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ABSTRACT

Homography has fundamental and elegant relationship with the special linear group
and its embedding Lie algebra structure. However, the integration of homography
and algebraic expressions in neural networks remains largely unexplored. In this
paper, we propose Warped Convolution Neural Networks to effectively learn and
represent the homography by sl(3) algebra with group convolution. Specifically,
six commutative subgroups within the SL(3) group are composed to form a homog-
raphy. For each subgroup, a warp function is proposed to bridge the Lie algebra
structure to its corresponding parameters in homography. By taking advantage of
the warped convolution, homography learning is formulated into several simple
pseudo-translation regressions. Our proposed method enables to learn features
that are invariant to significant homography transformations through exploration
along the Lie topology. Moreover, it can be easily plugged into other popular
CNN-based methods and empower them with homography representation capabil-
ity. Through extensive experiments on benchmark datasets such as POT, S-COCO,
and MNIST-Proj, we demonstrate the effectiveness of our approach in various tasks
like classification, homography estimation, and planar object tracking.

1 INTRODUCTION

Convolution Neural Networks (CNN) are famous for their weak translation equivariance in repre-
senting visual objects in image space. Essentially, the translation equivariance is achieved due to the
constraint and intrinsic topological structure of discrete groups on the image. With a simple group
structure, CNN has already been successfully and extensively used in a variety of tasks, including
object detection (Dai et al., 2016), recognition (Zhou et al., 2014), tracking (Voigtlaender et al., 2020),
and alignment (Ji & Telgarsky, 2020). To further exploit the representation capability, researchers
try to extend the conventional convolution to group convolution (MacDonald et al., 2022; Cohen &
Welling, 2016; Zhang, 2019; Sosnovik et al., 2020b) with the diversity of group structures.

Among these group structures, the special linear (SL) group and its embedding Lie algebra have
great potential in visual representation since the corresponding homography describes the relation of
two image planes for a 3D planar object with perspective transformation. Every element in SL(3)
represents a homography of two different cameras shooting at a static 3D planar object in the scene.
The corresponding Lie algebra space sl(3) describes the difference in a camera’s configuration, which
means the local changes in Lie algebra coincide with the movement of viewpoint. Intuitively, a
laptop is always a laptop wherever you are looking from. Neural networks built on the space of
sl(3) could achieve the capability of learning homography, which gives, to some extent, equivariance
and invariance to the feature representation for visual objects. This property could make the neural
networks robust to occlusions and large view changes, and benefit a number of applications, e.g.
homography estimation (Japkowicz et al., 2017), planar object tracking (Zhan et al., 2022), feature
representation (Jaderberg et al., 2015).

Currently, few researchers have investigated the relation between homography and the sl(3) algebra
establishing the connection to the corresponding group. Although some task-oriented works (Esteves
et al., 2018; Ye et al., 2021; Finzi et al., 2020; Dehmamy et al., 2021; Benton et al., 2020) show the
preliminary results in the application, these existing methods are either only capable of dealing with
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Figure 1: A representation of the relation between a two-parameter commutative Lie subalgebra
and the homography. Left TεM (purple plane) is the tangent space (vector space) of the group’s
Manifold M (represented as a green sphere) at the identity ε. We specify it as the two-parameter
Lie algebra, where the elements of its generators coefficients vector b′ are orthogonal. With the
warp function w, we have each subalgebra (right) of the SL(3) satisfying the requirement, the
two-parameter transformation thus becomes the translation determined by b, where b denotes the
generators coefficients of SL(3).

several subgroups of SL(3) and their corresponding transformations, or purely enforce the equivari-
ance learning by tremendous data augmentation on the image domain. Subgroup methods (Esteves
et al., 2018; Gupta et al., 2021) have the inferior performance in a full perspective transformation
setting meanwhile learning equivariance by data augmentation (Ye et al., 2021; Finzi et al., 2020;
Benton et al., 2020) or requires multiple samplings MacDonald et al. (2022) have the drawback of
heavy computational cost. Our goal is to connect the representation learning of homography with
sl(3) algebra for neural networks in an efficient way. When the representation is based on Lie algebra,
we could investigate the potential in the algebra space with its mathematical property. For instance,
the feature representation is consistent with human’s intuitive perception, as the transformation walks
along the geodesic curve in algebra space as shown in Fig. 1. This allows the networks to have
very robust feature representations for different and large transformations and have the capability to
neglect the noise in training and improve the data efficiency learning due to the underlying topological
structure of the Lie algebra. Additionally, connecting the homography with sl(3) algebra is helpful
for learning the implicit transformation from a single image, which may facilitate applications such
as congealing (Learned-Miller, 2006) and facade segmentation (Xu et al., 2020).

In this paper, we propose Warped Convolution Networks (WCN) to bridge homography to sl(3)
algebra by group convolution. Inspired by the warped convolution (Henriques & Vedaldi, 2017), we
construct six commutative subgroups within the SL(3) group from the Lie algebra sl(3) generators to
learn homography. For each subgroup, a warp function is proposed to bridge the Lie algebra structure
to its corresponding parameters in homography. As the constructed subgroups are Abelian groups, the
group convolution operation can be formulated into conventional convolution with a well-designed
warp function. By composing these subgroups to form an SL(3) group convolution and predicting
several pseudo-translation transformations, our WCN is able to handle non-commutative groups and
learn the invariant features for homography in a robust and efficient way. The main contribution can
be summarized as follows:

• A framework for efficient Lie group convolution. Our proposed WCN approach can deal
with most of the Lie groups by easily combining different basis, which is able to learn the
invariant features for homography.

• A robust homography estimator based on WCN. To the best of our knowledge, it is the first
work to directly estimate homography along with the SL(3) group and its algebra topology.

• Extensive experimental evaluation on three datasets demonstrates that our approach is
effective for various computer vision tasks. It offers the potential for robustly learning the
large and implicit transformations.

2 RELATED WORK

In this section, we discuss the related prior studies, including equivariant networks and transformation
learning. Cohen & Welling (2016) present the fundamental work on equivariance of CNNs represen-
tations for the image transformations, where the underlying properties of symmetry groups (Cohen
& Welling, 2015) are investigated. They replace the translational convolutions with group convolu-
tions and propose Group equivariant convolutional networks (G-CNNs). For the continuous groups,
Cohen & Welling (2016) discretize the group and employ the harmonic function as the irreducible
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representation of convolution (Weiler et al., 2018; Zhang, 2019; Sosnovik et al., 2020b). Recently,
MacDonald et al. (2022) change the convolution formula and modify the different layers of CNNs.
They use the Schur-Poincaré formula for the derivative of exponential map, which enables sampling
from Haar measure for arbitrary Lie groups. Dehmamy et al. (2021) propose an unsupervised learning
approach to automatically learn the symmetry based on Lie algebra. All these methods introduce the
various architectures that are evidently different from the original convolutional layer. It is difficult
for them to directly make use of the popular CNN backbones. Moreover, they can only deal with the
classification problem.

Early work learns the transformation representation by an auto-encoder (Hinton et al., 2011). It
attempts to build a generative model, where the target is a transformed input image. Lin et al.
(2021) change the parameterization and project the distance onto SO(3). STN (Jaderberg et al.,
2015) introduces a spatial transformation network to manipulate the data in the network without
supervision on the transformation. All these methods have difficulty in estimating the transformations,
since the networks can only inference once for guessing and the parameters are entangled and
highly coupled. ESM (Benhimane & Malis, 2004) parameterizes the arguments as the Lie algebra
basis to estimate the SL(3) group. However, their parameters lose the interpretability in an image
transformation. Henriques & Vedaldi (2017) employ the warp function on convolution and implement
two-parameter group equivariance, since there are possibly utmost two independent dimensions in an
image. Recently, deep learning-based approaches predict the homography mainly by estimating the
corner offsets (Nguyen et al., 2018; Zhang et al., 2020a) or pixel flows (Zeng et al., 2018). They focus
on the local movements in the image space, which are incapable of estimating the large transformation.
Our proposed approach can be viewed as a general case of the warped convolution in 2D space, which
is able to handle the most sophisticated 2D Lie group SL(3). It is noteworthy that HDN (Zhan et al.,
2022) also estimates parameters from two groups based on warp functions (Henriques & Vedaldi,
2017). However, they only employ the rotation-and-scale subgroup and refine the transformation by a
corner regression-based estimator, which loses the equivariance for the homography. Differently, our
proposed method bridges the gap from the similarity group and two-parameter group to any subgroup
of the SL(3) and completes a full homography based on group convolution.

3 METHOD

The main objective of this work is to formulate a full homography on Lie subalgebras with several
equivariant warped convolutions for 2D projective transformation. Since the warped convolution
only implements two-parameter equivariance, a possible way is to combine the several warped
convolutions. In general, the 2D projective transformation is an SL(3,R) group having a few
subgroups. Our proposed method divides this group into several one or two-parameter subgroups,
whose Lie algebras are the subalgebras of sl(3). As explained in Fig 1, the warped convolution can be
employed to achieve the equivariance for each single or two-parameter transformation. Finally, they
are combined to obtain the full transformation. In this section, we first introduce the fundamentals of
the warped convolution and then describe our proposed method.

3.1 WARPED CONVOLUTION

The key to CNNs’ equivariance is their convolution layers, in which the basic operation is the
convolution of an image I ∈ Rn×n and a convolution kernel F ∈ Rn′×n′

. By employing the Dirac
delta function on the image and kernel (Henriques & Vedaldi, 2017), the convolution formula can be
treated as a special case of continuous function as follows,

(I ∗ F )(v) =

∫
I(v + u)F (−u)du. (1)

where u and v are the coordinates for I and F . For the sake of convenience, we shift the image I
instead of F in the convolution equations. To prove the equivariance, we define the transformation
operator as πl : u 7−→ u + l. Hence, the equivariance concerning the translation l can be easily
proved as: (πl(I) ∗ F )(v) =

∫
I(u+ (v + l))F (−u)du = (πl(I ∗ F ))(v).

The standard convolution only takes into account the translation equivariance in the image. For the
equivariance of other groups in the image domain, Henriques & Vedaldi (2017) suggest an intuitive
solution that defines a function of a group action on the image as below,

(g̃ ∗ h̃)(q) =
∫
G

g(pqx0)h(p
−1x0)dξ(p). (2)
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Figure 2: Overview of WCN. Mi is a basic module of WCN, and wi is the ith warp function. The
output of Mi is the estimated Lie algebra coefficients bi. The basic module Mi includes a CNN
backbone U , and a translation estimator Ei. The sampler is used to re-sample the input according to
predefined warp function wi and previously estimated parameters b̂i. We do not specify the detailed
structure for its generality, details for specific tasks can be found in the Experiments and Appendix.

Eq. 2 provides the convolution of two real functions g̃ and h̃ in group notation. g(px0) = g̃ and
h(px0) = h̃ are defined on a subset Ω ∈ R2, where x0 ∈ Ω is an arbitrary constant pivot point.
Compared to the convolution on the image, the operation u+ v becomes pq for the function g and h,
where p, q ∈ G. The integration is under the Haar measure ξ, which is the only measure invariant to
the group transformation. Since Eq. 2 is defined over the group, it needs to be further simplified for
practical use. As illustrated in Fig 1, a simple approach is to define G as a Lie group, which can be
projected onto the Lie algebra m. m is a vector space tangent at identity ε of the group manifold M,
whose base coefficients b are easy to map to the Cartesian vector space V ∈ Rm. The dimension
m is the degrees of freedom for M. This mapping allows us to estimate the Lie algebra on the real
plane R2. Once the element of Lie algebra is obtained, it could be mapped to M. Therefore, an
exponential map exp : V → G is employed to connect the Cartesian vector space with the M, where
V is a subset of R2. We therefore have the warped image gw(u) = g(exp(u)x0). Thus, Eq. 2 can be
rewritten as: (g̃ ∗ h̃)(exp(v)) =

∫
V

gw(u+ v)hw(−u)du. (3)

where hw(u) = h(exp(u)x0). Obviously, Eq. 3 has a similar structural form as Eq. 1. This achieves
the equivariance to the transformation belonging to the Lie group by performing a conventional
convolution after warping the image which connects the warped convolution and group convolution.

3.2 WARPED CONVOLUTIONAL NEURAL NETWORKS

As introduced in Section 3.1, warp function is used for implementing the estimation from the Lie
algebra, which shares the equivariance and properties of Lie algebra. However, in a warped image gw,
one can only estimate at most two independent Lie algebra parameters for its dimensional restriction.
To accomplish the goal for estimation purely from the Lie algebra for sl(3), we thus employ the
compositional method to estimate the Lie subalgebras and combine the subgroups in order. To warp
the image by a series of functions, the SL(3) generators need to be defined before the composition.
A generator of the Lie algebra is also called the infinitesimal generator, which is an element of the
Lie algebra. In this paper, we choose the widely used 2D projective group decomposition (Harltey &
Zisserman, 2003), whose corresponding eight generators of its subgroups are defined as follows,

A1=

[
001
000
000

]
A2=

[
000
001
000

]
A3=

[
0−10
1 0 0
0 0 0

]
A4=

[
00 0
00 0
00−1

]
A5=

[
1 0 0
0−10
0 0 0

]
A6=

[
010
000
000

]
A7=

[
000
000
100

]
A8=

[
000
000
010

]
(4)

For each ith generator Ai, we construct a one-parameter group. The other dimension for gw
could be viewed as an identity transformation group, which is commutative to the one-parameter
group. As a result, the equivariance is also valid in the case of one-parameter group. We
choose the generators and compose them corresponding to two or one parameter group for warp-
ing, as long as they are commutative. In this paper, we propose to compose the generators of
sl(3) into six Lie subalgebras as [b1A1 + b2A2, b3A3 + b4A4, b5A5, b6A6, b7A7, b8A8], where
[b1, b2, ..., b8] are the elements of the generator coefficients vector b. For better symbol presen-
tation, we re-parameterize b into a homography-friendly format (Harltey & Zisserman, 2003)
to link the Lie algebra with the homography H. The resulting intermediate variables vector
x = [t1, t2, θ, γ, k1, k2, ν1, ν2] = [b1, b2, b3, exp(b4), exp(b5), b6, b7, b8]. Therefore, the six Lie
subalgebras corresponding subgroups (Ht, Hs, Hsc, Hsh, Hp1, Hp2) parameterized by b are
defined as follows,
H(x) =Ht ·Hs ·Hsc ·Hsh ·Hp1 ·Hp2 (5)

=

1 0 b10 1 b2
0 0 1

exp(b4) cos(b3)− exp(b4) sin(b3) 0
exp(b4) sin(b3) exp(b4) cos(b3) 0

0 0 1

exp(b5) 0 0
0 exp(−b5) 0
0 0 1

1 b6 00 1 0
0 0 1

 1 0 0
0 1 0
b7 0 1

1 0 0
0 1 0
0 b8 1

 .
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Based on the above equation, we propose Warped Convolutional Networks (WCN) to learn homogra-
phy by six modules [M1, ...,M6] as depicted in the Fig. 2. Each module Mi has three components, a
shared backbone U , a translation estimator Ei and a warp function wi. According to Eq. 3, recovering
the Lie algebra parameters is equivalent to estimating a pseudo-translation in the algebra space to
which the warp function transfers the image space. For each module Mi, the input image is resampled
with a specially designed warp function wi, fed to the backbone U and estimator Ei to obtain a
pseudo-translation in the corresponding subalgebra. Note that we predict b essentially, and x is just a
function of b for a convenient expression. Ei is different for each module to adapt to the different
subalgebras. Finally, we obtain the output x and compose them to the transformation matrix as Eq. 4.
Please refer to the Appendix for more details.

3.3 WARP FUNCTIONS

As illustrated in Eq. 3, the key to recovering one or two-parameter transformation is to find a
proper warp function so that the pseudo-translation shift in the warped image is equivalent to the
linear changes of element on the corresponding Lie algebra. We thus define the warp function as
w(b′) = u′, where b′ = (b′1, b

′
2) is the specific two-parameter coefficient vector of the warp function

for two-parameter Abelian group. For one-parameter group, b′2 is the identity Lie algebra parameter
bϵ. u′ = (u′

1, u
′
2) denotes the re-sampled point in the transformed image I . µ = (µ1, µ2) is adopted

to denote the point coordinate in the warped image gw.

Scale and Rotation CNNs are equivariant to the translation that is preserved after feature extraction.
As a result, w0 is an identical function and we omit it in our implementation. For the scale and
rotation group Hs, γ represents the uniform scale, and θ denotes the in-plane rotation. As described
in (Henriques & Vedaldi, 2017; Zhan et al., 2022), the warp function w1 for two Lie algebra coefficient
parameters b3 and b4 is defined as:

w1(b3, b4) =u′T =

[
sγ

′
cos(b3)

sγ
′
sin(b3)

]
. (6)

where s determines the degree of scaling and γ = sγ
′
. We have γ = (sγ

′
= eγ

′ log s) = eb4 . Let s
be a constant, and estimating γ′ is equivalent to finding the Lie algebra element b4. Fig. 3 (a) shows
the example warp functions for the scale and rotation.

Aspect Ratio Group Hsc represents aspect ratio changes, whose corresponding element of Lie
algebra is b5. Since there is a redundant dimension, we employ the warp function with two vertical
directions in order to double-check the parameter b5. The corresponding warp function is defined as
follows,

w2(b5,−b5) =
[
sk

′
x , sk

′
y

]T
. (7)

where k1 = (sk
′
x = exp(k′x log s)) = exp(b5) and 1/k1 = (s−k′

x = exp(−k′x log s)) = exp(−b5).
Estimating k′x and k′y is actually to find the b5 of sl(3). To improve the accuracy, we flip the other
quadrant image to the positive quadrant and upsample it to the original image size of n× n. This
changes the size of the warped image gn×n×4

w . Fig. 3 (b) shows the example result of gw.

Shear Shear transformation, also known as shear mapping, displaces each point in a fixed direction.
According to the following equation on point u, it can be found that shear is caused by the translation
of each row in the original image, in which the translation degree is uniformly increased along with
the column value. u∗ is the transformed points as below,

u∗ = Hsh · uT = [u1 + k2u2, u2]
T
. (8)

Inspired by the fact that the arc length of each concentric circle with the same angle increases by the
radius uniformly, it is intuitive to project the lines onto a circle arc so that the shear can be converted
into rotation. Similar to the warping in Eq. 6, the rotation is eventually formulated into the translation
estimation. The warp function for shear group Hsh can be derived as follows:

w3(b6, bϵ) = [b6bϵ, bϵ]
T
. (9)

where bϵ is the unchanged coordinate for one-parameter group. Fig. 3 (c) shows an example of
shearing in the horizontal direction.
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Original (a) Scale&rot (c) Sheer(b) Scale-2d (d) Perspective-y (e) Perspective-x

Figure 3: The examples after using the warp function for the original image.

Perspective The two elements ν1 and ν2 reflect the perspective distortion of an image, which is not
the same as the previous one due to view change.

u∗=Hpu
T=Hp2Hp1u

T=
[ u1
ν1u1+ν2u2+1

, u2
ν1u1+ν2u2+1

]T (10)

where Hp denotes the transformation for perspective change. From the action of the group Hp in
Eq. 10, it can be found that the slope of any point does not change after the transformation. b7 and b8
are entangled in Eq. 10. We design two one-parameter warp functions to account for the perspective
changes of two groups Hp1 and Hp2.

w4(b7, bϵ) =
[

1
b7
, bϵ

b7

]T
,w5(bϵ, b8) =

[
bϵ
b8
, 1

b8

]T
. (11)

There exist serious distortions when this sampling function is used as explained in Appendix. The
larger the radius is, the more sparse the sampling points are. To tackle this issue, we select the patch
near the center of the warped image. Fig. 3 (d,e) shows examples of the perspective warped image in
two directions. Please check the Appendix for details of all the warp functions.

4 EXPERIMENTS

Our proposed WCN is designed for tasks that are potentially related to the single-plane transformation.
To demonstrate the effectiveness of our proposed approach, we evaluate the WCN framework on three
visual learning tasks including classification, planar object tracking, and homography estimation. All
of them need to recover the underlying homography of the object. To this end, we have conducted
experiments on several datasets including MNIST (LeCun & Cortes, 2005), POT (Liang et al., 2018),
and Synthetic COCO (S-COCO) (Lin et al., 2014). More details and experiments can be found in the
Appendix.

4.1 CLASSIFICATION ON MNIST-PROJ

(a) Test digits samples (c) Recovered digits(Ours)(b) Recovered digits(STN)

Figure 4: The visual results of the randomly selected MNIST
testing after STN and WCN.

MNIST handwriting dataset (LeCun
& Cortes, 2005) is a small testbed
for digit classification. We perform
the experiment on it to show the ef-
fectiveness of WCN on the classifica-
tion tasks and the general benefit of
homography learning in visual tasks.
Specifically, we generate the MNIST-
Proj dataset by augmenting the data
in the training process with projective
transformation. The testing dataset
has 10,000 digits images and the size
of samples is 28× 28. Table 1: MNIST-Proj results.

Methods Type Error (%) Time(ms)

L-conv (Dehmamy et al., 2021) Any 19.16 (±1.84) 1.81
homConv (MacDonald et al., 2022)SL(3) 14.72 (±0.72) 105.7
PDO-econv (Shen et al., 2020) p(6) 1.66 (±0.16) 0.14
LieConv (Finzi et al., 2020)) Any 2.7 (±0.74) \
PTN (Esteves et al., 2018) Sim(2) 2.45(±0.66) \
STN (Jaderberg et al., 2015) Affine0.79 (±0.07) 0.20
WCN (Ours) SL(3) 0.69 (±0.09) 0.42

Usually, a homography recovery-
based method requires a template
reference. For the classification
problems, there is no explicit refer-
ence object to learn. Inspired by the
congealing tasks (Learned-Miller,
2006), we learn an implicit template
pose, where the template is the up-
right digits in MNIST. Please refer
to the Appendix B.2 for more implementation details.
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Figure 5: Comparisons of different homography estimation datasets and the mainstreamed methods.
We warp the search according to the estimation and merge it with the template. In the second row, we
add the occlusion on the corners in the template. The more clear without drifting the result image is,
the better performance the corresponding method has.

The error rate is adopted as the metric for evaluation, which is calculated by the total number of
wrongly predicted samples divided by the total number of samples. In Table. 1, our proposed frame-
work outperforms six other methods. We use the official implementations for those methods, and all
the methods are trained with perspective transform augmentations. Compared with homConv (Mac-
Donald et al., 2022) which is equivariant to the SL(3) group, our method has a significantly improved
performance from 0.69 to 14.72 due to the feature level invariant of our proposed work. Although
L-conv (Dehmamy et al., 2021) and LieConv (Finzi et al., 2020) are built based on Lie algebra
theoretically, WCN still outperforms these two methods due to the robustness of our representation
learning in SL(3) group. PDO-econv (Shen et al., 2020) and PTN (Esteves et al., 2018) handle the
rotation well, yet we still attain a lower error rate. As shown in Fig. 4, the visual results show the
advantage of our proposed WCN over STN in recovering the homography, which can be utilized
directly in other tasks like homography estimation. Our proposed WCN achieves more robust and
interpretable homography learning compared to other works. Please refer to Appendix.D for more
experiments.

Table 2: S-COCO comparison.

Methods MACE

PFNet (Zeng et al., 2018) 1.73
PFNet*+biHomE (Koguciuk et al., 2021) 1.79
HomographyNet (DeTone et al., 2016) 1.96
UnsupHomoNet (Nguyen et al., 2018)) 2.07
Content-Aware (Zhang et al., 2020a) 2.08
PFNet* (Zeng et al., 2018) 1.20
WCN (Ours) 10.80
WCN+PFNet* 0.73

Table 3: S-COCO-Proj comparison.

Methods MACE
Mid. Aug. Lar. Aug.

Content-Aware (Zhang et al. (2020a)) 40.57 56.57
HomographyNet (DeTone et al. (2016)) 19.17 35.59
PFNet* (Zeng et al. (2018)) 11.86 25.30
PFNet*+biHomeE (Koguciuk et al. (2021)) 12.62 33.12
WCN (Ours) 10.23 17.73
PFNet* (w.o. occlusion ) 2.45 13.84
WCN (w.o. occlusion) 6.29 11.31
WCN+PFNet* (w.o. occlusion ) 0.69 1.81

4.2 HOMOGRAPHY ESTIMATION

S-COCO S-COCO is a commonly used dataset for evaluating the homography estimation task
performance. We follow the settings of DeTone et al. (2016) and thereby test our method on S-
COCO. Table. 2 shows the experimental results and indicates that our method has more advantages
in improving robustness for homography estimation. S-COCO is designed for homography estimator
and consists of small transformation as shown in Fig. 5. By adding our proposed WCN to the
PFNet*(the current best implementation of PFNet), the standard MACE error (Mean Average Corner
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Error) (Zeng et al., 2018) decreases from 1.21 to 0.73, which indicates that our WCN gives an
effective homography representation and has generality in improving performance.

S-COCO-Proj To better demonstrate the robustness of our WCN, we synthesize a challenging
synthetic dataset with large homography changes and occlusion based on COCO14 (Lin et al., 2014)
with over 40000 images. Fig. 5 shows the visualization of the difference between S-COCO-Proj and
SCOCO datasets, and the qualitative results of different methods. It can be seen that other methods
mainly aim at recovering the transformation of the static large scene with minor transformation, while
our WCN considers large transformation and the robustness of the corner occlusion.

Table 3 exhibits the performance when using S-COCO-Proj in large transformation, middle transfor-
mation, and occlusion settings (see B.4 for more details). We adopt the standard MACE metric to
evaluate the performance. Our proposed approach outperforms the other methods, especially with
large transformations and occlusions. This demonstrates the robustness of the proposed approach
in real-world scenarios due to the homography representation learning in sl(3). For non-occlusion
settings, our WCN can be used as a robust homography representation for the SOTA method and
Ours+PFNet* achieves the highest accuracy performance and is significantly better than using them
separately. Similar to S-COCO settings, this indicates consistent results that our homography repre-
sentation is robust to occlusion and large transformation. Our proposed WCN can be plugged into
and boost the performance of those methods that benefit from a decent initialization.

4.3 PLANAR OBJECT TRACKING

POT POT (Liang et al., 2018) is a challenging mainstreamed planar object tracking dataset that
contains 210 videos of 30 planar objects with 107100 images in the natural environment. We select the
perspective changes category videos as our testing datasets to evaluate the performance in perspective
transformation estimation. The state-of-the-art visual object trackers and planar object tracking
approaches (Zhan et al., 2022; Zhang et al., 2020b) show that it is easy to predict the offset of an
object through the cross-correlation (Bertinetto et al., 2016). Thus, we employ it as the parameter
estimator in our framework. Please refer to Appendix.C for more details.

We choose three methods that directly estimate the Lie algebra coefficient elements for comparison.
LDES (Li et al., 2019) takes advantage of the log-polar coordinate to estimate the similarity transform.
HDN (Zhan et al., 2022) employs a deep network to estimate the similarity parameters, in which
a corner offsets estimator is used to refine the corner. ESM (Benhimane & Malis, 2004) directly
estimates 8 Lie algebra elements in image space whose generators are different from ours.
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Figure 6: Comparisons on POT. Precision (left), Success rate (right).

We adopt two metrics for
evaluation, including preci-
sion and homography suc-
cess rate as defined in
(Liang et al., 2018). The ex-
perimental result is shown
in Fig. 6. Compared with
other trackers, our proposed
method achieves a higher
average precision and suc-
cess rate. It has a much
higher precision when the error is larger (up to 90%), which indicates the high robustness of our
method with 2D perspective transformation. Without the refinement component in HDN (HDN(sim),
our model (0.6236) outperforms it (0.3347) by 28.89%. Meanwhile, with the refinement component
as same as HDN, our WCN achieves comparable performance for two metrics and higher precision
when the error threshold is low.

POT-L Similar to S-COCO-Proj, we construct POT-L to better demonstrate the capability of our
proposed method. We resample the POT every ten frames to form a new challenging dataset with
large transformations. This means the transformation is 10 times larger compared with the original
POT. Table. 4 exhibits the results compared to the SOTA method HDN. Our WCN outperforms HDN
on the average precision (Avg Prec.) by 3.5%, and WCN performs better for three different error
thresholds e consistently. This indicates that our proposed homography representation can be used in
various applications and has state-of-the-art performance in planar object tracking task.
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Table 4: WCN and HDN comparison on POT-L.

Tracker Avg Prec. Prec.(e ≤5) Prec.(e ≤10) Prec.(e ≤20)

HDN 0.685 0.091 0.488 0.805
Ours 0.720 0.123 0.521 0.833

Table 5: Data efficiency analysis.

Method 1% 5% 20% 40%

STN 19.99% 3.16% 1.45% 1.14%
Ours 7.16% 2.19% 1.27% 1.01%

4.4 ROBUSTNESS AND DATA-EFFICIENCY

To evaluate the robustness of the proposed method under sl(3) algebra, we further test with a wide
range of parameters b in a similar setting as in Sec.4.1. As there are two directions for each ith
parameter bi, it is hard to analyze them together. We thereby conduct the experiment on each
module Mi separately on MNIST-Proj. Each module is trained and tested with a large corresponding
parameter range ([L,R]). Fig. 7 shows the result, where L is the left boundary for the transformation
parameter, and R denotes the right boundary. We plot examples for every parameter resulting in
transformed images. The gray surface marked the standard 95% accuracy level, our WCN achieves a
large proportion over this threshold. This confirms a satisfying upper bound for a large transformation
range, and our proposed method is able to walk along the sl(3) algebra.

Theoretically, our model has equivariance to several groups, thereby it should be easier to train with
fewer data. We compare our method against STN on MNIST-Proj with the same setting in Sec.4.1.
As shown in Table. 5, our approach has significantly lower error rates with just 1% training data. In
our practice, the loss converges much quicker than the other method in the training process.

Table 6: Ablation of backbone on MNIST-Proj.

Methods Network Error (%)

Naive LeNet5∗ 11.48 (±1.42)
Navie ResNet18 0.87 (±0.13)
STN LeNet5∗ 4.00 (±0.35)
STN ResNet18 0.79(±0.07)
Ours LeNet5∗ 3.05 (±0.33)
Ours ResNet18 0.69 (±0.09)
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Figure 7: Range robustness for each parameter.

4.5 ABLATION STUDY

For fair evaluation, we compare our proposed approach with four baseline methods and compare
them with the same backbone on MNIST-Proj. As shown in Table 6, we use the mean error in the last
five epochs to measure the performance. When equipped with deeper convolution layers (ResNet18),
the CNNs are able to classify the digits well even with large transformations. To fairly compare
with STN (Jaderberg et al., 2015), we use the same backbone for classification and achieve a lower
error rate. With a five-layer CNN, our proposed approach outperforms STN by 1% and 0.1% with
a deeper ResNet18 backbone. This is because the Naive ResNet18 already has the capability of
classification and achieves 0.87% compared with STN’s 0.79% and Ours 0.69%. Our proposed WCN
has consistently better results compared with STN with different backbones. This demonstrates
that our proposed method has superior performance of homography learning under sl(3) algebra
compared with STN.

5 CONCLUSION

In this paper, we proposed Warped Convolution Neural Networks (WCN) to effectively learn the
homography by SL(3) group and sl(3) algebra with group convolution. Based on the warped
convolution, our proposed WCN extended the capability of handling non-commutative groups and
achieved to some extent equivariance. To this end, six commutative subgroups within the SL(3)
group along with their warp functions were composed to form a homography. By warping the
corresponding space and coordinates, the group convolution was accomplished in a very efficient
way. With sl(3) algebra structure, our proposed approach can handle several challenging scenarios,
including occlusion and large perspective changes. Extensive experiments showed that our proposed
method was effective for homography representation learning and had promising results in three
visual tasks, including classification, homography estimation and planar object tracking.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility, We make efforts on several aspects and conclude here. To keep the
generality, we do not specify the concrete structure of WCN. However, we do explain some details of
it in Section 4. More details of architecture and implementation for three different tasks can be found
in Appendix B. More importantly, we will offer all the source codes for concrete tasks. The training
details and experimental setting are introduced in Appendix B.5 and C.1, including how to create the
data for our experiment. For reproducibility, we set the random seed for homography estimation, and
for MNIST-Proj testing results, we repeatedly test five times and give the error scope.
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Appendix

In this appendix, we first discuss the details of the warp function and analyze the influence of each
parameter on the warped image. Then, the implementation details of our proposed method are
provided, and more experimental details are introduced with additional results. Finally, we provide
the proof of warp function property.

A WARP FUNCTIONS

For the warped convolution (Henriques & Vedaldi, 2017), the most ideal situation is that the group
has commutative property with only two parameters. In this case, all the parameters are independent
and the group convolution can be implemented as a warped function. However, it is impossible for
both the affine group and projective group to have the same property since they are not Abelian
groups with more parameters. A transformation matrix can be represented as follows

H = exp(A(b)) = exp(

8∑
i=1

biAi), (12)

where Ai is the generator of the Lie algebra A. bi is an element of the generator coefficients vector
b in the real plane. For affine and projective group, it does not hold that eA(b)eA(a) = eA(a+b),
where a is another coefficients vector. Intuitively, this means the coefficients of the SL(3) do not have
the additive property, while the proposed corresponding one or two-parameter Lie subalgebras still
hold the property. Therefore, no warp function can be found for both affine and projective groups
directly satisfying the condition for Eq. (3) in the main paper. It is worthy of discussing why not
map the projective transformation onto 3D space to estimate the 6 independent parameters. The
reason is that one cannot project the image into a particular camera view without the depth and
camera intrinsic. Therefore, there is no way to warp the image like the log-polar coordinates for
in-plane rotation (Esteves et al., 2018). In section 3.1 of the main paper, we follow the warped
convolution (Henriques & Vedaldi, 2017) and decompose the homography into 6 subgroups that
can be predicted independently by pseudo-translation estimation according to the equivariance.
Theoretically, the parameters of the proposed six groups may affect each other in the warped image
domain. Thus, the groups must be estimated in a cascade fashion. Fortunately, we found that the
networks localize the object’s position very well in most vision tasks, even with large deformations
or distortions. We argue that the networks are capable of learning the invariant feature for the target
to compensate for the interdependence. Intuitively, we transfer all 8 parameters of Lie algebra sl(3)
into 6 subalgebras that can be solved by pseudo-translation estimation. In the warped image domain,
the pseudo-translation is more significant in contrast to other transformations. Thereby, we take
advantage of this property to estimate the subalgebra in each warped image.

There is little difference in estimating the two-dimension subgroup of b and predicting the translation.
Given the object center as the origin, all transformations generated by the parameters of sl(3) do not
change the object’s center. Unfortunately, this property does not hold for the warped image. The
transformation of b in the warped image is different from the transformation in the original image.
To analyze the influence of each parameter on the warp function, we draw the center offset of the
warped image. One argument is the parameter η1 of the warp function, and the other argument is the
other parameter η2 may influence the translation. Fig. 8 shows the example for warp function w1.
Fig. 8 (a,b,c,d) demonstrate the k′x,k2,ν1,ν2 effect on the warped image center offsets compared with
θ about warp function w1. Fig. 8 (e,f,g,h) depict the k′x,k2,ν1,ν2 effect on the warped image center in
contrast to γ′ for warp function w1. We find the parameters of w1 dominate the translation of the
warped image center. This means that we can estimate γ′ and θ in the warped image gw1 even with
other existing transformations. The same conclusion is valid for other warp functions.

B IMPLEMENTATION DETAILS

We design two separate architectures with our proposed WCN for classification, homography esti-
mation and planar object tracking, respectively. In this section, we first give more implementation
details of the warp function. Then we introduce the implementation details of the three tasks with
datasets MNIST-Proj, S-COCO-Proj and POT accordingly.
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Figure 8: Analysis of the parameter influence to warp function. We use the offsets (pixels) to measure
the influence of x′ and other parameters.

B.1 WARP FUNCTIONS

Scale and Rotation The range of the parameters should be consistent with the image size by scaling
the coordinate in sampling. Therefore, we define the rescaled sampling function for the warped image
gn×n
w according to Eq. (6) in the paper as (u′

1, u
′
2)

T = [(n2 )
µ1
n cos( 2πµ2

n ), (n2 )
µ1
n sin( 2πµ2

n )]T .

Given the warped image with the size of n× n, the warped range is limited by a circle whose radius
is n

2 in the original image. Let b̂ = [b̂1, b̂2, ..., b̂8] be the prediction of b, b̂3 and b̂4 are recovered by
(b̂3, b̂4) = ( 2πµ̂2

n , µ̂1

n log(n2 )), where (µ̂1, µ̂2) is the prediction of (µ1, µ2). The mapping function
performs on the warped image W(I, [b̂1, b̂2]) according to the estimated parameters from E1.

Aspect Ratio In the image space, the range of parameters should be consistent with the image size
by scaling the coordinate for sampling. The rescaled sampling function for scale estimation in both
directions from Eq. (7) in the paper can be derived as u′T = [(n2 )

2µ1
n , (n2 )

2µ2
n ]T . The corresponding

warped image is shown in the Fig. 9 (b). Under the proposed framework, the mapping function
performs on the warped image W(I, [b̂1, b̂2, b̂3, b̂4]) according to the estimated parameters. b5 and
−b5 are recovered by (b̂5,−b̂5) = ( 2̂µ1

n log(n2 ),
2̂µ2

n log(n2 )). Since the main task is usually related
to an object, its center is treated as the origin of coordinates. In Eq. (7), w2 ∈ (0,+∞)2. Thus, we
overpass the other quadrants when u1 < 0 or u2 < 0.

Shear In the case of a real image, the rescaled sampling function for shearing from Eq. (9) becomes
u′T =

[
2
n (µ1 ∗ µ2), µ2

]T
. The estimated b̂6 is recovered by k̂2 = µ̂1. Finally, the warp function

performs on the warped image W(I, [b̂1, b̂2, ..., b̂5]) according to the estimated parameters.

Perspective For transformation Hp1, The standard warped image according to paper is depicted
in Fig 9(f), which has large distortion and sampling problem. We solve this by setting w4 =
[ ϕ2n
2(µ1+sgn(µ1)ϕ1)

, u2n
2(µ1+sgn(µ1ϕ1))

]T , where sgn is the signum function. ϕ1 and ϕ2 are scaling factors.

w4 acts on the warped image W(I, [b̂1, b̂2, .., b̂6]) and w5 acts on the W(I, [b̂1, b̂2, .., b̂7]) according
to the estimated parameters. As the same output size is required in sampling, the warp function in
Eq. (11) in the paper for sampling can be derived as u′T =

[ n
2µ1

, µ2n
2µ1

]T
and u′T =

[µ1n
2µ2

, n
2µ2

]T
.

b̂7 and b̂8 are recovered by (b̂7, b̂8) = (µ̂1, µ̂2).

B.2 CLASSIFICATION

Two backbone networks are used for the classification task in MNIST-Proj. The first one is a modified
LeNet-5 (LeCun et al., 1998). As described in Table. 7, the localization stage is used to predict the
pseudo-translation of the handwritten digits on a warped image compared to the implicit upright
digits. Then, we resample the image according to the parameters and concatenate it with the original
image as the input for the classification stage. To further examine the capability of our method in the
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Original

(a) Scale&rot

(b) Problematic scale-2d (d) Sheer

(c) Scale-2d (e) Perspective-y

(f) Problematic perspective-x

(g) Perspective-x

Figure 9: The examples after using the warp function for the original image.

classification task, we implement another classifier to demonstrate the results with a deeper backbone
ResNet-18 (He et al., 2016). As listed in Table 8, we first use the ResNet-18 to extract the feature,
then estimate the transformation parameters b′ with several warp functions. Its localization network
is the same as the Localization stage in Table 7 except that the input size is different. According to the
estimated b̂′, the resampled image, and the original image are concatenated as the input of another
ResNet-18 that uses a two-layer classifier to predict the class of the digits. As shown in Fig. 10, the

WCN Classifier

Input

U
class

𝐿𝑇 𝐿𝑐𝑙𝑠

𝐸1

T S

𝐸1
′

*

𝑀1

…

(a) (b)

𝑏1, 𝑏2

T
S

Figure 10: The pipeline of our method for MNIST-Proj digits recognition and planar object tracking
tasks. (a): MNIST-Proj digits recognition. LT : transformation loss, Lcls: classification loss. (b):
Planar object tracking. This figure only shows changes in a basic component Mi, E1 and E′

1 are the
convolution layers. Here, we use ResNet50 for backbone U. T is the template patch, and the dashed
line denotes its data flow. S is the search patch, and the solid line represents its data flow.

pipeline for MNIST classification consists of two components. We first recover the transformation
of the digit, and then employ the classifier to predict its class label. We add the supervision both on
estimating the transformation parameters using loss function LT and image class with loss function
Lcls. Thus, the total loss is LT + λLcls, where λ is the weight parameter to trade-off two terms.

B.3 PLANAR OBJECT TRACKING

For the planar object tracking, we treat HDN (Zhan et al., 2022) as our baseline method, which has
two warp functions to predict b. Besides, the perspective changes are small in the feature map. We
thereby estimate p1 and p2 directly on the warped image according to the w4 rather than using the
correlation. The structure is similar to the homography estimator in HDN, yet we only estimate ν1
and ν2 directly.
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B.4 HOMOGRAPHY ESTIMATION

For the homography estimation task, we simply apply the same tracking procedure for estimation.
In the testing dataset of SCOCO, transformation is conducted by Eq. (8) in the paper. For middle
augmentation, we set θ ∈ [0.6rad, 0.6rad], γ ∈ [0.7, 1.3], k1 ∈ [−0.2, 0.2], k2 ∈ [−0.15, 0.15], ν1 ∈
[−0.0001, 0.0001] , and ν2 ∈ [−0.0001, 0.0001]. Large augmentation is with θ ∈ [0.8rad, 0.8rad],
γ ∈ [0.7, 1.3], k1 ∈ [−0.3, 0.3], k2 ∈ [−0.2, 0.2], ν1 ∈ [−0.001, 0.001], and ν2 ∈ [−0.001, 0.001].
The occlusion on the corner is decided by a circle of radius 60 pixels(image center as the origin), the
image over the radius is occluded.

B.5 TRAINING

Existing datasets lack the annotations of transformation parameters. Even with those provided, they
need to be converted to b with matrix decomposition, which is not easy. Therefore, we augment
the possible transformations according to Eq. (8) in the main paper and transform the images as the
training data with the randomly sampled parameters. We augment the dataset MNIST (LeCun &
Cortes, 2005) for classification and GOT-10K (Huang et al., 2019) and COCO-14 (Lin et al., 2014)
for planar object tracking during the training, respectively.

For MINST, the model is trained firstly with the supervision on the predicted b̂ and predicted class
for Ne = 100 epochs, which is retrained with only classification loss for Ne in MNIST-Proj. For
transformation loss, LT = Lsr + λ1(Lt + Lk1 + Lk2 + Lν), where Lsc is the loss of (b3, b4). Lt is
the loss of translation, and Lk1

is the loss of b5 and −b5. Lk2
is the loss of b6, and Lν is the loss of

b7 and b8. All transformation penalties make use of the robust loss function (i.e., smooth L1) defined
in (Girshick, 2015). As for POT, we employ the same classification and offset loss as HDN (Zhan
et al., 2022) for the newly added parameters in b.

For MNIST-Proj classification task, we adopt Adam (Kingma & Ba, 2014) as the optimizer, where
the batch size is set to 128. The learning rate starts from 0.001 and decays by a multiplicative factor
of 0.95 with an exponential learning scheduler. Similar to HDN, we trained the whole network for
planar object tracking on GOT-10k (Huang et al., 2019) and COCO14 (Lin et al., 2014) for 30 epochs
with 1 epoch warming up. The batch size is set to 28 × 4. Our model is trained in an end-to-end
manner for 18 hours in our experimental settings.

For S-COCO-Proj homography estimation, we use the same training and testing procedure as in the
POT, except that we remove the GOT-10k (Huang et al., 2019) from the training datasets. All the
methods in the leaderboard are trained with the same augmented dataset with middle augmentation
and mask the corner area with a circle mask with the radius of 60 pixels.

Table 7: Network details for MNIST-Proj. Conv (1,8,7) denotes a convolution layer with input
channel=1, output channel=8, kernel size=7. MaxPool (2,2) represents the max-pooling layer with
window=2, and stride=2. Linear (90,32) represents the fully connected layer with input size=90 and
output size=32. C is the total number of channels for the output.

Stages Operator Output

Conv2d (1,8,7) C×8×22×22
MaxPool (2,2), ReLU C×8×11×11

Localization Conv2d (8,10,5) C×10×7×7
MaxPool (2,2), ReLU C×10×3×3
Linear (90,32), ReLU C×32
Linear (32,2) C×2
Conv2d (2,10,5) C×10×24×24
MaxPool (2,2), ReLU C×10×12×12

Classification Conv2d (10,20,5) C×20×8×8
MaxPool (2,2), ReLU, Dropout C×20×4×4
Linear (90,32), ReLU C×50
Linear (50,10) C×10
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Table 8: Classification Networks details using ResNet18

Stages Operator Output

Classification Linear (3136,128), Norm,ReLU C×128
Linear (128,10), LogSoftmax C×10

Table 9: Ablation on warp functions.

Params Meaning Precision

[b1, b2..., b8] Perspective 62.4%
[b1, b2..., b6] Affine 49.5%
[b1, b2..., b5] Similarity+Shearing 39.8%
[b1, b2..., b4] Similarity 33.1%
[b1, b2..., b3] Rotation+Translation 18.8%
[b1, b2] Translation 13.6%

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

We conducted all experiments on a PC with an intel E5-2678-v3 processor (2.5GHz), 32GB RAM,
and an Nvidia GTX 2080Ti GPU. The proposed method is implemented in Pytorch.

For MNIST-Proj, the size of the input image is 28× 28. For the hyperparameters of WCN in training,
we set λ = 2, λ1 = 20, γ ∈ [1/1.4, 1.4], θ ∈ [−1.5, 1.5], t ∈ [−28/8, 28/8], k1 ∈ [−1.3, 1.3],
k2 ∈ [−0.03, 0.03], and ν1, ν2 ∈ [−0.02, 0.02]. Due to the numbers 6 and 9 being identical with the
rotation even from humans, we remove the number 9 from MNIST-Proj.

For POT, the size of input template T for our networks is 127×127, while search image I has the size
of 255×255 to deal with the large homography changes. All the hyper-parameters are set empirically,
and we do not use any re-initialization and failure detection scheme. For the hyper-parameters
of HDN in training, we set γ ∈ [1/1.38, 1.38], θ ∈ [−0.7, 0.7], t ∈ [−32, 32], k1 ∈ [−0.1, 0.1],
k2 ∈ [−0.015, 0.015] and ν1, ν2 ∈ [−0.0015, 0.0015].

Many parameters may influence the experimental results. We investigate the influence of the
sampling circle radius. We fix it to be n/2, which is the half length of the side in the default
setting. Theoretically, it is enough as long as the field covers the region of the original image.
Actually, we tested 5 different radius (0.5×n/2, 0.75×n/2, n/2, 1.25×n/2, 1.5×n/2) The results
are quite similar, and the errors are within 0.1%.

C.2 ABLATION

To evaluate the contribution from each warp function and the adaptability for different groups, we
conduct the experiment on POT with different warp functions for transformation parameters. The
results are shown in Table 9. It can be seen that the results are better with more warp functions and
parameters. Besides, we can combine different warp functions freely.

C.3 POT

Apart from the perspective distortion in the main paper, we provide more results on other simple
transformations, e.g. rotation and scale changes. Fig. 12 shows the precision and success rate of these
two transformations. HDN (Zhan et al., 2022) has a similar structure for similarity estimation with
two same warp function, which is similar to our presented WCN. Thereby, we have similar results on
rotation and scale sequences. Note that, HDN only adopts the previous work (Henriques & Vedaldi,
2017) to their method for similarity transformation. However, our method directly builds on the
Lie subalgebras and offers more novel warped functions which have not been proposed before. The
proposed method presents a general unified framework to enable the learning the homography. When
there are either rotation or scale changes for the object, our WCN estimates all eight parameters rather
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Figure 11: Comparions of different homography estimation datasets and the mainstream methods.
We warp the search according to the estimation and merge it with the template. The more clear
without drifting the result image is, the better performance the corresponding method has.

than similarity transformation compared to HDN. This may bring more estimation errors because the
estimation is not accurate as explained in Sec. A. Furthermore, HDN uses more training data than
WCN does.

C.4 QUALITATIVE RESULTS

SCOCO & SCOCOProj
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Figure 12: Results on rotation and scale sequences of POT.

We provide more visualization on three different datasets for homography in Fig. 11. With the
refined model, the proposed method could robustly estimate the transformation in challenging dataset
S-COCO-Proj.
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Figure 13: The examples of Planar image dewarping.

Planar Image Dewarping

To exhibit the efficiency and performance of the proposed WCN, we apply our searching method
based on the Lie algebra elements on the Planar image dewarping. Image dewarping requires only
one image, and needs to warp to the original upright view image. This can help in multiple tasks
such as building Facade segmentation and document image dewarping. We show some recovered
pictures in Fig. 13. The proposed method works well on these images with clear lines for searching
the underlying Lie elements. Note that, compared to the other parameterization, the whole search is
linear with our method. This greatly reduces the searching complexity from O(N8) to O(8N ).

D LIMITATION AND FUTURE WORK

Since we build the model on a plane, especially the tasks that require learning the transformation from
the template. Thereby tasks like detection only referring to one image are not suitable for the proposed
framework. Some methods apply the in-plane equivariant rotation and scale structure (Gupta et al.,
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2021; Sosnovik et al., 2020a) to visual tracking or 3D object tracking. They implicitly assume a
target is a plane, this does not hold for the more complex 2D projective transformation.

Whereas our proposed method is equivariant to the mentioned several groups, it is hard to theoretically
prove that CNNs can robustly estimate a series of transformation parameters sequentially due to the
complex multivariate system. Besides, a known problem of WCN is that the estimated offsets may be
inaccurate due to the influence of other parameters in addition to b′ and the small feature map size
and error produced in different Mi. The warped image may thereby involve errors of the previously
predicted parameters. To solve this, a larger feature map could be utilized by re-designing the network,
and more iterations can be added to refine the error produced in Mi. In addition, the proposed method
is not robust to the challenging scenarios in our experiments, such as partial occlusions and heavy
blur. This could be solved by predicting either an extra occlusion map or a blur kernel in the future
work. The proposed method is able to learn the implicit transformation as a result of its special
learning space i.e. Lie algebra, meanwhile, it is robust for large transformation and corner occlusion.
Therefore, it has great potential for more applications in future work, such as AR, SLAM, recognition,
congealing, and image stabilization.

E PROOFS

We define the warp function w for different elements in b, and let b′ be the elements in b with regard
to each warp function wi. Although the coordinates of the warped image are proportion to b′, we
still need to prove that the group action results on the sampled points u′ in the original image are
additive about b′. That is,

H(∆b′) · u′T (13)

= H(∆b′) · w(b′) (14)

= w(b′ +∆b′) (15)

where H can be viewed as a function of x′, and x′ can be viewed as a function of b′. ∆b′ is the
incremental value of b′. Therefore, the warped function satisfies Eq. (6) in the main paper, which
makes the convolution equivariant to b′.

Scale and Rotation
As introduced in the main paper, the warp function for scale and rotation is :

w1(b3, b4) = (u′
1, u

′
2)

T =

[
sγ

′
cos(b3)

sγ
′
sin(b3)

]
(16)

We have defined γ = sγ
′
= eb4 and θ = b3, Therefore, the left of Eq. 15 can be rewritten as below:

Hs((∆b3,∆b4)) · u′T = Hs · w1 (17)

=

[
e∆b4 cos(∆b3)u

′
1 − e∆b4 sin(∆b3)u

′
2

e∆b4 sin(∆b3)u
′
1 + e∆b4 cos(∆b3)u

′
2

]
(18)

=

[
eb4+∆b4 cos(b3 +∆b3)
eb4+∆b4 sin(b3 +∆b3)

]
(19)

As a result, the warp function w1 supports the equivariance.

Aspect Ratio
The warp function for aspect ratio is defined as follows:

w2(b5,−b5) =
[
sk

′
x , sk

′
y

]T
, (20)

For Hsc, there is only one element. We thereby let k1 = (sk
′
x = exp(k′x log s)) = exp(b5) and

1/k1 = (s−k′
x = exp(−k′x log s)) = exp(−b5). As a result, the left of Eq. 15 can be rewritten as

below

Hsc((∆b5,−∆b5)) · u′T = Hsc · w2 (21)

=

[
e∆b5 · u′

1

e−∆b5 · u′
2

]
=

[
e∆b5+b5

e−(∆b5+b5)

]
(22)
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Hence, we can prove the equivariance holds with the warp function w2.

Shear
The warp function for Shear is defined as below:

w3(b6, bϵ) = [b6bϵ, bϵ]
T (23)

The left of Eq. 15 can be rewritten as:

Hsh((∆b6, bϵ)) · u′T = Hsh · w3 (24)

=

[
u′
1 +∆b6u

′
2

u′
2

]
=

[
(b6 +∆b6)bϵ

bϵ

]
(25)

Hence, the equivariance is tenable for Hsh with warp function w3.

Perspective
The warp function for perspective can be derived as below:

w4(b7, bϵ) =
[

1
b7
, bϵ

b7

]T
, w5(bϵ, b8) =

[
bϵ
b8
, 1

b8

]T
(26)

We have defined the ν1 = b7 and ν2 = b8. Thus, the left of Eq. 15 with regard to ν1 or ν2 is rewritten
as follows:

Hp1((∆b7, bϵ)) · u′T = Hp1 · w4 (27)

=

[
u′
1

u′
1∆b7+1

u′
2

u′
1∆b7+1

]
=

[ 1
∆b7+b7

bϵ
∆b7+b7

]
(28)

Hp2((bϵ,∆b8)) · u′T = Hp2 · w5 (29)

=

[
u′
1

u′
2∆b8+1

u′
2

u′
2∆b8+1

]
=

[ bϵ
∆b8+b8

1
∆b8+b8

]
(30)

Hence, the equivariance holds for two perspective groups with warp function w4 and w5, respectively.
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