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Abstract

Existing benchmarks for assessing the spatio-temporal understanding and reasoning abilities
of video language models are susceptible to score inflation due to the presence of shortcut
solutions based on superficial visual or textual cues. This paper mitigates the challenges in
accurately assessing model performance by introducing the Minimal Video Pairs (MVP)
benchmark, a simple shortcut-aware video QA benchmark for assessing the physical un-
derstanding of video language models. The benchmark is comprised of 55K high-quality
multiple-choice video QA examples focusing on physical world understanding. Examples
are curated from nine video data sources, spanning first-person egocentric and exocentric
videos, robotic interaction data, and cognitive science intuitive physics benchmarks. To
mitigate shortcut solutions that rely on superficial visual or textual cues and biases, each
sample in MVP has a minimal-change pair — a visually similar video accompanied by an
identical question but an opposing answer. To answer a question correctly, a model must
provide correct answers for both examples in the minimal-change pair; as such, models that
solely rely on visual or textual biases would achieve below random performance. Human
performance on MVP is 92.9%, while the best open-source state-of-the-art video-language
model achieves 40.2% compared to random performance at 25%.
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Figure 1: Performance of the strongest evaluated VideoLLMs on MVP (mini-version), compared to human perfor-
mance.

1 Introduction

Moravec’s paradox highlights a counterintuitive phenomenon: high-level reasoning tasks, often perceived
as complex, are typically easier for AI agents to solve than sensorimotor and perception tasks, which are
seemingly effortless for humans (Moravec, 1988).

Recently, large vision-language models have emerged as a promising paradigm for enabling perception capa-
bilities in AI agents, demonstrating impressive progress on question-answering tasks across various domains
including movies, documents, charts, and sciences (Alayrac et al., 2022; Team et al., 2024; Dubey et al., 2024;
Wang et al., 2024a). This progress raises a natural question: do these models possess the spatiotemporal
understanding and reasoning abilities essential for an agent to interact within the physical world, or do they
buttress Moravec’s paradox?

Various visual QA datasets have been proposed by the community to assess the spatiotemporal understanding
of video-language models (Tapaswi et al., 2016; Maharaj et al., 2017; Li et al., 2024b; Patraucean et al.,
2023; Zhang et al., 2023c; Xie et al., 2025; Wang et al., 2023c; Yi* et al., 2020); one of the most popular,
MVBench (Li et al., 2024b), combines 11 video datasets into a single video QA benchmark.

While recent state-of-the-art video-language models obtain performance far superior to a random baseline
on these benchmarks (Wang et al., 2024a; Shen et al., 2024; Li et al., 2024a), our investigation reveals that
existing models can achieve strong performance on these tasks by relying on superficial visual or textual
cues or biases. This is validated using simple baselines that discard the visual input or temporal aspect,
yet achieve non-trivial performance. Similarly, recent work (Cores et al., 2024) shows that some of these
tasks (Li et al., 2024b) fail to accurately measure the temporal understanding of a model.

In this work, we take inspiration from works in natural language processing (Levesque et al., 2012; Sakaguchi
et al., 2021) and image processing (Thrush et al., 2022; Yuksekgonul et al., 2022) addressing visual and
textual biases in evaluation, and introduce MVP, a video-QA benchmark containing minimal-change video
pairs (MVP). Specifically, each video-question-answer sample in the benchmark is accompanied by a visually
similar video possessing an identical question but an opposing answer (Figure 1). To answer a question
correctly, a model must also provide the correct answer for its minimal-change pair while processing them
independently. Many types of shortcut solutions are penalized under the minimal-pair scoring framework as
a model relying on superficial visual or textual cues or biases would incorrectly output the same answer for
both the samples in the pair.

While recent work created small sets of minimal-change video pairs for course-grained temporal reason-
ing (Zhang et al., 2024a; Liu et al., 2024), our key insight is that these pairs can be efficiently mined from
existing video sources to test for several model capabilities through an automated process relying on visual
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embeddings and video meta-data. We propose an automatic process to find minimally different video pairs
with limited human intervention, and then build these into a video-question-answer tuple with identical
questions and opposing answers, enabling the scaling of the benchmark to a broad set of videos spanning
diverse situations. We further process the mined samples using a model ensemble to filter out single-frame
solvable examples — questions that can be answered using any single randomly sampled frame from the video
— to encourage a stronger focus on video understanding. We build MVP by running our process on nine
video sources spanning intuitive physics understanding, spatiotemporal reasoning, action anticipation, and
robotic manipulation, leading to a total of 54, 828 multiple-choice video QA examples with minimal-change
pairs; i.e. 27, 414 minimal-change pairs.

Next, we assess recent proprietary and open-source state-of-the-art video-language models using MVP.
Specifically, we evaluate 2 closed-source models (GPT4-o (Achiam et al., 2023) and Gemini-1.5 Pro (Team
et al., 2024)), and 7 open-source video-language models: LLaVA-OneVision (Li et al., 2024a), VideoChat2 (Li
et al., 2024b), Mini-CPM (Yao et al., 2024), Qwen2-VL (Bai et al., 2023), Tarsier (Wang et al., 2024a),
LongVu (Shen et al., 2024), InternVL-2.5 (Chen et al., 2024b). We find that even proprietary models are
only slightly above random and that the best accuracy achieved across models is only 40.2% , in stark
contrast to human baseline performance at 92.9% accuracy. These findings suggest that video-language
models may still struggle with seemingly simple physical reasoning tasks, despite achieving relatively high
accuracy on standard spatio-temporal reasoning benchmarks.

In short, we make the following contributions:

1. Analyze potential shortcut solutions on all 11 datasets in the popular MVBench (Li et al., 2024b)
benchmark suite, using simple baselines consisting of language-only models, single-frame/image
models, and Socratic LLMs.

2. Introduce MVP, a video QA benchmark for physical world understanding comprising minimally
different videos — the largest of its kind by an order of magnitude with ∼55K examples.

3. Benchmark closed-source and open-source state-of-the-art models and identify a gap in physical
world understanding; human performance on MVP is around 92.9%, while even GPT4-o and Gemini
achieve around 30% compared to random performance at 25%.

We are publicly releasing MVP as well as a smaller balanced version of the benchmark for faster inference
(MVP-mini), together with a leaderboard and easy download scripts.

2 Robustness Analysis of Existing Video-QA Tasks

We begin by examining robustness of existing video QA benchmarks to shortcut solutions based on visual
or textual cues or biases. Specifically, our analysis focuses on CLEVRER (Johnson et al., 2017), Perception
Test (Patraucean et al., 2023), STAR (Wu et al., 2021), PAXION (Wang et al., 2023c), Moments in Time
V1 (Monfort et al., 2020), FunQA (Xie et al., 2025), Charades-STA (Gao et al., 2017), MoVQA (Zhang
et al., 2023b), NTU RGB+D (Liu et al., 2020), VLN-CE (Krantz et al., 2020) and TVQA (Lei et al., 2018),
which are all included in the widely adopted MVBench (Li et al., 2024b) benchmark suite.

Empirical Setup. MVBench is comprised of 20 tasks from 11 datasets, collected in a multiple-choice
video QA format, where a model is required to choose an answer ai from a tuple of question, video, and
answer candidates (q, v, [a1, a2, ..]). Following standard practice (Goyal et al., 2017), we study robustness
to shortcuts by perturbing the task inputs, e.g., requiring the model to select an answer candidate without
seeing the video or perhaps without reading the question, and compare to the accuracy achieved by a video
LLM without perturbing the task inputs. We study 4 types of shortcut solutions by evaluating language-only
models, video-only models, single-frame models, and simple Socratic LLMs. Results are reported in Table 1
using the original skill taxonomy outlined in MVBench.
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Task Avg AA AC AL AP AS CI CO EN ER FA FP MA MC MD OE OI OS ST SC UA

Random Chance 0.30 0.50 0.33 0.25 0.25 0.25 0.31 0.33 0.25 0.20 0.25 0.25 0.33 0.25 0.25 0.50 0.25 0.33 0.25 0.33 0.25

GPT-4V † 0.44 0.72 0.39 0.41 0.64 0.56 0.11 0.52 0.31 0.59 0.47 0.48 0.23 0.12 0.12 0.19 0.59 0.30 0.84 0.45 0.74
VideoChat2 (Mistral) 0.61 0.86 0.37 0.44 0.55 0.76 0.72 0.49 0.36 0.40 0.50 0.64 0.88 0.69 0.49 0.87 0.75 0.41 0.85 0.50 0.62

Language only: Model considers question and answer choices, without access to the video.
Llama 3-8B 0.36 0.63 0.38 0.27 0.25 0.28 0.35 0.43 0.29 0.43 0.29 0.29 0.38 0.27 0.21 0.46 0.29 0.36 0.52 0.40 0.52
Llama 3-70B 0.38 0.78 0.39 0.32 0.26 0.26 0.43 0.47 0.28 0.46 0.26 0.27 0.41 0.29 0.20 0.48 0.29 0.32 0.48 0.45 0.58

Video only: Model considers video and answer choices only, without access to the question.
VideoChat2 (Mistral) 0.50 0.88 0.42 0.25 0.49 0.68 0.74 0.44 0.28 0.39 0.53 0.65 0.47 0.29 0.26 0.53 0.75 0.34 0.81 0.32 0.55

Single-Frame only: Model considers question, answer choices and a single key frame, without access to the full video.
Idefics3 0.47 0.72 0.37 0.31 0.52 0.48 0.42 0.54 0.31 0.48 0.40 0.44 0.55 0.42 0.34 0.49 0.50 0.37 0.73 0.48 0.60

Qwen2-VL 0.51 0.87 0.37 0.31 0.55 0.54 0.57 0.59 0.40 0.45 0.46 0.53 0.6 0.43 0.37 0.53 0.54 0.39 0.74 0.42 0.68

Simple Socractic LLM: Model considers the question, answer choices and a short generic description of the video.
Llama 3-8B 0.44 0.56 0.38 0.28 0.49 0.57 0.35 0.53 0.29 0.42 0.30 0.35 0.56 0.42 0.32 0.50 0.56 0.35 0.68 0.44 0.56
Llama 3-70B 0.46 0.67 0.32 0.35 0.40 0.55 0.38 0.55 0.24 0.45 0.36 0.41 0.56 0.46 0.32 0.57 0.62 0.35 0.70 0.39 0.54

Table 1: Shortcut Analysis on the 20 MVBench tasks from 11 datasets: Optimal performance on
these spatio-temporal reasoning benchmarks is frequently achieved by models relying on visual or textual
biases (Single-Frame only, Video only, Simple Socratic LLM). †: GPT-4V accuracy from (Li et al., 2024b). Tasks: AA
(Action Antonym), AC (Action Count), AL (Action Localization), AP (Action Prediction), AS (Action Sequence), CI (Counterfactual
Inference), CO (Character Order), EN (Egocentric Navigation), ER (Episodic Reasoning), FA (Fine-grained Action), FP (Fine-grained
Pose), MA (Moving Attribute), MC (Moving Count), MD (Moving Direction), OE (Object Existence), OI (Object Interaction), OS
(Object Shuffle), ST (Scene Transition), SC (State Change), UA (Unexpected Action).

Language only. Language-only models do not observe the video, and therefore select an answer candidate
by only considering the textual inputs q and the answer candidates [a1, a2, ..]. We leverage the Llama3-8B
and Llama3-70B models due to their competitive performances (Dubey et al., 2024). In Table 1, we find
that a Llama3-8B outperforms a random baseline by 6%, and a larger Llama3-70B outperforms a random
baseline by 8%, suggesting that only a small subset of examples can be solved without considering the video
input. However, digging into the individual datasets and sub-tasks in Table 1 reveals strong language-only
performance on Action Antonym, where LLaMA3-70 achieves 78% compared to a random baseline at 50%.
Upon closer inspection of the original dataset, we observe that many questions can be correctly selected by
choosing the answer candidate with the highest marginal likelihood. For instance, given an example with
answer candidates “book falling like a rock“ versus “book rising like a rock,” an LLM, just like a human,
can rely on its language bias to infer that the former is probably the correct description without observing
the video.

Video only. Video-only models do not observe the question, and therefore select an answer candidate
by only considering the video input v and the answer candidates [a1, a2, ..]. Table 1 shows that a video
LLM (VideoChat2-Mistral) can solve most sub-tasks without access to the question, reaching 50% overall
accuracy; by comparison the same model achieves an accuracy of 61% when given the question in addition
to the video, while a random baseline is at 30%. These findings indicate that the answer candidates for
each question [a1, a2, ..] are not sufficiently task-specific, as the model is able to discard the incorrect answers
without knowing question. Recent work has found similar trends in language understanding QA benchmarks
such MMLU-Pro (Wang et al., 2024c), where models are found to reach high scores without access to the
question (Chandak et al., 2025).

This trend is particularly interesting on the counterfactual inference sub-task, where the counterfactual
scenario such as “What happens if the cube is removed?” can only be known from the question. Manual
inspection reveals that the correct answer in this task, e.g. “the red sphere will collide with the purple
object”, (based on CLEVRER (Yi* et al., 2020)) often occurs in the video regardless of the counterfactual
scenario, e.g., the two objects in question will collide regardless of the causal intervention.

Single-frame only. Single-frame models do not observe the entire video, but rather are provided only a
single frame fi ∈ v form the video. These models must therefore select an answer candidate by considering
the frame fi, the textual inputs q, and the answer candidates [a1, a2, ..]. We take fi to be the center
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frame from the video and leverage Idefics3-8B (Laurençon et al., 2024) and Qwen2-VL-7B (Wang et al.,
2024b) for the single-frame baselines. In Table 1, Idefics3-8B achieves an overall accuracy of 47% and
Qwen2-VL-7B achieves an overall 51% accuracy, which is comparable to the performance of full-fledged
VideoLLMs. Moreover, on Action Antonym, Action Prediction, Character Order, Egocentric Navigation,
Episodic Reasoning, Fine-grained Action, State Transition, and Unexpected Action, the single-frame models
are on par with (or even exceed) the performance of the VideoLLMs. Concurrent work (Cores et al., 2024)
also studies the related bag-of-frame bias by shuffling the video frames.

Simple Socratic LLM. A Simple Socratic LLM (Zhang et al., 2023a; Zeng et al., 2023) replaces the video
input v with a short caption cv that can only convey a low-bandwidth description of the video. In practice, cv

is 1 or 2 sentence-long caption generated by a separate VideoLLM (Zhang et al., 2024b) in a task-independent
manner. The Socratic LLMs therefore select an answer candidate by only considering the low-bandwidth
caption cv, the question q, and the answer candidates [a1, a2, ..]. Following the text-only baselines, we use
Llama3-8B and 70B. The performance of the Simple Socratic LLMs in Table 1 is significantly above random,
with 44% for the LLaMA3-8B and 47% for the LLaMA-70B, suggesting that many sub-tasks (e.g. Character
Order, Episodic Reasoning, Scene Transition) do not require fine-grained scene understanding.

Summary. The shortcut analysis reveals that existing models can often achieve strong performance on
spatio-temporal reasoning benchmarks by relying on language cues (Language only shortcut) or visual cues,
(Video only shortcut), and may not need to perform temporal reasoning (Single-Frame only shortcut), or
possess fine-grained visual features (Simplified Socratic LLM ).

Domains of VideoQA-Examples

Total Natural Intuitive Robotics Synthetic Minimially Procedural
Videos Physics Videos Diff. Single-Frame

Benchmark Videos Bias Filtering Format

CLEVRER 76.3K 0K 21.4K 0K 76.3K × × MC-QA
Perception Test 11.5K 11.5K 0-0.2K 0K 0K × × MC-QA
MVBench 4K 2.8K 0K 0.2K 1.2K × × MC-QA
TVBench 2.5K 1.9K 0K 0.2K 0.6K × × MC-QA
Vinoground 1K 1K 0K 0K 0K X × Group-Score
TempCompass 0.5K 0.5K 0K 0K 0K X × Group-Score

MVP 54.8K 22.3K 9.9K 25.8K 32.6K X X Pair MC-QA

Table 2: We compare with recent benchmarks that focus on similar skills. Note that some videos
may fall within several categories (e.g., synthetic intuitive physics videos). MVP contains minimally different
videos at a much larger scale and across more diverse domains. From these benchmarks, MVP is the first
to procedurally filter out examples due to single-frame bias. Group-Score = Present one video + two
captions, and two videos + one caption. CLEVRER’s intuitive physics entry is grayed as it only covers a
narrow subset of intuitive physics concepts, largely based on collisions.

3 Testing Physical World Understanding via Minimal Change Pairs

In this section we discuss the construction of MVP to mitigate shortcut solutions based on visual and
textual biases. MVP is comprised of 54, 828 video QA examples covering various aspects of physical world
understanding, including spatial reasoning, temporal understanding, human-object interaction, memory,
counterfactuals, anticipation, and intuitive physics.

Task formulation. To improve robustness to the various shortcut solutions described in the previous
section, we adopt a minimal-change pair approach (Levesque et al., 2012; Sakaguchi et al., 2021). An
example in MVP consists of two video QA pairs (q1, v1, [a1, a2]) and (q2, v2, [a1, a2]) containing identical
questions q1 = q2, visually similar videos v1 ∼ v2, and two mutually exclusive (i.e., contradicting) answer
candidates a1 and a2.

5



Under review as submission to TMLR

Benchmark Category Sources (# paired video-QA ex-
amples)

Example

Fine-grained human-object in-
teractions

Perception Test (3.5K), Something
Something v2 (3.6K)

Q: What stops the motion of the object placed on the
slanted plane after being released [...]? A) Person or
collision with another object B) High friction with sur-
face

Fine-grained robot-object in-
teractions

Language Table (12.9K) Q: Which robot instruction best describes the actions
in the video? A) Move the green blocks in a vertical
line below blue cube B) Move the green blocks and
blue cube in a vertical line

Intuitive physics and collisions IntPhys (0.2K), InfLevel (2.6K),
GRASP (2.0K), CLEVRER (1.2K)

Q: Is this video physically plausible/possible accord-
ing to your understanding of e.g. object permanence,
gravity, [...] A) Yes, everything is behaving accord-
ing to human intuitive physics understanding B) No,
something in the video is off/strange or violates [...]

Coarse-grained temporal rea-
soning

STAR (1.0K), Vinoground (0.5K) Q: What is the best caption for this video? A) The
kayak flips over from facing upwards towards facing
downwards B) The kayak flips over from facing down-
wards towards facing upwards

Table 3: Overview of MVP. Each answer option A/B is correct for only one video in the minimal-change
pair, while acting as a hard negative for the other video (by curation design). Note that we show the number
of paired video-QA examples, thus the number of videos in our data is twice that amount.

Minimal-change Pair Scoring. A model relying on superficial visual or textual cues or biases to solve
a task will tend to produce the same output for each sample in the minimal-change pair. Thus, to penalize
models for latching onto shortcuts, we only provide a positive score if the correct answer is produced for
both minimal-change samples; the model receives each example (q, v1, [a1, a2]) and (q, v2, [a1, a2]) in isolation.
Following a multiple choice QA framework, the model has to output a single answer letter (A or B) via task-
specific prompts. In this setup, a random baseline achieves an accuracy of 25%.

Question Taxonomy. We wish to understand whether video LLMs possess the spatio-temporal under-
standing and reasoning abilities essential for an agent to interact within the physical world. As such we
consider a coarse-grained taxonomy of question categories encompassing:

• Fine-grained human-object interactions,

• Fine-grained robot-object interactions,

• Intuitive Physics understanding,

• Coarse-grained temporal understanding.

We intentionally construct samples that are not overly reliant on cultural knowledge (Rawal et al., 2024; He
et al., 2024; Li et al., 2024c) (e.g., movies) or specific domain knowledge (Tang et al., 2019) (e.g., detailed
recipes) — tasks where language bias could contribute to the general performance.

We first manually filter videos from the sources described in Table 3 based on manual inspection (cf. Ap-
pendix B.1), then convert them into a question-answer format based on the associated meta-data (the
textual captions for Language Table, the class labels for Something-Something-v2, QA annotations for PT,
Vinoground, STAR, and CLEVERER, and the concept labels for IntPhys, InfLevel, and GRASP), yielding
a starting set of 548K video QA examples.

Minimal-change Pair Mining. Next we procedurally identify minimal-change pairs from the 548K video
QA examples produced from the previous stage. We note that 16% of the videos in our final benchmark (∼
8.8K examples) already possess explicit minimal visual pairs (even though most of these videos are not in
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a suitable format for video QA benchmarking, they can be converted into a minimal-change pair question-
answer format based on the associated meta-data). For the remaining 84% of the videos, we leverage the
following procedure to construct visual minimal-change pairs. In this process, we search for samples that
have visually similar videos, identical questions (based on semantic matching), and contradictory answers.
To then determine whether two videos with the same question are suitable minimal pairs, we use a) symbolic
and neural rules to determine video similarity and b) entailment detection (Bowman et al., 2015;
Dagan et al., 2013) between the correct answers of each video. Whether we rely more on symbolic or or
neural rules of similarity depends on the data source: If a dataset has rich annotations (positions or attributes
of objects) or structured captions (such as CLEVRER or Something Something-v2), we use hand-crafted
rules and the NLP toolkit spacy (Honnibal & Montani, 2017) to narrow down the candidate pool of minimal
pairs. This step would match videos with a large intersection of objects or attributes mentioned in the
annotation/caption, leading to highly similar videos (e.g., the same objects appearing in both videos). Once
we have narrowed down the pool of candidate pairs, in the final step we rank video pairs by their cosine
similarity in the ViCLIP (Wang et al., 2023b) video embedding space. We then select the top-ranked minimal
video pairs such that each question or skill-type is sufficiently represented. At the same time, we ensure that
the correct answers for samples in a minimal-change pair are sufficiently different, as the correct answer of
one element in the pair must be a truly negative (negative) answer candidate for the other element, and vice
versa: To avoid cases where both answers could be true at the same time (e.g., synonyms or more subtle
cases) we define a set of textual rules to detect entailment for a subset of datasets. To illustrate this, in
the Fine-grained Robot-object interactions category, our entailment-detection would discard the following
pair of answers: A) “Move the blue cube towards the red heart” and B) “Move the blue cube to the left
of the red heart”, since A entails B. After this minimal-pair mining, we are down to 70K QA examples;
cf. Appendix B.2 for technical details of the minimal pair mining process.
Single-frame Bias Filtering. Finally, to address single-frame bias, we remove examples that can be
solved without the temporal information in the video; i.e., using only a single frame. We note that the
input frame for this filtering stage should not be selected in a “smart way,” since key-frame selection can
be regarded as a basic form of temporal reasoning. In practice, five state-of-the-art multi-modal LLMs
(LLama3.2-11B (Dubey et al., 2024), Molmo-7B (Deitke et al., 2024), Pixtral-12B (Agrawal et al., 2024),
LLaVA-OneVision-7B (Li et al., 2024a), Idefics3-8B (Laurençon et al., 2024)) are prompted to answer the
video-QA questions and “give their best commonsense guess given a single frame sampled from a video.” If
at least 4 out of 5 models in the ensemble predict the correct answer given the same frame, then we flag
that frame as solvable. The minimal-change pair is then discarded if 30% of the frames in both videos are
deemed solvable. This heuristic process removes around 20% of the samples from the previous stage.
MVP Statistics. We end up with 54, 828 examples in MVP, grouped into 27, 414 minimal-change video
QA pairs. A breakdown of these examples is shown in Table 2 and Table 3 with a reasonably balanced split
between natural videos, synthetic videos, robotics videos, and intuitive physics videos. An average video
is 8.8 seconds long, the answer candidates contain an average of 8.1 words, and the datasets contains 2355
unique words in the questions and answers. Note that the word diversity is much less than MVBench (Li
et al., 2024b), which has only 4K examples but twice the number of unique words (4338), reflecting our
focus in testing for physical world understanding and not linguistically-diverse tasks with cultural or domain
knowledge. Instead the task difficulty arises from the physical and perceptual aspects of MVP.

4 Empirical Results on MVP

We evaluate several state-of-the-art open-source VideoLLMs on MVP, summarized in Table 4: LLaVa-
OneVision (Li et al., 2024a), VideoChat2 (Li et al., 2024b), Mini-CPM-v 2.6 (Yao et al., 2024), Qwen2-
VL (Wang et al., 2024b), Tarsier (Wang et al., 2024a) 7B/34B, LongVU (Shen et al., 2024), InternVL2.5-
8B (Chen et al., 2024b), Gemini-1.5 Pro (Team et al., 2024), and GPT4-o (Achiam et al., 2023). Most
notably these models differ in their generality: The models we evaluate are either generalist models (GPT4-
o, Gemini 1.5), specialized for any visual inputs (LLaVa-OneVision, Mini-CPM, Qwen2-VL, InternVL), or
specialized primarily for videos (VideoChat2, LongVU). We also consider two baselines that are fed single-
images, LLaVA-OneVision and Qwen2-VL, as they have been trained to process both single image and
video. Note that we additionally evaluate on a smaller balanced version of MVP, dubbed MVP-mini, with
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Model MVP
(macro-avg)

Fine-grained
human-object interactions

Fine-grained
robot-object interactions

Intuitive physics
and collisions

Coarse-grained
temporal reasoning

Random 25.0 (25.0) 25.0 (25.0) 25.0 (25.0) 25.0 (25.0) 25.0 (25.0)
Any text model† 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Single-Frame Baseline (access to question, answer choices, and a single key frame from the video.)
LLaVA-OV (Qwen2-7B) 11.8 (11.7) 14.7 (12.2) 8.7 (10.5) 2.0 (2.3) 21.6 (21.9)
Qwen2-VL (7B) 16.7 (15.7) 16.9 (13.6) 20.1 (19.9) 3.7 (4.4) 26.3 (24.8)

VideoLLMs (full access to the video, question, and answer choices.)
LLaVA-OV (Qwen2-7B) 20.7 (20.5) 24.3 (21.8) 5.2 (5.2) 5.8 (6.8) 47.5 (48.2)
VideoChat2 (Mistral-7B) 23.3 (22.0) 25.7 (21.0) 21.4 (20.1) 10.1 (11.5) 35.8 (35.3)
Mini-CPM-v 2.6 21.7 (22.3) 21.3 (20.2) 18.0 (17.9) 9.2 (11.9) 38.3 (39.2)
Qwen2-VL (7B) 30.0 (29.2) 27.1 (32.28) 27.6 (21.2) 20.0 (18.9) 45.2 (44.5)
LongVU (LLaMA3-3B) 20.6 (20.6) 15.8 (14.1) 14.8 (16.0) 16.2 (16.7) 35.4 (35.8)
LongVU (Qwen2-7B) 29.9 (29.3) 28.9 (26.3) 21.5 (21.8) 20.5 (22.3) 48.6 (46.7)
Tarsier-7B 26.0 (24.3) 31.3 (24.5) 18.7 (18.2) 15.0 (16.3) 38.9 (38.2)
Tarsier-34B 38.8 (37.4) 45.2 (38.7) 36.3 (36.6) 21.0 (22.1) 52.7 (52.4)
InternVL2.5-8B 40.2 (39.9) 43.7 (38.1) 40.2 (38.7) 22.8 (23.1) 54.4 (59.8)
Gemini-1.5 Pro – (29.6) – (43.1) – (15.5) – (19.6) – (40.2)
GPT4-o – (32.5) – (36.1) – (32.8) – (16.2) – (45.0)
Human 92.9 91.3 91.7 97.6 90.9

Table 4: Accuracy on MVP and MVP-mini in parentheses. VideoLLM-performance is slightly greater
than random chance, while humans achieve greater than 90% accuracy on all categories. Results for closed-
source models are only shown on MVP-mini due to API costs. Performance is measured via Minimal Pair
Score, wherein a model obtains a score iff the prediction for both QA examples of the pair is correct. †: If
temperature of the LLM is zero, since from a text-side both examples in the minimal pair look the same.

around 1/3 of the original size.1 For a fair comparison, we adopt the default parameters for all models, see
Appendix E for details and for the full prompt to the models.

Overall performance of VideoLLMs. Despite their strong performances on other video QA bench-
marks (Li et al., 2024b; Liu et al., 2024; Mangalam et al., 2024; Xiao et al., 2021), Table 4 shows that most
models perform around random chance (25% accuracy) with the exception of the Tarsier-34B model and
InternVL2.5, reaching an average accuracy of 38.1% and 40.2 respectively. This is in contrast to human per-
formances which obtain an average accuracy of 92.9% on a representative subset of MVP (cf. Appendix D).

While average performance is close to random for most models, we do observe non-trivial performance on
several sub-tasks and data sources. In particular, VideoLLMs achieve better than random performance on
Coarse-grained temporal reasoning, meaning they possess some ability to distinguish the order of events in
a video.

All models fall short on Fine-grained robot-object interactions, which involves understanding fine-grained
object manipulation on a table with a robotic arm. This is particularly interesting given the proliferated
usage of multi-modal LLMs for learning large-scale visuomotor control policies (Driess et al., 2023; Jiang
et al., 2023). Most notably, the Intuitive physics category of MVP is by far the hardest with sub-random
scores. As highlighted by previous works, intuitive physics reasoning is known to be a difficult task (Riochet
et al., 2022; Jassim et al., 2024; Weihs et al., 2022; Du et al., 2023), as this involves reasoning about e.g.
object permanence, gravity and trajectories.

VideoLLMs performance on dataset sub-tasks. Some sources in MVP are further divided into more
fine-grained splits by their original designers, where each split tests for a specific ability (e.g., object perma-
nence, shape consistency, motion consistency, etc.). In this section we summarize more detailed observations
we gathered on them.

1We release MVP-mini for faster evaluation and lower costs of API models.
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While performance on all intuitive physics tasks is close to 0%, we find that LongVU (Qwen2) obtains
non-trivial performance on three splits: Gravity-Continuity (39.1%) and Unchangeableness (42.2%); with
Tarsier-34B performing well on Gravity-Support (35.2%). Even some of the weaker models can achieve
performance clearly above random on our Fine-grained human-object interactions category, when looking
closer into Perception Test subsets such as Counterfactual (e.g., Qwen2-VL: 46.5% LongVU (Qwen2): 43.9%)
and Memory (e.g., LongVU (Qwen2): 40.4%).

Importance of Data Curation. In Table 5, we explore the effects of the minimal-change pair mining
and single-frame bias filtering on model performance. For this exploration we use the smaller MVP-mini
(see Appendix A) and report the average performance of five VideoLLMs 2.

When pairing videos randomly instead of using minimal-change pairs, the average accuracy across tasks is
at 45.4%, far superior to random chance. Using minimal-change pairs, the average VideoLLM performance
significantly drops to 27.3%. This result shows the importance of the minimal-pair framework and suggests
that VideoLLMs can frequently leverage shortcut solutions or spurious features to solve QA tasks. Addition-
ally, the average VideoLLM performance drops again by another 2.2% to 25.1% by removing single-frame
solvable videos, with much larger drops on certain subsets. Note that while Fine-grained robot-object inter-
actions and the Intuitive physics and collisions categories contain almost no single-frame biases, we can see
significant drops of 3.5% and 3.3% for the other two categories (Fine-grained human-object interactions and
Coarse-grained temporal reasoning) with this additional filtering step. Overall, Table 5 confirms that the
minimal-change pair mining and single-frame filtering pipeline is effective at mitigating potential shortcut
solutions in MVP.

Model Overall Fine-grained
human-object interactions

Fine-grained
robot-object interactions

Intuitive physics
and collisions

Coarse-grained
Temporal reasoning

Pairing of random videos (with same question)
Avg. VideoLLM Acc. 45.4 36.8 40.9 19.7 84.3

+ Pairing of minimally different videos

Avg. VideoLLM Acc. 27.3
↓18.1

28.7
↓8.1

18.6
↓22.3

16.7
↓3.0

45.1
↓39.2

+ Remove single-frame-solvable examples = final version of MVP

Avg. VideoLLM Acc. 25.1
↓2.2

25.2
↓3.5

18.3
↓0.3

15.2
↓1.5

41.8
↓3.3

Table 5: We ablate the effect of our main curation steps. Both the automatic pairing of minimal
pairs and the single-frame-bias filtering lead to lower average model performance, with an especially large
drop once we introduce the minimal pair setup.

Influence of single-letter output format. When evaluating VideoLLMs on MVP, we ask models to
produce a single-letter answer in the format Answer: A/B (full prompt in Appendix E). This design keeps
inference simple and uniform across diverse APIs and architectures. However one critique might be that
models would benefit from open-ended output formats that encourage reasoning before answering. To test
this, we updated the prompt for Gemini 1.5 to explicitly request reasoning before committing to a final
answer:

Based on your observations, reason about the following question [...] in 1–3 sentences: {QUESTION
+ OPTIONS}. Then after the reasoning, select the best option [...]

Somewhat surprisingly, performance decreased slightly, in line with recent work on output formatting in
LLMs (Long et al., 2025), see Table 6:

2LLaVA-OV, VideoChat, Qwen2-VL, LongVU (Qwen2), Tarsier-7B
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Minimal Pair Accuracy Gemini 1.5 (default) + reasoning prompt

MVP (macro-avg) 30.0 21.2
Human-Object 27.1 22.5
Robot-Object 20.0 23.9
Intuitive Physics 21.0 9.9
Temporal Reasoning 45.2 28.5

Table 6: Allowing Gemini 1.5 to reason before answering slightly reduces performance. While
the robot-object category improves, other areas, especially intuitive physics, drop.

5 Related Work

Language biases in Vision-Language models. Vision-and-language benchmarks, such as Visual Ques-
tion Answering (VQA) (Antol et al., 2015; Goyal et al., 2017; Marino et al., 2019) have been found to be
vulnerable to language biases as evidenced by the performance of “blind" language-only models. Blind mod-
els are routinely shown to be efficient at solving many of the vision-and-language tasks (Goyal et al., 2017;
Zeng et al., 2023; Chen et al., 2024a), and can also solve several image-text retrieval benchmarks (Yuksek-
gonul et al., 2022; Hsieh et al., 2024) using language biases (Lin et al., 2023). Visual Question Answering in
the video-language domain (Video-QA) (Li et al., 2024b; He et al., 2024; Xiao et al., 2021; Lei et al., 2018;
Majumdar et al., 2024; Tapaswi et al., 2016; Rawal et al., 2024) also exhibits language biases, as shown in
the performance of strong language-only baselines (Zhang et al., 2023a; Cores et al., 2024).

Vision-centric biases in Vision-Language models. State of the art vision-language models are shown to
be surprisingly unaware of the vision inputs, where they often struggle with simple questions due to incorrect
visual grounding (Tong et al., 2024), despite leveraging sufficiently powerful visual embeddings. VLMs are
shown to be imprecise at spatial information understanding and geometry (Rahmanzadehgervi et al., 2024;
Kamath et al., 2023). Similar biases exists in video-and-language tasks, where VideoLLMs typically exhibit
single-frame bias (Buch et al., 2022; Lei et al., 2023) or spatial bias (Cores et al., 2024), where either a
single frame is enough to solve the task, or the ordering of the frames is not important. To overcome this
bias, benchmarks propose computing temporal certificate sets (Mangalam et al., 2024), key-frame bias (Buch
et al., 2022), or investigate temporal understanding through shuffled frame inputs (Cores et al., 2024). In
MVP, we operationalize a looser definition of temporal understanding for our filtering pipeline (Section 3)
in that we keep an example if it is only solvable given the right key-frame, but discard it if it can be solved
with any randomly sampled frame — the intuition being that key-frame identification can already involve
temporal reasoning.

Benchmarks addressing vision-and-language biases. Several approaches are proposed in the literature
to reduce the aforementioned biases in Vision-Language systems. One promising approach is to use minimally
different pairs of inputs (Thrush et al., 2022; Yuksekgonul et al., 2022; Hsieh et al., 2024; Krojer et al., 2022;
Wang et al., 2023a), also known as Contrast Sets (Gardner et al., 2020), which stem from related work in
natural language processing (Levesque et al., 2012; Sakaguchi et al., 2021; McCoy et al., 2019). Minimally
different input pairs restrict the models’ abilities to use these biases, as both samples in the pair must be
answered correctly to achieve a non-zero score. Similar to MVP, some highly adopted examples of such
image-language benchmarks build on top of existing image sources (ARO (Yuksekgonul et al., 2022)), or fix
them explicitly (SugarCREPE (Hsieh et al., 2024)). Commonly, the focus is on textual minimal-change pairs,
e.g., providing several answer candidates for a question with only slight variations in word order (Yuksekgonul
et al., 2022; Cores et al., 2024; Park et al., 2022; Li et al., 2023; Cai et al., 2024). However, even textual
minimal-change pairs can be susceptible to the same language biases (Hsieh et al., 2024; Wu et al.,
2023), which why we focus on visual minimal pairs in MVP. Other works, such as in Video-QA, focuses on
visual minimal-change pairs. TempCompass (Liu et al., 2024) creates a small set of less than 0.5K artificial
minimally different videos by manipulating the original video, e.g., playing the video in reverse, at a faster
speed, or playing one video above the other. Vinoground (Zhang et al., 2024a) scrapes 0.5K minimally
different video pairs from YouTube with the majority following the same pattern: event A before B vs. event
B before A. Our work differs in several aspects from these (summarized Table 2), notably as well in terms of
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the scale of curation by showing that minimal video pairs can be procedurally extracted from existing video
sources. While our Minimal Pair Score is inspired by Winoground (Thrush et al., 2022), unlike Vinoground,
we intentionally do not adopt the Winoground metric directly since we want MVP to be agnostic to whether
models can process several videos in one forward pass.

The language biases in existing vision-language benchmarks often stem from the over-reliance on world
knowledge and plausible co-occurrences (Hsieh et al., 2024; Goyal et al., 2017). Thus, MVP focuses on short
videos with “basic” perceptual skills (spatial, temporal, or intuitive physics), which requires understanding
of physical world properties (Yi* et al., 2020; Chen et al., 2022; Jassim et al., 2024; Riochet et al., 2022;
Bear et al., 2021; Margoni et al., 2024; Baillargeon et al., 1985), reducing the space for blind LLMs to rely
on their cultural knowledge.

6 Discussion and Limitations

Going back to our initial question, our results suggest that VideoLLMs do not yet perceive and understand the
world as reliably as humans. After evaluating various state-of-the-art VideoLLM models for physical world
understanding on MVP, the best model obtains only 40.2% average accuracy, while human performance is
92.9%. Yet, VideoLLMs are not completely blind. On some sub-categories of spatio-temporal understanding
and intuitive physics, VideoLLMs can perform significantly better than random chance. Overall, our empir-
ical evaluation shows that current VideoLLMs are still far from matching human performances on all tested
tasks, calling for more research in this direction to develop better training data for world modelling, as well
as novel learning criteria and model architectures. We anticipate MVP to help the development of the next
generation of visual systems to perceive the world as robustly as humans.

Limitations: No benchmark comes without limitations. First, it is possible that more elaborate prompting
strategies for free-form reasoning (CoT) and higher frame rates could improve performance. Additionally,
using an automated curation approach will not be able to fully remove noisy examples; through manual
inspection, we found some of the examples to be too simple, and a few others to be ambiguous, although we
note that these noisy samples only represent a small subset of the overall data.
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Outline

Appendix A explains why and how we created a smaller version of MVP (MVP-mini).

Appendix B goes into all the nitty-gritty details of how we curated MVP.

Appendix C contains implementation details and further explorations for the shortcut analysis in Section 2
that motivated building MVP.

Appendix D explains how we arrived at the human baseline accuracy on MVP.

Appendix E provides details on how exactly we run inference, e.g. the exact prompt VideoLLMs (or
single-image VLMs for the shortcut baselines) and how we extract answers.

Appendix F (Behind the Scenes) shows not just the final product (this paper) but also how we arrived
here, what we discarded, and some personal reflections.

A MVP-mini

Next to the full MVP, we also release MVP-mini downsampled in a subset-aware manner to 18,290 video-QA
examples (thus 9,145 pairs). MVP-mini will be faster to use, while MVP-full allows researcher to filter and
curate derivatives at a large scale. For the most part our process simply involves selecting a random subset,
except that we place additional conditions such that no dataset (or subset of a dataset) is underrepresented
due to subsampling (i.e. never going below 500 examples). For example, IntPhys is already quite small with
360 videos so we don’t remove any examples in this case.

B Details: The Curation of MVP

As illustrated in Section 3, we follow three main steps to curate MVP: 1) Manual categorical filtering 2)
Automatic pairing of minimally different examples 3) Automatic filtering of single-frame-solvable examples.
We also need to QAify 5 out of the 9 datasets.

While there are commonalities across datasets for how we implement Step 1 (categorical filtering) and Step 2
(pairing), there is also some differences that we describe here for reproducibility. Note that Step 3 is exactly
the same across datasets, and is described in sufficient detail in Section 3. Hence, we focus on the first and
second step.

B.1 Manual categorical filtering

For 6 out of 9 datasets we select subsets and categories of questions suitable for MVP.

Perception Test: We manually annotate the 132 question types in Perception. Specifically we filter out
question that either do not require temporal understanding (“Where is the person?”) or are ill-defined.
Around 20% are discarded.

Language Table: We select the human-captioned and human-controlled split of Language Table which
constitutes 440K. Thus we exclude other splits where the robot arm is automatically controlled and/or the
robotic actions are synthetically captioned and not by a human. Additionally, we exclude any videos where
the caption only mentions a single object such as “Move the arm to the left” to ensure complex enough
interactions.

CLEVRER: We find an issue in the counterfactual split of CLEVRER and exclude these examples based
on the meta-data associated with each video, e.g. object attributes and the exact position of each object
at each frame. The issue is that most of the time, the object mentioned (target object) in the question
(“What happens if the cube is not there?”) is not actually involved in any collisions. As a result, the
correct answer (e.g. “The red and yellow cube collide”) is often depicted, whereas in a proper counterfactual
example the correct answer should never be depicted but only happen in an “alternative world”. Thus we
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filter out an example if the target object is never near any other moving objects (i.e. a collision) based on
their coordinates. Moreoever, we filter out an example if the two objects mentioned in the correct answer
are in fact already colliding in the video, based on their coordinates.

InfLevel: We only use the split with real-life videos where humans conduct the experiments in front of a
camera, similar to experimental designs in psychology (Weihs et al., 2022).

STAR: We exclude the Feasibility and Interaction splits since they are often ill-defined, lead to strong
language biases or are too easy.

B.2 Automatic Pairing of Minimally Different Examples

We apply this step to only 5 out of the 9 datasets, since Vinoground (Zhang et al., 2024a) and the 3 intuitive
physics datasets are already structured into minimal-change video pairs. Our pairing boils down to finding
highly similar pairs, which we base on symbolic or visual similarity, and at the same time ensuring that both
answers cannot be true at the same time, i.e. mutually exclusive. Especially the latter task, also known as
entailment detection or natural language inference, has many nuanced edge cases.

This step is conducted on QA examples x consisting of a question, a video, and answer candidates:
(q, v, [a1, a2, . . .]).

Perception Test/STAR.

1. Group QA examples into sets with the same question:

P = {X | ∀xi, xj ∈ X, qi ≡ qj}.

2. For a given X, examples xi and xj are grouped into potential pairs if they have opposite (mutually
exclusive) correct answers:

P ′ = {(xi, xj) | ai 6= aj}.

3. From this set of potential pairs P ′, we choose the top-k for a given question based on visual similarity,
measured via cosine similarity of embeddings from the video encoder ViCLIP-ViT-L (Wang et al.,
2023b):

Pk =
{

(xi1 , xj1), . . . , (xik
, xjk

)
∣∣

sim(vim , vjm) ≥ sim(vim+1 , vjm+1)
}

.

In practice, we choose k = 50 for each question.

Additionally, we use dataset-specific rules after manual inspection, e.g., for the Perception Test, we require
that for two potential pairs xi and xj , neither correct answer ai nor aj is “Both the other options".

Language Table. Note that all examples in Language Table have the same question “Which robot in-
struction best describes the actions in the video?”.

1. We group QA examples into sets such that a) both correct answers mention the same objects (e.g.,
both involve a “red triangle” and “green heart”) and b) the set of tokens in ai and aj have a large
enough overlap:

P =
{

(ai, aj)
∣∣ obj(ai) ≡ obj(aj)∧

0 < token_diff(ai, aj) < 4
}

.

Due to the finite number of attributes and objects in Language Table, obj(·) checks for these attribute
and object key-words.
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2. We narrow this set of potential pairs P with a visual similarity threshold, measured via cosine
similarity of embeddings from the video encoder ViCLIP-ViT-L (Wang et al., 2023b):

P ′ = {(xi, xj) | sim(vi, vj) > 0.9} .

3. Finally, we ensure that answers are mutually exclusive, i.e., ai 6 =⇒ aj and aj 6 =⇒ ai. In practice,
this involves several hand-crafted rules after inspecting failure cases: If the order of objects mentioned
is different, there is no entailment (e.g., “Move yellow triangle to blue heart” and “Move blue heart
to yellow triangle”); if otherwise one answer contains a general direction such as “towards”, “to” or
“into” but the other answer contains a specific direction such as “left” or “above”, there is entailment
(we discard the example). To illustrate: “move the X towards Y” entails “move X to the left of Y”.
We identify several of such situations.

Something Something v2. Note that Something Something v2 is a video caption dataset where each
caption contains either one or two objects and a simple action, with in total 174 types of such actions. We
QAify these examples with the question “Which action is being performed in the video¿‘ and use the caption
with something-placeholders instead of objects as the answer a, e.g., “dropping something”.

1. We group QA examples ai and aj into pairs such that the action in ai is a well-defined antonym of
the action in aj :

P = {(ai, aj) | antonym(ai, aj)}.

In practice, we identify a subset of 82 action types (47% of all actions) that have a well-defined
opposite, e.g., “spinning something so it continues spinning” and “spinning something that quickly
stops spinning”.

2. We narrow down pairs further by selecting a pair xi and xj if the videos contain the same object(s)
based on their captions:

P ′ = {(xi, xj) | obj(vi) ≡ obj(vj)}.

If no pairs fulfill this strict criterion, we relax it such that only one object must overlap:

P ′ = {(xi, xj) | obj(vi) ∩ obj(vj) 6= ∅}.

3. From this set of potential pairs P ′, we choose the top-k based on visual similarity, measured via
cosine similarity of embeddings from the video encoder ViCLIP-ViT-L (Wang et al., 2023b):

Pk =
{

(xi1 , xj1), . . . , (xik
, xjk

)
∣∣

sim(vim , vjm) ≥ sim(vim+1 , vjm+1)
}

.

In practice, we choose k = 4000.

CLEVRER. Note that CLEVRER has detailed meta-data with a list of all objects throughout the video
and their attributes (color, shape, material), with many videos featuring five or more objects.

1. Group QA examples into sets with the same question:

P = {X | ∀xi, xj ∈ X, qi ≡ qj}.

2. For a given X, examples xi and xj are grouped into potential pairs if they have opposite (mutually
exclusive) correct answers:

P ′ = {(xi, xj) | ai 6= aj}.

In the special case that the answers are both numerical, we require them both to be 1 apart, e.g.,
“How many objects are moving when the video ends? A) 2 B) 3”.
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3. We further filter the set P ′ by requiring a large overlap of objects with the exact same attributes in
both videos. Specifically, we keep a pair if the set of objects in vi is a “fuzzy subset” of the objects
in vj , or vice versa:

P ′′ = {(xi, xj) | fuzzy_subset(obj(vi), obj(vj))∨
fuzzy_subset(obj(vj), obj(vi))}.

Here, fuzzy_subset(·, ·) allows one mismatch between the sets of objects and their attributes.

C Details: Shortcut Analysis

We provide additional experiments for the shortcut analysis on MVBench datasets from Section 2.

Language only shortcuts. Similar to (Li et al., 2024b) we also tested a VideoLLM as a language-only
baseline by blacking out the video (replacing it with zeros). With VideoChat2 this gave slightly worse results
with both LLM-versions: 33.0% (Mistral) and 34.6 (Vicuna).

Video only shortcuts. For the video only we remove the question and only provide the answer candidates
to the model. In detail, we tested several ways of removing the question (empty string, replace with “what?”,
explain to answer without question, etc) and found that replacing the question with “[REDACTED]” yielded
the best performance.

Single-frame only shortcuts. First we study how performance varies when selecting frames at different
positions: first, middle, last, random and finally key-frame. We choose a key-frame based on the highest
CLIP similarity among all frames and all answer candidates (with the question prefixed to the candidate).
We find that the performance differs only by 1-2% among these selection strategies except for the first frame
which performed more than 5% worse than the rest with Idefics3. Since middle has the highest MVBench
accuracy, excluding key-frame, we show middle frame results in the paper. In the main paper we show
results for Idefics3 and Qwen2-VL, models that mostly focus on non-video tasks. We also test VideoChat2
variants but found performance to be worse, with either showing a single frame once or copying it 16-times
as a “video”.

Simple Socratic LLM shortcuts. In this shortcut we test how well models can still perform when the
video is replaced by a much lower bandwidth representation and presented to a text-only LLM: a short
generic caption of the video. We generate these captions with InternLM-XComposer-2.5-7B (Zhang et al.,
2024b). We investigate how model performance differs when increasing the bandwidth of this caption from
short, medium to long caption: “[...] Briefly describe this video in one sentence.”, “[...] Describe this video in
1-2 sentences.” and “[...] Describe this video in as much detail and length as possible.”. We also ask whether
focus on objects or actions helps, i.e. by prompting the captioning model to list the objects or actions in the
video. While the long caption variant achieves the highest performance when provided to LLaMA3 8B and
70B, followed by action caption, we choose to show the medium caption variant (i.e. asking the model to
caption the video in 1-2 sentences) in the main paper since this is most in the spirit of a short (1-2 sentences)
and generic (not asking for anything specific) caption as a simple baseline.

Additional robustness experiments beyond main paper. As a sanity check, we also study how well
a perplexity baseline and answer frequencies perform on MVBench. For the perplexity baseline we compute
the perplexity of each answer candidate sequence based on LLM (LLaMA3-7B), i.e. how plausible this string
is by itself. For example, are common objects or scenarios more often the correct answer? This would be
reflected in such a baseline. However we find that this baseline performs around random overall. Next, we
also compute statistics to determine if some subtasks of MVBench have a skewed distribution of answer
frequencies, i.e. whether option A is more often correct than the other option B, C, etc. or if it is more often
“yes” than “no”, etc. Here we also also find very little evidence of any issues in terms of frequencies.
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D Human Annotation

We assigned the videos to 6 researchers from our lab, recorded their answer responses, and then computed the
benchmark metric using the pair-wise scoring. Each person was assigned one video from the pair at a time,
thus avoiding any advantage over VideoLLMs that would come from seeing both videos in a minimal-change
pair (i.e., avoiding any knowledge that the answer can only be AB or BA).

E Details on prompting multi-modal LLMs

For a fair comparison (HuggingFace, API), we use each model’s default inference setup (e.g. greedy decoding
for all models) which are quite similar anyways. For example, videos are similarly processed (resolution,
number of frames) and then fed through CLIP or ViT-based video encoders. Most models use either 8 or
16 frames by default, e.g. Tarsier-34B uses 16 which we believe is enough for most MVP examples, yet the
model is still far below humans.

We use the following prompt for all VideoLLMs (filled with an example question from our benchmark):

VideoLLM Prompt

You are an expert video understanding AI system. Carefully watch the video and pay attention to
the cause and sequence of events, the details and movements of objects, and actions of people. Based
on your observations, select the best option that accurately addresses the following question:
Q: {Question}
A) {Correct answer for video1}
B) {Correct answer for video2}
Even when unsure, always answer with a single letter from A or B, format exactly like: ‘Answer:
A/B’.

We extract the answer letter via a simple regex and find that this approach fails in only less than 1% of
examples.

F Behind the Scenes

In this section we go beyond what usually goes into a paper and discuss how the paper came about, what
did not work, or what motivated the authors - so in essence: all the things that are usually deemed too
subjective or “unscientific”, yet would help other researchers, especially those joining the field, often much
more than the polished narrative of the main paper.

F.1 Motivation and timeline

Several of the authors who work on video modeling felt a growing frustration with existing benchmarks that
often rewarded the wrong things. So the direction of the project was quickly set after a short period of
brainstorming: Quantify in what ways existing benchmarks are broken, and then fix it. We then spent a few
months staring at hundreds of examples from the MVBench datasets, scouting for glaring issues or shortcuts
and manually annotating lots of data. First, we tested the simple baselines with respect to frequency,
text-only or single-frame biases, and soon included the less often discussed video-only (remove question)
and Simple Socratic LLM shortcuts. In between we had philosophical discussions about benchmark design
(bottom-down vs. top-down) or what it means for a video task to be truly temporal: is it temporal if two-
frames are needed, or if a single frame is needed but it has to be a key-frame (needle in a haystack), or ...?
Regarding benchmark design, should we adopt other paper’s taxonomies or design or own? Should one collect
all kinds of examples and ad-hoc define a taxonomy (bottom-up), or should one define a taxonomy, then
systematically collect examples to fit the taxonomy (top-down)? From the beginning the idea of minimal
video pairs generated excitement among us: Minimal visual pairs have led to much progress in the field of
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vision-and-language compositionality (e.g. Winoground), yet had not been explored much in the realm of
moving images.

There were, and perhaps still are, plans to crowd-source human shortcut performance, i.e. how much better
are humans at solving video tasks when given single frames? At scale this could also be used to filter out
examples with more precision than our five-model ensemble approach. Doing human crowd-sourcing well is
not trivial, it is time-intensive and requires dedication but it can lead to much stronger insights than relying
purely on automatic metrics and black-box models.

After the exploration phase, we executed on the benchmark building: From the start we had identified
several promising datasets to mine minimal video pairs and continuously added a new source roughly every
week. Perception Test was the first to go through our curation pipeline and hence took the longest as we
were still refining the pipeline steps. Language Table was very hard to do well with many edge cases in the
entailment detection, and also with its scale of 440K video-caption examples (imagine looking for potential
pairs of videos, i.e. 440, 0002 combinations).

F.2 Observations and lessons learned

1. There are too many edge cases to catch every single one at this scale of data curation.

2. Paper writing is smooth when the story and contribution is clear from the beginning of the project
(this was not the case in the first author’s last paper so it was nice to observe the contrast).

3. The intuitive physics datasets are (to the subjective taste of the first author) the cleanest and most
fascinating sources in MVP, even though they are not directly suitable for video QA, and only make
up a small fraction of the benchmark.

4. At the same time, Something Something v2 truly stood the test of time as a great video understand-
ing dataset due to its low noise-ratio at a scale of 200K examples, and coverage of interesting yet
simple phenomena.

5. Frame rate plays a big role for solving many examples in MVP. In order to push the field further
we are now asking the models more and more nuanced questions, and the answer may lie only in a
short span of a less than second. However many models may not have access to this short span in
principle as they represent a video as 16 uniformly sampled frames.

6. Parsing outputs from LLMs into a structured format such as answer options can feel like the wild
west sometimes: Could models perform better if we prompt them better, or have more flexible ways
of extracting the answer?

F.3 Advice for others working on a similar direction

Video-QA is becoming an increasingly popular topic; it is a very exciting direction with enough dimensions
for everyone to innovate on: long video benchmarking, intuitive physics, social common-sense/Theory-of-
Mind/narratives, novel simulation engines, and so on.

Despite our best efforts studying shortcuts, we probably missed some shortcuts or issues in MVP. It is good
to think two steps ahead what kind of shortcuts future more capable models could take. It is easier said than
done, but in retrospect older video benchmarks from 2015-2020 might have at least been able to address
single-frame biases, a priori, during benchmark design. Instead now the field took years to identify and clean
up benchmarks.
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