missingness is U-MCAR with missingness probability µ, and
s(X) is the sample sparsity as in Definition 2, then

− ndµh2

(
E[s(X)]

)
≤ ∆ ≤ 0,

where h2(u) = −u log u− (1− u) log(1− u).

Proof. By construction X̃ = g(X,M) for some measurable g. Thus (Y) → (X,M) → X̃ is a
Markov chain, and the data–processing inequality implies

I(Y; X̃) ≤ I(Y;X,M). (7)

Moreover, for any three random elements (A,B,C) we have the chain–rule identities

I(A;B,C) = I(A;C) + I(A;B | C). (8)

(1) Label-MAR ∆ ≤ 0. Assume label-MAR: P(M | X,Y) = P(M | X), which is equivalent to
Y ⊥ M | X. Applying equation 8 with (A,B,C) = (Y,X,M),

I(Y;X,M) = I(Y;X) + I(Y;M | X).

Under label-MAR, I(Y;M | X) = 0, hence

I(Y;X,M) = I(Y;X). (9)

Combining equation 7 and equation 9 yields

I(Y; X̃) ≤ I(Y;X) ⇐⇒ ∆ = I(Y; X̃)− I(Y;X) ≤ 0.

(2) Two-sided bound under uniform MCAR and α-β sparsity. Assume uniform MCAR: Mij ∼
Bernoulli(1 − µ) independently of (X,Y) and i.i.d. across (i, j), and that P

(
s(X) ≥ α

)
≥ β,

where s(X) = 1
nd

∑
i,j I{Xij = 0}.

Upper side. MCAR implies label-MAR, so by part (1): ∆ ≤ 0.
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Lower side. We start from the chain–rule identity applied to (A,B,C) = (Y,X, X̃):

I(Y;X, X̃) = I(Y; X̃) + I(Y;X | X̃) = I(Y;X) + I(Y; X̃ | X).

Rearranging gives

−∆ = I(Y;X)− I(Y; X̃) = I(Y;X | X̃)− I(Y; X̃ | X). (10)
The second term on the right is nonnegative, hence

−∆ ≤ I(Y;X | X̃). (11)
Using the bound I(U ;V | W ) ≤ H(V | W ), we get

−∆ ≤ H(X | X̃). (12)

Index the matrix entries by a total order ≺ on pairs (i, j) and apply the chain rule:

H(X | X̃) =
∑
(i,j)

H
(
Xij

∣∣ X̃, {Xkl : (k, l) ≺ (i, j)}
)
.

Since conditioning reduces entropy,

H(X | X̃) ≤
∑
i,j

H
(
Xij | X̃ij

)
. (13)

Fix (i, j) and denote πij = Pr[Xij = 1]. Under uniform MCAR,

Pr[X̃ij =?] = µ, Pr[X̃ij = x] = (1− µ) Pr[Xij = x], x ∈ {0, 1}.

Hence: (i) if X̃ij ∈ {0, 1} then Xij is revealed, so H(Xij | X̃ij ∈ {0, 1}) = 0; (ii) if X̃ij =?, then
Pr[Xij = 1 | X̃ij =?] = πij and H(Xij | X̃ij =?) = h2(πij). Averaging over X̃ij gives

H(Xij | X̃ij) = µh2(πij). (14)

Combining equation 13 and equation 14:

H(X | X̃) ≤
∑
i,j

µh2(πij) = ndµ · 1

nd

∑
i,j

h2(πij) ≤ ndµ · h2

 1

nd

∑
i,j

πij

 ,

since h2 is concave. Note that

1

nd

∑
i,j

πij =
1

nd

∑
i,j

Pr[Xij = 1] = E

 1

nd

∑
i,j

I{Xij = 1}

 = 1− E[s(X)].

Using the symmetry h2(u) = h2(1− u), we conclude

H(X | X̃) ≤ ndµ · h2

(
E[s(X)]

)
.

Combining with −∆ ≤ H(X | X̃) gives

− ndµh2

(
E[s(X)]

)
≤ ∆ ≤ 0.

This concludes the proof.

B ADDITIONAL RESULTS ON BENCHMARKS AND PROPOSED DATASETS

This section presents the full plots of the results under the R1 regime introduced in Section 4.

Figure 4 shows the complete set of results across all datasets, whose statistics are summarized in
Table 3. The top three rows correspond to the classic benchmarks (CORA, CITESEER, PUBMED).
Consistently with Proposition 2, models maintain nearly constant F1 scores up to extremely high
missingness levels (∼ 90%), confirming that these benchmarks are of limited value for evaluating
robustness to missing features.

The bottom four rows correspond to our proposed datasets (SYNTHETIC, AIR, ELECTRIC, TAD-
POLE). In these cases, performance degrades much earlier and more severely, highlighting the higher
realism and difficulty of our benchmarks.
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Table 3: Dataset statistics and feature sparsity. Classic benchmarks (CORA, CITESEER, PUBMED)
exhibit extremely sparse bag-of-words features, while our proposed datasets (SYNTHETIC, AIR,
ELECTRIC, TADPOLE) provide less sparse representations.

Dataset #Nodes #Features Sparsity ↓ Type of features

CORA 2708 1433 0.9873 BoW (binary)
CITESEER 3327 3703 0.9915 BoW (binary)
PUBMED 19717 500 0.8998 BoW (binary)

SYNTHETIC 1000 5 0.0000 Gaussian
AIR 430 7 0.1615 Raw
ELECTRIC 2000 5 0.2000 Raw
TADPOLE 555 15 0.0000 Raw

C MORE CHALLENGING DATASETS

In Section 3, we introduced the synthetic and real-world datasets employed in our experiments. We
now provide additional details on their construction and characteristics.

SYNTHETIC Synthetic dataset based on a Barabási–Albert graph topology. Each node is associ-
ated with five real-valued features sampled from a Gaussian distribution. Node labels are generated
deterministically by applying a fixed two-layer GCN with hard-coded weights to the complete fea-
ture matrix. This construction ensures that the ground-truth labeling function is fully expressible
by a GNN, allowing models to achieve near-perfect accuracy in the absence of missingness. The
resulting task is a binary node classification problem, with classes separated according to struc-
tured feature combinations defined by the fixed GCN. This controlled setup provides a principled
testbed to isolate and analyze the effects of different missingness mechanisms, while preserving a
well-defined ground truth.

AIR Dataset (Zheng et al., 2015) built from a network of air quality monitoring stations de-
ployed in an urban area. Each node corresponds to a station and is associated with a set of en-
vironmental measurements. The node features include both air pollutant concentrations (CO, NO2,
PM10, O3, SO2) and meteorological variables (temperature, humidity, wind speed, wind
direction). Edges are constructed based on the geographical distance between stations, with
two nodes connected if their distance is below a given threshold. The target variable is derived from
the PM2.5 concentration, which is discretized into three balanced categories (low, medium, high)
according to the distribution of observed values. This formulation allows us to frame the problem as
a semi-supervised node classification task with three classes.

ELECTRIC Dataset (Birchfield et al., 2016; Baek & Birchfield, 2023) derived from a large-scale
model of the Texas power grid. Nodes correspond to buses in the electrical network, each enriched
with both structural and operational attributes. The node features include identifiers (area, zone),
electrical measurements (voltage magnitude, voltage angle), and a topological prop-
erty (betweenness centrality). Edges are constructed directly from the transmission lines
specified in the raw grid data, connecting pairs of buses. The classification target is the nominal
voltage level of each bus (base kV), which we discretize into three categories: low voltage (<100
kV), medium voltage (100–200 kV), and high voltage (>200 kV). This setup results in a three-class
node classification problem reflecting operational conditions across the grid.

TADPOLE The TADPOLEdataset (Zhu et al., 2019) originates from the TADPOLE challenge,
which provides longitudinal clinical and imaging data for patients at risk of developing Alzheimer’s
disease. In our graph formulation, each node corresponds to a patient and is associated with a set
of features encompassing clinical scores, cerebrospinal fluid (CSF) biomarkers, and neuroimaging
measures such as MRI- and PET-derived variables. Since the original dataset does not provide graph
connectivity, we construct edges using a k-nearest neighbors approach over the most informative
biomarkers, so that patients with similar profiles are connected. The target variable is the diagnostic
label, categorized into three classes (cognitively normal, mild cognitive impairment, Alzheimer’s
disease). This results in a semi-supervised node classification problem where the goal is to pre-
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Figure 4: F1 score as a function of feature missingness (µ) for both classic benchmarks (top three
rows) and our proposed datasets (bottom four rows), under the mechanisms described in Section 4.
Classic benchmarks show almost no degradation until extremely high µ, while the proposed datasets
reveal model weaknesses at more realistic missingness levels. Tables for numeric results are in App.
F

dict the diagnostic status of patients based on multimodal biomedical features and patient similarity
structure.

Table 3 reports, for each dataset, the number of nodes, number of features, feature sparsity, and the
type of features. While the number of nodes and features may seem small compared to standard
benchmark graph datasets, we emphasize that using real features (as in AIR, ELECTRIC, and TAD-
POLE) is more realistic in the context of feature missingness. In fact, it is not meaningful to study
missingness on pre-computed embeddings, since embeddings are typically high-dimensional repre-
sentations mapped to wide feature spaces and are not expected to exhibit missingness in practice.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS

All baseline and competitor methods are implemented using the official code released in their re-
spective repositories, following the recommended training protocols and hyperparameter settings.
For GNNmi and GNNmim, we adopt a standard GNN architecture where the convolutional layer type
(Table 4), the number of layers (1-3), the learning rate (10−4-10−2), and the weight decay (10−5-
10−3) are tuned via grid search on the validation set. All models are trained on the same data splits
with early stopping to ensure a fair comparison.

Table 4: Best GNN encoder selected within GNNmim for each dataset and missingness mechanism.

Dataset U-MCAR S-MCAR LD-MCAR FD-MNAR CD-MNAR

SYNTHETIC GCN GCN GraphSAGE GCN GCN
AIR GraphSAGE GraphSAGE GraphSAGE GraphSAGE GraphSAGE
ELECTRIC GIN GIN GraphSAGE GIN GIN
TADPOLE GCN GraphSAGE GraphSAGE GraphSAGE GCN

E SCALING THE SYNTHETIC DATASET

In this section, we analyze what happens when either the number of features or the number of nodes
in the synthetic dataset is increased. To this end, we constructed three additional synthetic datasets
(SYNTHETIC2, SYNTHETIC3, SYNTHETIC4) following the same design principles as SYNTHETIC.
Table 5 reports their statistics.

As shown in Figure 5, the behavior of the models in this larger-scale setting is consistent with the one
observed in our original setup. In this case, we experimented with the uniform random missingness
mechanism, and we observe a monotonic decrease in performance for all models as the missingness
rate µ increases. This confirms that dataset size does not affect the overall trend of performance
degradation under feature missingness.

To further support this point, we also report the runtime and GPU memory consumption of all models
on both the main synthetic dataset (SYNTHETIC) and its larger-scale counterpart (SYNTHETIC3),
which features an increased number of features. As shown in Table 6, the runtime and memory
requirements remain substantially stable across datasets, with negligible variations between models.
This behavior confirms that our approach scales efficiently with the dataset size, as it only involves a
standard GNN architecture augmented with a simple MIM mask concatenated to the input features,
introducing minimal computational overhead.
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Figure 5: F1 score as a function of feature missingness (µ) for additional synthetic datasets generated
with the same procedure as SYNTHETIC, but with either an increased number of nodes or features.
For SYNTHETIC4, the model is not reported since training exceeded the 12-hour time limit, while
GOODIE is excluded due to out-of-memory errors.

F COMPLETE RESULT TABLES – R1 REGIME
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Table 5: Datasets information.

Dataset #Nodes #Features Sparsity ↓ Type of features

SYNTHETIC 1000 5 0.0000 Gaussian
SYNTHETIC2 1000 20 0.0000 Gaussian
SYNTHETIC3 1000 50 0.0000 Gaussian
SYNTHETIC4 50000 5 0.0000 Gaussian

Table 6: Runtime and GPU peak memory consumption for the main synthetic dataset (SYNTHETIC)
and the scaled version (SYNTHETIC3). Each value corresponds to the average across all missingness
levels under the UMCAR mechanism.

Model SYNTHETIC SYNTHETIC4

Runtime [s] ↓ GPU Mem [GB] ↓ Runtime [s] ↓ GPU Mem [GB] ↓
GNNmi 1.7 0.03 5.3 0.78
GNNzero 1.6 0.03 5.0 0.77
GNNmedian 1.6 0.03 5.0 0.77
GNNmim 1.8 0.03 6.3 0.77
GCNmf 4.5 0.02 28.0 0.53
FP 1.5 0.02 5.3 0.77
PCFI 1.8 0.02 5.2 0.77
FairAC 3.9 0.04 – –
GSPN 55.0 0.03 150.0 0.84
GOODIE 2.3 0.06 – –

Table 7: F1 scores for CORA under mechanism U-MCAR and varying µ (GSPNis not reported as it
is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (± 0.00) 0.863 (± 0.01) 0.882 (± 0.00) 0.873 (± 0.00) 0.875 (± 0.00) 0.882 (± 0.00) 0.862 (± 0.02) 0.862 (± 0.02)

0.10 0.867 (± 0.00) 0.866 (± 0.00) 0.877 (± 0.00) 0.876 (± 0.00) 0.856 (± 0.00) 0.878 (± 0.00) 0.868 (± 0.01) 0.868 (± 0.01)

0.20 0.875 (± 0.00) 0.862 (± 0.00) 0.878 (± 0.00) 0.873 (± 0.00) 0.858 (± 0.00) 0.877 (± 0.00) 0.864 (± 0.02) 0.864 (± 0.02)

0.30 0.873 (± 0.00) 0.865 (± 0.00) 0.881 (± 0.00) 0.885 (± 0.00) 0.860 (± 0.00) 0.876 (± 0.00) 0.863 (± 0.01) 0.863 (± 0.01)

0.40 0.869 (± 0.00) 0.857 (± 0.00) 0.878 (± 0.00) 0.873 (± 0.00) 0.860 (± 0.00) 0.884 (± 0.00) 0.860 (± 0.02) 0.860 (± 0.02)

0.50 0.861 (± 0.00) 0.856 (± 0.00) 0.882 (± 0.00) 0.867 (± 0.00) 0.831 (± 0.00) 0.882 (± 0.00) 0.856 (± 0.01) 0.856 (± 0.01)

0.60 0.866 (± 0.00) 0.847 (± 0.00) 0.882 (± 0.00) 0.871 (± 0.00) 0.862 (± 0.00) 0.881 (± 0.00) 0.847 (± 0.01) 0.847 (± 0.01)

0.70 0.866 (± 0.00) 0.858 (± 0.00) 0.869 (± 0.00) 0.865 (± 0.00) 0.847 (± 0.00) 0.877 (± 0.00) 0.849 (± 0.01) 0.849 (± 0.01)

0.80 0.868 (± 0.00) 0.843 (± 0.00) 0.864 (± 0.00) 0.854 (± 0.00) 0.805 (± 0.00) 0.863 (± 0.00) 0.835 (± 0.01) 0.835 (± 0.01)

0.90 0.864 (± 0.00) 0.845 (± 0.00) 0.860 (± 0.00) 0.848 (± 0.00) 0.476 (± 0.00) 0.856 (± 0.00) 0.826 (± 0.00) 0.826 (± 0.00)

0.99 0.776 (± 0.00) 0.298 (± 0.00) 0.066 (± 0.00) 0.066 (± 0.00) 0.183 (± 0.00) 0.065 (± 0.00) 0.655 (± 0.03) 0.625 (± 0.02)

Table 8: F1 scores for CORA under mechanism S-MCAR and varying µ (GSPNis not reported as it
is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (± 0.00) 0.863 (± 0.01) 0.882 (± 0.00) 0.872 (± 0.00) 0.875 (± 0.00) 0.868 (± 0.00) 0.862 (± 0.02) 0.862 (± 0.02)

0.10 0.868 (± 0.00) 0.857 (± 0.00) 0.869 (± 0.00) 0.862 (± 0.00) 0.869 (± 0.00) 0.872 (± 0.00) 0.862 (± 0.02) 0.862 (± 0.02)

0.20 0.872 (± 0.00) 0.860 (± 0.00) 0.863 (± 0.00) 0.863 (± 0.00) 0.858 (± 0.00) 0.869 (± 0.00) 0.856 (± 0.02) 0.856 (± 0.02)

0.30 0.865 (± 0.00) 0.850 (± 0.00) 0.854 (± 0.00) 0.855 (± 0.00) 0.852 (± 0.00) 0.858 (± 0.00) 0.857 (± 0.02) 0.857 (± 0.02)

0.40 0.870 (± 0.00) 0.857 (± 0.00) 0.859 (± 0.00) 0.848 (± 0.00) 0.848 (± 0.00) 0.862 (± 0.00) 0.849 (± 0.02) 0.849 (± 0.02)

0.50 0.862 (± 0.00) 0.854 (± 0.00) 0.854 (± 0.00) 0.844 (± 0.00) 0.839 (± 0.00) 0.858 (± 0.00) 0.841 (± 0.01) 0.841 (± 0.01)

0.60 0.855 (± 0.00) 0.854 (± 0.00) 0.853 (± 0.00) 0.837 (± 0.00) 0.837 (± 0.00) 0.856 (± 0.00) 0.826 (± 0.01) 0.826 (± 0.01)

0.70 0.847 (± 0.00) 0.836 (± 0.00) 0.845 (± 0.00) 0.817 (± 0.00) 0.807 (± 0.00) 0.854 (± 0.00) 0.798 (± 0.02) 0.798 (± 0.02)

0.80 0.845 (± 0.00) 0.815 (± 0.00) 0.836 (± 0.00) 0.772 (± 0.00) 0.764 (± 0.00) 0.845 (± 0.00) 0.760 (± 0.02) 0.760 (± 0.02)

0.90 0.822 (± 0.00) 0.760 (± 0.00) 0.806 (± 0.00) 0.696 (± 0.00) 0.610 (± 0.00) 0.836 (± 0.00) 0.661 (± 0.02) 0.661 (± 0.02)

0.99 0.609 (± 0.00) 0.300 (± 0.00) 0.606 (± 0.00) 0.179 (± 0.00) 0.132 (± 0.00) 0.792 (± 0.00) 0.294 (± 0.05) 0.294 (± 0.05)
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Table 9: F1 scores for CORA under mechanism CD-MCAR and varying µ (GSPNis not reported as
it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (± 0.00) 0.863 (± 0.01) 0.882 (± 0.00) 0.873 (± 0.00) 0.875 (± 0.00) 0.868 (± 0.00) 0.862 (± 0.02) 0.862 (± 0.02)

0.10 0.852 (± 0.00) 0.851 (± 0.00) 0.862 (± 0.00) 0.857 (± 0.00) 0.846 (± 0.00) 0.860 (± 0.00) 0.858 (± 0.02) 0.858 (± 0.02)

0.20 0.843 (± 0.00) 0.854 (± 0.00) 0.859 (± 0.00) 0.854 (± 0.00) 0.850 (± 0.00) 0.855 (± 0.00) 0.854 (± 0.02) 0.854 (± 0.02)

0.30 0.843 (± 0.00) 0.856 (± 0.00) 0.859 (± 0.00) 0.855 (± 0.00) 0.846 (± 0.00) 0.852 (± 0.00) 0.853 (± 0.02) 0.853 (± 0.02)

0.40 0.828 (± 0.00) 0.854 (± 0.00) 0.858 (± 0.00) 0.853 (± 0.00) 0.838 (± 0.00) 0.849 (± 0.00) 0.849 (± 0.02) 0.849 (± 0.02)

0.50 0.828 (± 0.00) 0.854 (± 0.00) 0.855 (± 0.00) 0.855 (± 0.00) 0.848 (± 0.00) 0.852 (± 0.00) 0.844 (± 0.02) 0.844 (± 0.02)

0.60 0.812 (± 0.00) 0.847 (± 0.00) 0.853 (± 0.00) 0.844 (± 0.00) 0.837 (± 0.00) 0.841 (± 0.00) 0.825 (± 0.02) 0.825 (± 0.02)

0.70 0.782 (± 0.00) 0.841 (± 0.00) 0.842 (± 0.00) 0.831 (± 0.00) 0.822 (± 0.00) 0.827 (± 0.00) 0.810 (± 0.02) 0.810 (± 0.02)

0.80 0.584 (± 0.00) 0.844 (± 0.00) 0.822 (± 0.00) 0.815 (± 0.00) 0.792 (± 0.00) 0.818 (± 0.00) 0.761 (± 0.01) 0.761 (± 0.01)

0.90 0.297 (± 0.00) 0.824 (± 0.00) 0.777 (± 0.00) 0.793 (± 0.00) 0.760 (± 0.00) 0.778 (± 0.00) 0.653 (± 0.02) 0.654 (± 0.02)

0.99 0.088 (± 0.00) 0.066 (± 0.00) 0.322 (± 0.00) 0.395 (± 0.00) 0.113 (± 0.00) 0.231 (± 0.00) 0.204 (± 0.03) 0.204 (± 0.03)

Table 10: F1 scores for CORA under mechanism FD-MNAR and varying µ (GSPNis not reported as
it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (± 0.00) 0.863 (± 0.01) 0.882 (± 0.00) 0.873 (± 0.00) 0.875 (± 0.00) 0.868 (± 0.00) 0.864 (± 0.02) 0.864 (± 0.02)

0.10 0.872 (± 0.01) 0.862 (± 0.01) 0.873 (± 0.01) 0.868 (± 0.01) 0.851 (± 0.01) 0.873 (± 0.00) 0.862 (± 0.02) 0.862 (± 0.02)

0.20 0.879 (± 0.00) 0.870 (± 0.01) 0.874 (± 0.00) 0.865 (± 0.01) 0.853 (± 0.01) 0.863 (± 0.01) 0.858 (± 0.01) 0.858 (± 0.01)

0.30 0.880 (± 0.00) 0.864 (± 0.01) 0.869 (± 0.00) 0.867 (± 0.01) 0.847 (± 0.01) 0.864 (± 0.01) 0.864 (± 0.01) 0.864 (± 0.01)

0.40 0.869 (± 0.01) 0.855 (± 0.01) 0.864 (± 0.01) 0.856 (± 0.01) 0.849 (± 0.00) 0.866 (± 0.01) 0.858 (± 0.02) 0.858 (± 0.02)

0.50 0.865 (± 0.01) 0.860 (± 0.01) 0.866 (± 0.01) 0.859 (± 0.01) 0.854 (± 0.01) 0.863 (± 0.01) 0.854 (± 0.02) 0.854 (± 0.02)

0.60 0.866 (± 0.01) 0.853 (± 0.01) 0.865 (± 0.01) 0.863 (± 0.01) 0.829 (± 0.02) 0.864 (± 0.01) 0.851 (± 0.01) 0.851 (± 0.01)

0.70 0.859 (± 0.01) 0.847 (± 0.00) 0.862 (± 0.01) 0.853 (± 0.00) 0.695 (± 0.14) 0.860 (± 0.00) 0.846 (± 0.01) 0.846 (± 0.01)

0.80 0.865 (± 0.01) 0.845 (± 0.01) 0.861 (± 0.01) 0.837 (± 0.00) 0.785 (± 0.05) 0.857 (± 0.01) 0.817 (± 0.02) 0.817 (± 0.02)

0.90 0.854 (± 0.01) 0.833 (± 0.01) 0.855 (± 0.00) 0.833 (± 0.00) 0.465 (± 0.21) 0.854 (± 0.01) 0.819 (± 0.01) 0.819 (± 0.01)

0.99 0.822 (± 0.01) 0.066 (± 0.00) 0.810 (± 0.02) 0.098 (± 0.01) 0.230 (± 0.05) 0.837 (± 0.02) 0.670 (± 0.02) 0.670 (± 0.02)

Table 11: F1 scores for CORA under mechanism CD-MNAR and varying µ (GSPNis not reported as
it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.875 (± 0.00) 0.863 (± 0.01) 0.882 (± 0.00) 0.873 (± 0.00) 0.875 (± 0.00) 0.868 (± 0.00) 0.863 (± 0.02) 0.863 (± 0.02)

0.10 0.875 (± 0.00) 0.864 (± 0.01) 0.870 (± 0.01) 0.862 (± 0.01) 0.850 (± 0.00) 0.869 (± 0.01) 0.863 (± 0.02) 0.863 (± 0.02)

0.20 0.881 (± 0.01) 0.865 (± 0.00) 0.874 (± 0.01) 0.868 (± 0.01) 0.856 (± 0.01) 0.869 (± 0.01) 0.860 (± 0.02) 0.860 (± 0.02)

0.30 0.882 (± 0.00) 0.858 (± 0.00) 0.873 (± 0.00) 0.871 (± 0.01) 0.854 (± 0.00) 0.866 (± 0.01) 0.860 (± 0.02) 0.860 (± 0.02)

0.40 0.884 (± 0.01) 0.862 (± 0.01) 0.870 (± 0.00) 0.864 (± 0.00) 0.853 (± 0.01) 0.865 (± 0.01) 0.853 (± 0.02) 0.853 (± 0.02)

0.50 0.867 (± 0.01) 0.852 (± 0.01) 0.867 (± 0.00) 0.861 (± 0.00) 0.844 (± 0.02) 0.861 (± 0.01) 0.855 (± 0.02) 0.855 (± 0.02)

0.60 0.864 (± 0.00) 0.847 (± 0.00) 0.860 (± 0.01) 0.856 (± 0.01) 0.849 (± 0.00) 0.857 (± 0.00) 0.842 (± 0.02) 0.842 (± 0.02)

0.70 0.860 (± 0.01) 0.845 (± 0.01) 0.864 (± 0.01) 0.852 (± 0.01) 0.753 (± 0.12) 0.856 (± 0.01) 0.840 (± 0.02) 0.840 (± 0.02)

0.80 0.853 (± 0.01) 0.844 (± 0.02) 0.862 (± 0.01) 0.852 (± 0.01) 0.551 (± 0.10) 0.861 (± 0.01) 0.822 (± 0.03) 0.822 (± 0.03)

0.90 0.848 (± 0.01) 0.835 (± 0.01) 0.852 (± 0.00) 0.831 (± 0.01) 0.271 (± 0.23) 0.855 (± 0.01) 0.771 (± 0.03) 0.771 (± 0.03)

0.99 0.836 (± 0.01) 0.810 (± 0.01) 0.828 (± 0.01) 0.788 (± 0.02) 0.135 (± 0.05) 0.849 (± 0.01) 0.727 (± 0.04) 0.725 (± 0.03)

Table 12: F1 scores for CITESEER under mechanism U-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (± 0.00) 0.700 (± 0.00) 0.710 (± 0.02) 0.704 (± 0.02) 0.707 (± 0.00) 0.706 (± 0.02) 0.726 (± 0.02) 0.726 (± 0.02)

0.10 0.682 (± 0.00) 0.693 (± 0.00) 0.707 (± 0.00) 0.705 (± 0.00) 0.692 (± 0.00) 0.708 (± 0.00) 0.732 (± 0.02) 0.732 (± 0.02)

0.20 0.684 (± 0.00) 0.693 (± 0.00) 0.706 (± 0.00) 0.695 (± 0.00) 0.698 (± 0.00) 0.705 (± 0.00) 0.728 (± 0.02) 0.728 (± 0.02)

0.30 0.691 (± 0.00) 0.691 (± 0.00) 0.705 (± 0.00) 0.696 (± 0.00) 0.697 (± 0.00) 0.706 (± 0.00) 0.723 (± 0.03) 0.723 (± 0.03)

0.40 0.685 (± 0.00) 0.700 (± 0.00) 0.706 (± 0.00) 0.698 (± 0.00) 0.684 (± 0.00) 0.708 (± 0.00) 0.724 (± 0.02) 0.724 (± 0.02)

0.50 0.669 (± 0.00) 0.697 (± 0.00) 0.702 (± 0.00) 0.695 (± 0.00) 0.675 (± 0.00) 0.711 (± 0.00) 0.722 (± 0.02) 0.722 (± 0.02)

0.60 0.680 (± 0.00) 0.695 (± 0.00) 0.697 (± 0.00) 0.699 (± 0.00) 0.700 (± 0.00) 0.707 (± 0.00) 0.712 (± 0.02) 0.712 (± 0.02)

0.70 0.699 (± 0.00) 0.688 (± 0.00) 0.694 (± 0.00) 0.700 (± 0.00) 0.507 (± 0.00) 0.701 (± 0.00) 0.710 (± 0.02) 0.710 (± 0.02)

0.80 0.675 (± 0.00) 0.687 (± 0.00) 0.694 (± 0.00) 0.696 (± 0.00) 0.368 (± 0.00) 0.707 (± 0.00) 0.701 (± 0.01) 0.701 (± 0.01)

0.90 0.684 (± 0.00) 0.680 (± 0.00) 0.686 (± 0.00) 0.680 (± 0.00) 0.215 (± 0.00) 0.694 (± 0.00) 0.678 (± 0.02) 0.678 (± 0.02)

0.99 0.588 (± 0.00) 0.584 (± 0.00) 0.613 (± 0.00) 0.539 (± 0.00) 0.102 (± 0.00) 0.636 (± 0.00) 0.519 (± 0.03) 0.519 (± 0.03)
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Table 13: F1 scores for CITESEER under mechanism S-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (± 0.00) 0.700 (± 0.00) 0.710 (± 0.02) - 0.707 (± 0.00) 0.706 (± 0.02) 0.726 (± 0.02) 0.726 (± 0.02)

0.10 0.670 (± 0.00) 0.688 (± 0.00) 0.711 (± 0.00) 0.703 (± 0.00) 0.708 (± 0.00) 0.708 (± 0.00) 0.726 (± 0.03) 0.726 (± 0.03)

0.20 0.675 (± 0.00) 0.685 (± 0.00) 0.707 (± 0.00) 0.697 (± 0.00) 0.707 (± 0.00) 0.706 (± 0.00) 0.725 (± 0.03) 0.725 (± 0.03)

0.30 0.673 (± 0.00) 0.681 (± 0.00) 0.705 (± 0.00) 0.692 (± 0.00) 0.693 (± 0.00) 0.701 (± 0.00) 0.714 (± 0.02) 0.714 (± 0.02)

0.40 0.677 (± 0.00) 0.667 (± 0.00) 0.698 (± 0.00) 0.682 (± 0.00) 0.682 (± 0.00) 0.698 (± 0.00) 0.704 (± 0.03) 0.704 (± 0.03)

0.50 0.658 (± 0.00) 0.659 (± 0.00) 0.685 (± 0.00) 0.680 (± 0.00) 0.676 (± 0.00) 0.683 (± 0.00) 0.689 (± 0.03) 0.689 (± 0.03)

0.60 0.667 (± 0.00) 0.659 (± 0.00) 0.676 (± 0.00) 0.656 (± 0.00) 0.659 (± 0.00) 0.680 (± 0.00) 0.659 (± 0.02) 0.659 (± 0.02)

0.70 0.655 (± 0.00) 0.646 (± 0.00) 0.656 (± 0.00) 0.629 (± 0.00) 0.624 (± 0.00) 0.662 (± 0.00) 0.617 (± 0.02) 0.617 (± 0.02)

0.80 0.621 (± 0.00) 0.593 (± 0.00) 0.629 (± 0.00) 0.575 (± 0.00) 0.531 (± 0.00) 0.628 (± 0.00) 0.553 (± 0.03) 0.553 (± 0.03)

0.90 0.568 (± 0.00) 0.508 (± 0.00) 0.552 (± 0.00) 0.449 (± 0.00) 0.352 (± 0.00) 0.584 (± 0.00) 0.455 (± 0.03) 0.455 (± 0.03)

0.99 0.425 (± 0.00) 0.258 (± 0.00) 0.381 (± 0.00) 0.188 (± 0.00) 0.159 (± 0.00) 0.495 (± 0.00) 0.186 (± 0.01) 0.186 (± 0.01)

Table 14: F1 scores for CITESEER under mechanism CD-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (± 0.00) 0.700 (± 0.00) 0.710 (± 0.02) 0.704 (± 0.02) 0.707 (± 0.00) 0.706 (± 0.02) 0.726 (± 0.02) 0.726 (± 0.02)

0.10 0.671 (± 0.00) 0.687 (± 0.00) 0.698 (± 0.00) 0.694 (± 0.00) 0.693 (± 0.00) 0.702 (± 0.00) 0.723 (± 0.02) 0.723 (± 0.02)

0.20 0.670 (± 0.00) 0.686 (± 0.00) 0.699 (± 0.00) 0.691 (± 0.00) 0.696 (± 0.00) 0.698 (± 0.00) 0.713 (± 0.02) 0.713 (± 0.02)

0.30 0.666 (± 0.00) 0.682 (± 0.00) 0.697 (± 0.00) 0.691 (± 0.00) 0.694 (± 0.00) 0.699 (± 0.00) 0.711 (± 0.03) 0.711 (± 0.03)

0.40 0.652 (± 0.00) 0.683 (± 0.00) 0.698 (± 0.00) 0.691 (± 0.00) 0.688 (± 0.00) 0.701 (± 0.00) 0.715 (± 0.02) 0.715 (± 0.02)

0.50 0.650 (± 0.00) 0.690 (± 0.00) 0.699 (± 0.00) 0.693 (± 0.00) 0.688 (± 0.00) 0.702 (± 0.00) 0.694 (± 0.02) 0.694 (± 0.02)

0.60 0.622 (± 0.00) 0.686 (± 0.00) 0.685 (± 0.00) 0.685 (± 0.00) 0.681 (± 0.00) 0.704 (± 0.00) 0.684 (± 0.02) 0.684 (± 0.02)

0.70 0.613 (± 0.00) 0.687 (± 0.00) 0.686 (± 0.00) 0.674 (± 0.00) 0.677 (± 0.00) 0.700 (± 0.00) 0.685 (± 0.03) 0.685 (± 0.03)

0.80 0.582 (± 0.00) 0.671 (± 0.00) 0.677 (± 0.00) 0.664 (± 0.00) 0.534 (± 0.00) 0.686 (± 0.00) 0.674 (± 0.02) 0.674 (± 0.02)

0.90 0.456 (± 0.00) 0.671 (± 0.00) 0.650 (± 0.00) 0.650 (± 0.00) 0.607 (± 0.00) 0.648 (± 0.00) 0.593 (± 0.02) 0.593 (± 0.02)

0.99 0.171 (± 0.00) 0.257 (± 0.00) 0.298 (± 0.00) 0.346 (± 0.00) 0.195 (± 0.00) 0.348 (± 0.00) 0.184 (± 0.02) 0.194 (± 0.03)

Table 15: F1 scores for CITESEER under mechanism FD-MNAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (± 0.00) 0.700 (± 0.00) 0.710 (± 0.02) 0.704 (± 0.02) 0.707 (± 0.00) 0.706 (± 0.02) 0.728 (± 0.02) 0.728 (± 0.02)

0.10 0.689 (± 0.03) 0.691 (± 0.03) 0.706 (± 0.02) 0.699 (± 0.02) 0.699 (± 0.02) 0.708 (± 0.03) 0.729 (± 0.02) 0.729 (± 0.02)

0.20 0.686 (± 0.02) 0.698 (± 0.03) 0.703 (± 0.02) 0.697 (± 0.02) 0.696 (± 0.02) 0.704 (± 0.02) 0.720 (± 0.02) 0.720 (± 0.02)

0.30 0.701 (± 0.04) 0.690 (± 0.03) 0.701 (± 0.03) 0.693 (± 0.02) 0.704 (± 0.02) 0.700 (± 0.03) 0.721 (± 0.03) 0.721 (± 0.03)

0.40 0.696 (± 0.04) 0.699 (± 0.04) 0.695 (± 0.02) 0.695 (± 0.02) 0.692 (± 0.03) 0.701 (± 0.03) 0.717 (± 0.02) 0.717 (± 0.02)

0.50 0.707 (± 0.03) 0.688 (± 0.04) 0.698 (± 0.03) 0.693 (± 0.03) 0.690 (± 0.02) 0.702 (± 0.03) 0.727 (± 0.02) 0.727 (± 0.02)

0.60 0.708 (± 0.02) 0.694 (± 0.03) 0.691 (± 0.03) 0.693 (± 0.03) 0.696 (± 0.02) 0.702 (± 0.03) 0.712 (± 0.03) 0.712 (± 0.03)

0.70 0.678 (± 0.04) 0.688 (± 0.03) 0.688 (± 0.03) 0.686 (± 0.02) 0.649 (± 0.03) 0.690 (± 0.04) 0.705 (± 0.02) 0.705 (± 0.02)

0.80 0.695 (± 0.03) 0.689 (± 0.04) 0.689 (± 0.02) 0.685 (± 0.02) 0.437 (± 0.27) 0.694 (± 0.03) 0.696 (± 0.03) 0.696 (± 0.03)

0.90 0.653 (± 0.03) 0.681 (± 0.04) 0.682 (± 0.02) 0.687 (± 0.03) 0.257 (± 0.17) 0.689 (± 0.02) 0.676 (± 0.02) 0.676 (± 0.02)

0.99 0.601 (± 0.01) 0.566 (± 0.01) 0.611 (± 0.01) 0.535 (± 0.02) 0.118 (± 0.04) 0.633 (± 0.01) 0.538 (± 0.03) 0.538 (± 0.03)

Table 16: F1 scores for CITESEER under mechanism CD-MNAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.687 (± 0.00) 0.700 (± 0.05) 0.710 (± 0.02) 0.704 (± 0.02) 0.707 (± 0.00) 0.706 (± 0.02) 0.726 (± 0.02) 0.726 (± 0.02)

0.10 0.692 (± 0.04) 0.696 (± 0.04) 0.708 (± 0.02) 0.705 (± 0.02) 0.702 (± 0.03) 0.705 (± 0.02) 0.729 (± 0.02) 0.729 (± 0.02)

0.20 0.690 (± 0.04) 0.689 (± 0.04) 0.703 (± 0.03) 0.702 (± 0.02) 0.705 (± 0.02) 0.704 (± 0.02) 0.727 (± 0.02) 0.727 (± 0.02)

0.30 0.700 (± 0.02) 0.689 (± 0.04) 0.708 (± 0.03) 0.706 (± 0.02) 0.708 (± 0.02) 0.705 (± 0.02) 0.728 (± 0.02) 0.728 (± 0.02)

0.40 0.687 (± 0.04) 0.695 (± 0.04) 0.707 (± 0.03) 0.704 (± 0.02) 0.703 (± 0.03) 0.704 (± 0.03) 0.725 (± 0.02) 0.725 (± 0.02)

0.50 0.675 (± 0.03) 0.692 (± 0.03) 0.699 (± 0.03) 0.700 (± 0.03) 0.697 (± 0.02) 0.706 (± 0.03) 0.718 (± 0.02) 0.718 (± 0.02)

0.60 0.689 (± 0.03) 0.689 (± 0.03) 0.702 (± 0.03) 0.699 (± 0.03) 0.693 (± 0.03) 0.706 (± 0.03) 0.714 (± 0.02) 0.714 (± 0.02)

0.70 0.681 (± 0.03) 0.685 (± 0.03) 0.692 (± 0.03) 0.691 (± 0.03) 0.522 (± 0.20) 0.696 (± 0.03) 0.702 (± 0.03) 0.702 (± 0.03)

0.80 0.676 (± 0.05) 0.685 (± 0.03) 0.690 (± 0.03) 0.689 (± 0.02) 0.359 (± 0.15) 0.696 (± 0.04) 0.689 (± 0.03) 0.689 (± 0.03)

0.90 0.665 (± 0.02) 0.681 (± 0.03) 0.677 (± 0.03) 0.666 (± 0.03) 0.113 (± 0.06) 0.681 (± 0.03) 0.638 (± 0.02) 0.638 (± 0.02)

0.99 0.645 (± 0.03) 0.631 (± 0.02) 0.652 (± 0.02) 0.621 (± 0.02) 0.104 (± 0.06) 0.660 (± 0.02) 0.593 (± 0.03) 0.592 (± 0.03)
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Table 17: F1 scores for PUBMED under mechanism U-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (± 0.01) 0.831 (± 0.00) 0.883 (± 0.00) 0.881 (± 0.00) 0.877 (± 0.00) 0.882 (± 0.00) 0.875 (± 0.00) 0.875 (± 0.00)

0.10 0.787 (± 0.00) 0.830 (± 0.00) 0.877 (± 0.00) 0.879 (± 0.00) 0.830 (± 0.00) 0.874 (± 0.00) 0.871 (± 0.00) 0.871 (± 0.00)

0.20 0.786 (± 0.00) 0.831 (± 0.00) 0.868 (± 0.00) 0.873 (± 0.00) 0.832 (± 0.00) 0.868 (± 0.00) 0.866 (± 0.00) 0.866 (± 0.00)

0.30 0.785 (± 0.00) 0.830 (± 0.00) 0.870 (± 0.00) 0.872 (± 0.00) 0.827 (± 0.00) 0.864 (± 0.00) 0.862 (± 0.00) 0.860 (± 0.00)

0.40 0.782 (± 0.00) 0.828 (± 0.00) 0.861 (± 0.00) 0.869 (± 0.00) 0.828 (± 0.00) 0.858 (± 0.00) 0.857 (± 0.01) 0.857 (± 0.00)

0.50 0.784 (± 0.00) 0.827 (± 0.00) 0.856 (± 0.00) 0.862 (± 0.00) 0.778 (± 0.00) 0.852 (± 0.00) 0.851 (± 0.01) 0.852 (± 0.00)

0.60 0.777 (± 0.00) 0.828 (± 0.00) 0.851 (± 0.00) 0.855 (± 0.00) 0.805 (± 0.00) 0.849 (± 0.00) 0.846 (± 0.00) 0.845 (± 0.00)

0.70 0.772 (± 0.00) 0.824 (± 0.00) 0.847 (± 0.00) 0.845 (± 0.00) 0.726 (± 0.00) 0.844 (± 0.00) 0.834 (± 0.01) 0.835 (± 0.01)

0.80 0.756 (± 0.00) 0.819 (± 0.00) 0.836 (± 0.00) 0.832 (± 0.00) 0.443 (± 0.00) 0.837 (± 0.00) 0.820 (± 0.00) 0.816 (± 0.00)

0.90 0.700 (± 0.00) 0.806 (± 0.00) 0.822 (± 0.00) 0.803 (± 0.00) 0.315 (± 0.00) 0.832 (± 0.00) 0.791 (± 0.01) 0.786 (± 0.01)

0.99 0.452 (± 0.00) 0.262 (± 0.00) 0.793 (± 0.00) 0.327 (± 0.00) 0.315 (± 0.00) 0.814 (± 0.00) 0.674 (± 0.02) 0.693 (± 0.01)

Table 18: F1 scores for PUBMED under mechanism S-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (± 0.01) 0.831 (± 0.00) 0.883 (± 0.00) - 0.877 (± 0.00) 0.882 (± 0.00) 0.875 (± 0.00) 0.875 (± 0.00)

0.10 0.786 (± 0.00) 0.831 (± 0.00) 0.875 (± 0.00) 0.875 (± 0.00) 0.870 (± 0.00) 0.871 (± 0.00) 0.868 (± 0.01) 0.866 (± 0.01)

0.20 0.783 (± 0.00) 0.827 (± 0.00) 0.869 (± 0.00) 0.870 (± 0.00) 0.861 (± 0.00) 0.867 (± 0.00) 0.860 (± 0.01) 0.859 (± 0.01)

0.30 0.785 (± 0.00) 0.832 (± 0.00) 0.863 (± 0.00) 0.865 (± 0.00) 0.861 (± 0.00) 0.863 (± 0.00) 0.853 (± 0.01) 0.852 (± 0.00)

0.40 0.785 (± 0.00) 0.828 (± 0.00) 0.856 (± 0.00) 0.857 (± 0.00) 0.848 (± 0.00) 0.856 (± 0.00) 0.846 (± 0.01) 0.847 (± 0.01)

0.50 0.775 (± 0.00) 0.827 (± 0.00) 0.853 (± 0.00) 0.854 (± 0.00) 0.808 (± 0.00) 0.848 (± 0.00) 0.838 (± 0.00) 0.837 (± 0.00)

0.60 0.774 (± 0.00) 0.822 (± 0.00) 0.843 (± 0.00) 0.845 (± 0.00) 0.798 (± 0.00) 0.843 (± 0.00) 0.829 (± 0.00) 0.827 (± 0.00)

0.70 0.760 (± 0.00) 0.813 (± 0.00) 0.832 (± 0.00) 0.827 (± 0.00) 0.762 (± 0.00) 0.836 (± 0.00) 0.815 (± 0.00) 0.814 (± 0.00)

0.80 0.744 (± 0.00) 0.806 (± 0.00) 0.828 (± 0.00) 0.808 (± 0.00) 0.683 (± 0.00) 0.832 (± 0.00) 0.785 (± 0.01) 0.788 (± 0.01)

0.90 0.706 (± 0.00) 0.786 (± 0.00) 0.815 (± 0.00) 0.743 (± 0.00) 0.421 (± 0.00) 0.825 (± 0.00) 0.727 (± 0.01) 0.729 (± 0.00)

0.99 0.441 (± 0.00) 0.259 (± 0.00) 0.765 (± 0.00) 0.333 (± 0.00) 0.310 (± 0.00) 0.794 (± 0.00) 0.446 (± 0.03) 0.458 (± 0.02)

Table 19: F1 scores for PUBMED under mechanism CD-MCAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (± 0.01) 0.831 (± 0.00) 0.883 (± 0.00) 0.881 (± 0.00) 0.877 (± 0.00) 0.882 (± 0.00) 0.875 (± 0.00) 0.876 (± 0.00)

0.10 0.738 (± 0.00) 0.824 (± 0.00) 0.855 (± 0.00) 0.857 (± 0.00) 0.830 (± 0.00) 0.852 (± 0.00) 0.848 (± 0.00) 0.846 (± 0.00)

0.20 0.700 (± 0.00) 0.820 (± 0.00) 0.845 (± 0.00) 0.851 (± 0.00) 0.828 (± 0.00) 0.844 (± 0.00) 0.837 (± 0.00) 0.836 (± 0.00)

0.30 0.607 (± 0.00) 0.823 (± 0.00) 0.843 (± 0.00) 0.844 (± 0.00) 0.823 (± 0.00) 0.836 (± 0.00) 0.822 (± 0.00) 0.822 (± 0.00)

0.40 0.534 (± 0.00) 0.821 (± 0.00) 0.834 (± 0.00) 0.842 (± 0.00) 0.818 (± 0.00) 0.830 (± 0.00) 0.821 (± 0.01) 0.821 (± 0.01)

0.50 0.509 (± 0.00) 0.814 (± 0.00) 0.818 (± 0.00) 0.823 (± 0.00) 0.797 (± 0.00) 0.820 (± 0.00) 0.808 (± 0.01) 0.806 (± 0.01)

0.60 0.422 (± 0.00) 0.812 (± 0.00) 0.808 (± 0.00) 0.816 (± 0.00) 0.787 (± 0.00) 0.812 (± 0.00) 0.790 (± 0.00) 0.793 (± 0.01)

0.70 0.415 (± 0.00) 0.802 (± 0.00) 0.797 (± 0.00) 0.811 (± 0.00) 0.779 (± 0.00) 0.801 (± 0.00) 0.778 (± 0.01) 0.774 (± 0.01)

0.80 0.396 (± 0.00) 0.779 (± 0.00) 0.749 (± 0.00) 0.783 (± 0.00) 0.713 (± 0.00) 0.754 (± 0.00) 0.738 (± 0.01) 0.749 (± 0.02)

0.90 0.306 (± 0.00) 0.574 (± 0.00) 0.693 (± 0.00) 0.700 (± 0.00) 0.391 (± 0.00) 0.683 (± 0.00) 0.664 (± 0.01) 0.667 (± 0.02)

0.99 0.198 (± 0.00) 0.266 (± 0.00) 0.303 (± 0.00) 0.330 (± 0.00) 0.306 (± 0.00) 0.305 (± 0.00) 0.346 (± 0.02) 0.345 (± 0.02)

Table 20: F1 scores for PUBMED under mechanism FD-MNAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (± 0.01) 0.831 (± 0.00) 0.883 (± 0.00) 0.881 (± 0.00) 0.877 (± 0.00) 0.882 (± 0.00) 0.875 (± 0.00) 0.874 (± 0.00)

0.10 0.785 (± 0.02) 0.832 (± 0.00) 0.876 (± 0.01) 0.880 (± 0.01) 0.834 (± 0.00) 0.874 (± 0.01) 0.867 (± 0.01) 0.868 (± 0.00)

0.20 0.785 (± 0.02) 0.834 (± 0.00) 0.869 (± 0.00) 0.875 (± 0.00) 0.832 (± 0.00) 0.869 (± 0.01) 0.864 (± 0.01) 0.864 (± 0.00)

0.30 0.785 (± 0.02) 0.830 (± 0.00) 0.865 (± 0.00) 0.870 (± 0.00) 0.829 (± 0.00) 0.860 (± 0.00) 0.858 (± 0.00) 0.858 (± 0.01)

0.40 0.780 (± 0.01) 0.827 (± 0.00) 0.860 (± 0.00) 0.866 (± 0.00) 0.733 (± 0.11) 0.856 (± 0.00) 0.853 (± 0.01) 0.854 (± 0.00)

0.50 0.775 (± 0.02) 0.822 (± 0.00) 0.853 (± 0.00) 0.859 (± 0.00) 0.720 (± 0.12) 0.850 (± 0.00) 0.844 (± 0.01) 0.846 (± 0.00)

0.60 0.763 (± 0.02) 0.824 (± 0.01) 0.847 (± 0.01) 0.850 (± 0.00) 0.746 (± 0.04) 0.842 (± 0.00) 0.836 (± 0.01) 0.836 (± 0.00)

0.70 0.745 (± 0.03) 0.813 (± 0.00) 0.836 (± 0.00) 0.834 (± 0.00) 0.579 (± 0.25) 0.837 (± 0.00) 0.827 (± 0.00) 0.826 (± 0.00)

0.80 0.745 (± 0.03) 0.819 (± 0.00) 0.759 (± 0.04) 0.829 (± 0.00) 0.555 (± 0.14) 0.764 (± 0.00) 0.805 (± 0.01) 0.805 (± 0.01)

0.90 0.336 (± 0.01) 0.806 (± 0.00) 0.693 (± 0.01) 0.812 (± 0.00) 0.529 (± 0.13) 0.653 (± 0.00) 0.780 (± 0.01) 0.777 (± 0.01)

0.99 0.278 (± 0.01) 0.282 (± 0.01) 0.303 (± 0.05) 0.347 (± 0.00) 0.399 (± 0.33) 0.335 (± 0.01) 0.659 (± 0.02) 0.669 (± 0.02)
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Table 21: F1 scores for PUBMED under mechanism CD-MNAR and varying µ (GSPNis not reported
as it is not designed for categorical features).

µ GOODIE FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian

0.00 0.784 (± 0.01) 0.831 (± 0.00) 0.883 (± 0.00) 0.881 (± 0.00) 0.877 (± 0.00) 0.882 (± 0.00) 0.874 (± 0.00) 0.875 (± 0.00)

0.10 0.789 (± 0.02) 0.829 (± 0.00) 0.878 (± 0.00) 0.880 (± 0.00) 0.835 (± 0.00) 0.877 (± 0.00) 0.866 (± 0.01) 0.869 (± 0.00)

0.20 0.783 (± 0.01) 0.830 (± 0.00) 0.870 (± 0.00) 0.876 (± 0.00) 0.834 (± 0.00) 0.867 (± 0.01) 0.862 (± 0.00) 0.861 (± 0.00)

0.30 0.783 (± 0.02) 0.828 (± 0.00) 0.863 (± 0.00) 0.871 (± 0.00) 0.823 (± 0.00) 0.866 (± 0.00) 0.860 (± 0.00) 0.859 (± 0.00)

0.40 0.777 (± 0.02) 0.826 (± 0.00) 0.858 (± 0.00) 0.863 (± 0.00) 0.830 (± 0.00) 0.857 (± 0.01) 0.854 (± 0.00) 0.852 (± 0.00)

0.50 0.779 (± 0.01) 0.825 (± 0.00) 0.853 (± 0.00) 0.858 (± 0.00) 0.826 (± 0.00) 0.853 (± 0.00) 0.847 (± 0.00) 0.849 (± 0.00)

0.60 0.769 (± 0.02) 0.824 (± 0.00) 0.847 (± 0.01) 0.848 (± 0.01) 0.784 (± 0.04) 0.848 (± 0.00) 0.840 (± 0.01) 0.840 (± 0.00)

0.70 0.752 (± 0.03) 0.816 (± 0.00) 0.837 (± 0.00) 0.835 (± 0.00) 0.765 (± 0.02) 0.837 (± 0.00) 0.827 (± 0.00) 0.825 (± 0.00)

0.80 0.742 (± 0.03) 0.813 (± 0.00) 0.828 (± 0.00) 0.817 (± 0.00) 0.323 (± 0.10) 0.836 (± 0.00) 0.810 (± 0.01) 0.809 (± 0.00)

0.90 0.605 (± 0.13) 0.628 (± 0.24) 0.812 (± 0.00) 0.770 (± 0.00) 0.280 (± 0.05) 0.823 (± 0.00) 0.760 (± 0.01) 0.763 (± 0.01)

0.99 0.557 (± 0.14) 0.260 (± 0.00) 0.800 (± 0.00) 0.689 (± 0.01) 0.418 (± 0.04) 0.818 (± 0.00) 0.717 (± 0.01) 0.728 (± 0.02)

Table 22: F1 scores for SYNTHETIC under mechanism U-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (± 0.00) 0.865 (± 0.00) 0.815 (± 0.00) 0.980 (± 0.00) 0.982 (± 0.00) 0.978 (± 0.00) 0.977 (± 0.00) 0.978 (± 0.01) 0.978 (± 0.01) 0.983 (± 0.01)
0.10 0.810 (± 0.00) 0.822 (± 0.00) 0.825 (± 0.00) 0.910 (± 0.00) 0.902 (± 0.00) 0.875 (± 0.00) 0.898 (± 0.00) 0.902 (± 0.02) 0.903 (± 0.02) 0.901 (± 0.00)

0.20 0.792 (± 0.00) 0.759 (± 0.00) 0.808 (± 0.00) 0.863 (± 0.00) 0.870 (± 0.00) 0.790 (± 0.00) 0.855 (± 0.00) 0.853 (± 0.02) 0.853 (± 0.02) 0.861 (± 0.00)

0.30 0.758 (± 0.00) 0.768 (± 0.00) 0.762 (± 0.00) 0.795 (± 0.00) 0.808 (± 0.00) 0.770 (± 0.00) 0.805 (± 0.00) 0.800 (± 0.03) 0.801 (± 0.03) 0.815 (± 0.00)
0.40 0.758 (± 0.00) 0.749 (± 0.00) 0.759 (± 0.00) 0.764 (± 0.00) 0.771 (± 0.00) 0.745 (± 0.00) 0.763 (± 0.00) 0.766 (± 0.02) 0.766 (± 0.02) 0.791 (± 0.00)
0.50 0.747 (± 0.00) 0.721 (± 0.00) 0.642 (± 0.00) 0.745 (± 0.00) 0.745 (± 0.00) 0.710 (± 0.00) 0.748 (± 0.00) 0.732 (± 0.04) 0.730 (± 0.04) 0.739 (± 0.00)

0.60 0.773 (± 0.00) 0.708 (± 0.00) 0.680 (± 0.00) 0.720 (± 0.00) 0.737 (± 0.00) 0.692 (± 0.00) 0.717 (± 0.00) 0.714 (± 0.04) 0.710 (± 0.04) 0.714 (± 0.00)

0.70 0.742 (± 0.00) 0.629 (± 0.00) 0.611 (± 0.00) 0.683 (± 0.00) 0.689 (± 0.00) 0.673 (± 0.00) 0.678 (± 0.00) 0.687 (± 0.03) 0.693 (± 0.03) 0.693 (± 0.00)

0.80 0.771 (± 0.00) 0.579 (± 0.00) 0.621 (± 0.00) 0.632 (± 0.00) 0.638 (± 0.00) 0.601 (± 0.00) 0.638 (± 0.00) 0.610 (± 0.05) 0.621 (± 0.05) 0.649 (± 0.00)

0.90 0.776 (± 0.00) 0.544 (± 0.00) 0.567 (± 0.00) 0.605 (± 0.00) 0.602 (± 0.00) 0.592 (± 0.00) 0.588 (± 0.00) 0.589 (± 0.04) 0.599 (± 0.04) 0.590 (± 0.00)

0.99 0.762 (± 0.00) 0.499 (± 0.00) 0.391 (± 0.00) 0.542 (± 0.00) 0.367 (± 0.00) 0.471 (± 0.00) 0.547 (± 0.00) 0.548 (± 0.04) 0.411 (± 0.07) 0.535 (± 0.00)

Table 23: F1 scores for SYNTHETIC under mechanism S-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (± 0.00) 0.865 (± 0.00) 0.815 (± 0.00) 0.980 (± 0.00) 0.982 (± 0.00) 0.978 (± 0.00) 0.977 (± 0.00) 0.978 (± 0.01) 0.978 (± 0.01) 0.983 (± 0.01)
0.10 0.756 (± 0.00) 0.748 (± 0.00) 0.723 (± 0.00) 0.903 (± 0.00) 0.912 (± 0.00) 0.903 (± 0.00) 0.900 (± 0.00) 0.909 (± 0.01) 0.911 (± 0.01) 0.898 (± 0.00)

0.20 0.769 (± 0.00) 0.733 (± 0.00) 0.727 (± 0.00) 0.883 (± 0.00) 0.883 (± 0.00) 0.872 (± 0.00) 0.870 (± 0.00) 0.844 (± 0.02) 0.843 (± 0.02) 0.875 (± 0.00)

0.30 0.742 (± 0.00) 0.737 (± 0.00) 0.700 (± 0.00) 0.830 (± 0.00) 0.842 (± 0.00) 0.841 (± 0.00) 0.831 (± 0.00) 0.817 (± 0.02) 0.813 (± 0.01) 0.833 (± 0.00)

0.40 0.716 (± 0.00) 0.712 (± 0.00) 0.683 (± 0.00) 0.810 (± 0.00) 0.798 (± 0.00) 0.752 (± 0.00) 0.793 (± 0.00) 0.775 (± 0.02) 0.777 (± 0.02) 0.799 (± 0.00)

0.50 0.700 (± 0.00) 0.711 (± 0.00) 0.704 (± 0.00) 0.785 (± 0.00) 0.788 (± 0.00) 0.705 (± 0.00) 0.780 (± 0.00) 0.746 (± 0.02) 0.748 (± 0.02) 0.779 (± 0.00)

0.60 0.658 (± 0.00) 0.674 (± 0.00) 0.695 (± 0.00) 0.747 (± 0.00) 0.761 (± 0.00) 0.726 (± 0.00) 0.738 (± 0.00) 0.718 (± 0.03) 0.705 (± 0.04) 0.756 (± 0.00)

0.70 0.618 (± 0.00) 0.675 (± 0.00) 0.652 (± 0.00) 0.687 (± 0.00) 0.703 (± 0.00) 0.665 (± 0.00) 0.700 (± 0.00) 0.663 (± 0.03) 0.667 (± 0.02) 0.727 (± 0.00)
0.80 0.584 (± 0.00) 0.649 (± 0.00) 0.616 (± 0.00) 0.653 (± 0.00) 0.667 (± 0.00) 0.645 (± 0.00) 0.638 (± 0.00) 0.647 (± 0.05) 0.656 (± 0.04) 0.676 (± 0.00)
0.90 0.527 (± 0.00) 0.588 (± 0.00) 0.589 (± 0.00) 0.597 (± 0.00) 0.597 (± 0.00) 0.578 (± 0.00) 0.591 (± 0.00) 0.601 (± 0.02) 0.593 (± 0.02) 0.582 (± 0.00)

0.99 0.337 (± 0.00) 0.455 (± 0.00) 0.338 (± 0.00) 0.515 (± 0.00) 0.425 (± 0.00) 0.403 (± 0.00) 0.513 (± 0.00) 0.488 (± 0.02) 0.444 (± 0.05) 0.477 (± 0.00)

Table 24: F1 scores for SYNTHETIC under mechanism CD-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (± 0.00) 0.865 (± 0.00) 0.815 (± 0.00) 0.980 (± 0.00) 0.982 (± 0.00) 0.978 (± 0.00) 0.977 (± 0.00) 0.978 (± 0.01) 0.978 (± 0.01) 0.886 (± 0.00)

0.10 0.778 (± 0.00) 0.785 (± 0.00) 0.792 (± 0.00) 0.860 (± 0.00) 0.857 (± 0.00) 0.845 (± 0.00) 0.860 (± 0.00) 0.978 (± 0.01) 0.978 (± 0.01) 0.829 (± 0.00)

0.20 0.760 (± 0.00) 0.731 (± 0.00) 0.705 (± 0.00) 0.788 (± 0.00) 0.770 (± 0.00) 0.741 (± 0.00) 0.772 (± 0.00) 0.699 (± 0.02) 0.699 (± 0.02) 0.780 (± 0.00)

0.30 0.730 (± 0.00) 0.666 (± 0.00) 0.718 (± 0.00) 0.736 (± 0.00) 0.733 (± 0.00) 0.730 (± 0.00) 0.734 (± 0.00) 0.605 (± 0.03) 0.605 (± 0.03) 0.738 (± 0.00)
0.40 0.736 (± 0.00) 0.625 (± 0.00) 0.607 (± 0.00) 0.661 (± 0.00) 0.659 (± 0.00) 0.673 (± 0.00) 0.649 (± 0.00) 0.605 (± 0.03) 0.605 (± 0.03) 0.703 (± 0.00)

0.50 0.761 (± 0.00) 0.547 (± 0.00) 0.542 (± 0.00) 0.619 (± 0.00) 0.618 (± 0.00) 0.628 (± 0.00) 0.613 (± 0.00) 0.605 (± 0.03) 0.605 (± 0.03) 0.682 (± 0.00)

0.60 0.768 (± 0.00) 0.594 (± 0.00) 0.543 (± 0.00) 0.621 (± 0.00) 0.613 (± 0.00) 0.619 (± 0.00) 0.605 (± 0.00) 0.528 (± 0.03) 0.528 (± 0.03) 0.667 (± 0.00)

0.70 0.759 (± 0.00) 0.603 (± 0.00) 0.586 (± 0.00) 0.617 (± 0.00) 0.607 (± 0.00) 0.591 (± 0.00) 0.594 (± 0.00) 0.536 (± 0.03) 0.536 (± 0.03) 0.675 (± 0.00)

0.80 0.758 (± 0.00) 0.613 (± 0.00) 0.486 (± 0.00) 0.617 (± 0.00) 0.622 (± 0.00) 0.631 (± 0.00) 0.620 (± 0.00) 0.536 (± 0.03) 0.536 (± 0.03) 0.666 (± 0.00)

0.90 0.775 (± 0.00) 0.544 (± 0.00) 0.529 (± 0.00) 0.623 (± 0.00) 0.633 (± 0.00) 0.623 (± 0.00) 0.606 (± 0.00) 0.535 (± 0.02) 0.536 (± 0.03) 0.678 (± 0.00)

0.99 0.764 (± 0.00) 0.569 (± 0.00) 0.557 (± 0.00) 0.609 (± 0.00) 0.611 (± 0.00) 0.643 (± 0.00) 0.612 (± 0.00) 0.646 (± 0.03) 0.638 (± 0.03) 0.667 (± 0.00)

Table 25: F1 scores for SYNTHETIC under mechanism FD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (± 0.00) 0.865 (± 0.00) 0.815 (± 0.00) 0.980 (± 0.00) 0.982 (± 0.00) 0.978 (± 0.00) 0.977 (± 0.00) 0.976 (± 0.01) 0.976 (± 0.01) 0.983 (± 0.01)
0.10 0.751 (± 0.05) 0.750 (± 0.03) 0.761 (± 0.02) 0.893 (± 0.01) 0.900 (± 0.02) 0.878 (± 0.02) 0.895 (± 0.01) 0.891 (± 0.02) 0.894 (± 0.02) 0.895 (± 0.01)

0.20 0.750 (± 0.03) 0.721 (± 0.01) 0.699 (± 0.04) 0.836 (± 0.02) 0.845 (± 0.02) 0.785 (± 0.04) 0.847 (± 0.02) 0.849 (± 0.03) 0.854 (± 0.02) 0.843 (± 0.04)

0.30 0.691 (± 0.04) 0.678 (± 0.02) 0.667 (± 0.03) 0.810 (± 0.01) 0.812 (± 0.01) 0.771 (± 0.03) 0.789 (± 0.01) 0.819 (± 0.02) 0.821 (± 0.01) 0.812 (± 0.01)

0.40 0.693 (± 0.03) 0.678 (± 0.03) 0.682 (± 0.03) 0.791 (± 0.02) 0.798 (± 0.00) 0.763 (± 0.02) 0.791 (± 0.00) 0.785 (± 0.02) 0.793 (± 0.02) 0.806 (± 0.01)
0.50 0.673 (± 0.04) 0.668 (± 0.01) 0.676 (± 0.03) 0.753 (± 0.01) 0.758 (± 0.02) 0.713 (± 0.03) 0.752 (± 0.01) 0.741 (± 0.02) 0.737 (± 0.02) 0.763 (± 0.01)
0.60 0.620 (± 0.02) 0.608 (± 0.02) 0.610 (± 0.02) 0.708 (± 0.01) 0.715 (± 0.00) 0.685 (± 0.02) 0.702 (± 0.02) 0.714 (± 0.01) 0.719 (± 0.01) 0.727 (± 0.01)
0.70 0.494 (± 0.07) 0.580 (± 0.06) 0.588 (± 0.02) 0.651 (± 0.03) 0.670 (± 0.04) 0.631 (± 0.03) 0.653 (± 0.04) 0.676 (± 0.02) 0.673 (± 0.03) 0.688 (± 0.02)
0.80 0.425 (± 0.07) 0.607 (± 0.04) 0.577 (± 0.01) 0.611 (± 0.01) 0.627 (± 0.02) 0.589 (± 0.03) 0.596 (± 0.01) 0.619 (± 0.01) 0.624 (± 0.01) 0.639 (± 0.02)
0.90 0.362 (± 0.02) 0.625 (± 0.02) 0.512 (± 0.05) 0.575 (± 0.02) 0.595 (± 0.02) 0.573 (± 0.02) 0.582 (± 0.01) 0.594 (± 0.04) 0.601 (± 0.02) 0.612 (± 0.00)

0.99 0.429 (± 0.13) 0.570 (± 0.02) 0.423 (± 0.11) 0.547 (± 0.02) 0.536 (± 0.01) 0.490 (± 0.05) 0.551 (± 0.01) 0.569 (± 0.03) 0.545 (± 0.04) 0.576 (± 0.02)
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Table 26: F1 scores for SYNTHETIC under mechanism CD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.812 (± 0.00) 0.865 (± 0.00) 0.815 (± 0.00) 0.980 (± 0.00) 0.982 (± 0.00) 0.978 (± 0.00) 0.977 (± 0.00) 0.978 (± 0.01) 0.978 (± 0.01) 0.983 (± 0.01)
0.10 0.756 (± 0.04) 0.757 (± 0.02) 0.752 (± 0.02) 0.913 (± 0.02) 0.918 (± 0.02) 0.882 (± 0.02) 0.912 (± 0.01) 0.912 (± 0.02) 0.912 (± 0.02) 0.913 (± 0.02)

0.20 0.730 (± 0.05) 0.718 (± 0.02) 0.674 (± 0.05) 0.856 (± 0.03) 0.868 (± 0.03) 0.800 (± 0.04) 0.861 (± 0.04) 0.864 (± 0.02) 0.865 (± 0.02) 0.865 (± 0.03)

0.30 0.663 (± 0.05) 0.716 (± 0.02) 0.689 (± 0.03) 0.803 (± 0.02) 0.820 (± 0.02) 0.768 (± 0.03) 0.810 (± 0.03) 0.807 (± 0.02) 0.804 (± 0.02) 0.830 (± 0.03)
0.40 0.530 (± 0.16) 0.678 (± 0.01) 0.718 (± 0.03) 0.744 (± 0.01) 0.749 (± 0.00) 0.753 (± 0.01) 0.739 (± 0.03) 0.756 (± 0.01) 0.742 (± 0.01) 0.776 (± 0.01)
0.50 0.487 (± 0.12) 0.662 (± 0.03) 0.655 (± 0.04) 0.697 (± 0.03) 0.695 (± 0.03) 0.683 (± 0.04) 0.699 (± 0.04) 0.689 (± 0.03) 0.657 (± 0.02) 0.725 (± 0.01)
0.60 0.575 (± 0.06) 0.696 (± 0.03) 0.577 (± 0.02) 0.683 (± 0.03) 0.658 (± 0.03) 0.666 (± 0.02) 0.645 (± 0.03) 0.694 (± 0.04) 0.638 (± 0.03) 0.731 (± 0.03)
0.70 0.553 (± 0.03) 0.616 (± 0.03) 0.583 (± 0.02) 0.613 (± 0.02) 0.600 (± 0.04) 0.617 (± 0.04) 0.592 (± 0.05) 0.642 (± 0.03) 0.603 (± 0.04) 0.668 (± 0.01)
0.80 0.486 (± 0.06) 0.638 (± 0.03) 0.592 (± 0.03) 0.588 (± 0.02) 0.596 (± 0.03) 0.570 (± 0.02) 0.563 (± 0.03) 0.618 (± 0.02) 0.580 (± 0.04) 0.655 (± 0.02)
0.90 0.432 (± 0.08) 0.618 (± 0.05) 0.479 (± 0.10) 0.586 (± 0.04) 0.607 (± 0.03) 0.556 (± 0.03) 0.553 (± 0.01) 0.598 (± 0.03) 0.557 (± 0.04) 0.635 (± 0.04)
0.99 0.468 (± 0.03) 0.545 (± 0.06) 0.396 (± 0.08) 0.594 (± 0.01) 0.537 (± 0.01) 0.475 (± 0.06) 0.549 (± 0.03) 0.550 (± 0.03) 0.485 (± 0.06) 0.568 (± 0.01)

Table 27: F1 scores for AIR under mechanism U-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (± 0.00) 0.798 (± 0.02) 0.733 (± 0.00) 0.918 (± 0.00) 0.922 (± 0.01) 0.922 (± 0.00) 0.891 (± 0.00) 0.916 (± 0.02) 0.916 (± 0.02) 0.930 (± 0.00)
0.10 0.665 (± 0.00) 0.710 (± 0.00) 0.733 (± 0.00) 0.895 (± 0.00) 0.891 (± 0.00) 0.768 (± 0.00) 0.883 (± 0.00) 0.904 (± 0.03) 0.902 (± 0.03) 0.899 (± 0.00)

0.20 0.669 (± 0.00) 0.582 (± 0.00) 0.709 (± 0.00) 0.848 (± 0.00) 0.833 (± 0.00) 0.747 (± 0.00) 0.852 (± 0.00) 0.874 (± 0.03) 0.865 (± 0.03) 0.859 (± 0.00)

0.30 0.669 (± 0.00) 0.502 (± 0.00) 0.715 (± 0.00) 0.836 (± 0.00) 0.837 (± 0.00) 0.712 (± 0.00) 0.836 (± 0.00) 0.837 (± 0.04) 0.857 (± 0.03) 0.852 (± 0.00)

0.40 0.714 (± 0.00) 0.532 (± 0.00) 0.700 (± 0.00) 0.805 (± 0.00) 0.829 (± 0.00) 0.712 (± 0.00) 0.797 (± 0.00) 0.813 (± 0.02) 0.839 (± 0.02) 0.833 (± 0.00)

0.50 0.666 (± 0.00) 0.553 (± 0.00) 0.669 (± 0.00) 0.801 (± 0.00) 0.805 (± 0.00) 0.711 (± 0.00) 0.802 (± 0.00) 0.832 (± 0.04) 0.815 (± 0.03) 0.767 (± 0.00)

0.60 0.663 (± 0.00) 0.452 (± 0.00) 0.691 (± 0.00) 0.775 (± 0.00) 0.762 (± 0.00) 0.701 (± 0.00) 0.767 (± 0.00) 0.795 (± 0.04) 0.807 (± 0.06) 0.744 (± 0.00)

0.70 0.714 (± 0.00) 0.495 (± 0.00) 0.686 (± 0.00) 0.724 (± 0.00) 0.736 (± 0.00) 0.656 (± 0.00) 0.754 (± 0.00) 0.753 (± 0.07) 0.746 (± 0.05) 0.736 (± 0.00)

0.80 0.666 (± 0.00) 0.559 (± 0.00) 0.667 (± 0.00) 0.712 (± 0.00) 0.677 (± 0.00) 0.647 (± 0.00) 0.637 (± 0.00) 0.709 (± 0.03) 0.715 (± 0.03) 0.713 (± 0.00)

0.90 0.700 (± 0.00) 0.541 (± 0.00) 0.670 (± 0.00) 0.585 (± 0.00) 0.593 (± 0.00) 0.669 (± 0.00) 0.619 (± 0.00) 0.598 (± 0.06) 0.628 (± 0.04) 0.705 (± 0.00)
0.99 0.693 (± 0.00) 0.409 (± 0.00) 0.658 (± 0.00) 0.436 (± 0.00) 0.384 (± 0.00) 0.651 (± 0.00) 0.431 (± 0.00) 0.440 (± 0.05) 0.397 (± 0.04) 0.664 (± 0.00)

Table 28: F1 scores for AIR under mechanism S-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (± 0.00) 0.798 (± 0.02) 0.733 (± 0.00) 0.918 (± 0.00) 0.922 (± 0.01) 0.922 (± 0.00) 0.891 (± 0.00) 0.916 (± 0.02) 0.916 (± 0.02) 0.930 (± 0.00)
0.10 0.568 (± 0.00) 0.644 (± 0.00) 0.733 (± 0.00) 0.891 (± 0.00) 0.899 (± 0.00) 0.895 (± 0.00) 0.872 (± 0.00) 0.879 (± 0.02) 0.900 (± 0.02) 0.891 (± 0.00)

0.20 0.573 (± 0.00) 0.597 (± 0.00) 0.733 (± 0.00) 0.860 (± 0.00) 0.883 (± 0.00) 0.851 (± 0.00) 0.899 (± 0.00) 0.860 (± 0.03) 0.865 (± 0.03) 0.890 (± 0.00)

0.30 0.630 (± 0.00) 0.527 (± 0.00) 0.665 (± 0.00) 0.850 (± 0.00) 0.847 (± 0.00) 0.820 (± 0.00) 0.852 (± 0.00) 0.838 (± 0.04) 0.853 (± 0.03) 0.835 (± 0.00)

0.40 0.571 (± 0.00) 0.508 (± 0.00) 0.728 (± 0.00) 0.819 (± 0.00) 0.819 (± 0.00) 0.795 (± 0.00) 0.826 (± 0.00) 0.812 (± 0.03) 0.796 (± 0.04) 0.842 (± 0.00)
0.50 0.562 (± 0.00) 0.530 (± 0.00) 0.742 (± 0.00) 0.787 (± 0.00) 0.770 (± 0.00) 0.829 (± 0.00) 0.799 (± 0.00) 0.769 (± 0.03) 0.778 (± 0.03) 0.817 (± 0.00)

0.60 0.549 (± 0.00) 0.532 (± 0.00) 0.739 (± 0.00) 0.750 (± 0.00) 0.737 (± 0.00) 0.809 (± 0.00) 0.761 (± 0.00) 0.736 (± 0.06) 0.718 (± 0.04) 0.797 (± 0.00)

0.70 0.603 (± 0.00) 0.532 (± 0.00) 0.706 (± 0.00) 0.686 (± 0.00) 0.661 (± 0.00) 0.767 (± 0.00) 0.666 (± 0.00) 0.709 (± 0.05) 0.693 (± 0.03) 0.756 (± 0.00)

0.80 0.610 (± 0.00) 0.476 (± 0.00) 0.657 (± 0.00) 0.607 (± 0.00) 0.605 (± 0.00) 0.721 (± 0.00) 0.601 (± 0.00) 0.614 (± 0.04) 0.603 (± 0.04) 0.734 (± 0.00)
0.90 0.504 (± 0.00) 0.389 (± 0.00) 0.692 (± 0.00) 0.549 (± 0.00) 0.505 (± 0.00) 0.677 (± 0.00) 0.522 (± 0.00) 0.537 (± 0.03) 0.511 (± 0.02) 0.699 (± 0.00)
0.99 0.435 (± 0.00) 0.332 (± 0.00) 0.652 (± 0.00) 0.350 (± 0.00) 0.333 (± 0.00) 0.643 (± 0.00) 0.353 (± 0.00) 0.351 (± 0.01) 0.354 (± 0.01) 0.652 (± 0.00)

Table 29: F1 scores for AIR under mechanism CD-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (± 0.00) 0.798 (± 0.02) 0.733 (± 0.00) 0.918 (± 0.00) 0.922 (± 0.01) 0.922 (± 0.00) 0.891 (± 0.00) 0.916 (± 0.02) 0.916 (± 0.02) 0.930 (± 0.00)
0.10 0.714 (± 0.00) 0.730 (± 0.00) 0.706 (± 0.00) 0.804 (± 0.00) 0.819 (± 0.00) 0.700 (± 0.00) 0.820 (± 0.00) 0.825 (± 0.05) 0.825 (± 0.05) 0.876 (± 0.00)
0.20 0.714 (± 0.00) 0.730 (± 0.00) 0.703 (± 0.00) 0.804 (± 0.00) 0.819 (± 0.00) 0.677 (± 0.00) 0.820 (± 0.00) 0.825 (± 0.05) 0.825 (± 0.05) 0.887 (± 0.00)
0.30 0.710 (± 0.00) 0.651 (± 0.00) 0.613 (± 0.00) 0.721 (± 0.00) 0.697 (± 0.00) 0.696 (± 0.00) 0.726 (± 0.00) 0.725 (± 0.07) 0.725 (± 0.07) 0.744 (± 0.00)
0.40 0.701 (± 0.00) 0.587 (± 0.00) 0.617 (± 0.00) 0.717 (± 0.00) 0.687 (± 0.00) 0.691 (± 0.00) 0.701 (± 0.00) 0.719 (± 0.05) 0.719 (± 0.05) 0.794 (± 0.00)
0.50 0.717 (± 0.00) 0.504 (± 0.00) 0.458 (± 0.00) 0.528 (± 0.00) 0.571 (± 0.00) 0.625 (± 0.00) 0.564 (± 0.00) 0.556 (± 0.08) 0.556 (± 0.08) 0.722 (± 0.00)
0.60 0.717 (± 0.00) 0.504 (± 0.00) 0.450 (± 0.00) 0.528 (± 0.00) 0.571 (± 0.00) 0.625 (± 0.00) 0.564 (± 0.00) 0.556 (± 0.08) 0.556 (± 0.08) 0.737 (± 0.00)
0.70 0.717 (± 0.00) 0.498 (± 0.00) 0.446 (± 0.00) 0.540 (± 0.00) 0.553 (± 0.00) 0.668 (± 0.00) 0.518 (± 0.00) 0.498 (± 0.04) 0.498 (± 0.04) 0.662 (± 0.00)

0.80 0.703 (± 0.00) 0.557 (± 0.00) 0.430 (± 0.00) 0.515 (± 0.00) 0.481 (± 0.00) 0.676 (± 0.00) 0.457 (± 0.00) 0.495 (± 0.05) 0.495 (± 0.05) 0.680 (± 0.00)

0.90 0.703 (± 0.00) 0.498 (± 0.00) 0.338 (± 0.00) 0.515 (± 0.00) 0.481 (± 0.00) 0.676 (± 0.00) 0.457 (± 0.00) 0.495 (± 0.05) 0.495 (± 0.05) 0.674 (± 0.00)

0.99 0.660 (± 0.00) 0.468 (± 0.00) 0.338 (± 0.00) 0.515 (± 0.00) 0.481 (± 0.00) 0.682 (± 0.00) 0.457 (± 0.00) 0.675 (± 0.05) 0.688 (± 0.05) 0.673 (± 0.00)

Table 30: F1 scores for AIR under mechanism FD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (± 0.00) 0.798 (± 0.02) 0.733 (± 0.00) 0.918 (± 0.00) 0.922 (± 0.01) 0.922 (± 0.00) 0.891 (± 0.00) 0.911 (± 0.03) 0.914 (± 0.02) 0.930 (± 0.00)
0.10 0.618 (± 0.10) 0.758 (± 0.05) 0.709 (± 0.03) 0.895 (± 0.01) 0.891 (± 0.04) 0.772 (± 0.02) 0.883 (± 0.03) 0.890 (± 0.03) 0.897 (± 0.03) 0.906 (± 0.02)
0.20 0.595 (± 0.10) 0.776 (± 0.05) 0.668 (± 0.08) 0.883 (± 0.03) 0.879 (± 0.01) 0.756 (± 0.03) 0.867 (± 0.02) 0.852 (± 0.02) 0.888 (± 0.02) 0.887 (± 0.01)

0.30 0.580 (± 0.12) 0.536 (± 0.15) 0.721 (± 0.01) 0.852 (± 0.03) 0.859 (± 0.01) 0.745 (± 0.03) 0.833 (± 0.02) 0.845 (± 0.02) 0.864 (± 0.03) 0.875 (± 0.01)
0.40 0.677 (± 0.03) 0.575 (± 0.09) 0.716 (± 0.02) 0.852 (± 0.02) 0.855 (± 0.03) 0.725 (± 0.02) 0.840 (± 0.04) 0.839 (± 0.02) 0.848 (± 0.04) 0.852 (± 0.02)

0.50 0.587 (± 0.13) 0.620 (± 0.08) 0.719 (± 0.02) 0.837 (± 0.01) 0.832 (± 0.03) 0.698 (± 0.04) 0.829 (± 0.04) 0.806 (± 0.01) 0.822 (± 0.05) 0.852 (± 0.03)
0.60 0.556 (± 0.16) 0.686 (± 0.05) 0.692 (± 0.02) 0.837 (± 0.02) 0.808 (± 0.06) 0.711 (± 0.03) 0.793 (± 0.02) 0.780 (± 0.04) 0.783 (± 0.05) 0.817 (± 0.03)

0.70 0.556 (± 0.16) 0.634 (± 0.02) 0.717 (± 0.02) 0.769 (± 0.03) 0.779 (± 0.05) 0.685 (± 0.01) 0.750 (± 0.04) 0.745 (± 0.05) 0.771 (± 0.05) 0.770 (± 0.03)

0.80 0.556 (± 0.16) 0.665 (± 0.02) 0.665 (± 0.03) 0.654 (± 0.05) 0.709 (± 0.03) 0.667 (± 0.03) 0.660 (± 0.08) 0.718 (± 0.07) 0.719 (± 0.04) 0.786 (± 0.02)
0.90 0.582 (± 0.09) 0.645 (± 0.04) 0.662 (± 0.01) 0.658 (± 0.05) 0.661 (± 0.02) 0.659 (± 0.03) 0.530 (± 0.05) 0.670 (± 0.06) 0.655 (± 0.05) 0.710 (± 0.05)
0.99 0.638 (± 0.05) 0.635 (± 0.02) 0.637 (± 0.04) 0.557 (± 0.04) 0.528 (± 0.03) 0.674 (± 0.02) 0.508 (± 0.07) 0.549 (± 0.06) 0.565 (± 0.04) 0.616 (± 0.05)
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Table 31: F1 scores for AIR under mechanism CD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.724 (± 0.00) 0.798 (± 0.02) 0.733 (± 0.00) 0.918 (± 0.00) 0.922 (± 0.01) 0.922 (± 0.00) 0.891 (± 0.00) 0.916 (± 0.02) 0.916 (± 0.02) 0.930 (± 0.00)
0.10 0.598 (± 0.11) 0.667 (± 0.02) 0.722 (± 0.02) 0.888 (± 0.05) 0.887 (± 0.04) 0.851 (± 0.01) 0.891 (± 0.03) 0.860 (± 0.04) 0.883 (± 0.04) 0.895 (± 0.04)
0.20 0.556 (± 0.16) 0.632 (± 0.19) 0.697 (± 0.02) 0.864 (± 0.02) 0.848 (± 0.06) 0.778 (± 0.04) 0.841 (± 0.01) 0.853 (± 0.04) 0.836 (± 0.04) 0.864 (± 0.01)

0.30 0.556 (± 0.16) 0.526 (± 0.13) 0.722 (± 0.03) 0.845 (± 0.01) 0.825 (± 0.04) 0.689 (± 0.02) 0.841 (± 0.03) 0.855 (± 0.02) 0.806 (± 0.04) 0.891 (± 0.04)
0.40 0.480 (± 0.16) 0.691 (± 0.14) 0.601 (± 0.12) 0.833 (± 0.02) 0.805 (± 0.03) 0.722 (± 0.02) 0.860 (± 0.03) 0.856 (± 0.02) 0.811 (± 0.02) 0.860 (± 0.03)
0.50 0.536 (± 0.16) 0.607 (± 0.09) 0.705 (± 0.02) 0.813 (± 0.02) 0.769 (± 0.04) 0.674 (± 0.01) 0.783 (± 0.04) 0.790 (± 0.05) 0.777 (± 0.05) 0.833 (± 0.03)
0.60 0.622 (± 0.06) 0.636 (± 0.04) 0.694 (± 0.01) 0.758 (± 0.05) 0.708 (± 0.07) 0.681 (± 0.01) 0.766 (± 0.06) 0.814 (± 0.03) 0.774 (± 0.07) 0.766 (± 0.06)

0.70 0.580 (± 0.10) 0.672 (± 0.07) 0.681 (± 0.01) 0.757 (± 0.03) 0.724 (± 0.04) 0.644 (± 0.02) 0.753 (± 0.05) 0.755 (± 0.06) 0.720 (± 0.02) 0.726 (± 0.05)

0.80 0.563 (± 0.12) 0.681 (± 0.05) 0.676 (± 0.01) 0.733 (± 0.02) 0.655 (± 0.02) 0.658 (± 0.02) 0.712 (± 0.01) 0.735 (± 0.05) 0.686 (± 0.06) 0.769 (± 0.03)
0.90 0.655 (± 0.03) 0.615 (± 0.04) 0.653 (± 0.01) 0.693 (± 0.04) 0.579 (± 0.04) 0.643 (± 0.04) 0.692 (± 0.06) 0.678 (± 0.03) 0.613 (± 0.04) 0.668 (± 0.02)

0.99 0.654 (± 0.03) 0.522 (± 0.04) 0.660 (± 0.05) 0.524 (± 0.07) 0.473 (± 0.05) 0.650 (± 0.06) 0.424 (± 0.06) 0.523 (± 0.06) 0.411 (± 0.03) 0.631 (± 0.07)

Table 32: F1 scores for ELECTRIC under mechanism U-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (± 0.00) 0.915 (± 0.00) 0.963 (± 0.01) 0.885 (± 0.00) 0.929 (± 0.00) 0.861 (± 0.00) 0.903 (± 0.00) 0.912 (± 0.01) 0.909 (± 0.01) 0.938 (± 0.01)

0.10 0.589 (± 0.00) 0.827 (± 0.00) 0.931 (± 0.00) 0.865 (± 0.00) 0.864 (± 0.00) 0.887 (± 0.00) 0.889 (± 0.00) 0.855 (± 0.03) 0.854 (± 0.02) 0.923 (± 0.00)

0.20 0.589 (± 0.00) 0.806 (± 0.00) 0.935 (± 0.00) 0.821 (± 0.00) 0.807 (± 0.00) 0.876 (± 0.00) 0.877 (± 0.00) 0.805 (± 0.03) 0.807 (± 0.03) 0.877 (± 0.00)

0.30 0.588 (± 0.00) 0.770 (± 0.00) 0.924 (± 0.00) 0.758 (± 0.00) 0.780 (± 0.00) 0.889 (± 0.00) 0.872 (± 0.00) 0.742 (± 0.03) 0.781 (± 0.04) 0.868 (± 0.00)

0.40 0.590 (± 0.00) 0.703 (± 0.00) 0.906 (± 0.00) 0.711 (± 0.00) 0.728 (± 0.00) 0.874 (± 0.00) 0.865 (± 0.00) 0.710 (± 0.02) 0.746 (± 0.04) 0.859 (± 0.00)

0.50 0.587 (± 0.00) 0.626 (± 0.00) 0.922 (± 0.00) 0.676 (± 0.00) 0.693 (± 0.00) 0.864 (± 0.00) 0.841 (± 0.00) 0.676 (± 0.03) 0.721 (± 0.04) 0.804 (± 0.00)

0.60 0.584 (± 0.00) 0.567 (± 0.00) 0.881 (± 0.00) 0.598 (± 0.00) 0.614 (± 0.00) 0.877 (± 0.00) 0.793 (± 0.00) 0.597 (± 0.04) 0.663 (± 0.06) 0.779 (± 0.00)

0.70 0.582 (± 0.00) 0.506 (± 0.00) 0.868 (± 0.00) 0.548 (± 0.00) 0.553 (± 0.00) 0.831 (± 0.00) 0.771 (± 0.00) 0.528 (± 0.02) 0.601 (± 0.06) 0.766 (± 0.00)

0.80 0.592 (± 0.00) 0.397 (± 0.00) 0.852 (± 0.00) 0.496 (± 0.00) 0.522 (± 0.00) 0.807 (± 0.00) 0.730 (± 0.00) 0.465 (± 0.03) 0.509 (± 0.06) 0.728 (± 0.00)

0.90 0.593 (± 0.00) 0.389 (± 0.00) 0.744 (± 0.00) 0.361 (± 0.00) 0.423 (± 0.00) 0.701 (± 0.00) 0.628 (± 0.00) 0.407 (± 0.04) 0.395 (± 0.02) 0.646 (± 0.00)

0.99 0.592 (± 0.00) 0.289 (± 0.00) 0.260 (± 0.00) 0.285 (± 0.00) 0.282 (± 0.00) 0.630 (± 0.00) 0.333 (± 0.00) 0.278 (± 0.01) 0.276 (± 0.01) 0.412 (± 0.00)

Table 33: F1 scores for ELECTRIC under mechanism S-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (± 0.00) 0.915 (± 0.00) 0.963 (± 0.01) 0.885 (± 0.00) 0.929 (± 0.00) 0.861 (± 0.00) 0.903 (± 0.00) 0.909 (± 0.01) 0.912 (± 0.01) 0.938 (± 0.01)

0.10 0.493 (± 0.00) 0.891 (± 0.00) 0.959 (± 0.00) 0.831 (± 0.00) 0.853 (± 0.00) 0.862 (± 0.00) 0.854 (± 0.00) 0.872 (± 0.01) 0.873 (± 0.02) 0.904 (± 0.00)

0.20 0.484 (± 0.00) 0.855 (± 0.00) 0.945 (± 0.00) 0.821 (± 0.00) 0.851 (± 0.00) 0.867 (± 0.00) 0.870 (± 0.00) 0.833 (± 0.01) 0.842 (± 0.03) 0.878 (± 0.00)

0.30 0.478 (± 0.00) 0.816 (± 0.00) 0.935 (± 0.00) 0.768 (± 0.00) 0.796 (± 0.00) 0.872 (± 0.00) 0.856 (± 0.00) 0.776 (± 0.02) 0.805 (± 0.02) 0.855 (± 0.00)

0.40 0.483 (± 0.00) 0.756 (± 0.00) 0.940 (± 0.00) 0.703 (± 0.00) 0.734 (± 0.00) 0.842 (± 0.00) 0.871 (± 0.00) 0.736 (± 0.03) 0.754 (± 0.01) 0.801 (± 0.00)

0.50 0.431 (± 0.00) 0.708 (± 0.00) 0.926 (± 0.00) 0.656 (± 0.00) 0.665 (± 0.00) 0.839 (± 0.00) 0.844 (± 0.00) 0.682 (± 0.02) 0.712 (± 0.01) 0.810 (± 0.00)

0.60 0.397 (± 0.00) 0.632 (± 0.00) 0.898 (± 0.00) 0.619 (± 0.00) 0.617 (± 0.00) 0.813 (± 0.00) 0.808 (± 0.00) 0.627 (± 0.03) 0.651 (± 0.01) 0.787 (± 0.00)

0.70 0.435 (± 0.00) 0.563 (± 0.00) 0.870 (± 0.00) 0.528 (± 0.00) 0.545 (± 0.00) 0.799 (± 0.00) 0.776 (± 0.00) 0.543 (± 0.04) 0.586 (± 0.05) 0.711 (± 0.00)

0.80 0.490 (± 0.00) 0.522 (± 0.00) 0.806 (± 0.00) 0.475 (± 0.00) 0.455 (± 0.00) 0.764 (± 0.00) 0.770 (± 0.00) 0.477 (± 0.03) 0.493 (± 0.02) 0.676 (± 0.00)

0.90 0.374 (± 0.00) 0.392 (± 0.00) 0.771 (± 0.00) 0.420 (± 0.00) 0.394 (± 0.00) 0.738 (± 0.00) 0.496 (± 0.00) 0.374 (± 0.03) 0.381 (± 0.03) 0.567 (± 0.00)

0.99 0.260 (± 0.00) 0.265 (± 0.00) 0.260 (± 0.00) 0.269 (± 0.00) 0.277 (± 0.00) 0.639 (± 0.00) 0.285 (± 0.00) 0.267 (± 0.01) 0.267 (± 0.01) 0.479 (± 0.00)

Table 34: F1 scores for ELECTRIC under mechanism CD-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (± 0.00) 0.915 (± 0.00) 0.963 (± 0.01) 0.885 (± 0.00) 0.929 (± 0.00) 0.861 (± 0.00) 0.903 (± 0.00) 0.908 (± 0.01) 0.911 (± 0.01) 0.920 (± 0.00)

0.10 0.585 (± 0.00) 0.794 (± 0.00) 0.910 (± 0.00) 0.828 (± 0.00) 0.843 (± 0.00) 0.890 (± 0.00) 0.894 (± 0.00) 0.804 (± 0.03) 0.804 (± 0.03) 0.867 (± 0.00)

0.20 0.584 (± 0.00) 0.687 (± 0.00) 0.920 (± 0.00) 0.710 (± 0.00) 0.762 (± 0.00) 0.860 (± 0.00) 0.842 (± 0.00) 0.804 (± 0.03) 0.805 (± 0.03) 0.815 (± 0.00)

0.30 0.591 (± 0.00) 0.604 (± 0.00) 0.650 (± 0.00) 0.672 (± 0.00) 0.693 (± 0.00) 0.815 (± 0.00) 0.820 (± 0.00) 0.635 (± 0.01) 0.635 (± 0.01) 0.793 (± 0.00)

0.40 0.587 (± 0.00) 0.475 (± 0.00) 0.630 (± 0.00) 0.475 (± 0.00) 0.494 (± 0.00) 0.729 (± 0.00) 0.723 (± 0.00) 0.263 (± 0.01) 0.263 (± 0.01) 0.685 (± 0.00)

0.50 0.589 (± 0.00) 0.301 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.265 (± 0.01) 0.265 (± 0.01) 0.532 (± 0.00)

0.60 0.593 (± 0.00) 0.271 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.265 (± 0.01) 0.265 (± 0.01) 0.517 (± 0.00)

0.70 0.589 (± 0.00) 0.310 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.629 (± 0.00) 0.260 (± 0.00) 0.267 (± 0.01) 0.267 (± 0.01) 0.571 (± 0.00)

0.80 0.593 (± 0.00) 0.343 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.263 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.544 (± 0.00)

0.90 0.589 (± 0.00) 0.315 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.263 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.538 (± 0.00)

0.99 0.589 (± 0.00) 0.330 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.260 (± 0.00) 0.630 (± 0.00) 0.260 (± 0.00) 0.382 (± 0.01) 0.423 (± 0.02) 0.552 (± 0.00)

Table 35: F1 scores for ELECTRIC under mechanism FD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (± 0.00) 0.915 (± 0.00) 0.963 (± 0.01) 0.885 (± 0.00) 0.929 (± 0.00) 0.861 (± 0.00) 0.903 (± 0.00) 0.911 (± 0.01) 0.913 (± 0.01) 0.938 (± 0.01)

0.10 0.468 (± 0.15) 0.879 (± 0.01) 0.944 (± 0.02) 0.862 (± 0.03) 0.844 (± 0.02) 0.878 (± 0.03) 0.870 (± 0.04) 0.840 (± 0.03) 0.851 (± 0.02) 0.916 (± 0.01)

0.20 0.491 (± 0.13) 0.850 (± 0.01) 0.938 (± 0.01) 0.808 (± 0.02) 0.813 (± 0.02) 0.867 (± 0.01) 0.859 (± 0.02) 0.789 (± 0.02) 0.802 (± 0.03) 0.906 (± 0.00)

0.30 0.496 (± 0.13) 0.800 (± 0.02) 0.922 (± 0.03) 0.744 (± 0.02) 0.793 (± 0.01) 0.864 (± 0.03) 0.861 (± 0.01) 0.727 (± 0.02) 0.798 (± 0.03) 0.877 (± 0.01)

0.40 0.506 (± 0.12) 0.772 (± 0.04) 0.906 (± 0.03) 0.701 (± 0.03) 0.751 (± 0.03) 0.850 (± 0.02) 0.839 (± 0.01) 0.674 (± 0.02) 0.726 (± 0.03) 0.864 (± 0.01)

0.50 0.438 (± 0.12) 0.743 (± 0.01) 0.877 (± 0.01) 0.648 (± 0.03) 0.707 (± 0.02) 0.842 (± 0.02) 0.817 (± 0.03) 0.642 (± 0.05) 0.699 (± 0.08) 0.837 (± 0.02)

0.60 0.331 (± 0.05) 0.688 (± 0.02) 0.836 (± 0.03) 0.594 (± 0.02) 0.663 (± 0.01) 0.807 (± 0.05) 0.775 (± 0.02) 0.590 (± 0.03) 0.607 (± 0.03) 0.806 (± 0.01)

0.70 0.461 (± 0.14) 0.626 (± 0.01) 0.834 (± 0.04) 0.514 (± 0.04) 0.590 (± 0.02) 0.776 (± 0.02) 0.761 (± 0.02) 0.482 (± 0.03) 0.433 (± 0.09) 0.760 (± 0.02)

0.80 0.435 (± 0.12) 0.570 (± 0.02) 0.742 (± 0.06) 0.463 (± 0.01) 0.490 (± 0.04) 0.743 (± 0.04) 0.700 (± 0.01) 0.436 (± 0.01) 0.328 (± 0.04) 0.707 (± 0.01)

0.90 0.275 (± 0.01) 0.484 (± 0.01) 0.560 (± 0.22) 0.330 (± 0.06) 0.426 (± 0.03) 0.663 (± 0.03) 0.500 (± 0.17) 0.352 (± 0.03) 0.276 (± 0.01) 0.620 (± 0.02)

0.99 0.342 (± 0.12) 0.377 (± 0.03) 0.260 (± 0.00) 0.260 (± 0.00) 0.347 (± 0.01) 0.629 (± 0.00) 0.274 (± 0.01) 0.286 (± 0.02) 0.273 (± 0.01) 0.537 (± 0.08)
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Table 36: F1 scores for ELECTRIC under mechanism CD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.588 (± 0.00) 0.915 (± 0.00) 0.963 (± 0.01) 0.885 (± 0.00) 0.929 (± 0.00) 0.861 (± 0.00) 0.903 (± 0.00) 0.908 (± 0.01) 0.908 (± 0.01) 0.938 (± 0.01)

0.10 0.486 (± 0.12) 0.888 (± 0.01) 0.962 (± 0.01) 0.869 (± 0.01) 0.874 (± 0.01) 0.908 (± 0.02) 0.885 (± 0.03) 0.839 (± 0.03) 0.860 (± 0.02) 0.922 (± 0.00)

0.20 0.476 (± 0.15) 0.851 (± 0.02) 0.931 (± 0.02) 0.815 (± 0.03) 0.802 (± 0.01) 0.879 (± 0.01) 0.879 (± 0.01) 0.805 (± 0.03) 0.801 (± 0.00) 0.902 (± 0.03)

0.30 0.478 (± 0.16) 0.819 (± 0.04) 0.922 (± 0.00) 0.789 (± 0.03) 0.789 (± 0.01) 0.872 (± 0.01) 0.880 (± 0.01) 0.770 (± 0.05) 0.736 (± 0.01) 0.890 (± 0.00)

0.40 0.431 (± 0.11) 0.807 (± 0.02) 0.902 (± 0.01) 0.775 (± 0.01) 0.762 (± 0.01) 0.835 (± 0.02) 0.865 (± 0.02) 0.749 (± 0.03) 0.685 (± 0.05) 0.869 (± 0.02)

0.50 0.450 (± 0.09) 0.758 (± 0.02) 0.867 (± 0.03) 0.722 (± 0.02) 0.748 (± 0.01) 0.835 (± 0.03) 0.827 (± 0.03) 0.656 (± 0.03) 0.633 (± 0.04) 0.850 (± 0.02)

0.60 0.436 (± 0.10) 0.706 (± 0.01) 0.853 (± 0.05) 0.663 (± 0.02) 0.608 (± 0.01) 0.847 (± 0.03) 0.780 (± 0.02) 0.664 (± 0.03) 0.593 (± 0.04) 0.836 (± 0.02)

0.70 0.337 (± 0.03) 0.604 (± 0.03) 0.812 (± 0.03) 0.585 (± 0.03) 0.538 (± 0.03) 0.770 (± 0.09) 0.729 (± 0.01) 0.560 (± 0.02) 0.514 (± 0.02) 0.765 (± 0.01)

0.80 0.411 (± 0.09) 0.594 (± 0.02) 0.824 (± 0.08) 0.540 (± 0.01) 0.486 (± 0.01) 0.703 (± 0.04) 0.671 (± 0.01) 0.513 (± 0.01) 0.469 (± 0.02) 0.742 (± 0.02)

0.90 0.392 (± 0.11) 0.531 (± 0.02) 0.735 (± 0.07) 0.473 (± 0.03) 0.449 (± 0.02) 0.686 (± 0.06) 0.600 (± 0.04) 0.434 (± 0.02) 0.445 (± 0.04) 0.683 (± 0.02)

0.99 0.304 (± 0.02) 0.329 (± 0.04) 0.264 (± 0.01) 0.303 (± 0.02) 0.294 (± 0.01) 0.629 (± 0.00) 0.312 (± 0.04) 0.305 (± 0.02) 0.292 (± 0.02) 0.561 (± 0.02)

Table 37: F1 scores for TADPOLE under mechanism U-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (± 0.00) 0.648 (± 0.01) 0.790 (± 0.00) 0.806 (± 0.00) 0.832 (± 0.02) 0.786 (± 0.00) 0.792 (± 0.00) 0.847 (± 0.03) 0.847 (± 0.03) 0.809 (± 0.00)

0.10 0.789 (± 0.00) 0.590 (± 0.00) 0.795 (± 0.00) 0.801 (± 0.00) 0.832 (± 0.00) 0.809 (± 0.00) 0.821 (± 0.00) 0.841 (± 0.03) 0.837 (± 0.03) 0.820 (± 0.00)

0.20 0.808 (± 0.00) 0.590 (± 0.00) 0.803 (± 0.00) 0.823 (± 0.00) 0.836 (± 0.00) 0.779 (± 0.00) 0.802 (± 0.00) 0.833 (± 0.03) 0.827 (± 0.04) 0.799 (± 0.00)

0.30 0.814 (± 0.00) 0.567 (± 0.00) 0.791 (± 0.00) 0.806 (± 0.00) 0.825 (± 0.00) 0.757 (± 0.00) 0.803 (± 0.00) 0.811 (± 0.03) 0.813 (± 0.03) 0.802 (± 0.00)

0.40 0.804 (± 0.00) 0.610 (± 0.00) 0.831 (± 0.00) 0.800 (± 0.00) 0.820 (± 0.00) 0.794 (± 0.00) 0.799 (± 0.00) 0.830 (± 0.01) 0.819 (± 0.02) 0.805 (± 0.00)

0.50 0.752 (± 0.00) 0.581 (± 0.00) 0.813 (± 0.00) 0.809 (± 0.00) 0.830 (± 0.00) 0.799 (± 0.00) 0.810 (± 0.00) 0.797 (± 0.03) 0.790 (± 0.03) 0.814 (± 0.00)

0.60 0.756 (± 0.00) 0.575 (± 0.00) 0.808 (± 0.00) 0.785 (± 0.00) 0.797 (± 0.00) 0.722 (± 0.00) 0.791 (± 0.00) 0.810 (± 0.05) 0.771 (± 0.04) 0.799 (± 0.00)

0.70 0.610 (± 0.00) 0.552 (± 0.00) 0.795 (± 0.00) 0.740 (± 0.00) 0.772 (± 0.00) 0.729 (± 0.00) 0.762 (± 0.00) 0.779 (± 0.04) 0.767 (± 0.03) 0.802 (± 0.00)
0.80 0.669 (± 0.00) 0.552 (± 0.00) 0.804 (± 0.00) 0.757 (± 0.00) 0.728 (± 0.00) 0.669 (± 0.00) 0.775 (± 0.00) 0.760 (± 0.05) 0.736 (± 0.04) 0.764 (± 0.00)

0.90 0.759 (± 0.00) 0.590 (± 0.00) 0.241 (± 0.00) 0.758 (± 0.00) 0.408 (± 0.00) 0.608 (± 0.00) 0.767 (± 0.00) 0.786 (± 0.02) 0.704 (± 0.02) 0.763 (± 0.00)

0.99 0.707 (± 0.00) 0.523 (± 0.00) 0.241 (± 0.00) 0.241 (± 0.00) 0.241 (± 0.00) 0.353 (± 0.00) 0.241 (± 0.00) 0.507 (± 0.22) 0.241 (± 0.00) 0.700 (± 0.00)

Table 38: F1 scores for TADPOLE under mechanism S-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (± 0.00) 0.648 (± 0.01) 0.790 (± 0.00) 0.806 (± 0.00) 0.832 (± 0.02) 0.786 (± 0.00) 0.792 (± 0.00) 0.847 (± 0.03) 0.847 (± 0.03) 0.831 (± 0.04)

0.10 0.554 (± 0.00) 0.542 (± 0.00) 0.805 (± 0.00) 0.803 (± 0.00) 0.815 (± 0.00) 0.751 (± 0.00) 0.804 (± 0.00) 0.848 (± 0.02) 0.846 (± 0.02) 0.810 (± 0.00)

0.20 0.497 (± 0.00) 0.486 (± 0.00) 0.818 (± 0.00) 0.818 (± 0.00) 0.811 (± 0.00) 0.737 (± 0.00) 0.814 (± 0.00) 0.846 (± 0.02) 0.845 (± 0.03) 0.794 (± 0.00)

0.30 0.523 (± 0.00) 0.502 (± 0.00) 0.775 (± 0.00) 0.799 (± 0.00) 0.825 (± 0.00) 0.777 (± 0.00) 0.818 (± 0.00) 0.837 (± 0.02) 0.838 (± 0.02) 0.775 (± 0.00)

0.40 0.482 (± 0.00) 0.581 (± 0.00) 0.800 (± 0.00) 0.797 (± 0.00) 0.794 (± 0.00) 0.719 (± 0.00) 0.784 (± 0.00) 0.820 (± 0.03) 0.823 (± 0.04) 0.790 (± 0.00)

0.50 0.501 (± 0.00) 0.523 (± 0.00) 0.757 (± 0.00) 0.777 (± 0.00) 0.769 (± 0.00) 0.739 (± 0.00) 0.798 (± 0.00) 0.803 (± 0.02) 0.797 (± 0.03) 0.795 (± 0.00)

0.60 0.539 (± 0.00) 0.498 (± 0.00) 0.802 (± 0.00) 0.769 (± 0.00) 0.734 (± 0.00) 0.693 (± 0.00) 0.804 (± 0.00) 0.804 (± 0.05) 0.799 (± 0.04) 0.816 (± 0.00)
0.70 0.480 (± 0.00) 0.453 (± 0.00) 0.748 (± 0.00) 0.719 (± 0.00) 0.738 (± 0.00) 0.642 (± 0.00) 0.752 (± 0.00) 0.784 (± 0.03) 0.777 (± 0.05) 0.795 (± 0.00)
0.80 0.502 (± 0.00) 0.422 (± 0.00) 0.689 (± 0.00) 0.736 (± 0.00) 0.703 (± 0.00) 0.555 (± 0.00) 0.730 (± 0.00) 0.739 (± 0.02) 0.740 (± 0.06) 0.812 (± 0.00)
0.90 0.377 (± 0.00) 0.280 (± 0.00) 0.503 (± 0.00) 0.680 (± 0.00) 0.650 (± 0.00) 0.420 (± 0.00) 0.739 (± 0.00) 0.662 (± 0.07) 0.557 (± 0.06) 0.742 (± 0.00)
0.99 0.272 (± 0.00) 0.249 (± 0.00) 0.241 (± 0.00) 0.384 (± 0.00) 0.241 (± 0.00) 0.241 (± 0.00) 0.241 (± 0.00) 0.323 (± 0.05) 0.241 (± 0.00) 0.370 (± 0.00)

Table 39: F1 scores for TADPOLE under mechanism CD-MCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (± 0.00) 0.648 (± 0.01) 0.790 (± 0.00) 0.806 (± 0.00) 0.832 (± 0.02) 0.786 (± 0.00) 0.792 (± 0.00) 0.847 (± 0.03) 0.847 (± 0.03) 0.831 (± 0.04)

0.10 0.786 (± 0.00) 0.550 (± 0.00) 0.765 (± 0.00) 0.760 (± 0.00) 0.793 (± 0.00) 0.789 (± 0.00) 0.785 (± 0.00) 0.809 (± 0.03) 0.809 (± 0.03) 0.815 (± 0.00)
0.20 0.785 (± 0.00) 0.462 (± 0.00) 0.758 (± 0.00) 0.777 (± 0.00) 0.786 (± 0.00) 0.763 (± 0.00) 0.804 (± 0.00) 0.810 (± 0.04) 0.810 (± 0.04) 0.806 (± 0.00)

0.30 0.654 (± 0.00) 0.517 (± 0.00) 0.766 (± 0.00) 0.788 (± 0.00) 0.784 (± 0.00) 0.779 (± 0.00) 0.782 (± 0.00) 0.802 (± 0.04) 0.802 (± 0.04) 0.800 (± 0.00)

0.40 0.685 (± 0.00) 0.550 (± 0.00) 0.780 (± 0.00) 0.764 (± 0.00) 0.780 (± 0.00) 0.779 (± 0.00) 0.774 (± 0.00) 0.795 (± 0.03) 0.795 (± 0.03) 0.780 (± 0.00)

0.50 0.778 (± 0.00) 0.558 (± 0.00) 0.700 (± 0.00) 0.728 (± 0.00) 0.776 (± 0.00) 0.746 (± 0.00) 0.731 (± 0.00) 0.773 (± 0.04) 0.773 (± 0.04) 0.785 (± 0.00)
0.60 0.783 (± 0.00) 0.508 (± 0.00) 0.731 (± 0.00) 0.708 (± 0.00) 0.729 (± 0.00) 0.760 (± 0.00) 0.714 (± 0.00) 0.767 (± 0.03) 0.767 (± 0.03) 0.745 (± 0.00)

0.70 0.725 (± 0.00) 0.545 (± 0.00) 0.684 (± 0.00) 0.638 (± 0.00) 0.663 (± 0.00) 0.704 (± 0.00) 0.710 (± 0.00) 0.739 (± 0.03) 0.739 (± 0.03) 0.722 (± 0.00)

0.80 0.656 (± 0.00) 0.442 (± 0.00) 0.576 (± 0.00) 0.391 (± 0.00) 0.442 (± 0.00) 0.543 (± 0.00) 0.419 (± 0.00) 0.643 (± 0.04) 0.643 (± 0.04) 0.615 (± 0.00)

0.90 0.704 (± 0.00) 0.419 (± 0.00) 0.241 (± 0.00) 0.348 (± 0.00) 0.361 (± 0.00) 0.337 (± 0.00) 0.292 (± 0.00) 0.327 (± 0.03) 0.327 (± 0.03) 0.409 (± 0.00)

0.99 0.687 (± 0.00) 0.402 (± 0.00) 0.241 (± 0.00) 0.348 (± 0.00) 0.361 (± 0.00) 0.337 (± 0.00) 0.292 (± 0.00) 0.730 (± 0.03) 0.567 (± 0.17) 0.409 (± 0.00)

Table 40: F1 scores for TADPOLE under mechanism FD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (± 0.00) 0.648 (± 0.01) 0.790 (± 0.00) 0.806 (± 0.00) 0.832 (± 0.02) 0.786 (± 0.00) 0.792 (± 0.00) 0.846 (± 0.03) 0.849 (± 0.03) 0.831 (± 0.04)

0.10 0.546 (± 0.07) 0.643 (± 0.01) 0.801 (± 0.01) 0.797 (± 0.01) 0.822 (± 0.02) 0.830 (± 0.04) 0.838 (± 0.03) 0.841 (± 0.03) 0.842 (± 0.03) 0.846 (± 0.04)
0.20 0.531 (± 0.11) 0.624 (± 0.05) 0.793 (± 0.04) 0.836 (± 0.01) 0.810 (± 0.01) 0.832 (± 0.02) 0.827 (± 0.01) 0.832 (± 0.03) 0.817 (± 0.03) 0.796 (± 0.00)

0.30 0.573 (± 0.12) 0.580 (± 0.04) 0.804 (± 0.05) 0.811 (± 0.03) 0.806 (± 0.04) 0.829 (± 0.04) 0.831 (± 0.02) 0.827 (± 0.03) 0.802 (± 0.03) 0.828 (± 0.03)

0.40 0.562 (± 0.09) 0.615 (± 0.03) 0.751 (± 0.03) 0.803 (± 0.04) 0.793 (± 0.04) 0.811 (± 0.02) 0.802 (± 0.03) 0.806 (± 0.03) 0.803 (± 0.03) 0.781 (± 0.02)

0.50 0.673 (± 0.04) 0.646 (± 0.07) 0.793 (± 0.02) 0.789 (± 0.02) 0.796 (± 0.05) 0.780 (± 0.01) 0.815 (± 0.03) 0.809 (± 0.04) 0.805 (± 0.04) 0.784 (± 0.03)

0.60 0.529 (± 0.09) 0.633 (± 0.06) 0.722 (± 0.07) 0.805 (± 0.04) 0.785 (± 0.05) 0.758 (± 0.02) 0.810 (± 0.03) 0.803 (± 0.04) 0.792 (± 0.04) 0.795 (± 0.03)

0.70 0.634 (± 0.05) 0.571 (± 0.04) 0.804 (± 0.03) 0.795 (± 0.04) 0.746 (± 0.06) 0.720 (± 0.06) 0.795 (± 0.05) 0.776 (± 0.05) 0.748 (± 0.05) 0.780 (± 0.03)

0.80 0.378 (± 0.10) 0.590 (± 0.06) 0.612 (± 0.14) 0.785 (± 0.02) 0.692 (± 0.05) 0.708 (± 0.02) 0.797 (± 0.03) 0.776 (± 0.04) 0.720 (± 0.05) 0.765 (± 0.00)

0.90 0.309 (± 0.10) 0.597 (± 0.01) 0.241 (± 0.00) 0.771 (± 0.03) 0.663 (± 0.05) 0.719 (± 0.01) 0.787 (± 0.02) 0.779 (± 0.03) 0.703 (± 0.05) 0.777 (± 0.06)

0.99 0.241 (± 0.00) 0.600 (± 0.05) 0.241 (± 0.00) 0.736 (± 0.03) 0.241 (± 0.00) 0.584 (± 0.05) 0.241 (± 0.00) 0.733 (± 0.01) 0.241 (± 0.00) 0.794 (± 0.04)
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Table 41: F1 scores for TADPOLE under mechanism CD-MNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.804 (± 0.00) 0.648 (± 0.01) 0.790 (± 0.00) 0.806 (± 0.00) 0.832 (± 0.02) 0.786 (± 0.00) 0.792 (± 0.00) 0.847 (± 0.03) 0.847 (± 0.03) 0.809 (± 0.00)

0.10 0.553 (± 0.06) 0.534 (± 0.09) 0.793 (± 0.05) 0.813 (± 0.03) 0.829 (± 0.04) 0.792 (± 0.03) 0.806 (± 0.03) 0.842 (± 0.02) 0.826 (± 0.04) 0.803 (± 0.01)

0.20 0.485 (± 0.06) 0.515 (± 0.04) 0.804 (± 0.03) 0.812 (± 0.03) 0.832 (± 0.03) 0.810 (± 0.02) 0.806 (± 0.02) 0.849 (± 0.01) 0.826 (± 0.04) 0.815 (± 0.02)

0.30 0.441 (± 0.02) 0.584 (± 0.06) 0.805 (± 0.03) 0.785 (± 0.02) 0.811 (± 0.03) 0.786 (± 0.02) 0.812 (± 0.02) 0.828 (± 0.03) 0.813 (± 0.04) 0.827 (± 0.03)

0.40 0.502 (± 0.07) 0.671 (± 0.03) 0.828 (± 0.01) 0.818 (± 0.03) 0.808 (± 0.02) 0.793 (± 0.02) 0.814 (± 0.03) 0.824 (± 0.02) 0.826 (± 0.03) 0.830 (± 0.01)
0.50 0.448 (± 0.02) 0.621 (± 0.04) 0.784 (± 0.02) 0.804 (± 0.04) 0.799 (± 0.04) 0.756 (± 0.03) 0.803 (± 0.05) 0.819 (± 0.02) 0.800 (± 0.04) 0.828 (± 0.04)
0.60 0.457 (± 0.01) 0.529 (± 0.03) 0.791 (± 0.01) 0.781 (± 0.03) 0.803 (± 0.03) 0.710 (± 0.07) 0.797 (± 0.03) 0.823 (± 0.04) 0.783 (± 0.03) 0.792 (± 0.03)

0.70 0.485 (± 0.07) 0.590 (± 0.09) 0.639 (± 0.29) 0.797 (± 0.05) 0.787 (± 0.04) 0.710 (± 0.05) 0.822 (± 0.02) 0.813 (± 0.03) 0.784 (± 0.07) 0.818 (± 0.01)

0.80 0.376 (± 0.10) 0.605 (± 0.04) 0.434 (± 0.27) 0.785 (± 0.05) 0.767 (± 0.09) 0.744 (± 0.01) 0.798 (± 0.05) 0.819 (± 0.04) 0.776 (± 0.04) 0.800 (± 0.02)

0.90 0.362 (± 0.09) 0.563 (± 0.03) 0.241 (± 0.00) 0.788 (± 0.01) 0.730 (± 0.08) 0.689 (± 0.05) 0.776 (± 0.06) 0.771 (± 0.06) 0.704 (± 0.05) 0.803 (± 0.05)
0.99 0.324 (± 0.12) 0.547 (± 0.08) 0.241 (± 0.00) 0.255 (± 0.02) 0.241 (± 0.00) 0.348 (± 0.05) 0.241 (± 0.00) 0.558 (± 0.15) 0.241 (± 0.00) 0.652 (± 0.04)
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G COMPLETE RESULT TABLES – R2 REGIME

This appendix complements the analysis of Research Question 3 (Section 4). It reports the complete
set of results for the R2 regime, where training and test data are subject to different missingness
mechanisms. We include both numerical tables (F1-score mean ± std over 5 runs) and extended
visualizations across all models and datasets.

G.1 NUMERICAL RESULTS

Table 42 reports the full F1-scores for all models, datasets, and shift configurations considered in
the R2 regime.

Table 42: F1 (mean ± std over 5 runs). Setup: R2 missingness distribution shift, where training
data are subject to either FD-MNAR or CD-MNAR, while test data have either no missingness, 25%
or 50% of U-MCAR

Task Train mech. µ Test GOODIE GSPN FairAC GCNmf PCFI FP GNNmi GNNzero GNNmedian GNNmim

SYNTHETIC

FD-MNAR 0 0.50 (± 0.15) 0.68 (± 0.01) 0.69 (± 0.05) 0.81 (± 0.01) 0.79 (± 0.02) 0.80 (± 0.01) 0.80 (± 0.01) 0.81 (± 0.02) 0.80 (± 0.02) 0.82 (± 0.01)

FD-MNAR 0.25 0.47 (± 0.13) 0.64 (± 0.03) 0.69 (± 0.04) 0.74 (± 0.03) 0.75 (± 0.03) 0.76 (± 0.03) 0.75 (± 0.03) 0.76 (± 0.01) 0.76 (± 0.02) 0.77 (± 0.03)

FD-MNAR 0.50 0.47 (± 0.13) 0.64 (± 0.02) 0.65 (± 0.04) 0.71 (± 0.03) 0.73 (± 0.02) 0.71 (± 0.02) 0.74 (± 0.02) 0.71 (± 0.03) 0.72 (± 0.04) 0.73 (± 0.02)

CD-MNAR 0 0.71 (± 0.07) 0.70 (± 0.03) 0.70 (± 0.05) 0.80 (± 0.04) 0.81 (± 0.02) 0.80 (± 0.02) 0.78 (± 0.02) 0.82 (± 0.02) 0.76 (± 0.02) 0.85 (± 0.04)

CD-MNAR 0.25 0.66 (± 0.05) 0.68 (± 0.05) 0.68 (± 0.03) 0.75 (± 0.06) 0.78 (± 0.04) 0.77 (± 0.04) 0.77 (± 0.02) 0.78 (± 0.03) 0.72 (± 0.03) 0.80 (± 0.03)

CD-MNAR 0.50 0.56 (± 0.10) 0.64 (± 0.04) 0.65 (± 0.01) 0.73 (± 0.02) 0.72 (± 0.03) 0.72 (± 0.05) 0.72 (± 0.01) 0.72 (± 0.04) 0.70 (± 0.01) 0.75 (± 0.03)

AIR

FD-MNAR 0 0.50 (± 0.14) 0.33 (± 0.04) 0.66 (± 0.07) 0.83 (± 0.05) 0.88 (± 0.01) 0.86 (± 0.03) 0.86 (± 0.03) 0.85 (± 0.01) 0.84 (± 0.03) 0.87 (± 0.02)

FD-MNAR 0.25 0.51 (± 0.12) 0.42 (± 0.04) 0.65 (± 0.08) 0.68 (± 0.05) 0.83 (± 0.05) 0.81 (± 0.02) 0.81 (± 0.01) 0.83 (± 0.01) 0.80 (± 0.02) 0.85 (± 0.01)

FD-MNAR 0.50 0.52 (± 0.11) 0.55 (± 0.03) 0.70 (± 0.03) 0.71 (± 0.03) 0.80 (± 0.07) 0.79 (± 0.06) 0.79 (± 0.05) 0.78 (± 0.04) 0.78 (± 0.01) 0.80 (± 0.05)

CD-MNAR 0 0.56 (± 0.16) 0.35 (± 0.02) 0.65 (± 0.08) 0.60 (± 0.20) 0.88 (± 0.01) 0.71 (± 0.07) 0.86 (± 0.06) 0.83 (± 0.07) 0.82 (± 0.03) 0.85 (± 0.00)

CD-MNAR 0.25 0.56 (± 0.16) 0.45 (± 0.50) 0.70 (± 0.05) 0.70 (± 0.05) 0.84 (± 0.05) 0.75 (± 0.05) 0.84 (± 0.04) 0.80 (± 0.05) 0.79 (± 0.03) 0.84 (± 0.06)

CD-MNAR 0.50 0.62 (± 0.07) 0.47 (± 0.04) 0.68 (± 0.07) 0.70 (± 0.02) 0.80 (± 0.05) 0.72 (± 0.03) 0.76 (± 0.05) 0.76 (± 0.01) 0.74 (± 0.03) 0.76 (± 0.02)

ELECTRIC

FD-MNAR 0 0.45 (± 0.11) 0.67 (± 0.11) 0.92 (± 0.02) 0.88 (± 0.12) 0.69 (± 0.00) 0.76 (± 0.03) 0.80 (± 0.02) 0.83 (± 0.05) 0.79 (± 0.01) 0.92 (± 0.01)

FD-MNAR 0.25 0.53 (± 0.10) 0.68 (± 0.06) 0.89 (± 0.00) 0.80 (± 0.02) 0.73 (± 0.03) 0.69 (± 0.03) 0.74 (± 0.02) 0.76 (± 0.03) 0.73 (± 0.04) 0.87 (± 0.01)

FD-MNAR 0.50 0.50 (± 0.10) 0.68 (± 0.01) 0.90 (± 0.02) 0.83 (± 0.01) 0.75 (± 0.03) 0.62 (± 0.02) 0.66 (± 0.03) 0.68 (± 0.02) 0.66 (± 0.02) 0.82 (± 0.02)

CD-MNAR 0 0.52 (± 0.10) 0.78 (± 0.04) 0.92 (± 0.02) 0.86 (± 0.01) 0.88 (± 0.01) 0.83 (± 0.05) 0.81 (± 0.01) 0.81 (± 0.01) 0.79 (± 0.02) 0.94 (± 0.00)

CD-MNAR 0.25 0.50 (± 0.10) 0.78 (± 0.01) 0.88 (± 0.01) 0.86 (± 0.02) 0.85 (± 0.02) 0.74 (± 0.04) 0.73 (± 0.03) 0.72 (± 0.01) 0.73 (± 0.02) 0.85 (± 0.03)

CD-MNAR 0.50 0.49 (± 0.12) 0.70 (± 0.02) 0.87 (± 0.02) 0.82 (± 0.03) 0.81 (± 0.00) 0.66 (± 0.01) 0.70 (± 0.03) 0.65 (± 0.02) 0.68 (± 0.02) 0.83 (± 0.02)

TADPOLE

FD-MNAR 0 0.52 (± 0.07) 0.53 (± 0.00) 0.75 (± 0.03) 0.74 (± 0.05) 0.79 (± 0.00) 0.77 (± 0.00) 0.76 (± 0.01) 0.79 (± 0.01) 0.77 (± 0.02) 0.83 (± 0.02)

FD-MNAR 0.25 0.48 (± 0.03) 0.48 (± 0.02) 0.77 (± 0.01) 0.73 (± 0.01) 0.82 (± 0.02) 0.78 (± 0.03) 0.76 (± 0.03) 0.78 (± 0.03) 0.74 (± 0.03) 0.81 (± 0.01)

FD-MNAR 0.50 0.48 (± 0.04) 0.53 (± 0.02) 0.79 (± 0.02) 0.71 (± 0.04) 0.78 (± 0.02) 0.74 (± 0.02) 0.73 (± 0.03) 0.74 (± 0.04) 0.71 (± 0.02) 0.82 (± 0.03)

CD-MNAR 0 0.60 (± 0.02) 0.26 (± 0.02) 0.79 (± 0.05) 0.75 (± 0.04) 0.80 (± 0.04) 0.80 (± 0.03) 0.79 (± 0.05) 0.79 (± 0.04) 0.75 (± 0.04) 0.79 (± 0.06)

CD-MNAR 0.25 0.47 (± 0.09) 0.52 (± 0.02) 0.82 (± 0.05) 0.78 (± 0.01) 0.80 (± 0.04) 0.80 (± 0.04) 0.77 (± 0.04) 0.78 (± 0.04) 0.73 (± 0.06) 0.75 (± 0.03)

CD-MNAR 0.50 0.49 (± 0.07) 0.62 (± 0.05) 0.81 (± 0.03) 0.75 (± 0.00) 0.79 (± 0.01) 0.82 (± 0.02) 0.76 (± 0.03) 0.76 (± 0.05) 0.73 (± 0.06) 0.74 (± 0.02)

G.2 EXTENDED VISUALIZATIONS

In addition to Figure 3 in the main paper, Figures 6 and 8 report the full results for all models under
both training mechanisms.
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Figure 6: Full results for all models trained with FD-MNAR at µtr = 50%, tested on U-MCAR with
µte ∈ {0%, 25%, 50%}. Each panel corresponds to one dataset; each row to one model. Reported
values are mean ± std over 5 runs.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0.4 0.5 0.6 0.7 0.8

GOODIE

GSPN

FairAC

FP

GNNmi

GCNmf

PCFI

GNNzero

GNNmedian

GNNmim

SYNTHETIC

0.4 0.6 0.8

AIR

0.4 0.6 0.8 1.0

ELECTRIC

0.5 0.6 0.7 0.8

TADPOLE

R2
µtr = 50%

µte = 0%

R2
µtr = 50%

µte = 25%

R2
µtr = 50%

µte = 50%

R1 µtr = µte = 50%

Figure 7: Full results for all models trained with CD-MNAR at µtr = 50%, tested on U-MCAR with
µte ∈ {0%, 25%, 50%}. Same layout as Figure 6.
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H INDUCTIVE SYNTHETIC SETTING

In addition to the transductive experiments reported in the main paper, we also ran a set of experi-
ments in an inductive setting to demonstrate that our model, GNNmim, is not restricted to transductive
scenarios. As shown in Figure 8, GNNmim remains competitive with all other baselines even under
this inductive setup.
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Figure 8: Performance of GNNmim and all competitors in an inductive setting. The synthetic dataset
is constructed so that test nodes form a separate graph component and are never connected to training
nodes, ensuring that no message can propagate between the two sets during training. Despite this
strictly inductive setup, GNNmim remains competitive with all baselines.

Table 43: F1 scores for under mechanism CDMNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.687 (± 0.166) 0.713 (± 0.045) 0.367 (± 0.000) 0.972 (± 0.011) 0.968 (± 0.011) 0.867 (± 0.023) 0.970 (± 0.011) 0.968 (± 0.011) 0.968 (± 0.011) 0.967 (± 0.011)

0.10 0.672 (± 0.167) 0.708 (± 0.022) 0.367 (± 0.000) 0.880 (± 0.014) 0.881 (± 0.014) 0.842 (± 0.010) 0.876 (± 0.011) 0.875 (± 0.018) 0.878 (± 0.020) 0.883 (± 0.020)
0.20 0.639 (± 0.151) 0.686 (± 0.048) 0.367 (± 0.000) 0.836 (± 0.015) 0.838 (± 0.022) 0.796 (± 0.026) 0.825 (± 0.018) 0.840 (± 0.022) 0.842 (± 0.020) 0.832 (± 0.019)

0.30 0.595 (± 0.122) 0.636 (± 0.031) 0.367 (± 0.000) 0.785 (± 0.020) 0.785 (± 0.034) 0.765 (± 0.036) 0.782 (± 0.023) 0.796 (± 0.029) 0.793 (± 0.026) 0.801 (± 0.020)
0.40 0.598 (± 0.119) 0.631 (± 0.043) 0.367 (± 0.000) 0.734 (± 0.019) 0.758 (± 0.024) 0.729 (± 0.021) 0.731 (± 0.008) 0.754 (± 0.017) 0.750 (± 0.023) 0.759 (± 0.017)
0.50 0.442 (± 0.092) 0.589 (± 0.029) 0.367 (± 0.000) 0.643 (± 0.036) 0.628 (± 0.040) 0.647 (± 0.041) 0.616 (± 0.029) 0.668 (± 0.023) 0.632 (± 0.030) 0.680 (± 0.018)
0.60 0.473 (± 0.063) 0.605 (± 0.034) 0.367 (± 0.000) 0.629 (± 0.031) 0.597 (± 0.029) 0.649 (± 0.041) 0.600 (± 0.052) 0.687 (± 0.013) 0.602 (± 0.033) 0.704 (± 0.021)
0.70 0.401 (± 0.070) 0.592 (± 0.024) 0.367 (± 0.000) 0.574 (± 0.016) 0.562 (± 0.007) 0.599 (± 0.064) 0.471 (± 0.041) 0.656 (± 0.023) 0.566 (± 0.018) 0.664 (± 0.027)
0.80 0.377 (± 0.012) 0.584 (± 0.026) 0.367 (± 0.000) 0.571 (± 0.026) 0.551 (± 0.020) 0.567 (± 0.044) 0.463 (± 0.069) 0.634 (± 0.025) 0.557 (± 0.016) 0.638 (± 0.028)
0.90 0.402 (± 0.062) 0.592 (± 0.031) 0.367 (± 0.000) 0.574 (± 0.048) 0.544 (± 0.020) 0.548 (± 0.052) 0.458 (± 0.046) 0.650 (± 0.033) 0.547 (± 0.028) 0.657 (± 0.020)
0.99 0.395 (± 0.052) 0.444 (± 0.060) 0.367 (± 0.000) 0.380 (± 0.022) 0.467 (± 0.020) 0.395 (± 0.035) 0.367 (± 0.000) 0.524 (± 0.045) 0.464 (± 0.013) 0.524 (± 0.045)

Table 44: F1 scores for under mechanism FDMNAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.687 (± 0.166) 0.708 (± 0.045) 0.367 (± 0.000) 0.972 (± 0.011) 0.967 (± 0.011) 0.867 (± 0.022) 0.968 (± 0.013) 0.967 (± 0.011) 0.967 (± 0.011) 0.968 (± 0.011)

0.10 0.679 (± 0.166) 0.711 (± 0.012) 0.367 (± 0.000) 0.888 (± 0.013) 0.879 (± 0.024) 0.847 (± 0.013) 0.885 (± 0.014) 0.882 (± 0.022) 0.886 (± 0.020) 0.889 (± 0.017)
0.20 0.646 (± 0.154) 0.686 (± 0.033) 0.367 (± 0.000) 0.834 (± 0.024) 0.825 (± 0.024) 0.799 (± 0.016) 0.832 (± 0.026) 0.830 (± 0.022) 0.825 (± 0.025) 0.826 (± 0.028)

0.30 0.569 (± 0.133) 0.649 (± 0.013) 0.367 (± 0.000) 0.800 (± 0.042) 0.786 (± 0.034) 0.772 (± 0.028) 0.796 (± 0.025) 0.789 (± 0.036) 0.782 (± 0.032) 0.793 (± 0.036)

0.40 0.522 (± 0.134) 0.608 (± 0.037) 0.367 (± 0.000) 0.759 (± 0.021) 0.761 (± 0.027) 0.732 (± 0.032) 0.753 (± 0.026) 0.757 (± 0.032) 0.743 (± 0.028) 0.742 (± 0.032)

0.50 0.492 (± 0.135) 0.618 (± 0.008) 0.367 (± 0.000) 0.714 (± 0.016) 0.731 (± 0.015) 0.692 (± 0.027) 0.710 (± 0.028) 0.724 (± 0.017) 0.736 (± 0.018) 0.730 (± 0.019)

0.60 0.433 (± 0.084) 0.575 (± 0.025) 0.367 (± 0.000) 0.675 (± 0.031) 0.699 (± 0.032) 0.676 (± 0.022) 0.674 (± 0.039) 0.702 (± 0.030) 0.687 (± 0.027) 0.716 (± 0.031)
0.70 0.464 (± 0.090) 0.582 (± 0.020) 0.367 (± 0.000) 0.630 (± 0.031) 0.643 (± 0.037) 0.594 (± 0.040) 0.623 (± 0.035) 0.651 (± 0.037) 0.635 (± 0.033) 0.661 (± 0.019)
0.80 0.429 (± 0.065) 0.540 (± 0.009) 0.367 (± 0.000) 0.586 (± 0.021) 0.598 (± 0.027) 0.527 (± 0.053) 0.560 (± 0.030) 0.607 (± 0.029) 0.609 (± 0.019) 0.620 (± 0.024)
0.90 0.444 (± 0.082) 0.522 (± 0.034) 0.367 (± 0.000) 0.508 (± 0.105) 0.558 (± 0.049) 0.486 (± 0.061) 0.460 (± 0.129) 0.589 (± 0.042) 0.575 (± 0.044) 0.592 (± 0.023)
0.99 0.370 (± 0.005) 0.538 (± 0.041) 0.367 (± 0.000) 0.433 (± 0.093) 0.515 (± 0.035) 0.454 (± 0.076) 0.420 (± 0.105) 0.561 (± 0.036) 0.521 (± 0.040) 0.550 (± 0.040)
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Table 45: F1 scores for under mechanism LDMCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.687 (± 0.166) 0.713 (± 0.045) 0.367 (± 0.000) 0.972 (± 0.011) 0.968 (± 0.011) 0.867 (± 0.023) 0.970 (± 0.011) 0.968 (± 0.011) 0.968 (± 0.011) 0.967 (± 0.011)

0.10 0.687 (± 0.166) 0.713 (± 0.045) 0.367 (± 0.000) 0.972 (± 0.011) 0.968 (± 0.011) 0.867 (± 0.023) 0.970 (± 0.011) 0.968 (± 0.011) 0.968 (± 0.011) 0.967 (± 0.011)

0.20 0.494 (± 0.117) 0.601 (± 0.039) 0.367 (± 0.000) 0.701 (± 0.023) 0.692 (± 0.031) 0.673 (± 0.036) 0.705 (± 0.019) 0.692 (± 0.031) 0.692 (± 0.031) 0.696 (± 0.029)

0.30 0.415 (± 0.076) 0.537 (± 0.032) 0.367 (± 0.000) 0.596 (± 0.010) 0.624 (± 0.010) 0.539 (± 0.028) 0.606 (± 0.006) 0.624 (± 0.010) 0.624 (± 0.010) 0.615 (± 0.011)

0.40 0.415 (± 0.076) 0.543 (± 0.037) 0.367 (± 0.000) 0.596 (± 0.010) 0.624 (± 0.010) 0.539 (± 0.028) 0.606 (± 0.006) 0.624 (± 0.010) 0.624 (± 0.010) 0.615 (± 0.011)

0.50 0.415 (± 0.076) 0.537 (± 0.032) 0.367 (± 0.000) 0.596 (± 0.010) 0.624 (± 0.010) 0.539 (± 0.028) 0.606 (± 0.006) 0.624 (± 0.010) 0.624 (± 0.010) 0.615 (± 0.011)

0.60 0.409 (± 0.053) 0.495 (± 0.044) 0.367 (± 0.000) 0.497 (± 0.015) 0.555 (± 0.019) 0.498 (± 0.022) 0.501 (± 0.022) 0.555 (± 0.019) 0.555 (± 0.019) 0.552 (± 0.027)

0.70 0.398 (± 0.037) 0.428 (± 0.030) 0.367 (± 0.000) 0.410 (± 0.027) 0.524 (± 0.044) 0.407 (± 0.051) 0.407 (± 0.025) 0.524 (± 0.044) 0.524 (± 0.044) 0.538 (± 0.023)
0.80 0.398 (± 0.037) 0.428 (± 0.030) 0.367 (± 0.000) 0.410 (± 0.027) 0.524 (± 0.044) 0.407 (± 0.051) 0.407 (± 0.025) 0.524 (± 0.044) 0.524 (± 0.044) 0.538 (± 0.023)
0.90 0.398 (± 0.037) 0.428 (± 0.030) 0.367 (± 0.000) 0.410 (± 0.027) 0.524 (± 0.044) 0.407 (± 0.051) 0.407 (± 0.025) 0.524 (± 0.044) 0.524 (± 0.044) 0.538 (± 0.023)
0.99 0.433 (± 0.069) 0.549 (± 0.024) 0.367 (± 0.000) 0.637 (± 0.036) 0.659 (± 0.029) 0.587 (± 0.031) 0.623 (± 0.027) 0.660 (± 0.025) 0.652 (± 0.025) 0.658 (± 0.023)

Table 46: F1 scores for under mechanism SMCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.687 (± 0.166) 0.713 (± 0.045) 0.367 (± 0.000) 0.972 (± 0.011) 0.968 (± 0.011) 0.867 (± 0.023) 0.970 (± 0.011) 0.968 (± 0.011) 0.968 (± 0.011) 0.967 (± 0.011)

0.10 0.661 (± 0.148) 0.687 (± 0.013) 0.434 (± 0.133) 0.887 (± 0.012) 0.894 (± 0.016) 0.847 (± 0.025) 0.891 (± 0.018) 0.894 (± 0.017) 0.890 (± 0.021) 0.881 (± 0.018)

0.20 0.667 (± 0.157) 0.675 (± 0.036) 0.367 (± 0.000) 0.850 (± 0.017) 0.855 (± 0.027) 0.820 (± 0.030) 0.856 (± 0.025) 0.847 (± 0.018) 0.851 (± 0.027) 0.851 (± 0.028)

0.30 0.664 (± 0.155) 0.679 (± 0.034) 0.367 (± 0.000) 0.830 (± 0.016) 0.829 (± 0.032) 0.804 (± 0.028) 0.822 (± 0.025) 0.828 (± 0.032) 0.824 (± 0.034) 0.827 (± 0.038)

0.40 0.557 (± 0.152) 0.650 (± 0.029) 0.367 (± 0.000) 0.785 (± 0.030) 0.796 (± 0.035) 0.769 (± 0.018) 0.785 (± 0.029) 0.785 (± 0.043) 0.790 (± 0.039) 0.802 (± 0.032)
0.50 0.521 (± 0.152) 0.633 (± 0.045) 0.367 (± 0.000) 0.757 (± 0.029) 0.758 (± 0.018) 0.735 (± 0.019) 0.748 (± 0.030) 0.760 (± 0.018) 0.755 (± 0.019) 0.756 (± 0.009)

0.60 0.497 (± 0.135) 0.636 (± 0.058) 0.367 (± 0.000) 0.742 (± 0.030) 0.722 (± 0.034) 0.698 (± 0.021) 0.723 (± 0.038) 0.724 (± 0.039) 0.716 (± 0.031) 0.730 (± 0.027)

0.70 0.461 (± 0.125) 0.580 (± 0.062) 0.367 (± 0.000) 0.670 (± 0.018) 0.671 (± 0.029) 0.631 (± 0.036) 0.666 (± 0.038) 0.673 (± 0.030) 0.672 (± 0.028) 0.666 (± 0.035)

0.80 0.509 (± 0.121) 0.549 (± 0.071) 0.367 (± 0.000) 0.628 (± 0.053) 0.629 (± 0.025) 0.563 (± 0.070) 0.621 (± 0.044) 0.623 (± 0.013) 0.622 (± 0.025) 0.625 (± 0.037)

0.90 0.402 (± 0.071) 0.455 (± 0.068) 0.367 (± 0.000) 0.487 (± 0.070) 0.580 (± 0.043) 0.447 (± 0.060) 0.474 (± 0.092) 0.597 (± 0.026) 0.575 (± 0.039) 0.580 (± 0.027)

0.99 0.367 (± 0.000) 0.372 (± 0.010) 0.367 (± 0.000) 0.367 (± 0.000) 0.486 (± 0.027) 0.380 (± 0.019) 0.367 (± 0.000) 0.509 (± 0.038) 0.476 (± 0.024) 0.498 (± 0.031)

Table 47: F1 scores for under mechanism UMCAR and varying µ

µ GOODIE GSPN FairAC FP GNNmi GCNmf PCFI GNNzero GNNmedian GNNmim

0.00 0.715 (± 0.096) 0.705 (± 0.033) 0.414 (± 0.055) 0.960 (± 0.009) 0.953 (± 0.006) 0.811 (± 0.030) 0.960 (± 0.009) 0.953 (± 0.006) 0.953 (± 0.006) 0.944 (± 0.017)

0.10 0.572 (± 0.137) 0.658 (± 0.031) 0.412 (± 0.057) 0.827 (± 0.050) 0.851 (± 0.043) 0.769 (± 0.112) 0.810 (± 0.034) 0.855 (± 0.044) 0.846 (± 0.047) 0.841 (± 0.051)

0.20 0.596 (± 0.165) 0.638 (± 0.025) 0.379 (± 0.000) 0.798 (± 0.033) 0.799 (± 0.020) 0.756 (± 0.032) 0.788 (± 0.027) 0.790 (± 0.028) 0.788 (± 0.021) 0.785 (± 0.021)

0.30 0.594 (± 0.145) 0.625 (± 0.014) 0.359 (± 0.040) 0.771 (± 0.037) 0.757 (± 0.046) 0.674 (± 0.133) 0.712 (± 0.045) 0.758 (± 0.049) 0.771 (± 0.042) 0.718 (± 0.047)

0.40 0.596 (± 0.132) 0.625 (± 0.005) 0.379 (± 0.000) 0.721 (± 0.055) 0.702 (± 0.044) 0.702 (± 0.055) 0.664 (± 0.080) 0.697 (± 0.049) 0.701 (± 0.048) 0.718 (± 0.029)

0.50 0.487 (± 0.113) 0.583 (± 0.040) 0.379 (± 0.000) 0.608 (± 0.067) 0.660 (± 0.027) 0.664 (± 0.053) 0.568 (± 0.074) 0.659 (± 0.021) 0.674 (± 0.022) 0.633 (± 0.035)

0.60 0.439 (± 0.118) 0.558 (± 0.034) 0.379 (± 0.000) 0.572 (± 0.077) 0.617 (± 0.038) 0.606 (± 0.081) 0.469 (± 0.102) 0.617 (± 0.038) 0.622 (± 0.039) 0.622 (± 0.062)
0.70 0.390 (± 0.074) 0.561 (± 0.019) 0.379 (± 0.000) 0.451 (± 0.092) 0.534 (± 0.073) 0.511 (± 0.095) 0.476 (± 0.118) 0.518 (± 0.076) 0.541 (± 0.089) 0.502 (± 0.092)

0.80 0.418 (± 0.123) 0.499 (± 0.029) 0.379 (± 0.000) 0.459 (± 0.074) 0.530 (± 0.060) 0.508 (± 0.088) 0.392 (± 0.087) 0.490 (± 0.059) 0.528 (± 0.044) 0.473 (± 0.052)

0.90 0.340 (± 0.048) 0.493 (± 0.022) 0.379 (± 0.000) 0.367 (± 0.046) 0.550 (± 0.139) 0.511 (± 0.082) 0.362 (± 0.041) 0.532 (± 0.134) 0.529 (± 0.131) 0.501 (± 0.122)

0.99 0.341 (± 0.045) 0.400 (± 0.025) 0.379 (± 0.000) 0.379 (± 0.000) 0.472 (± 0.022) 0.380 (± 0.003) 0.384 (± 0.011) 0.476 (± 0.038) 0.485 (± 0.018) 0.483 (± 0.033)
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I GAIN USING MIM WITH COMPETITORS

Tables 48 through 51 report the performance gain observed when all competitor models described
in the main paper are equipped with the MIM mask, mirroring the setup used for GNNmim. Consis-
tently, basic imputation methods that replace missing features with a constant, such as GNNmiand
GNNmedian, show a positive and comparable performance increase when supplied with the same
mask. This suggests that the improvement comes from the model’s ability to selectively ignore the
padded or imputed feature values indicated by the mask.

Table 48: F1 gain from using mask on SYNTHETIC under mechanism U-MCAR

µ FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFI GNNzero

0.00 -0.087 -0.016 -0.145 0.002 0.003 -0.256 -0.094 -0.020 0.005
0.10 -0.094 -0.022 -0.065 0.006 0.005 -0.253 -0.080 -0.004 0.001
0.20 -0.102 -0.013 -0.005 0.002 0.004 -0.215 -0.052 -0.001 0.008
0.30 -0.078 0.002 -0.021 0.012 0.014 -0.198 -0.068 -0.008 0.015
0.40 -0.082 0.008 -0.022 0.012 0.07 -0.223 -0.075 0.006 0.025
0.50 0.011 -0.006 -0.010 0.005 0.09 -0.268 -0.079 -0.018 0.007
0.60 -0.025 -0.004 -0.029 0.004 0.013 -0.346 -0.072 -0.001 0.000
0.70 0.013 0.001 -0.044 0.005 0.004 -0.321 -0.008 0.006 0.006
0.80 -0.070 -0.008 0.009 0.002 0.015 -0.429 0.015 -0.014 0.039
0.90 -0.020 -0.017 -0.011 0.011 0.014 -0.346 0.053 0.001 0.001
0.99 0.052 -0.007 0.056 -0.020 -0.013 -0.422 0.024 -0.011 -0.013

Table 49: F1 gain from using mask on SYNTHETIC under mechanism S-MCAR

µ FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFI GNNzero

0.00 -0.080 -0.016 -0.145 0.002 0.003 -0.256 -0.091 0.05 0.005
0.10 0.013 0.001 -0.077 0.03 0.04 -0.211 0.005 -0.11 -0.011
0.20 -0.018 -0.039 -0.086 0.003 0.007 -0.245 -0.019 -0.026 0.031
0.30 0.000 -0.026 -0.083 0.006 0.015 -0.234 -0.013 -0.015 0.016
0.40 0.010 -0.034 -0.012 0.002 0.019 -0.185 -0.014 -0.018 0.024
0.50 -0.062 -0.048 0.005 0.006 0.016 -0.207 -0.036 -0.039 0.033
0.60 -0.045 -0.028 -0.038 0.018 0.032 -0.161 0.001 -0.026 0.038
0.70 0.009 -0.007 -0.025 0.011 0.025 -0.153 -0.015 -0.033 0.064
0.80 0.010 -0.011 -0.046 0.011 0.02 -0.136 -0.002 0.004 0.029
0.90 -0.045 0.003 -0.018 0.002 -0.002 -0.071 0.043 -0.000 -0.019
0.99 0.128 -0.024 0.074 0.002 -0.015 0.048 0.033 -0.025 -0.011

Table 50: F1 gain from using mask on SYNTHETIC under mechanism LD-MCAR

µ FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.073 -0.016 -0.145 0.002 0.003 -0.256 -0.094 -0.020 0.005
0.10 -0.047 0.104 -0.012 0.026 0.095 -0.222 -0.014 0.097 -0.08
0.20 -0.105 -0.078 -0.081 0.004 0.075 -0.251 -0.092 -0.067 0.081
0.30 -0.106 -0.119 -0.106 0.015 0.101 -0.331 -0.091 -0.118 0.133
0.40 0.014 -0.044 -0.049 0.015 0.039 -0.337 -0.054 -0.033 0.098
0.50 0.080 -0.002 -0.004 0.015 0.002 -0.362 0.027 0.003 0.077
0.60 -0.079 -0.073 -0.068 0.004 0.081 -0.386 -0.046 -0.069 0.139
0.70 -0.111 -0.084 -0.034 0.001 0.070 -0.423 -0.039 -0.060 0.139
0.80 0.001 -0.084 -0.074 0.001 0.085 -0.422 -0.056 -0.086 0.130
0.90 -0.067 -0.090 -0.066 0.001 0.096 -0.439 0.023 -0.072 0.143
0.99 0.046 0.037 -0.054 0.007 0.014 -0.359 0.025 0.039 0.020
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Table 51: F1 gain from using mask on SYNTHETIC under mechanism FD-MNAR

µ FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.080 -0.018 -0.141 0.002 0.003 -0.256 -0.081 -0.018 0.005
0.10 -0.035 -0.006 -0.057 0.007 0.013 -0.216 -0.002 -0.001 0.014
0.20 0.018 0.015 0.024 0.06 0.005 -0.193 -0.012 -0.009 -0.005
0.30 0.021 0.002 -0.005 0.002 0.007 -0.138 0.015 0.016 -0.018
0.40 0.001 -0.007 -0.031 0.006 0.011 -0.186 -0.032 0.003 0.021
0.50 -0.025 -0.011 -0.020 0.008 0.013 -0.208 -0.009 -0.007 0.022
0.60 0.011 0.006 -0.019 0.012 0.008 -0.121 0.030 0.013 0.013
0.70 0.022 0.029 0.004 0.000 0.003 -0.063 0.044 0.013 0.012
0.80 0.010 0.013 -0.010 0.002 0.001 -0.006 -0.017 0.033 0.020
0.90 0.053 0.032 -0.032 0.005 0.011 0.048 -0.023 0.020 0.018
0.99 0.156 0.002 -0.008 0.001 0.010 -0.015 0.006 -0.003 0.007

Table 52: F1 gain from using mask on SYNTHETIC under mechanism CD-MNAR

µ FairAC FP GCNmf GNNmedian GNNmi GOODIE GSPN PCFIGNNzero

0.00 -0.078 -0.016 -0.145 0.002 0.003 -0.256 -0.091 -0.020 0.005
0.10 -0.025 -0.002 -0.060 0.004 0.010 -0.239 -0.019 -0.005 0.001
0.20 0.023 0.006 -0.003 0.004 0.002 -0.202 -0.029 0.004 0.001
0.30 -0.005 0.017 -0.004 0.009 0.007 -0.121 -0.030 -0.006 0.023
0.40 -0.045 0.017 -0.015 0.014 0.017 0.005 -0.024 0.021 0.020
0.50 -0.035 0.010 0.001 0.048 0.010 -0.035 -0.042 0.009 0.036
0.60 0.054 0.036 -0.011 0.019 0.015 -0.111 -0.047 0.073 0.037
0.70 0.038 0.051 0.001 0.025 0.028 -0.064 0.031 0.072 0.026
0.80 0.045 0.046 0.047 0.017 0.011 -0.028 -0.021 0.086 0.037
0.90 0.136 0.033 0.039 0.011 0.021 -0.009 -0.047 0.075 0.037
0.99 0.098 -0.041 0.057 0.017 0.015 -0.050 0.044 0.013 0.018
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