
Under review as a conference paper at ICLR 2023

REVISITING HIGHER-ORDER GRADIENT METHODS
FOR MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper revisits Higher-Order Gradient (HOG) methods for Multi-Agent Rein-
forcement Learning (MARL). HOG methods are algorithms in which agents use
higher-order gradient information to account for other agents’ anticipated learn-
ing, and are shown to improve coordination in games with self-interested agents.
So far, however, HOG methods are only applied to games with low-dimensional
state spaces due to inefficient computation and preservation of higher-order gra-
dient information. In this work, we solve these limitations and propose a HOG
framework that can be applied to games with higher-dimensional state spaces.
Moreover, we show that current HOG methods, when applied to games with
common-interested agents, i.e., team games, can lead to miscoordination among
the agents. To solve this, we propose Hierarchical Reasoning (HR) to improve
coordination in team games, and we experimentally show that our proposed HR
significantly outperforms state-of-the-art methods in standard multi-agent games.
With our contributions, we greatly improve the applicability of HOG methods for
MARL. For reproducibility, the code used for our work will be shared after the
reviewing process.

1 INTRODUCTION

In multi-agent systems, the paradigm of agents’ reasoning about other agents has been explored
and researched extensively (Goodie et al., 2012; Liu & Lakemeyer, 2021). Recently, this paradigm
is being studied in the subfield of Multi-Agent Reinforcement Learning (MARL) (Wen et al., 2019;
2020; Konan et al., 2022). Generally speaking, MARL deals with several agents simultaneously
learning and interacting in an environment. In the context of MARL, reasoning can be interpreted
as accounting for the anticipated learning of other agents (Zhang & Lesser, 2010). As MARL
uses gradient-based optimization, learning anticipation naturally leads to the usage of higher-order
gradient information (Letcher et al., 2019). The so-called Higher-Order Gradient (HOG) methods
use this extra gradient information to predict and, in some cases, shape the learning of other agents
(Letcher et al., 2019). The importance of prediction and shaping has been frequently shown for
various games, such as the Iterated Prisoner’s Dilemma (IPD), where shaping ensures cooperation
among the agents (Foerster et al., 2018a). However, current HOG methods have clear limitations,
as they can only work for specific types of games, and become inefficient when the dimensionality
of the game increases. In this paper, we explore these limitations and propose a framework that can
extend the application scope of HOG methods to a broader range of problem settings in MARL.

The vast majority of existing HOG methods focus only on games with low-dimensional state spaces,
e.g., matrix games (Foerster et al., 2018a;b; Willi et al., 2022). There are two challenges that limit
HOG methods from being applied to games with high-dimensional state spaces: inefficient compu-
tation and preservation of higher-order gradient information. Specifically, current implementations
of HOG methods require multiple data sampling stages to compute higher-order gradient informa-
tion (Foerster et al., 2018b). Moreover, the higher-order gradient information is applied and, more
importantly, preserved in the policy network’s parameter space. As a result, existing HOG meth-
ods become very inefficient when applied to games that have high-dimensional state spaces, and
therefore require high-dimensional parameter spaces. In this paper, to solve this, we propose an
HOG framework where the higher-order gradient information are computed and preserved more
efficiently. By comparing our proposed framework to existing HOG methods in well-controlled
studies, we demonstrate that the overall performance and efficiency of our proposed framework stay

1

Under review as a conference paper at ICLR 2023

consistent with increased dimensionality, unlike for existing HOG methods, where they get drasti-
cally worse.

In addition to dimensionality limitations, the generalizability of HOG methods to various types of
games is questionable. Originally, HOG methods are proposed to improve cooperation in games
with self-interested agents (Zhang & Lesser, 2010; Foerster et al., 2018a). So far, however, it is
unclear how HOG methods perform when agents are fully cooperative, i.e., for common-interested
agents in team games. We demonstrate that existing HOG methods have the tendency to lead to
miscoordination among common-interested agents, causing a sub-optimal overall reward. To solve
this, and improve the applicability of HOG methods to team games, we propose Hierarchical Rea-
soning (HR), a new HOG methodology explicitly developed for improving coordination in games
with common-interested agents. Below, we summarize our contributions.

• We propose HOG-MADDPG, a framework to make existing HOG methodologies, e.g.,
LA and LOLA, applicable to games with higher-dimensional state spaces by solving the
limitations in computation and preservation of higher-order gradient information. With our
framework, we develop two novel HOG methods, LA-MADDPG and LOLA-MADDPG,
which apply the principles of LA and LOLA, respectively.

• We demonstrate theoretically, in a two-agent two-action coordination game, and empiri-
cally, in a two-agent three-action coordination game, that the existing HOG methodolo-
gies can suffer from miscoordination among common-interested agents. To solve this, we
propose the HR methodology and show, theoretically and empirically, that it overcomes
miscoordination in the coordination games.

• We apply the HR principle to our HOG-MADDPG framework and develop HR-MADDPG,
a HOG method for common-interested agents. We show that HR-MADDPG outperforms
the existing state-of-the-art methods on standard multi-agent games.

2 RELATED WORKS

When direct communication among agents is not possible, the standard tool for MARL agents to
apply reasoning is Agents Modeling Agents (AMA) (Albrecht & Stone, 2018). Although agents
traditionally use AMA to only predict the behavior of others (He et al., 2016; Hong et al., 2018),
recent studies have extended AMA to further consider multiple levels of reasoning over the predicted
behaviors (Wen et al., 2019; 2020). However, these approaches do not explicitly account for the other
agents’ anticipated learning, which has shown to be beneficial in games where interaction among
self-interested agents naturally leads to worst-case outcomes (Foerster et al., 2018a).

HOG methods, on the other hand, are a range of methods that use higher-order gradient informa-
tion to predict and, in some cases, shape the anticipated learning of other agents directly. This
includes Learning with Opponent-Learning Awareness (LOLA), proposed to shape opponents for
better coordination in Iterated Prisoner’s Dilemma (IPD) by Foerster et al. (2018a), Look-Ahead
(LA), proposed to guarantee convergence in cyclic games by Zhang & Lesser (2010), Stable Op-
ponent Shaping (SOS), developed by Letcher et al. (2019) as an interpolation between LOLA and
LA to inherit the benefits of both, and other methods such as Consensus Optimization (CO) and
Symplectic Gradient Adjustment (SGA), that are proposed to improve cooperation by Bertsekas
(2014) and Balduzzi et al. (2018), respectively. However, as we explain in Section 4, these methods
have only been applied to simple games due to the challenges in computation and preservation of
higher-order gradient information. Furthermore, the impact of current HOG methods on coordina-
tion among common-interested agents has not yet been fully investigated. Current investigations
are limited to convergence and non-convergence to stable and unstable fixed points in differential
games, respectively (Letcher et al., 2019). However, we demonstrate in Section 5.1 that in the case
of a two-agent, two-action coordination game with unstable fixed points, HOG methods can con-
verge to miscoordination points. The focus of this work is to extend current HOG methodology so
that it can be used for games with higher-dimensional state spaces and common-interested agents.

3 BACKGROUND

We formulate the MARL setup as a Markov Game (MG) (Littman, 1994). An MG is a tuple
(N ,S, {Ai}i∈N , {Ri}i∈N , T , ρ, γ), where N is the set of agents (|N | = n), S is the set of states,

2

Under review as a conference paper at ICLR 2023

and Ai is the set of possible actions for agent i ∈ N . Agent i chooses its action ai ∈ Ai through
the policy network πθi : S × Ai → [0, 1] parameterized by θi conditioning on the given state
s ∈ S . Given the actions of all agents, each agent i obtains a reward ri according to its reward
function Ri : S × A1 × ... ×An → R. Given an initial state, the next state is produced according
to the state transition function T : S × A1 × ... × An → S . We denote an episode of horizon
T as τ = ({s0, a01, ..., a0n, r01, ..., r0n}, ..., {sT , aT1 , ..., aTn , rT1 , ..., rTn }), and the discounted return for
each agent i at time step t ≤ T is defined by Gt

i(τ) =
∑T

l=t γ
l−tri where γ is a predefined dis-

count factor. The expected return given the agents’ policy parameters approximates the state value
function for each agent Vi(s, θ1, ..., θn) = E[Gt

i(τ |st = s)]. Each agent i aims to maximize the
expected return given the distribution of the initial state ρ(s), denoted by the performance objec-
tive Ji = Eρ(s)Vi(s, θ1, ..., θn). A naı̈ve agent updates its policy parameters in the direction of the
objective’s gradient: ∇θiJi = Eρ(s)∇θiVi(s, θ1, ..., θn).

Learning With Opponent-Learning Awareness (LOLA). Unlike naı̈ve agents, LOLA agents
modify their learning objectives by differentiating through the anticipated learning steps of the op-
ponents (Foerster et al., 2018a). Given n = 2 for simplicity, a first-order LOLA agent assumes a
naı̈ve opponent and optimizes V LOLA

1 (s, θ1, θ2 +∆θ2) where ∆θ2 = η∇θ2V2(s, θ1, θ2) and η is the
prediction length. Using first-order Taylor expansion, and by differentiating with respect to θ1, the
gradient adjustment for the first LOLA agent (Foerster et al., 2018a) is given by

∇θ1V
LOLA
1 (s, θ1, θ2 +∆θ2) ≈ ∇θ1V1 + (∇θ2θ1V1)

⊺∆θ2 + (∇θ1∆θ2)
⊺∇θ2V1︸ ︷︷ ︸

shaping

,
(1)

where V1 = V1(s, θ1, θ2). The rightmost term in the LOLA update allows for active shaping of the
opponent’s learning. This term has been proven effective in enforcing cooperation in various games,
including IPD (Foerster et al., 2018a;b). The LOLA update can be further extended to non-naı̈ve
opponents, resulting in higher-order LOLA agents (Foerster et al., 2018a; Willi et al., 2022).

Look Ahead (LA). LA agents assume that the opponents’ learning steps cannot be influenced, i.e.,
cannot be shaped (Zhang & Lesser, 2010; Letcher et al., 2019). In other words, agent 1 assumes that
the prediction step, ∆θ2, is independent of the current optimization, i.e., ∇θ1∆θ2 = 0. Therefore,
the shaping term disappears and the gradient adjustment for the first LA agent will be

∇θ1V
LA
1 (s, θ1, θ2 +∆θ2) ≈ ∇θ1V1 + (∇θ2θ1V1)

⊺∆θ2. (2)

4 A HOG FRAMEWORK FOR HIGH-DIMENSIONAL STATE SPACES

Existing HOG methods like LOLA and LA are only applied to games with low-dimensional state
spaces, e.g., matrix games (Zhang & Lesser, 2010; Foerster et al., 2018b;a; Letcher et al., 2019;
Willi et al., 2022). When applied to games with higher-dimensional state spaces, they become very
inefficient, due to the way the higher-order gradient information is computed and preserved. In this
section, we analyze these problems, and we propose a framework that makes HOG practical for
application to games with high-dimensional state spaces.

4.1 LIMITATIONS OF EXISTING HOG APPROACHES

Computation of higher-order gradient. Existing HOG methods are implemented in the stochastic
policy gradient framework, and optimize non-differentiable objectives. Furthermore, the learning
step for one agent in the standard stochastic policy gradient theorem is independent of other agents’
parameters. Therefore, higher-order mixed partial derivatives (among multiple agents) cannot be
easily computed. Foerster et al. (2018b) proposed an infinitely differentiable Monte Carlo estimator,
referred to as DiCE, to correctly optimize the stochastic objectives with any order of gradients.
Similarly to meta-learning frameworks, the agents reason about and predict the learning process
of the opponents using inner learning loops and update their parameters in outer learning loops.
However, each learning loop for each agent requires a sampling stage which is very inefficient for
high-order reasoning and games with higher-dimensional state spaces, i.e., beyond matrix games.

Preservation of higher-order gradient information. HOG methods should constantly compute
and update the higher-order gradient values and computation graphs that keep track of how the

3

Under review as a conference paper at ICLR 2023

gradients should flow. In the implementation of existing HOG methods, the higher-order gradi-
ent information is computed and preserved in the parameter spaces of the agents’ policy networks
(Foerster et al., 2018a;b). As a result, the agents should either have access to other agents’ exact
parameters or infer other agents’ parameters from state-action trajectories (Foerster et al., 2018a).
In many game settings, these parameters are obscured. Moreover, when the dimensionality of state
spaces increases, e.g., when having images as input, the dimensionality of the parameter spaces in-
creases as well, making the parameter inference problem computationally expensive. Furthermore,
computing and storing the higher-order gradient information in high-dimensional parameter spaces
is inefficient, whether the parameters are inferred or exact.

4.2 HOG-MADDPG

To efficiently compute any-order mixed partial derivatives, we need to optimize differentiable objec-
tives, which are directly dependent on all agents’ parameters and can be efficiently estimated. The
only platform that meets the above requirements and can deal with both discrete and continuous ac-
tion spaces is Multi-Agent Deep Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017). In
this platform, decentralized policies are trained to optimize centralized, differentiable objectives, i.e.,
state-action value functions, that are estimated efficiently from trajectories sampled from a distinct
behavior policy, i.e., the off-policy approach. Therefore, we propose to build our HOG framework
on top of the MADDPG platform. Similarly to MADDPG, we follow the Centralized Training and
Decentralized Execution (CTDE) setting in our work. However, differently from MADDPG, we
better exploit the available information in CTDE by accounting for the agents’ anticipated learning.

The only unsolved problem is the preservation of higher-order gradient information, as the central-
ized learning of MADDPG does not grant access to agents’ parameters. To solve this, we propose to
project the anticipated gradient information from the policies’ parameter spaces to the action spaces.
This way, 1) we avoid additional constraints above the centralized state-action value functions where
the agents have access to all actions, and 2) we improve efficiency as the action spaces have signif-
icantly lower dimensionality than the policies’ parameter spaces. In Appendix B we theoretically
analyze the influence of the proposed projection concept on the overall performance (Appendix B.1),
and the time complexity of gradient anticipation (Appendix B.2). In the following sections, we ap-
ply our proposed framework to two HOG methods and explain the details of their update rules for
policy parameters. For all proposed methods in the HOG-MADDPG frameworks, the centralized
state-action value functions are updated in a way identical to MADDPG (Lowe et al., 2017).

4.2.1 LA-MADDPG

In the MADDPG platform, a deterministic policy µθi for agent i is defined as µθi : S → Ai, parame-
terized by θi. By denoting a centralized state-action function for each agent i as Qi(s, a1, ..., an) =
E[Gt

i(τ |st = s, ati = ai∀i ∈ N)], the gradient of the MADDPG performance objective Ji with
respect to θi can be approximated as:

∇θiJi ≈ Eρβ(s,â)∇θiQi(s, â1, ..., ai, ..., ân)|ai=µθi
(s), (3)

where ρβ(s, â) is the state-action distribution of the behavior policy and â = {âi∀i ∈ N} are the
actions sampled from the behavior policy during the exploration stage. Given n = 2 and a naı̈ve
opponent for simplicity, the gradient adjustment for parameters of the LA-MADDPG agent (θ1) is
computed by accounting for the anticipated policy parameters of the opponent, i.e., θ̂2 +∆θ̂2(s):

∇θ1J
LA
1 ≈ Eρβ(s)∇θ1Q1(s, a1, ã2)|a1=µθ1

(s),ã2=µθ̂2+∆θ̂2
(s), (4)

where ∆θ̂2 = η∇θ̂2
Q2(s, â1, â2)|â1=µθ̂1

(s),â2=µθ̂2
(s), and θ̂1 and θ̂2 are the behavior policy param-

eters. As the agents cannot have access to these parameters, we propose to project the anticipated
gradients to the action space (see Appendix A.1):

∇θ1J
LA
1 ≈ Eρβ(s,â)∇θ1µθ1(s)∇a1

Q1(s, a1, â2 +∆â2)|a1=µθ1
(s), (5)

where ∆â2 = η̂∇â2Q(s, â1, â2) and η̂ is the projected prediction length (see Alg. 1).

4

Under review as a conference paper at ICLR 2023

Figure 1: Learning curves in two matrix games. Left: Iterated
Rotational Game in terms of the distance to the equilibrium point
(↓). Right: Iterated Prisoner’s Dilemma in terms of the normal-
ized averages return (↑).

Method IRG (DtE ↓)
LA-DiCE 0.09±0.07
LA-MADDPG (ours) 0.03±0.02

Method IPD (AER ↑)
LOLA-DiCE -2.16±0.12
LOLA-MADDPG (ours) -2.08±0.02

Table 1: Comparisons of the LA
and LOLA methods in the frame-
works of DiCE and our proposed
HOG-MADDPG.

4.2.2 LOLA-MADDPG

In the standard MADDPG, it is assumed that the opponents’ actions are fixed during the optimization
steps for the agents. This assumption is problematic for LOLA agents that require shaping on
the opponents’ learning steps. To make these dependencies possible, we employ the Centralized
Policy Gradient (CPG) (Peng et al., 2021) to derive the learning step of the LOLA agents. In CPG-
MADDPG, the gradient update in Eq. (3) is modified to:

∇θiJi ≈ Eρβ(s)∇θiQi(s, a1, ..., an)|ai=µθi
(s) ∀i∈N . (6)

Again, we propose to project the anticipated gradient information to the action space. Given n = 2,
the first-order LOLA-MADDPG agent updates the policy parameters through (see Appendix A.2):

∇θ1J
LOLA
1 ≈ Eρβ(s)∇θ1µθ1(s)∇a1Q1(s, a1, a2 +∆a2)|a1=µθ1

(s),a1=µθ2
(s), (7)

where ∆a2 = η̂∇a2
Q(s, a1, a2), which, unlike for LA-MADDPG, is a function of a1 (see Alg. 2).

4.3 EXPERIMENTS

In this section, we first verify our proposed HOG-MADDPG methods on simple matrix games, to
show how they work in the same situations as the original HOG methods. Second, we apply our
proposed methods to games with high-dimensional state spaces, which is the envisioned use case
for our methods, and evaluate the performance and efficiency. As the primary baselines, we apply
HOG methods on the DiCE framework (Foerster et al., 2018b), i.e., LA-DiCE and LOLA-DiCE.
We further compare our proposed methods with the standard MADDPG configured with three state-
of-the-art update rules: 1) standard update rule (Lowe et al., 2017), referred to as MADDPG, 2)
CPG update rule (Peng et al., 2021), referred to as CPG-MADDPG, and 3) Probabilistic Recursive
Reasoning (PR2) update rule (Wen et al., 2019), referred to as PR2-MADDPG. For a fair compar-
ison, we have employed identical architectures with the same number of policy and value function
parameters for all the baseline (see Appendix D).

4.3.1 MATRIX GAMES

We evaluate the methods on the following commonly-used, two-agent matrix games: 1) Iterated
Rotational Game (IRG) (Zhang & Lesser, 2010), a one-state game with a 1-Dimensional (1-D)
continuous action space between 0 and 1 representing the probability of taking two discrete actions,
and 2) Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018a), a five-state game with two discrete
actions and T = 150. The games are developed to highlight the strengths of specific HOG methods
(IRG for LA-based methods and IPD for LOLA). Further details about these games are provided
in Appendix D.1. We evaluate the performances of methods based on the Distance to Equilibrium
(DtE) in IRG (the equilibrium point in IRG is reached when a1 = a2 = 0.5) and the Averaged
Episode Reward (AER) in IPD. In Figure 1, we depict the learning curves for our methods and other,
state-of-the-art MADDPG-based algorithms. From this figure, we find that our HOG methods are
the only MADDPG-based networks that can effectively solve these games, with LA-MADDPG for
IRG and LOLA-MADDPG for IPD. This highlights the importance of using higher-order gradient
information. To further show its effectiveness, we compare with current DiCE-based HOG methods
(Foerster et al., 2018b) which are designed for these matrix games, in Table 1, and we find that we
even achieve slightly better results.

5

Under review as a conference paper at ICLR 2023

(a) Exit-Room level one. (b) Exit-Room level two. (c) Exit-Room level three.

Figure 2: Learning curves in different complexity levels of the exit-room game in terms of the
normalized average return. Higher values are better.

↑NAER in Exit-Room game ↓NTTI in Exit-Room game

Methods l = 1 l = 2 l = 3 Naı̈ve 1st-order 2nd-order 3rd-order 4th-order
LOLA-DiCE 0.91±0.04 0.68±0.06 0.56±0.12 1 2.39 3.74 5.12 6.41
LOLA-MADDPG (ours) 1.00±0.00 0.99±0.01 0.93±0.03 1 1.03 1.05 1.08 1.12

Table 2: Comparisons of DiCE with our proposed HOG-MADDPG in the Exit-Room game, in
terms of performance (normalized average return in different game levels) and efficiency (training
time per iteration in different reasoning levels).

4.3.2 MULTI-LEVEL EXIT-ROOM GAME

Inspired by Vinitsky et al. (2019), we propose an Exit-Room game with three levels of complexity
(see Figure 3). The Exit-Room game is a grid-world variant of the IPD, with two agents (blue and
red), and is specifically developed to highlight the strength of LOLA. The agents should cooperate
and move towards the exit doors on the right. However, they are tempted to exit the left doors,
and in some cases, not exiting at all. In level 1, the agents have three possible actions (move-left,
move-right, or do nothing), and in levels 2 and 3, they have additional move-up and move-down
actions. Additionally, in level 3, the door positions are randomly located, resulting in more complex
interactions among the agents. For more details about the game, see Appendix D.2.

Figure 3: State observation in the Exit-
Room game, level one (left), level two
(middle), and level three (right).

Figure 2 compares the learning curves of LOLA-
MADDPG with the state-of-the-art, MADDPG-based
methods in terms of Normalized Average Episode Re-
ward (NAER) which is the AER value that is normal-
ized between the highest and lowest episode rewards in
each game level. In Figure 2, we can clearly see that
our LOLA-MADDPG significantly outperforms the other
methods, similarly as for the matrix games. To highlight
the benefits of our proposed method with respect to ex-
isting HOG methods, we compare our LOLA-MADDPG
with LOLA-DiCE in terms of performance (by comparing NAER) and training efficiency, in Table 2.
For training efficiency, we use the average Training Time per Iteration (TTI) for various opponents’
reasoning levels. For a fair comparison, we report Normalized TTI (NTTI) for both methods, which
are the normalized TTI values with respect to naı̈ve (zero-order) version of each method. Observ-
ing Table 2, it is apparent that LOLA-DiCE fails to acquire the highest rewards, particularly for the
second and third levels of the game, where complexity is increased. Moreover, our proposed LOLA-
MADDPG performs better in all levels of the game in terms of NAER, and scaling from naı̈ve to
higher-order opponents is significantly more efficient for LOLA-MADDPG than LOLA-DiCE. This
emphasizes that we have overcome the limitations of HOG methods described in Section 4.1.

5 A HOG METHODOLOGY FOR COMMON-INTERESTED AGENTS

Current HOG methods are proposed to enforce coordination in games with self-interested agents.
In many applications, however, agents should cooperate to increase a common reward function, i.e.,
as a team game. As multiple agents should interact and cooperate, anticipating the learning of other
agents, which is the core idea of HOG methods, has the potential to work well in these types of
games too. In this section, we first show that standard HOG methods do not work well for team
games, because they suffer from miscoordination. Subsequently, we propose a method to overcome
this limitation, and evaluate it for several different games.

6

Under review as a conference paper at ICLR 2023

5.1 MISCOORDINATION ANALYSIS IN COOPERATIVE SCENARIOS

To investigate the effectiveness of HOG methods on the coordination among common-interested
agents, we consider a two-agent, two-action coordination game (Claus & Boutilier, 1998) with an
added miscoordination penalty. The game is defined by a common reward matrix R =

[
a k
k a

]
,

where a > 0 is coordination reward and k ≤ 0 is the miscoordination penalty. We further define
g = a − k > 0 as the miscoordination regret. The agents are parameterized by θ1 ∈ [0, 1] and
θ2 ∈ [0, 1], denoting the probability of choosing the first action by agent one and two, respectively.
Similarly to Singh et al. (2000); Zhang & Lesser (2010), we analyze the dynamics of θ1 and θ2 for
LOLA, LA, and naı̈ve agents to investigate the coordination behaviors.

Theorem 1 If, in the previously defined two-person, two-action coordination game with a miscoor-
dination regret g, the agents are updated following the LA method and a fixed prediction length η,
then they are subject to miscoordination for g > 1/2η. If the agents are updated following the LOLA
method and a fixed prediction length η, then they are subject to miscoordination for g > 1/4η. If the
agents follow the naı̈ve updates, then they are never subject to miscoordination for any value of g.
Proof – See Appendix C.1.

A closer inspection of the HOG methods reveals two important aspects about their fundamental
ideas. First, anticipating other agents’ learning is only effective when it is close to their true future
learning. Existing HOG methods assume a reasoning level for other agents. If this assumption is
wrong, it can negatively affect the coordination among the cooperative agents. Second, the idea of
shaping other agents’ learning can be misleading if the other agents do not follow, making agents
more likely to suffer from miscoordination. We hypothesize that by addressing these two aspects of
current HOG methods, miscoordination among agents can be avoided.

5.2 HIERARCHICAL REASONING

Based on our hypothesis, we propose Hierarchical Reasoning (HR), an HOG methodology espe-
cially designed for cooperative agents. In contrast to standard HOG methods, HR determines a
hierarchy among the agents in each training iteration, which determines the reasoning orders of the
agents. Concretely, if n = 2, and we assume that the first agent is the leader and the second agent is
the follower, the gradient adjustment for the leader is similar to first-order LOLA agents, and is:

∇θ1V
Leader(s, θ1, θ2 +∆θ2) ≈ ∇θ1V + (∇θ2θ1V)⊺∆θ2 + (∇θ1∆θ2)

⊺∇θ2V, (8)

where V = V (s, θ1, θ2) is the common value function, and ∆θ2 = η∇θ2V . However, unlike LOLA
agents, the leader knows the reasoning level of the follower, which is a naı̈ve agent. The plan for
the leader is to change its parameters θ̄1 = θ1 +∇θ1V

Leader(s, θ1, θ2 +∆θ2) in such a way that an
optimal increase in the common value is achieved, after its new parameters are taken into account
by the follower. Therefore, the follower must follow the plan and adjust its parameters through

∇θ2V
Follower(s, θ̄1, θ2) ≈ ∇θ2V + (∇θ1θ2V)⊺∇θ1V

Leader(s, θ1, θ2 +∆θ2), (9)

Theorem 2 If, in the previously defined two-person, two-action coordination game with a miscoor-
dination regret g, the agents are updated following the HR methodology, then they are not subject to
miscoordination for any value of g.
Proof – See Appendix C.2.

Figure 4: Converged results for various val-
ues of miscoordination regret.

With this, we have shown that HR naturally avoids
miscoordination and therefore, our hypothesis is cor-
rect. However, the main goal is to demonstrate
that HR improves coordination among common-
interested agents with respect to naı̈ve learning,
which does not take into account higher-order gra-
dients at all. If HR does not improve the coordina-
tion, there is no clear benefit over the naı̈ve learners,
as they also avoid miscoordination. To show the benefits of HR, we employ a standard two-agent,
three-action coordination game (Claus & Boutilier, 1998). The game has a common reward matrix
R =

[10 0 k
0 2 0
k 0 10

]
, and we define g = 10 − k as the miscoordination regret. Each agent is parame-

terized with three parameters: θ1, θ2, and θ3 (θi > 0 ∀i ∈ {1, 2, 3} and
∑3

i θ
i = 1), representing

7

Under review as a conference paper at ICLR 2023

Figure 5: An example of the parameter update stages in HR-MADDPG, for a game with three
common-interested agents m = 3, assigned to three hierarchy levels.

the probability of taking the actions a1, a2, and a3, respectively. The game has two global equi-
librium points (if θ1 = 1 or θ3 = 1 for all agents), and one local equilibrium point (if θ2 = 1 for
all agents). In Figure 4, we depict the converged results for this game for naı̈ve, LA, LOLA, and
HR agents, for various values of miscoordination regret g. The experiments are run 500 times until
convergence, with random initializations. From 4, we find that both LA and LOLA agents are sub-
ject to miscoordination for high values of g, which is consistent with our findings for the two-action
coordination game. However, the most interesting aspect of this experiment is that by increasing
the value of g, the coordination among the naı̈ve agents reduces, leading them to the local equilib-
rium point, whereas our HR agents consistently achieve the highest reward, independently of the
miscoordination regret. This shows the benefit of HR agents over naı̈ve agents.

5.2.1 HR-MADDPG

In this section, we propose HR-MADDPG, an extension of HOG-MADDPG for games with
common-interested agents and high-dimensional state spaces. We first define M ⊆ N , as a set
of common-interested agents such that Ri = Rj ∀i, j ∈ M. Without the loss of generality, we
consider M = N , i.e., team games with a common state-action value function Q(s, a1, ..., am).

Hierarchy level assignment. In the policy update step of HR-MADDPG, each agent is first assigned
to one of m = |M| levels of hierarchy based on the amount of influence that it has on other agents,
i.e., its shaping capacity, in each training iteration. The shaping capacity of the ith agent, fi, is the
sum of l2-norms of the shaping term in Eq. 1 with respect to all other agents j:

fi =
∑

j ̸=i & ∈M

∥∥(∇ai
∆aj)

⊺∇aj
Q(a1, ..., am)

∥∥ , (10)

where ∆aj = ∇ajQ(a1, ..., am). In each hierarchy level, the assigned agent is a leader of the lower
hierarchy levels and a follower of the higher ones, with two reasoning rules: 1) a leader knows the
reasoning levels of the followers and is one level higher, and 2) a follower cannot reason about the
leaders and only follows their shaping plans. As HR-MADDPG benefits from centralized learning,
the only constraint for these reasoning rules remains the centralized state-action value function.

Parameter update. After the hierarchy level assignment, the agents update their policy parameters
in m update stages, i.e., one for each agent, and in a top-down fashion: the agent in the highest
hierarchy level updates its policy parameters first. In each update stage, the corresponding agent 1)
reasons about the followers (if any) in a bottom-up fashion, i.e., it reasons about the agent in the
lowest hierarchy level first, 2) updates its policy parameters, and 3) updates its action for the next
update stage (if any). Figure 5 demonstrates an example with the update stages for three common-
interested agents 1, 2 and 3, that are assigned to hierarchy levels h1, h2, h3, where agent 3, assigned
to h3 is the leader, etc. For the case of m agents, see the HR-MADDPG update rules in Alg. 3.

5.3 EXPERIMENTS

In this section, we aim to demonstrate the advantages of our proposed HR-MADDPG for games with
common-interested agents, compared to 1) LA-MADDPG and LOLA-MADDPG, and 2) state-of-
the-art methods: MADDPG (Lowe et al., 2017), CPG-MADDPG (Peng et al., 2021), and PR2-
MADDPG (Wen et al., 2019). For this purpose, we first develop the Particle Coordination game to
assess the coordination capability of the methods carefully. Then, we compare the general perfor-
mance of all the methods in standard multi-agent games (Lowe et al., 2017; Peng et al., 2021). See
Appendix D.3 and D.4 for details on the experiments.

8

Under review as a conference paper at ICLR 2023

↑NAER in Particle Environment ↑NAER in Mujoco Environment

Methods Cooperative Navigation Physical Deception Predator-Prey Half-Cheetah Walker Reacher
DDPG (LB) 0.00 0.00 0.00 0.00 0.00 0.00
C-MADDPG (UB) 1.00 1.00 1.00 1.00 1.00 1.00
MADDPG 0.77 0.61 0.21 0.86 0.45 0.02
CPG-MADDPG 0.78 0.67 0.18 0.88 0.46 0.05
PR2-MADDPG 0.78 0.54 0.08 0.85 0.45 0.01
LA-MADDPG (ours) 0.78 0.63 0.13 0.85 0.43 0.04
LOLA-MADDPG (ours) 0.77 0.56 0.13 0.83 0.42 0.01
HR-MADDPG (ours) 0.88 0.83 0.44 0.94 0.67 0.42

Table 3: Comparisons of methods in terms of the Normalized Average Episode Reward (NAER)
for common-interested agents. LB: Lower Bound. UB: Upper Bound.

5.3.1 PARTICLE COORDINATION GAME

Figure 6: Learning curves in the Particle
Coordination game. Higher values are
better.

Our proposed game is a variant of the Cooperative Navi-
gation game (Lowe et al., 2017) with two agents and three
landmarks. The agents should select and approach one of
the landmarks, and the landmark closest to an agent is
considered to be the selected landmark. If the agents se-
lect and approach the same landmark, they receive global
or local optimal rewards based on the selected landmark.
They will receive an assigned miscoordination penalty if
they select and approach different landmarks. In Fig-
ure 6, we depict the learning curves for our method and
other MADDPG-based algorithms. From this figure, it is
clear that our HR-MADDPG is the only method that con-
sistently converges to the global optimum of the game,
which is consistent with our previous results coordination
games. Further experiments regarding the sensitivity of
HOG-MADDPG methods to the prediction length are provided in Appendix D.3.

5.3.2 STANDARD MULTI-AGENT GAMES

We evaluate the methods in three Particle environment games (Lowe et al., 2017): 1) Coopera-
tive Navigation with three common-interested agents, 2) Physical Deception with two common-
interested and one self-interested agent, and 3) Predator-Prey with two common-interested (predator)
and one self-interested (prey) agents. Furthermore, we compare the methods in three games within
the multi-agent Mujoco environment (Peng et al., 2021): 1) two-agent Half-Cheetah, 2) two-agent
Walker, and 3) two-agent Reacher. In the mixed environments (Physical Deception and Predator-
Prey), we have employed the MADDPG method for the self-interested agents. We report the Nor-
malized Average Episode Reward for the common-interested agents in Table 3, where the normal-
ization is done between the single-agent variant of MADDPG (DDPG (Lillicrap et al., 2016)) and
a fully centralized (in learning and execution) variant of MADDPG, referred to as C-MADDPG. In
Table 3, we observe that our proposed HOG-MADDPG consistently and significantly outperforms
all the state-of-the-art MADDPG-based methods. Again, these results confirm that our proposed
HR-MADDPG improves coordination among common-interested agents, leading to better results.

6 DISCUSSION

In this paper, we proposed the HOG-MADDPG framework to make HOG methods applicable to
games with high-dimensional state spaces. As a result, the benefits of HOG can now be used in
many more MARL problems. As a first case study, we investigated the applicability of current HOG
methodologies to team games, and found that they suffer from miscoordination, which we then
solved with our proposed HR methodology. Like this solution, there are numerous other possibilities
for extending HOG-MADDPG, e.g., factorizing the centralized value functions, which is essential
for many-agent games. With our work, we aim to spark such new ideas for HOG methods in MARL,
and we provide the framework to realize them.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Grae-
pel. The mechanics of n-player differentiable games. In International Conference on Machine
Learning, pp. 354–363. PMLR, 2018.

Dimitri P Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,
2014.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998(746-752):2, 1998.

Thomas Degris, Martha White, and Richard Sutton. Off-Policy Actor-Critic. In International Con-
ference on Machine Learning, 2012.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with Opponent-Learning Awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pp. 122–130, 2018a.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and Shimon
Whiteson. Dice: The infinitely differentiable monte carlo estimator. In International Conference
on Machine Learning, pp. 1529–1538. PMLR, 2018b.

Adam S Goodie, Prashant Doshi, and Diana L Young. Levels of theory-of-mind reasoning in com-
petitive games. Journal of Behavioral Decision Making, 25(1):95–108, 2012.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning, pp. 1804–1813. PMLR,
2016.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A Deep
Policy Inference Q-Network for Multi-Agent Systems. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1388–1396, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparametrization with Gumble-Softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Sachin Konan, Esmaeil Seraj, and Matthew Gombolay. Iterated Reasoning with Mutual Information
in Cooperative and Byzantine Decentralized Teaming. arXiv preprint arXiv:2201.08484, 2022.

Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and Shimon Whiteson. Stable
Opponent Shaping in Differentiable Games. In International Conference on Learning Represen-
tations, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016.

Raymond Lister and James V Stone. An empirical study of the time complexity of various error
functions with conjugate gradient backpropagation. In Proceedings of ICNN’95-International
Conference on Neural Networks, volume 1, pp. 237–241. IEEE, 1995.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

10

Under review as a conference paper at ICLR 2023

Daxin Liu and Gerhard Lakemeyer. Reasoning about Beliefs and Meta-Beliefs by Regression in an
Expressive Probabilistic Action Logic. In international joint conference on artificial intelligence.
IJCAI, 2021.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In NIPS, 2017.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Boehmer, and Shimon Whiteson. FACMAC: Factored Multi-Agent Centralised Policy
Gradients. NeurIPS, 2021.

Satinder P Singh, Michael J Kearns, and Yishay Mansour. Nash Convergence of Gradient Dynamics
in General-Sum Games. In UAI, pp. 541–548, 2000.

Eugene Vinitsky, Natasha Jaques, Joel Leibo, Antonio Castenada, and Edward Hughes. An
open source implementation of sequential social dilemma games. https://github.com/
eugenevinitsky/sequential_social_dilemma_games/issues/182, 2019.
GitHub repository.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-agent reinforcement learning. In 7th International Conference on Learning Representa-
tions, ICLR 2019, 2019.

Ying Wen, Yaodong Yang, and Jun Wang. Modelling Bounded Rationality in Multi-Agent Interac-
tions by Generalized Recursive Reasoning. In IJCAI, 2020.

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. COLA: consistent learn-
ing with opponent-learning awareness. In International Conference on Machine Learning, pp.
23804–23831. PMLR, 2022.

Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, 2010.

APPENDIX

A MORE DETAILS ON THE HOG-MADDPG METHODS

A.1 LA-MADDPG

In the standard MADDPG, the performance objective is defined as:

Ji = Eρβ(s,â)Qi(s, â1, ..., ai, ..., ân, θ1, ..., θn)|ai=µθi
(s), (11)

where ρβ(s, â) is the state-action distribution of the behavior policy with â = {âi∀i ∈ N}. The
gradient of Ji with respect to θi can be approximated as:

∇θiJi ≈ Eρβ(s,â)∇θiQi(s, â1, ..., ai, ..., ân)|ai=µθi
(s), (12)

where the direct dependencies of state-action value function to policy parameters can be dropped
based on the proofs presented in Degris et al. (2012). Given n = 2 and a naı̈ve opponent for
simplicity, the gradient adjustment for parameters of the LA-MADDPG agent (θ1) is computed by
accounting for the anticipated policy parameters of the opponent, i.e., θ̂2 +∆θ̂2(s):

∇θ1J
LA
1 ≈ Eρβ(s)∇θ1Q1(s, a1, ã2)|a1=µθ1

(s),ã2=µθ̂2+∆θ̂2
(s), (13)

where ∆θ̂2 = η∇θ̂2
Q2(s, â1, â2)|â1=µθ̂1

(s),â2=µθ̂2
(s), and θ̂1 and θ̂2 are the behavior policy param-

eters. As the agents cannot have access to these parameters, we propose to project the anticipated
gradient information to the action space using first-order Taylor expansion:

ã2 = µθ̂2+∆θ̂2
(s)

≈ µθ̂2
(s) + (∆θ̂2)

⊺∇θ̂2
µθ̂2

(s)
(14)

11

https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182
https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182

Under review as a conference paper at ICLR 2023

Algorithm 1: LA-MADDPG for a set of n self-interested agents (N).
Initialize µθi , Qi, µ′

i, and Q′
i ∀i ∈ N

for episode = 1 to max-num-episodes do
Receive initial state s
for t = 1 to max-episode-length do

Select action ai from µθi(s) and the exploration strategy ∀i ∈ N
Execute actions a = {ai}∀i∈N and observe rewards r = {ri}∀i∈N and new state s′

Store the tuple (s, a, r, s′) in replay buffer D
Set s = s′

Sample a random K tuples {(sk, ak, rk, s′k)}k∈{1,...,K} from D
for agent i = 1 to n do

Set yki = rki + γQ′
i(s

′k, a′1, ..., a
′
n)|a′

h=µ′
h(s

′k), for k ∈ {1, ...,K}
Update state-action value function Qi by minimizing:

L =
1

K

∑
k∈{1,...,K}

[(Qi(s
k, ak1 , ..., a

k
n)− yki)

2]

end for
for agent i = 1 to n do

for agent j = 1 to n do
Project the anticipated gradients
if j = i then continue
Set ∆akj = η ∂

∂ak
j

Qj(s
k, ak1 , ..., a

k
n) for k ∈ {1, ...,K}

end for
Update policy parameters θi via: ∇θiJ

LA
i ≈

1

K

∑
k∈{1,...,K}

∇θiµθi(s
k)

∂

∂aki
Qi(s

k, ak1 +∆ak1 , ..., a
k
i , ..., a

k
n +∆akn)|ak

i =µθi
(sk)

end for
Update Q′

i and µ′
i ∀i ∈ N

end for
end for

Given that:

∆θ̂2 = η∇θ̂2
Q2(s, â1, â2)

= η∇θ̂2
µθ̂2

(s)
(
∇â2

Q2(s, â1, â2)|â2=µθ̂2
(s)

)⊺
,

(15)

we have:

ã2 ≈ µθ̂2
(s) +

(
η∇θ̂2

µθ̂2
(s) (∇â2Q2(s, â1, â2))

⊺
)⊺

∇θ̂2
µθ̂2

(s)

= µθ̂2
(s) +∇â2

Q2(s, â1, â2)
(
η∇θ̂2

µθ̂2
(s)

)⊺
∇θ̂2

µθ̂2
(s)

= µθ̂2
(s) +∇â2Q2(s, â1, â2)η

∥∥∥∇θ̂2
µθ̂2(s)

∥∥∥2
= µθ̂2

(s) +∇â2Q2(s, â1, â2)η̂,

(16)

where ∥.∥ is the l2-norm and we have defined the projected prediction length η̂ = η
∥∥∥∇θ̂2

µθ̂2(s)

∥∥∥2
since

∥∥∥∇θ̂2
µθ̂2(s)

∥∥∥2 is a positive number and independent of θ1. Therefore:

ã2 ≈ µθ̂2
(s) + η̂∇â2

Q2(s, â1, â2)

= â2 +∆â2.
(17)

12

Under review as a conference paper at ICLR 2023

Algorithm 2: LOLA-MADDPG for a set of n self-interested agents (N).
Initialize µθi , Qi, µ′

i, and Q′
i ∀i ∈ N

for episode = 1 to max-num-episodes do
Receive initial state s
for t = 1 to max-episode-length do

Select action ai from µθi(s) and the exploration strategy ∀i ∈ N
Execute actions a = {ai}∀i∈N and observe rewards r = {ri}∀i∈N and new state s′

Store the tuple (s, a, r, s′) in replay buffer D
Set s = s′

Sample a random K tuples {(sk, ak, rk, s′k)}k∈{1,...,K} from D
for agent i = 1 to n do

Set yki = rki + γQ′
i(s

′k, a′1, ..., a
′
n)|a′

h=µ′
h(s

′k), for k ∈ {1, ...,K}
Update state-action value function Qi by minimizing:

L =
1

K

∑
k∈{1,...,K}

[(Qi(s
k, ak1 , ..., a

k
n)− yki)

2]

end for
Set aki = µθi(s

k), for k ∈ {1, ...,K} and i ∈ N
for agent i = 1 to n do

for agent j = 1 to n do
Project the anticipated gradients
if j = i then continue
Set ∆akj = η ∂

∂ak
j

Qj(s
k, ak1 , ..., a

k
n) for k ∈ {1, ...,K}

end for
Update policy parameters θi via: ∇θiJ

LA
i ≈

1

K

∑
k∈{1,...,K}

∇θiµθi(s
k)

∂

∂aki
Qi(s

k, ak1 +∆ak1 , ..., a
k
i , ..., a

k
n +∆akn)

end for
Update Q′

i and µ′
i ∀i ∈ N

end for
end for

Replacing Eq. 17 in Eq. 13 yields Eq. 5:

∇θ1J
LA
1 ≈ Eρβ(s,â)∇θ1µθ1(s)∇a1

Q1(s, a1, â2 +∆â2)|a1=µθ1
(s). (18)

In the case of n agents, the agent i ∈ N first anticipates the gradient information of all agents j ∈ N
in the action space as:

∆âj = η̂∇â2
Q2(s, â1, ..., ân) (19)

Then, agent i updates its parameters θi by the following gradient adjustment:

∇θiJ
LA
i ≈ Eρβ(s,â)∇θiµθi(s)∇ai

Qi(s, â1 +∆â1, ..., ai, ..., ân +∆ân)|ai=µθi
(s). (20)

Please refer to Alg. 1 for more details on the LA-MADDPG optimization framework.

A.2 LOLA-MADDPG

In CPG-MADDPG, the gradient update is:

∇θiJi ≈ Eρβ(s)∇θiQi(s, a1, ..., an)|ai=µθi
(s) ∀i∈N . (21)

Given n = 2 and a naı̈ve opponent for simplicity, the gradient adjustment for parameters of the
LOLA-MADDPG agent (θ1) is computed by accounting for the anticipated policy parameters of the

13

Under review as a conference paper at ICLR 2023

Algorithm 3: HR-MADDPG for a set of m common-interested agents (M).
Initialize µθi , Qi, µ′

i, and Q′
i ∀i ∈ M

for episode = 1 to max-num-episodes do
Receive initial state s
for t = 1 to max-episode-length do

Select action ai from µθi(s) and the exploration strategy ∀i ∈ M
Execute actions a = {ai}∀i∈M and observe common reward r and new state s′

Store the tuple (s, a, r, s′) in replay buffer D
Set s = s′

Sample a random K tuples {(sk, ak, rk, s′k)}k∈{1,...,K} from D
Set yk = rk + γQ′(s′k, a′1, ..., a

′
m)|a′

h=µ′
h(s

′k), for k ∈ {1, ...,K}
Update state-action value function Q by minimizing:

L =
1

K

∑
k∈{1,...,K}

[(Q(sk, ak1 , ..., a
k
m)− yk)2]

Assign the agents into m hierarchy levels using Eq. 10
Set aki = µθi(s

k), for k ∈ {1, ...,K} and i ∈ M
for agent i = m to 1 do

for agent j = 1 to i do
Project the anticipated gradients
Compute ∆akj , for k ∈ {1, ...,K}:
if j = 1 & i ̸= m then ∆ak1 = η ∂

∂ak
1
Q(sk, ak1 , ..., a

k
i , ā

k
i+1, ..., ā

k
m)

elif j ̸= 1 & i = m then ∆akj = η ∂
∂ak

j

Q(sk, ak1 +∆ak1 , ..., a
k
j−1 +∆akj−1, a

k
j , ..., a

k
m)

elif j = 1 & i = m then ∆ak1 = η ∂
∂ak

1
Q(sk, ak1 , ..., a

k
m)

else ∆akj = η ∂
∂ak

j

Q(sk, ak1 +∆ak1 , ..., a
k
j−1 +∆akj−1, a

k
j , ā

k
j+1, ...ā

k
m)

end for
Update policy parameters θi via:

∇θiJ
HR
i ≈ 1

K

∑
k∈{1,...,K}

∇θiµθ1(s
k)∆aki

Set āki = detach(aki +∆aki), for k ∈ {1, ...,K}
end for
Update Q′

i and µ′
i ∀i ∈ M

end for
end for

opponent, i.e., θ2 +∆θ2(s):

∇θ1J
LOLA
1 ≈ Eρβ(s)∇θ1Q1(s, a1, ã2)|a1=µθ1

(s),ã2=µθ2+∆θ2
(s), (22)

where ∆θ2 = η∇θ2Q2(s, a1, a2)|a1=µθ1
(s),a2=µθ2

(s), and unlike for LA-MADDPG, is a function
of θ1. Again, we propose to project the anticipated gradient information to the action space. Given
that:

∆θ2 = η∇θ2µθ2(s)
(
∇a2

Q2(s, a1, a2)|a1=µθ1
(s),a2=µθ2

(s)

)⊺
, (23)

we have:
ã2 = µθ2+∆θ2(s)

≈ µθ2(s) + (∆θ2)
⊺∇θ2µθ2(s)

= µθ2(s) +∇a2
Q2(s, a1, a2)η

∥∥∇θ2µθ2(s)

∥∥2
= µθ2(s) +∇a2Q2(s, a1, a2)η̂,

(24)

14

Under review as a conference paper at ICLR 2023

where ∥.∥ is the l2-norm and we have defined the projected prediction length η̂ = η
∥∥∇θ2µθ2(s)

∥∥2
since

∥∥∇θ2µθ2(s)

∥∥2 is a positive number and independent of θ1. Therefore:

ã2 ≈ a2 +∆a2. (25)

Replacing Eq. 25 in Eq. 22 yields Eq. 7:

∇θ1J
LOLA
1 ≈ Eρβ(s)∇θ1µθ1(s)∇a1

Q1(s, a1, a2 +∆a2)|a1=µθ1
(s),a1=µθ2

(s). (26)

In the case of n agents, the agent i ∈ N first anticipates the gradient information of all agents j ∈ N
in the action space as:

∆aj = η̂∇a2
Q2(s, a1, ..., an) (27)

Then, agent i updates its parameters θi by the following gradient adjustment:

∇θiJ
LA
i ≈ Eρβ(s,a)∇θiµθi(s)∇ai

Qi(s, a1 +∆a1, ..., ai, ..., an +∆an)|ai=µθi
(s). (28)

Please refer to Alg. 2 for more details on the LOLA-MADDPG optimization framework.

A.3 HR-MADDPG

For the general cases of m agents, we provide the HR-MADDPG algorithm in Alg. 3.

B THEORETICAL ANALYSES ON THE PROJECTION ESTIMATION

B.1 INFLUENCE OF THE PROJECTION ESTIMATION

As discussed in Appendices A.1 and A.2, we project the anticipated gradient information to the
action space using first-order Taylor expansion. This section studies the influence of this projec-
tion estimation on the performance of the HOG methods. Without the loss of generality, we con-
sider LOLA-MADDPG with two agents (naı̈ve opponents). Using first-order Taylor expansion, we
showed in Appendix A.2 that the anticipated gradient of the second agent on the parameter space is
projected to the action space as:

µθ2+∆θ2(s) ≈ µθ2(s) + η̂1st∇a2
Q2(s, a1, a2), (29)

where ∆θ2 = η∇θ2Q2(s, a1, a2), η ∈ R+ is the prediction length, and we denote η̂1st ∈ R+ as
the projected prediction length via first-order Taylor expansion, which is obtained as (see Appendix
A.2):

η̂1st = η
∥∥∇θ2µθ2(s)

∥∥2 , (30)

Theorem 3 If the anticipated gradients are projected using first-order Taylor expansion, for suffi-
ciently small η̂1st, there exists η′ ∈ R+ such that

µθ2+∆θ′
2
(s) = µθ2(s) + η̂1st∇a2

Q2(s, a1, a2), (31)

where
∆θ′2 = η′∇θ2Q2(s, a1, a2)

η̂1st = η
∥∥∇θ2µθ2(s)

∥∥2
η ∈ R+

(32)

In order to prove Theorem 3, we first need to show that:

Lemma 1 If the anticipated gradients are projected using full-order Taylor expansion, there exists
η̂full ∈ R such that

µθ2+∆θ2(s) = µθ2(s) + η̂full∇a2
Q2(s, a1, a2), (33)

where
∆θ2 = η∇θ2Q2(s, a1, a2)

η ∈ R+ (34)

15

Under review as a conference paper at ICLR 2023

Proof – The full-order Taylor expansion of the anticipated gradient yields:

µθ2+∆θ2(s) = µθ2(s) + (∆θ2)
⊺∇θ2µθ2(s) +

1

2
(∆θ2)

⊺Hµθ2
(s)∆θ2 +O(∥∆θ2∥3), (35)

where Hµθ2
(s) denotes the Hessian of µθ2 at s. Given that:

∆θ2 = η∇θ2Q2(s, a1, a2)

= η∇θ2µθ2(s) (∇a2
Q2(s, a1, a2))

⊺
,

(36)

we have
µθ2+∆θ2(s) =µθ2(s) +∇a2

Q2(s, a1, a2)η
∥∥∇θ2µθ2(s)

∥∥2
+

1

2
∇a2

Q2(s, a1, a2)η
2 (∇θ2µθ2(s))

⊺
Hµθ2

(s)∇θ2µθ2(s) (∇a2
Q2(s, a1, a2))

⊺

+O(η3).
(37)

By defining

C1(s) =
∥∥∇θ2µθ2(s)

∥∥2
C2(s) =

1

2
(∇θ2µθ2(s))

⊺
Hµθ2

(s)∇θ2µθ2(s) (∇a2
Q2(s, a1, a2))

⊺
,

(38)

we have:
µθ2+∆θ2(s) =µθ2(s) +∇a2

Q2(s, a1, a2)(ηC1(s) + η2C2(s) +O(η3)), (39)
Given the definition of C2(s) and the dimension constraint implied by ∇a2Q2(s, a1, a2), it can be
concluded that C1(s) ∈ R+ and C2(s) ∈ R. Therefore:

µθ2+∆θ2(s) =µθ2(s) + η̂full∇a2
Q2(s, a1, a2), (40)

where η̂full = ηC1(s) + η2C2(s) +O(η3) ∈ R. Consequently, we have proved Lemma 1

If we now project the anticipated gradients, with a prediction length η′ ∈ R+, to the action space
using full-order Taylor expansion, we have:

µθ2+∆θ′
2
(s) = µθ2(s) + η̂′full∇a2

Q2(s, a1, a2), (41)

where η̂′full = η′C1(s) + η′2C2(s) + O(η′3). In order to prove Theorem 3, we need to find the
values of η̂1st that yields:

η̂1st = η̂′full

= η′C1(s) + η′2C2(s) +O(η′3),
(42)

and at the same time η′ ∈ R+. By neglecting O(η′3) and given that η̂1st ∈ R+, there are two cases
to be considered:

• if C2(s) is non-negative, then for any value of η̂1st ∈ R+, there exists η ∈ R+.

• if C2(s) is negative, then for η̂1st <
C1(s)

2

4|C2(s)| , there exists η ∈ R+.

Therefore, for sufficiently small η̂1st, i.e., η̂1st <
C1(s)

2

4|C2(s)| , there always exists η ∈ R+, and conse-
quently, the Theorem 3 is proved.

Based on Theorem 3, the projection estimation via first-order Taylor expansion and sufficiently small
η̂1st only scales the prediction length as both η and η′ are non-negative numbers. The amount of this
scaling depends on both values of C1(s) and C2(s).

The general theoretical analyses on single-sate games reveal that scaling the prediction length di-
rectly influences the HOG methods’ convergence speed (Letcher et al., 2019; Zhang & Lesser, 2010).
However, by directly changing the projected prediction length, i.e., η̂1st, we can tune the resulting
prediction length in the state space, i.e., η′, and consequently improve the convergence behavior. To
empirically show this, we conducted an experimental study to analyze the influence of η̂1st on the
convergence behavior of LOLA-MADDPG in the Exit-room game (See Figure 7). The experiments
are repeated four times, and the mean results are reported in the form of normalized average episode
reward in Figure 7. It is clear from Figure 7 that increasing η̂1st improves the convergence behavior
of LOLA-MADDPG. However, high values of the projected prediction length (η̂1st = 1.3 in Figure
7) can lead to instability of the algorithm which can be attributed to our findings in Theorem 3.

16

Under review as a conference paper at ICLR 2023

Figure 7: The influence of η̂1st on the convergence behavior of LOLA-MADDPG in the Exit-room
game.

B.2 TIME COMPLEXITY OF THE PROJECTION ESTIMATION

In this section, we first study the time complexity of gradient anticipation in the parameter space.
Then, we discuss the time complexity reduction we gain by projecting the anticipated gradients to
the action space.

As both policy and state-action value functions are approximated via neural networks, the time
complexity of the gradient anticipation follows the time complexity of backpropagation in neural
networks. Without the loss of the generality, we assume (as done in our experiments) that policy and
state-action value networks have the same number of hidden layers, H , and neurons in each hidden
layer, N . Therefore, the backpropagation time complexity of the networks for an input state of size
Ns and action of size Na is (Lister & Stone, 1995):

• Backpropagation time complexity in the policy network: O(NsN + (H − 1)N2 +NNa)

• Backpropagation time complexity in the state-action value network: O((Ns + Na)N +
(H − 1)N2 +N)

Given that N > Ns +Na, the time complexity of both networks can be upper bounded by O(LN2)
where we defined L = H + 1. As discussed in Appendix A.2, the anticipated gradient in the state
space for the case of the two-agent LOLA-MADDPG is:

∆θ2 = η∇θ2µθ2(s)
(
∇a2Q2(s, a1, a2)|a1=µθ1

(s),a2=µθ2
(s)

)⊺
. (43)

Therefore, the time complexity of gradient anticipation in the state space is O(LN2)×O(LN2), or
in other words, O(L2N4). This is while the projected anticipated gradient in the action space is:

∆a2 = η̂∇a2
Q2(s, a1, a2), (44)

which has the complexity of O(LN2). Consequently, by projecting the anticipated gradient to the
action space, the time complexity is reduced by O(LN2).

C MORE DETAILS ON THE MISCOORDINATION ANALYSES

The two-agent, two-action coordination game (Claus & Boutilier, 1998) is defined by a common
reward matrix R =

[
a k
k a

]
, where a > 0 is coordination reward and k ≤ 0 is the miscoordination

penalty. We further define g = a − k > 0 as the miscoordination regret. Let θ1 ∈ [0, 1] and
θ2 ∈ [0, 1] denote the probability of choosing the first action by first and second agents, respectively.

17

Under review as a conference paper at ICLR 2023

Figure 8: Phase planes of the LA and LOLA dynamics. Left: unstable fixed point. Right: unstable
saddle fixed point.

The common value function V (θ1, θ2) = 2g(θ1θ2)− g(θ1 + θ2) + a is the expected reward, given
θ1 and θ2. The game has two equivalent Nash equilibria: θ1 = θ2 = 0 and θ1 = θ2 = 1. We further
define two miscoordination points: (θ1 = 1, θ2 = 0) and

C.1 PROOF OF THEOREM 1

Given Eq. 2 the unconstrained dynamics of LA agents can be defined by the following differential
equations : [

∂θ1/∂t
∂θ2/∂t

]
=

[
4ηg2 2g
2g 4ηg2

] [
θ1
θ2

]
−
[
2ηg2 + g
2ηg2 + g

]
(45)

This system of equations has a unique fixed point (zero gradients) at θ1 = θ2 = 0.5 (see Figure 8).
The eigenvalue analysis of the coefficient matrix yields two real eigenvalues, λ1 = 4ηg2 + 2g and
λ2 = 4ηg2 − 2g, and two respective diagonal and off-diagonal eigenvectors. While λ1 is always
positive, the sign of λ2 depends on the values of both η and g. For a fixed prediction length, non-
positive values of λ2 are reached by g ≤ 1

2η . In this case, the fixed point is an unstable saddle point
(or unstable line in case of λ2 = 0), and the agents, with any initial values of θ1 and θ2 (except on
the fixed point itself), converge to the equilibrium points (see Figure 8-Left). However, when the
miscoordination regret increases, g > 1

2η , the fixed point becomes an unstable (source) point (see
Figure 8-Right). Therefore, some initial values of θ1 and θ2 naturally lead to the miscoordination
points (θ1 = 0, θ2 = 1).

In the case of LoLA agents, the unconstrained dynamics can be defined as:[
∂θ1/∂t
∂θ2/∂t

]
=

[
8ηg2 2g
2g 8ηg2

] [
θ1
θ2

]
−
[
4ηg2 + g
4ηg2 + g

]
(46)

This system of equations has a unique fixed point, again at θ1 = θ2 = 0.5 (see Figure 8). The
eigenvalue analysis of the coefficient matrix yields two real eigenvalues, λ1 = 8ηg2 + 2g and
λ2 = 8ηg2 − 2g, and two respective diagonal and off-diagonal eigenvectors. Similar to the case
of LA agents, λ1 is always positive and the sign of λ2 depends on the values of both η and g. For
a fixed prediction length, non-positive values of λ2 are reached by g ≤ 1

4η . In this case, the fixed
point is an unstable saddle point (or unstable line in case of λ2 = 0), and the agents, with any initial
values of θ1 and θ2 (except on the fixed point itself), converge to the equilibrium points. However,
when the miscoordination regret increases, g > 1

4η , the fixed point becomes an unstable (source)
point. Therefore, some initial values of θ1 and θ2 naturally lead to the miscoordination points.

In the case of the naı̈ve agents, we have:[
∂θ1/∂t
∂θ2/∂t

]
=

[
0 2g
2g 0

] [
θ1
θ2

]
−

[
g
g

]
(47)

Similar to the case of LOLA and LA, this system of equations has a unique fixed point (zero gradi-
ents) at θ1 = θ2 = 0.5. The eigenvalue analysis of the coefficient matrix yields two real eigenvalues,
λ1 = 2g and λ2 = −2g, and two respective diagonal and off-diagonal eigenvectors. This time,
however, the eigenvalues are of opposite signs for any values of g and the fixed point is always an

18

Under review as a conference paper at ICLR 2023

unstable saddle point. Therefore, any initial values of θ1 and θ2 (except on the fixed point itself)
naturally lead to the equilibrium points.

Based on these results, we hypothesize that 1) wrong reasoning level assumptions and 2) shaping
plans that are not followed can lead to miscoordination points. Both LOLA and LA agents as-
sume that other agents are naı̈ve learners, which is obviously a wrong assumption since all agents
conduct first-order reasoning. For self-interested agents, it is natural for the agents to don’t un-
veil their reasoning order to each other. as they have different goals. However, common-interested
agents can benefit more from this reasoning information to achieve their common goal. Further-
more, LOLA agents constantly underestimate other LOLA agents and try to shape them. This is
while other LOLA agents do not follow the plan, and each tries to show that it is smarter than the
others. Letcher et al. (2019) shows that these arrogant behaviors lead to outcomes that are strictly
worse for everyone. It is also clear from Theorem 1 that the range of g that leads to miscoordination
in LOLA (g > 1

4η) is larger than the range of g in LA (g > 1
2η).

In the above coordination game, one general solution to reduce the possibility of miscoordination is
decreasing the prediction length’s values. However, in non-tabular settings, with large state spaces,
it is infeasible to estimate the miscoordination regret and adjust the prediction length accordingly.
Furthermore, the prediction length directly affects the usage of higher-order gradient information,
and further reducing the prediction length (η → 0) leads to the naı̈ve learners.

C.2 PROOF OF THEOREM 2

Given Eqs. 9 and 8, the unconstrained dynamics of the HR agents can be defined by the following
differential equations :[

∂θ1/∂t
∂θ2/∂t

]
=

[
8ηg2 2g

2g + 16η2g3 4ηg2

] [
θ1
θ2

]
−
[

4ηg2 + g
8η2g3 + 4ηg2 + g

]
(48)

resulting in a unique fixed point at θ1 = θ2 = 0.5 and two real eigenvalues, λ = 6ηg2 ±
2p

√
9eta2g2 + 1. Unlike the case of LOLA and LA, the eigenvalues are now of opposite signs

for any values of g, and the fixed point is always an unstable saddle point. Therefore, any initial
values of θ1 and θ2 (except on the fixed point itself) naturally lead to the equilibrium points.

D MORE DETAILS ON THE EXPERIMENTS AND THE IMPLEMENTATIONS

In this section, we describe all the experiments and the implementations in detail. To ease the
reproducibility of our work, the code of our methods and experiments are shared with the commu-
nity at [to comply with the double-blind policy, the link will be inserted in
the final version].

A note on partial observability. So far, we have formulated the MARL setup as an MG, where
it is assumed that the agents have access to the state space. However, in many games, the agents
only receive a private state observation of the current state. In this case, the MARL setup can be
formulated as a Partially Observable Markov Game (PO-MG) (Littman, 1994). A PO-MG is a tuple
(N ,S, {Ai}i∈N , {Oi}i∈N , {Ri}i∈N , T , {Ωi}i∈N , ρ, γ), where Oi is the set of sate observations
for agent i ∈ N . Each agent i chooses its action ai ∈ Ai through the policy πθi : Oi × Ai →
[0, 1] parameterized by θi conditioning on the given state observation oi ∈ Oi. After transition
to a new state, each agent i receives a private state observation through its observation function
Ωi : S → Oi. In this case, the centralized state-action value function for each agent i is defined
as Qi(o1, ..., on, a1, ..., an) = E[Gt

i(τ |st = s, oi = Ωi(s) & ati = ai∀i ∈ N)]. Therefore, the
proposed HOG-MADDPG framework can be modified accordingly.

D.1 MATRIX GAMES

Iterated Rotational Game (IRG)(Zhang & Lesser, 2010) is a one-state, two-agent, one-action matrix
game with the reward matrices depicted in Table 4 (for two discrete actions). Each agent must
choose a 1-D continuous action (a1 for agent one and a2 for agent two) representing the probability
of taking two discrete actions. The game has a unique equilibrium point at a1 = a2 = 0.5, which is
also the fixed point of the game. IRG is originally proposed to demonstrate the circular behavior that

19

Under review as a conference paper at ICLR 2023

discrete action 1 discrete action 2
discrete action 1 (0, 3) (3, 2)

discrete action 2 (1, 0) (2, 1)

Table 4: Reward matrix in IRG.

Cooperate Defect
Cooperate (−1,−1) (−3, 0)

Defect (0,−3) (−3,−3)

Table 5: Reward matrix in IPD.

can emerge if the agents follow the naı̈ve gradient updates. LA agents, on the other hand, can quickly
converge to the equilibrium point by considering their opponent’s parameter adjustment. As LOLA
agents cannot preserve the fixed point of the game (Letcher et al., 2019), they converge to non-
equilibrium points. We evaluate the performances of methods based on the Distance to Equilibrium
(DtE).

Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018a) is a five-state, two-agent, two-action game
with the reward matrices depicted in Table 5. Each agent must choose between two discrete actions
(cooperate or defect). The game is played for 150 time steps (T = 150). In the one-shot version
of the game, there is only one Nash equilibrium for the agents (Defect, Defect). In the iterated
games, (Defect, Defect) is also a Nash equilibrium. However, a better equilibrium is Tit-For-Tat
(TFT), where the players start by cooperating and then repeat the previous action of the opponents.
The LOLA agents can shape the opponent’s learning to encourage cooperation and, therefore, con-
verge to TFT (Letcher et al., 2019). We evaluate the methods’ performances based on the Averaged
Episode Reward (AER).

Implementation details. We used policies and state-action value functions with the same neural
network architecture in all methods. We employed Multi-Layer Perceptron (MLP) networks with
two hidden layers of dimension 64 for policies and state-action value functions. In order to make
the value functions any-order differentiable, we used SiLU nonlinear function (Elfwing et al., 2018)
in between the hidden layers. For IRG, we used the Sigmoid function in the policies to output 1-
D continues action, and for IPD, we used the Gumble-softmax function (Jang et al., 2017) in the
policies to output two discrete actions. The algorithms are trained for 900 (in IRG) and 50 (in
IPD) episodes by running Adam optimizer (Kingma & Ba, 2015) with a fixed learning rate of 0.01.
The prediction length, η, for LOLA and LA agents in both HOG-MADDPG and DiCE frameworks
are fixed to 1 in all experiments. We reported the best methods’ performances in Table 1. All
experiments are repeated five times, and the results are reported in terms of mean and standard
deviation in Figure 1 and Table 1.

D.2 EXIT-ROOM GAME

The Exit-Room game is a grid-world variant of the IPD, with two agents (blue and red) and 152l

states where l ∈ {1, 2, 3} is the complexity level of the game. The agents should cooperate and move
towards the exit doors on the right. However, they are tempted to exit the left doors and, in some
cases, not exiting at all. In level 1, the agents have three possible actions (move-left, move-right, or
do nothing), and the reward is computed as Vinitsky et al. (2019):

rewardC = λC(cooperationself + cooperationopponent)

rewardD = λD(1− cooperationself)

reward = rewardC + rewardD,

(49)

where λC and λD are some constants, and cooperationself and cooperationopponent are the normal-
ized distances of the agent and its opponent to the right door, respectively. In levels 2 and 3, the
agents have additional move-up and move-down actions. In level 3, the door positions are randomly
located, resulting in more complex interactions among the agents. In addition to the reward in Eq.
(49), the agents receive an additional reward for approaching the doors in levels 2 and 3. Each agent
receives four 90× 90 RGB images representing the state observations of the last four time steps.

Implementation details. As before, we used policies and state-action value functions with the same
neural network architecture in all methods. Both policy and value networks consist of two parts:
encoder and decoder. The encoders are CNN networks with three convolutional layers (12 × 90 ×
90 → 32× 21× 21 → 64× 9× 9 → 64× 7× 7) and two fully connected layers (3136 → 512 →
128), with SiLU nonlinear functions (Elfwing et al., 2018) in between. The decoders are MLP

20

Under review as a conference paper at ICLR 2023

(a) η = 1 (b) η = 0.1 (c) η = 0.01

Figure 9: Learning curves in the particle coordination game with different values of the prediction
length, η, for HOG-MADDPG methods.

networks with two hidden layers of dimension 64 for policies and state-action value functions. We
used the Gumble-softmax function in the policies (Jang et al., 2017) to output the discrete actions.
The algorithms are trained for 450 (in level one) and 4500 (in levels two and three) episodes by
running Adam optimizer (Kingma & Ba, 2015) with a fixed learning rate of 0.01. The prediction
length, η, for LOLA and LA agents in both HOG-MADDPG and DiCE frameworks are fixed to 1
in all experiments. All experiments are repeated five times, and the results are reported in terms
of mean and standard deviation in Figure 2 and Table 2. The methods are evaluated in terms of the
Normalized Average Episode Reward (NAER), where the normalization is done between the highest
and lowest episode rewards in each game level. We reported the best methods’ performances in Table
2.

D.3 PARTICLE COORDINATION GAME

Figure 10: Particle coordination game
with two agents and three landmarks.

Our proposed game is a variant of the Cooperative Nav-
igation game in the Particle environment (Lowe et al.,
2017). As shown in Figure 10, each one of the two agents
(purple circles) should select and approach one of the
three landmarks (one gray and two green circles). Land-
marks are selected based on the closest distance between
the agent and the landmarks. Suppose the agents select
and approach the same landmark. In that case, they re-
ceive global (by selecting the green landmarks) or local
(by selecting the gray landmark) optimal rewards. They
will receive an assigned miscoordination penalty if they
select and approach different landmarks. Each agents re-
ceive a 14-D state observation vector and select a 5-D,
one-hot vector, representing one of the five discrete ac-
tions: move-right, move-left, move-up, move-down, and stay. The horizon is set to 25, T = 25. The
agents receive a Landmark Selection (LS) reward indicated by the matrix: RLS =

[2 0 −20
0 0.4 0

−20 0 2

]
,

where the rows and columns indicate the selected landmarks by the first and second agents, respec-
tively. Furthermore, the agents receive an additional reward for approaching the landmarks.

Implementation details. We used policies and state-action value functions with the same neural
network architecture in all methods. We employed MLP networks with two hidden layers of dimen-
sion 64 for policies and state-action value functions with SiLU nonlinear functions (Elfwing et al.,
2018) in between. We used the Gumble-softmax function (Jang et al., 2017) in the policies to out-
put the discrete actions. The algorithms are trained for 100k episodes by running Adam optimizer
(Kingma & Ba, 2015) with a fixed learning rate of 0.01. We set the prediction length, η, to 0.1
for HR agents and 0.01 for LOLA and LA agents. All experiments are repeated five times, and the
results are reported in terms of mean and standard deviation in Figure 6.

Effect of the prediction length. Additionally, we illustrate the effect of various prediction lengths
on the performance of HR, LOLA, and LA agents in Figure 9. As shown, the HR-MADDPG method
consistently converges to the global optimum of the game. This is while both LOLA-MADDPG and
LA-MADDPG demonstrate weak performances, especially by increasing the prediction length.

21

Under review as a conference paper at ICLR 2023

Particle Environment Mujoco Environment

Cooperative Navigation Physical Deception Predator-Prey Half-Cheetah Walker Reacher
Observation 18-D 10-D (8-D) 14-D (12-D) 11-D 11-D 8-D
Observation type continuous continuous continuous continuous continuous continuous
Discrete observations infinite infinite infinite infinite infinite infinite
Action 5-D 5-D (5-D) 5-D (5-D) 3-D 3-D 1-D
Action type discrete discrete discrete continuous continuous continuous
Policy parameter 11K-D 11K-D (8-D) 10K-D (12-D) 70K-D 70K-D 70K-D
Horizon (step) 25 25 25 100 300 50

Table 6: Specifications in the standard multi-agent games. In the mixed environments, the dimen-
sions are reported as ”d1 (d2)” where d1 is the dimension for common-interested agents and d2 is
the dimension for self-interested ones.

D.4 STANDARD MULTI-AGENT GAMES

We evaluate the methods in three Particle environment games (Lowe et al., 2017): 1) Coopera-
tive Navigation with three common-interested agents, 2) Physical Deception with two common-
interested and one self-interested agent, and 3) Predator-Prey with two common-interested (predator)
and one self-interested (prey) agents. Furthermore, we compare the methods in three games within
the multi-agent Mujoco environment (Peng et al., 2021): 1) two-agent Half-Cheetah, 2) two-agent
Walker, and 3) two-agent Reacher. In the mixed environments (Physical Deception and Predator-
Prey), we have employed the MADDPG method for the self-interested agents. Games’ specifications
are reported in Table 6. We created separate validation and test sets for each game that included 100
and 300 randomly generated scenarios, respectively. In each game, we save the models that have
the best performance on the validation set and test them on the test set to report the results. All
experiments are repeated five times, and the mean results are reported in Table 3 in terms of the
Normalized Average Episode Reward (NAER). The normalization is done between the single-agent
variant of MADDPG (DDPG (Lillicrap et al., 2016)) and a fully centralized (in learning and ex-
ecution) variant of MADDPG, referred to as C-MADDPG. The non-normalized data are reported
in Table 8 in terms of the Collective Average Episode Reward (CAER) for the common-interested
agents.

Implementation details. As before, we used policies and state-action value functions with the same
neural network architecture in all methods. We employed MLP networks with two hidden layers (of
dimension 64 for the Particle environment and 256 for the Mujoco environment) for policies and
state-action value functions with SiLU nonlinear functions (Elfwing et al., 2018). In the Particle
environment, We used the Gumble-softmax function (Jang et al., 2017) in the policies to output the
discrete actions and trained the algorithms for 100k episodes by running Adam optimizer (Kingma &
Ba, 2015) with a fixed learning rate of 0.01. In the Mujoco environment, we used the Tanh function
in the policies to output the continuous actions and train the algorithms for 10k episodes by running
Adam optimizer (Kingma & Ba, 2015) with a fixed learning rate of 0.001. The prediction lengths,
η, in HR-MADDPG, LA-MADDPG, and LOLA-MADDPG are optimized between 0.001 − 0.1 in
all games. We avoid considering any smaller value than 0.001 for the prediction length as it makes
the algorithms similar to the naı̈ve learners. The optimized prediction lengths are reported in Table
7.

Ablation study. We have additionally conducted an ablation study on the hierarchy level assign-
ments in the HR-MADDPG. Rather than iteratively sorting the agents based on their shaping capaci-
ties through Eq. (10), we randomly assigned the agents to hierarchy levels in the beginning and fixed
the hierarchy levels throughout the optimization. This variant of the HR-MADDPG, referred to as
HR-MADDPG (F), is evaluated and compared in Table 9. As can be seen, using the proposed sort-
ing strategy based on the shaping capacities of the agents, as done in our HR-MADDPG, constantly
improves performance.

22

Under review as a conference paper at ICLR 2023

η in Particle Environment η in Mujoco Environment

Cooperative Navigation Physical Deception Predator-Prey Half-Cheetah Walker Reacher
LA-MADDPG 0.002 0.003 0.01 0.001 0.002 0.003
LOLA-MADDPG 0.001 0.003 0.008 0.001 0.001 0.002
HR-MADDPG 0.003 0.01 0.04 0.004 0.004 0.007

Table 7: The optimized prediction lengths for HOG-MADDPG methods.

↑CAER in Particle Environment ↑CAER in Mujoco Environment

Methods Cooperative Navigation Physical Deception Predator-Prey Half-Cheetah Walker Reacher
DDPG (LB) -189.18 13.04 10.20 611.74 2925.17 -16.19
C-MADDPG (UB) -130.91 20.82 20.87 1564.60 6362.36 -8.89
MADDPG -144.02 17.82 12.46 1435.93 4482.31 -16.02
CPG-MADDPG -143.96 18.29 12.08 1454.62 4511.08 -15.84
PR2-MADDPG -143.67 17.26 11.08 1418.69 4473.14 -16.09
LA-MADDPG -143.72 17.92 11.58 1424.39 4408.56 -15.89
LOLA-MADDPG -144.21 17.43 11.54 1406.61 4369.13 -16.13
HR-MADDPG -137.63 19.48 14.85 1503.07 5226.26 -13.16

Table 8: Comparisons of methods in terms of the Collective Average Episode Reward (CAER) for
common-interested agents, corresponding to the normalized data in Table 3.

↑NAER in Particle Environment ↑NAER in Mujoco Environment

Methods Cooperative Navigation Physical Deception Predator-Prey Half-Cheetah Walker Reacher
HR-MADDPG (F) 0.85 0.80 0.38 0.92 0.63 0.38
HR-MADDPG 0.88 0.83 0.44 0.94 0.67 0.42

Table 9: Ablation study on the hierarchy level assignments in our HR-MADDPG method.

23

	Introduction
	Related works
	Background
	A HOG framework for high-dimensional state spaces
	Limitations of existing HOG approaches
	HOG-MADDPG
	LA-MADDPG
	LOLA-MADDPG

	Experiments
	Matrix games
	Multi-level Exit-Room game

	A HOG methodology for common-interested agents
	Miscoordination analysis in cooperative scenarios
	Hierarchical Reasoning
	HR-MADDPG

	Experiments
	Particle coordination game
	Standard multi-agent games

	Discussion
	More details on the HOG-MADDPG methods
	LA-MADDPG
	LOLA-MADDPG
	HR-MADDPG

	Theoretical analyses on the projection estimation
	Influence of the projection estimation
	Time complexity of the projection estimation

	More details on the miscoordination analyses
	Proof of Theorem 1
	Proof of Theorem 2

	More details on the experiments and the implementations
	Matrix games
	Exit-Room game
	Particle coordination game
	Standard multi-agent games

