
Under review as a conference paper at ICLR 2023

DEEP AUTOREGRESSIVE DENSITY NETS VS NEURAL
ENSEMBLES FOR MODEL-BASED OFFLINE REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of offline reinforcement learning where only a set of
system transitions is made available for policy optimization. Following recent ad-
vances in the field, we consider a model-based reinforcement learning algorithm
that infers the system dynamics from the available data and performs policy opti-
mization on imaginary model rollouts. This approach is vulnerable to exploiting
model errors which can lead to catastrophic failures on the real system. The stan-
dard solution is to rely on ensembles for uncertainty heuristics and to avoid ex-
ploiting the model where it is too uncertain. We challenge the popular belief that
we must resort to ensembles by showing that better performance can be obtained
with a single well-calibrated autoregressive model on the D4RL benchmark. We
also analyze static metrics of model-learning and conclude on the important model
properties for the final performance of the agent.

1 INTRODUCTION

Reinforcement learning consists in learning a control agent (policy) by interacting with a dynamical
system (environment) and collecting its feedback (rewards). This learning paradigm turned out to
be able to solve some of the world’s most difficult problems (Silver et al., 2017; 2018; Mnih et al.,
2015; Vinyals et al., 2019). However, the scope of the systems that RL is capable of solving remains
restricted to the simulated world and does not extend to real engineering systems. Two of the main
reasons are i) small data due to operational constraints and ii) safety standards of such systems. In
an attempt to bridge the gap between RL and engineering systems, we motivate the setting of offline
reinforcement learning (Levine et al., 2020).

Offline reinforcement learning removes the need to query a dynamical system by using a previously
collected dataset of controller-system interactions. In this optic, we view this setting as a supervised
learning problem where one tries to approximate the underlying distribution of the data at hand,
and hopefully be able to generalize to out-of-distribution samples. This turns out to be a difficult
task for classical RL algorithms because of the distribution shift that occurs between the dataset and
the learned policy during the learning process (Fujimoto et al., 2019; Levine et al., 2020). Thus
we need to design algorithms that are well-suited for offline reinforcement learning. A common
idea in this field is conservatism where one would only consider the learned agent when the input
states are close to the support of the offline dataset. Depending on the algorithm, conservatism can
take multiple forms, ranging from penalized Q-targets (Kumar et al., 2020) to uncertainty-penalized
Markov decision processes (Kidambi et al., 2020; Yu et al., 2020). To develop further into this
direction, we make the distinction between model-free and model-based RL (MBRL) algorithms.

Model-free algorithms learn a policy and/or a value function by observing the reward signal realiza-
tions and the underlying dynamics of the system, which in most environments requires a significant
number of interactions for achieving good performance (Haarnoja et al., 2018). In this category,
a way to incorporate conservatism is to penalize the value targets of data points that are distant
from the offline dataset (Kumar et al., 2020). Other methods include behavior regularized policy
optimization (Wu et al., 2020).

Model-based algorithms are composed of two independent (and often alternating) steps: i) model
learning: a supervised learning problem of learning the dynamics (and sometimes also the reward

1

Under review as a conference paper at ICLR 2023

function) of the system of interest; and ii) policy optimization, where we sample from the learned
dynamics to learn a policy and/or a value function. MBRL is known to be sample-efficient, since
policy/value learning is done (completely or partially) from imaginary model rollouts (also called
background planning) that are cheaper and more accessible than rollouts in the true dynamics (Janner
et al., 2019). Furthermore, a predictive model with good out-of-distribution performance affords
easy transfer of the true model to new tasks or areas not covered in the offline dataset (Yu et al.,
2020). Conservatism in MBRL is frequently achieved by uncertainty-based penalization of the
model predictions. This relies on well-calibrated estimation of the epistemic uncertainty of the
learned dynamics, which is a limitation of this approach.

It is of great interest to build models that know when (and how much) they do not know, thus uncer-
tainty estimation remains a central problem in MBRL. Many recent works have made progress in
this direction (Osband et al., 2021). The most common approach to date is bootstrap ensembles: we
construct a population of predictive models (most often probabilistic neural networks) and consider
disagreement metrics as our uncertainty measurement. The source of randomness in this case is
the random initialization of the parameters of neural networks and the subset of the training data
that each model sees. When the environment is stochastic, ensembles help to separate the aleatory
uncertainty (intrinsic randomness of the environment) and the epistemic uncertainty (Chua et al.,
2018). When the environment is deterministic (which is the case of the D4RL Mujoco benchmark
environments considered in most of the offline RL literature (Fu et al., 2021a)), the error is fully
epistemic: it consists of the estimation error (due to lack of training data) and the approximation er-
ror (mismatch between the model class and the true distribution) (Hüllermeier & Waegeman, 2021).
This highlights the need of well-calibrated probabilistic models whose posterior variance can be
used as an uncertainty measurement in conservative MBRL.

In this work, we propose to compare autoregressive dynamics models (Uria et al., 2016) to ensem-
bles of probabilistic feedforward models, both in terms of static evaluation (supervised learning
metrics on the task of learning the system dynamics) and dynamic evaluation (final performance of
the MBRL agent that uses the model). Autoregressive models learn a conditional distribution of
each dimension of the next state conditioned on the input of the model (current state and action)
and the previously generated dimensions of the next state. Meanwhile, probabilistic feedforward
models learn a multivariate distribution of the next state conditioned on the current state and action.
We argue that autoregressive models can learn the implicit functional dependence between state
dimensions, which makes them well-calibrated, leading to good uncertainty estimates suitable for
conservatism in MBRL.

Our key contributions are the following.

• We apply autoregressive dynamics models in the context of offline model-based reinforce-
ment learning and show that they improve over neural ensembles in terms of static evalua-
tion metrics and the final performance of the agent.

• We introduce an experimental setup that decouples model selection from agent selection to
reduce the burden of hyperparameter optimization in offline RL.

• We study the impact of static metrics on the dynamic performance of the agents, and con-
clude on the importance of single-step calibratedness in model-based offline RL.

2 RELATED WORK

Offline RL has been an active area of research following its numerous applications in domains such
as robotics (Chebotar et al., 2021), healthcare (Gottesman et al., 2018), recommendation systems
(Strehl et al., 2010), and autonomous driving (Kiran et al., 2022). Despite outstanding advances in
online RL (Haarnoja et al., 2018; Silver et al., 2017; Mnih et al., 2015) and iterated offline RL (Wang
et al., 2019; Wang & Ba, 2020; Matsushima et al., 2021; Kégl et al., 2021), offline RL remained a
challenging problem due to the dependency on the data collection procedure and its potential lack
of exploration (Levine et al., 2020).

Although any off-policy model-free RL agent can theoretically be applied to offline RL (Haarnoja
et al., 2018; Degris et al., 2012; Lillicrap et al., 2016; Munos et al., 2016), it has been shown that
these algorithms suffer from distribution shift and yield poor performance (Fujimoto et al., 2019;

2

Under review as a conference paper at ICLR 2023

Levine et al., 2020). To alleviate the problem of distribution shift, conservatism was introduced
successfully by several techniques, such as BEAR (Kumar et al., 2019), AlgaeDICE (Nachum et al.,
2019), AWR (Peng et al., 2020), BRAC (Wu et al., 2020), and CQL Kumar et al. (2020). The general
objective of these methods is to keep the model-free policy close to the behavioral policy, in other
words, to avoid wandering into regions of the state/action space where no data was collected.

Model-based RL has been successfully applied to the online RL setting by alternating model learning
and planning (Deisenroth & Rasmussen, 2011; Hafner et al., 2021; Gal et al., 2016; Levine & Koltun,
2013; Chua et al., 2018; Janner et al., 2019; Kégl et al., 2021). Planning is done either decision-time
via model-predictive control (Draeger et al., 1995; Chua et al., 2018; Hafner et al., 2019; Pinneri
et al., 2020; Kégl et al., 2021)), or Dyna style by learning a model-free RL agent on imagined
model rollouts (Janner et al., 2019; Sutton, 1991; Sutton et al., 1992; Ha & Schmidhuber, 2018).
For instance, MBPO (Janner et al., 2019) trains an ensemble of feed-forward models and generates
imaginary rollouts to train a soft actor-critic, which policy is then used to generate new data for
model learning. MBPO has been showed to achieve state of the art in continuous control task with
the smallest sample efficiency. An adaptation of MBPO to the offline setting is MOPO (Yu et al.,
2020). MOPO incorporates conservatism via a surrogate MDP where the rewards are penalized with
the uncertainty of the model. While MOPO relies on disagreement metrics between the members
of the learned ensemble, we suggest the use of well-calibrated autoregressive models whose learned
variance is a good proxy to the model estimation error. Similar uncertainty penalized policy search is
used in a number of other works (Kidambi et al., 2020; Lee et al., 2021; Shen et al., 2021; Swazinna
et al., 2021; Depeweg et al., 2018), while others explore pessimism-based decision time planning
(Argenson & Dulac-Arnold, 2021; Zhan et al., 2021), conservative value learning (Yu et al., 2021;
Liu et al., 2021).

Autoregressive models have been studied in a number of previous works for generative modeling in
general (Uria et al., 2016; 2013; Papamakarios et al., 2017; Van Den Oord et al., 2016). However,
only a handful of papers use them in the context of MBRL (Kégl et al., 2021; Zhang et al., 2021b;
Zhan et al., 2021). Zhang et al. (2021b) used autoregressive models for model-based off-policy eval-
uation, while we focus our study on the important model properties for offline policy optimization.
We also adapt metrics from Kégl et al. (2021) to provide a complete guide on model selection for
offline MBRL.

Previous works have tackled hyperparameter selection in online RL (Andrychowicz et al., 2021;
Engstrom et al., 2020), MBRL (Zhang et al., 2021a), and offline RL (Paine et al., 2020), showing
the sensibility of existing algorithms to hyperparameter choices. Lu et al. (2022) perform a similar
analysis to this work. Similarly to us, they base their analysis on MOPO, but they focus on the
uncertainty-related hyperparameters while we revisit the model design and architecture.

3 PRELIMINARIES

The standard framework of RL is the finite-horizon Markov decision process (MDP) M =
⟨S,A, p, r, µ0, γ⟩ where S represents the state space, A the action space, p : S × A ; S the
(possibly stochastic) transition dynamics, r : S × A → R the reward function, µ0 the initial state
distribution, and γ ∈ [0, 1] the discount factor. The goal of RL is to find, for each state s ∈ S ,
a distribution π(s) over the action space A, called the policy, that maximizes the expected sum of
discounted rewards J(π,M) := Es0∼µ0,at∼π, st>0∼p[

∑H
t=0 γ

tr(st, at)], where H is the MDP hori-
zon. Under a policy π, we define the state-action value function (Q-function) at an (s, a) ∈ S × A
pair as the expected sum of discounted rewards, starting from the state s, taking the action a, and fol-
lowing the policy π afterwards until termination: Qπ(s, a) = Eat>0∼π,st>0∼p

[∑H
t=0 γ

tr(st, at) |
s0 = s, a0 = a

]
. We can similarly define the state value function by taking the expectation with

respect to the initial action a0: V π(s) = Eat∼π,st>0∼p

[∑H
t=0 γ

tr(st, at) | s0 = s
]
.

In offline RL, we are given a set of transitions D = {(sit, ait, rit, sit+1)}Ni=1, where N is the size of
the set, generated by an unknown behavioral policy πβ . The difficulty of offline RL comes from
the fact that we are not allowed to interact further with the environment M even though we aim to
optimize the objective J(π,M) with π ̸= πβ . In practice, the current offline RL algorithms are
still provided with an online evaluation budget, a setting we will follow in the rest of the paper.

3

Under review as a conference paper at ICLR 2023

The question of offline policy evaluation (or budget-limited policy evaluation) is an active research
direction (see, e.g., Fu et al. (2021b)) and is beyond the scope of this paper.

Model-based RL algorithms use an offline dataset D to solve the supervised learning problem of
estimating the dynamics of the environment p̂ and/or the reward function r̂. For various reasons
(stochastic environment, ability to represent the uncertainty of the predictions), the loss function
is usually the log-likelihood L(D; p̂) = 1

N

∑N
i=1 log p̂(s

i
t+1|sit, ait). The learned model can then

be used for policy search under the MDP M̂ = ⟨S,A, p̂, r̂, µ0, γ⟩, which has the same state
and action spaces S,A as the true environment M, but which has the transition probability p̂
and the reward function r̂ that are learned from the offline data D. The obtained optimal policy
π̂ = argmaxπ J(π,M̂) is not guaranteed to be optimal under the true MDP M due to distribution
shift and model bias. J(π,M̂) and J(π,M) are somewhat analogous to training and test scores
in supervised learning, with two fundamental differences: i) they are only loosely connected to the
actual supervised loss L(D; p̂) that we can optimize and measure on a data set, and ii) because we
are not allowed to collect data using π, there is a distribution shift between training and test.

Regarding the type of model, the usual choice is a probabilistic model that learns the parameters
of a multivariate Gaussian over the next state and reward, conditioned on the current state and
action: st+1, rt ∼ p̂θ(.|st, at) = N

(
µθ(st, at), σθ(st, at)

)
, where θ represents the parameters of

the predictive model. In practice, we use fully connected neural networks as they are proved to be
powerful function approximators (Nagabandi et al., 2018; Chua et al., 2018), and for their suitability
to high-dimensional environments over simpler non-parametric models such as Gaussian processes.
Following previous work (Chua et al., 2018), we assume a diagonal covariance matrix for which
we learn the logarithm of the diagonal entries: σθ = Diag(exp(lθ)) with lθ output by the neural
network.

One of the conditions of such a joint model is the conditional independence of the dimensions of the
predicted state, which is a strong assumption, especially in the case of functional (or physical) de-
pendency. y-interdependence (Kégl et al., 2021) happens, for example, when angles are represented
by sine and cosine. For this purpose, we study autoregressive models that learn a single model per
dimension, conditioned on the input of the model (st, at) and the previously generated dimensions.
Formally, p̂θ(st+1|st, at) = p̂θ1(s

1
t+1|st, at)

∏ds

j=2 p̂θj (s
j
t+1|s1t+1, . . . , s

j−1
t+1 , st, at), where ds is the

dimension of the state space S.

Conservatism in MBRL requires an uncertainty estimate û(s, a) reflecting the quality of the model
in different regions of the state/action space. For this purpose, probabilistic models provide an uncer-
tainty estimate by learning the variance of the predictions (in this case under a Gaussian distribution).
In noisy environments, this uncertainty estimate represents both the aleatory uncertainty (intrinsic
randomness of the environment) and the epistemic uncertainty (model estimation and approxima-
tion errors). Conservative MBRL uses the epistemic uncertainty only, so, in practice, the problem
of separating the aleatory uncertainty and the epistemic uncertainty is addressed through the use of
bootstrap ensembles (Chua et al., 2018). Ensembling consists in having D ∈ N∗ − {1} models,
each initialized randomly and trained on a set Dℓ for ℓ ∈ {1, . . . , D} generated by sampling with
replacement from a common dataset D. Using ensembles, we can compute a disagreement metric
to capture the epistemic uncertainty, as opposed to the aleatory uncertainty learned by each member
of the ensemble. A detailed discussion about these uncertainty heuristics is provided in Section 4.

4 A BASELINE: MODEL-BASED OFFLINE POLICY OPTIMIZATION (MOPO)

Models p̂ in MBRL are not used in isolation. Their likelhood ratio, precision, and calibratedness
(LR, R2, and KS in Section 5.1 and Appendix C) are good proxies, but ultimately their quality is
judged when they are used in a policy. To compare the dynamic performance of the models p̂, we
fix the policy to MOPO (Yu et al., 2020), a conservative agent-learning algorithm. MOPO uses a
pessimistic MDP (P-MDP) to ensure that the performance of the policy with the model will be a
lower bound of the performance of the policy on the real system. Yu et al. (2020) show a theoretical
lower bound on the true return based on the estimation error of the learned dynamics J(π,M) ≥
Ea∼π, s∼p̂

[
r(s, a) − γ|Gπ

M̂(s, a)|
]
. In this formula, Gπ

M̂(s, a) is defined by Es′∼p̂(s,a)[V
π
M(s′)] −

Es′∼p(s,a)[V
π
M(s′)] which quantifies the effect of the model error on the return. However, this

4

Under review as a conference paper at ICLR 2023

requires access to the value function of the policy π under the true MDP M, which is not given
in practice.

To derive an algorithm based on this theoretical bound, MOPO relies on an upper bound of Gπ
M̂(s, a)

based on the integral probability metric: Gπ
M̂(s, a) ≤ supf∈F | Es′∼p̂[f(s

′)] − Es′∼p[f(s
′)] |,

where F is an arbitrary set of functions. In practice, the authors use ensemble-based uncertainty
heuristics to set an upper bound on the true error of the model. The maximum standard deviation
among the ensemble members (labeled max aleatory or MA) is considered to define a penalized
reward r̃(s, a) = r̂(s, a) − λû(s, a), where û(s, a) = maxℓ=1,...,N ∥σℓ

θ(s, a)∥F and λ is a penalty
hyperparameter. Yu et al. (2020) then define the associated P-MDP M̃ = ⟨S,A, p̂, r̃, µ0, γ⟩ on
which a soft actor-critic (SAC) (Haarnoja et al., 2018) agent is trained until convergence (Algo-
rithm 1). This algorithm is based on Model-based policy optimization (MBPO) (Janner et al., 2019)
which alternates between model learning and agent learning. MOPO can be described as one it-
eration of MBPO, which learns the dynamics model (a bootstrap ensemble of probabilistic neural
networks) from the offline dataset and then learns the off-policy agent on a buffer1 of rollouts in
the P-MDP M̃. Using this P-MDP prevents the agent from exploiting rewards of highly uncertain
regions.

Data: Dataset D, penalty coefficient λ, rollout horizon h, Number of SAC training batches B,
conservatism penalty û(s, a).

Train dynamics model p̂ on offline dataset D;
Initialize SAC policy π and empty replay buffer Dmodel;
for 1, 2, . . . , B do

Sample initial state s0 from D;
for i = 1, 2, . . . , h do

Sample an action ai ∼ π(si);
Sample the next state from the dynamics model si+1, ri ∼ p̂(si, ai);
Compute the penalized reward r̃i = ri − λû(si, ai);
Add sample (si, ai, r̃i, si+1) to Dmodel;

end
Draw a batch from Dmodel, update π following SAC schema;

end
Algorithm 1: MOPO pseudocode. Yu et al. (2020) uses û(s, a) = maxℓ=1,...,N ∥σℓ

θ(s, a)∥F ;
we also experimented with two other penalty heuristics by Lu et al. (2022).

While Yu et al. (2020) only tried the max aleatory estimator for the uncertainty heuristic, Lu et al.
(2022) introduced concurrent ensemble-based uncertainty heuristics from recent works and de-
ployed them in MOPO. Among these, we chose the following two, showing competitive perfor-
mance in benchmarks.

• Max pairwise difference (MPD) (Kidambi et al., 2020): û(s, a) = maxl,l′ ∥µl
θl
(s, a) −

µl′

θl′
(s, a)∥2 for l ̸= l′ ∈ 1, . . . , D. This metric captures the largest disagreement among

ensemble members as an indicator of model error.

• Ensemble standard deviation (ESD) (Lakshminarayanan et al., 2017):

û(s, a) =
√

1
D

∑D
l

(
(σl

θl
(s, a))2 + (µl

θl
(s, a))2

)
− (µ̄(s, a))2 with µ̄(s, a) =

1
D

∑D
l µl

θl
(s, a), is the standard deviation of the ensemble, i.e., the standard deviation of

the equally-weighted mixture of the Gaussian densities.

5 EXPERIMENTAL SETUP

We implement our MOPO baseline based on the MBRL library released by Kégl et al. (2021) which
is built on top of the RAMP framework (Kégl et al., 2018). We run our experiments with the
following models:

1Initially, MOPO selected 5% of the batch from the real system dataset D, and 95% of model rollouts.
However, Yu et al. (2020) show that this does not influence the performance of the algorithm.

5

Under review as a conference paper at ICLR 2023

• DARMDN(D): Deep autoregressive mixture density net. ds ∈ N∗ feed-forward neural
network that learn the parameters (mean and log-standard deviation), and the weights of
D ∈ N∗ univariate Gaussian distributions (ds being the dimension of the state space S).
Although our implementation is general, for the rest of the paper we only consider DAR-
MDN(1) due to runtime bottleneck, we refer to it as simply DARMDN.

• DMDN(D): Deep mixture density net. A feed-forward neural network that learns the
parameters (mean and log-standard deviation) and the weights of D ∈ N∗ multivariate
Gaussian distributions. For similar reasons as DARMDN, we only consider DMDN(1) and
refer to it as DMDN.

• ENS: Ensemble of D ∈ N∗ DMDN models. We implement a vectorized version that is
optimized to run on a Graphical Processing Units (GPUs). Notice that ENS is equivalent
to the original model MOPO used, modulo architectural choices.

For the single models (DARMDN and DMDN), we consider their learned standard deviation (σθ)
as the uncertainty heuristic to use for reward penalization, which is equivalent to the max aleatory
heuristic for an ensemble of a single member. For ENS, we follow the schema by Lu et al. (2022)
and tune the uncertainty heuristic as an additional hyperparameter among MA, MPD, and ESD,
defined in Section 4.

In a typical MBRL loop, the experimental setup consists of alternating model learning and agent
learning until the potential convergence of the dynamic performance (episodic return) of the agent
on the real environment. For computationally limited hyperparameter optimization, this setup pro-
vides continuous feedback on the return of a given model, which helps to early-stop unpromising
experiments. This is not possible in single-iteration offline RL as we only have access to a static
dataset for model learning, and we have to run all the pipeline to compute the evaluation score of
a given model. For this purpose, we suggest to decouple model selection and agent selection in an
attempt to reduce the overall computational budget of the approach. The experimental setup will
then be separated to two independent parts:

• Static evaluation of the models: Starting from a dataset D, we evaluate the different
models by computing supervised-learning evaluation metrics (Sections 5.1 and C) on a
held-out validation set. We then select the best model hyperparameters based on these
metrics.

• Dynamic evaluation of the agents: After selecting the best model p̂, we train agents by
interacting with the P-MDP defined on the learned dynamics of the model. During training,
we evaluate the agents by repeatedly rolling-out trajectories in the real environment and
computing their average episodic return. For this purpose, we assume access to the true
simulator at evaluation time, although the recorded episodes are not made available to
training.

A limitation of this approach comes from the fact that static supervised learning metrics do not
necessarily reflect the quality of the model for agent learning. We thus investigate how these static
metrics predict the overall dynamic performance in Section 6.

5.1 STATIC METRICS

We use metrics introduced by Kégl et al. (2021) in the context of iterated offline reinforcement
learning. These metrics are designed to assess different aspects of model quality: precision, cali-
bratedness, and sensitivity to compounding errors via long-horizon metrics.

Precision is evaluated using the explained variance (R2) which we prefer over the standard Mean-
squared error (MSE) because it is normalized and can be aggregated over multiple dimensions.
Calibratedness is measured using the Kolmogorov-Smirnov statistics (KS) between the ground truth
validation quantiles and a uniform distribution. This metrics indicates if the ground truth values
are distributed following the predicted distributions. In the Gaussian case, it is equivalent to the
predicted standard deviation being in the order of magnitude of the true model error (although a
bad KS may also indicate that the model errors are not Gaussian). We also use the likelihood ratio
with respect to a baseline score (LR), and the outlier ratio (OR), the rate of data points on which
the likelihood is close to zero. For the impact of compounding errors, we sample a population of

6

Under review as a conference paper at ICLR 2023

trajectories (following ground truth actions) and compute Monte-Carlo estimates of the long-horizon
metrics (R2(L) and KS(L) for L ∈ {1, . . . , 20}). The formal definition of these metrics can be found
in Appendix C.

5.2 DYNAMIC METRICS

Similarly to Kidambi et al. (2020); Wu et al. (2020), we compute the average episodic re-
turn (undiscounted sum of rewards) of the agent on the real system during training, formally
R({(st, at, rt, st+1)}Ht=1) =

∑H
t=1 rt of the agent, where H is the episode size. We then keep

track of the agent with the highest return for the final evaluation. This is not what we should do if
the goal was to develop a standalone offline RL algorithm (we could not use the real return to select
the agent), but our goal in this paper is to compare models p̂ of the system dynamics, so as long as
the agent is selected in the same way for all the models, the comparison is fair.1

We use the normalized scores introduced in the D4RL benchmark. This metric is a linear transfor-
mation of the episodic return and takes values between 0 and 100 with 0 corresponding to the score
of a randomly initialized SAC agent, and 100 to a SAC agent that is trained until convergence on the
real system.

6 EXPERIMENTS & RESULTS

Figure 1: Hopper

All our experiments are conducted in the continuous control environment
Hopper. We use the implementation of OpenAI Gym (Brockman et al.,
2016) that is based on the Mujoco physics simulator (Todorov et al.,
2012). A description of this environment can be found in Appendix B.

For static datasets, we use the D4RL Hopper benchmark that provides
four static sets generated by different behavior policies (random: 1M
steps generated by a randomly initialized SAC agent, medium: 1M steps
generated by a SAC agent trained until half the score at convergence,
medium-replay: All the traces collected by a SAC agent trained until
half the score at convergence, medium-expert: 2M steps consisting of the medium dataset and 1M
steps generated by an expert SAC agent).

The results of the static evaluation of the models are summarized in Table 1. The reported scores are
validation scores on a held-out 10% validation set from the D4RL datasets.

Table 1: Model evaluation results on static datasets. ↓ and ↑ mean lower and higher the better,
respectively. Unit is given after the / sign.

Model LR↑ OR/10−4↓ R2/10−4↑ KS/10−3↓ R2(10)/10−4↑ KS(10)/10−3↓

Hopper-v2, D4RL random dataset

DMDN 976 0 9986 146 8017 190
DARMDN 1141 0 9987 134 5011 377
ENS 304 1 9984 217 9442 190

Hopper-v2, D4RL medium dataset

DMDN 1322 1 9998 117 9938 84
DARMDN 1473 2 9996 56 9586 112
ENS 341 1 9953 233 9296 143

Hopper-v2, D4RL medium-replay dataset

DMDN 361 3 9990 120 9817 141
DARMDN 575 4 9986 65 9580 141
ENS 219 1 9928 190 6982 115

Hopper-v2, D4RL medium-expert dataset

DMDN2 - - - - - -
DARMDN 1675 1 9996 59 8814 160
ENS 452 1 9976 227 9727 108

1As a related remark, we consider the giant variance of the return both across seeds and across training
iterations of the agent crucial, arguably the most important problem of offline RL, but outside the scope of this
paper.

7

Under review as a conference paper at ICLR 2023

Figure 2: Histogram of Hopper’s
thigh ground truth quantiles, un-
der the model distribution (D4RL
medium dataset). The legend also in-
cludes the value of the KS calibrated-
ness metric. The dotted red line indi-
cates the ideal case when the quan-
tiles follow a uniform distribution.

One-step metrics (LR, OR, R2, and KS). We first ob-
served that single models are consistently better than the en-
semble in terms of one-step metrics. To better understand
this result, we propose to use the ground truth test quantiles
as a debugging tool on the calibratedness of the models. Fig-
ure 2 and Appendix E show that the ensemble model over-
estimates its error because the ground truth values are con-
centrated around 0.5. We suggest that this is because each
DMDN ensemble member has a well-calibrated variance,
but when we treat the ensemble as a mixture model, the vari-
ance of the mean adds to the individual variances, “diluting”
the uncertainty. Regarding the comparison between DMDN
and the autoregressive DARMDN, we observe that although
they have similar R2 scores, DARMDN is consistently beat-
ing DMDN in terms of KS and LR which depend also on
accurate and well-calibrated sigma estimates, an important
property for conservative MBRL.

To push the analysis further, we suggest to look at the
dimension-wise static metrics, reported in Appendix D. The
results depend on the different datasets, yet some results are consistent and help explain the im-
provement that autoregressive models bring over their counterparts. For instance in three out of four
datasets, the LR score of the thigh and thigh dot dimensions is an order of magnitude higher for
the autoregressive model. We suggest that this is due to the functional dependence that might exist
between the different observables, which is easily captured by the autoregressive model as it uses
the previously predicted dimensions as input to the next ones.

Figure 3: Long horizon explained
variance R2(L) in the D4RL random
dataset.

Long-horizon metrics. Unlike in single-step metrics,
here we observe a significant degradation in the perfor-
mance of DARMDN, both in terms of R2(L) and KS(L)
for L ∈ {1, . . . , 20} (Figure 3 and Appendix F). We sug-
gest that this is the due to optimizing the models for single-
step likelihood. Outliers (last bin of Figure 2) count little
in the single-step likelihood, but may compound when re-
cursing the model through L steps.

Dynamic evaluation. Table 2 shows the episodic return achieved by the best agent throughout one
million steps of SAC training. SAC agents that were trained using DARMDN models performed
better on the real system despite their suboptimal long-horizon performance. We suggest that for
an agent that trained by one-step Q-learning, such as SAC, only one-step errors matter. Ensemble
models improve over DMDN in the random dataset, but scores are comparable or worse in the
remaining tasks, although none of the differences are highly significant (they depend on a couple
of lucky seeds; a phenomenon that muddies the offline RL field). One result seems remarkable:
DARMDN models seem to be able to consistently generate agents that go beyond Hopper simply
standing up (score of about 30).

Table 2: Model dynamic evaluation: mean ± std over 3 seeds of the hyperoptimal SAC agents. The
reported score is the D4RL normalized score explained in Section 5.

D4RL dataset DARMDN DMDN ENS

random 31.34 ± 0.50 17.54 ± 9.80 31.97 ± 0.26
medium 66.96 ± 6.33 33.12 ± 5.96 14.12 ± 13.25
medium replay 70.57 ± 24.45 33.16 ± 1.90 28.96 ± 15.87
medium expert 64.18 ± 25.10 - ± - 32.10 ± 0.67

Correlating static metrics and dynamic scores. The experimental setup we introduce has the
advantage of reducing the combinatorics of the hyperparameter optimization process. However, the
best agents do not necessarily come from the models with the best static metrics, since these are

2The medium-expert dataset contains 2M timesteps which is costly in compute and memory. We therefore,
omit this experiment.

8

Under review as a conference paper at ICLR 2023

measured on static data not representative of the distribution on which they are applied in the dy-
namic run. In an attempt to optimize model selection, we investigate the model properties (static
metrics) that are most important for dynamic scores. For this, we compute Spearman rank correla-
tion (ρ) and Pearson bivariate correlation (r) between the static score obtained for all models and
their respective dynamic scores.

Figure 4: The Spearman and Pearson corre-
lations between the episodic return and LR/-
KS metrics on the D4RL medium dataset.

A value of ρ = 1 indicates that the static metric
conserves the same ranking observed in the dynamic
evaluation (sufficient for model selection) while r =
1 tells that the gap observed in the static metric is in
the same scale of the one observed in the dynamic
performance (linear correlation). The results in Fig-
ure 4 and Appendix G show that in most datasets,
the two most correlating metrics are LR (ρ = 1.0
and r = 0.93) and KS(1) (ρ = 1.0 and r = 0.83),
metrics that evaluate the calibratedness of the mod-
els. This underlines the fact that autoregressive models yield the best agent because of their ability
to learn one-step uncertainty estimates that represent well their true errors.

D4RL benchmark. We compare the scores obtained with our best agent (based on an autoregres-
sive model) with existing literature in the D4RL benchmark and include the results in Table 3.

Table 3: Results on the D4RL benchmark. The scores indicate the mean ± standard deviation
across 3 seeds (6 seeds for MOPO) of the normalized episodic return. We take the scores of MBRL
algorithms from their respective papers, and the scores of the model free algorithms and Behavior
cloning (BC) from the D4RL paper (Fu et al., 2021a).

D4RL dataset BC Ours MOPO COMBO MOREL SAC BEAR BRAC-v CQL

random 1.6 31.3 ± 0.5 11.7 ± 0.4 17.9 53.6 11.3 9.5 12.0 10.8
medium 29.0 66.9 ± 6.3 28.0 ± 12.4 94.9 95.4 0.8 47.6 32.3 86.6
medium replay 11.8 70.5 ± 24.4 67.5 ± 24.7 73.1 93.6 1.9 10.8 0.9 48.6
medium expert 111.9 64.1 ± 25.1 23.7 ± 6.0 111.1 108.7 1.6 4.0 0.8 111.0

Our algorithm achieves better or similar (medium replay) performance than MOPO, suggesting that
potentially the improvement is brought by autoregressive models over neural ensembles, which sup-
ports the case of single well-calibrated models. However, we would like to emphasize that there
may be other potential reasons behind such differences of performance. For instance Kidambi et al.
(2020) append the observations with the unobserved x velocity to get access to the full state of the
true MDP. The D4RL dataset version (v0 or v2) has also been criticized as providing different qual-
ities for the same dataset (we use v2 similar to Kidambi et al. (2020) and Yu et al. (2021) while Yu
et al. (2020) uses v0)3. Another important point is the evaluation protocol that sometimes assumes
access to the real system for policy evaluation (Kidambi et al., 2020; Wu et al., 2020; Fujimoto
et al., 2019; Kumar et al., 2019), and sometimes only reports the online evaluation score of the pol-
icy at the last agent-training iteration (Yu et al., 2020; 2021). Finally the architectural choices of
the model design and the chosen policy optimization algorithm can also impact the performance.
Consequently, we believe that, beyond designing benchmark data set, providing a unified evaluation
framework for offline RL is highly necessary. We plan to explore this direction in future work.

7 CONCLUSION

In this paper, we ask what are the best neural networks based dynamic system models, estimating
their own uncertainty, for conservativism-based MBRL algorithms. We build on a previous work
by Yu et al. (2020) (MOPO: model-based offline policy optimization) who use bootstrap ensem-
bles. Throughout a rigorous empirical study incorporating metrics that assess different aspects of
the model (precision, calibratedness, long-horizon performance), we show that deep autoregressive
models can improve upon the baseline in Hopper, one of the D4RL benchmark environments. Our
results exhibit the importance of calibratedness when the learned variance is used as an uncertainty
heuristic for reward penalization. Future work includes confirming our results on other benchmarks
and designing a unified offline RL evaluation protocol.

3Some issues have been raised about this in prior work: Lu et al. (2022), Issue 1, Issue 2.

9

https://github.com/tianheyu927/mopo/issues/5
https://github.com/aravindr93/mjrl/issues/35

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

In order to ensure reproducibility we will release the code at <URL hidden for review>,
once the paper has been accepted.

Finally, the hyperparameters of the algorithms are listed in Appendix A and the pseudocode is shown
in Section 4.

REFERENCES

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study.
In International Conference on Learning Representations, 2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In International Con-
ference on Learning Representations, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey Levine. Actionable models: Un-
supervised offline reinforcement learning of robotic skills. CoRR, abs/2104.07749, 2021. URL
https://arxiv.org/abs/2104.07749.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems 31, pp. 4754–4765. Curran Associates, Inc., 2018.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In Proceedings of
the 29th International Conference on Machine Learning, ICML’12, pp. 179–186, Madison, WI,
USA, 2012. Omnipress. ISBN 9781450312851.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on Machine Learning,
2011.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
position of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In ICML,
2018.

Andreas Draeger, Sebastian Engell, and Horst Ranke. Model predictive control using neural net-
works. IEEE Control Systems, 15:61–66, 1995. ISSN 1066033X. doi: 10.1109/37.466261.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1etN1rtPB.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021a. URL https://openreview.net/forum?id=
px0-N3_KjA.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R. Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine,
and Tom Le Paine. Benchmarks for deep off-policy evaluation, 2021b.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.

10

https://arxiv.org/abs/2104.07749
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=px0-N3_KjA
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html

Under review as a conference paper at ICLR 2023

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, International Confer-
ence on Machine Learning, 2016.

Omer Gottesman, Fredrik D. Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srini-
vasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher
Mosch, Li wei H. Lehman, Matthieu Komorowski, A. Aldo Faisal, Leo Anthony Celi, David A.
Sontag, and Finale Doshi-Velez. Evaluating reinforcement learning algorithms in observational
health settings. ArXiv, abs/1805.12298, 2018.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 31, pp. 2450–2462. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2555–2565, 2019.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 448–456. JMLR.org,
2015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Balázs Kégl, Alexandre Boucaud, Mehdi Cherti, Akin Kazakci, Alexandre Gramfort, Guillaume
Lemaitre, Joris Van den Bossche, Djalel Benbouzid, and Camille Marini. The RAMP framework:
from reproducibility to transparency in the design and optimization of scientific workflows. In
ICML workshop on Reproducibility in Machine Learning, 2018.

Balázs Kégl, Gabriel Hurtado, and Albert Thomas. Model-based micro-data reinforcement learn-
ing: what are the crucial model properties and which model to choose? In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
p5uylG94S68.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
21810–21823. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

11

https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=p5uylG94S68
https://openreview.net/forum?id=p5uylG94S68
https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2023

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A sur-
vey. IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi:
10.1109/TITS.2021.3054625.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pp. 6405–6416, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine and Vladlen Koltun. Guided policy search. In Sanjoy Dasgupta and David McAllester
(eds.), Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pp. 1–9, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v28/levine13.html.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR
(Poster), 2016. URL http://arxiv.org/abs/1509.02971.

Ruizhen Liu, Zhicong Chen, and Dazhi Zhong. Dromo: Distributionally robust offline model-based
policy optimization. 2021.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J. Roberts. Revisiting de-
sign choices in offline model based reinforcement learning. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=zz9hXVhf40.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In International Confer-
ence on Learning Representations, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed
framework for emerging ai applications. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, OSDI’18, pp. 561–577, USA, 2018. USENIX
Association. ISBN 9781931971478.

Rémi Munos, Thomas Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient
off-policy reinforcement learning. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pp. 1054–1062, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 9781510838819.

12

https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://proceedings.mlr.press/v28/levine13.html
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=zz9hXVhf40

Under review as a conference paper at ICLR 2023

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-
gaedice: Policy gradient from arbitrary experience. CoRR, abs/1912.02074, 2019. URL
http://arxiv.org/abs/1912.02074.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network dy-
namics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation, ICRA 2018, pp. 7559–7566. IEEE, 2018.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi, Xi-
uyuan Lu, and Benjamin Van Roy. Epistemic neural networks, 2021. URL https://arxiv.
org/abs/2107.08924.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Çaglar Gülçehre, Konrad Zolna, Alexander
Novikov, Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. CoRR, abs/2007.09055, 2020. URL https://arxiv.org/abs/2007.09055.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Proceedings of the 31st International Conference on Neural Information Process-
ing Systems, NIPS’17, pp. 2335–2344, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage weighted regression:
Simple and scalable off-policy reinforcement learning, 2020. URL https://openreview.
net/forum?id=H1gdF34FvS.

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, and Roberto Calandra. Mbrl-lib: A
modular library for model-based reinforcement learning. Arxiv, 2021. URL https://arxiv.
org/abs/2104.10159.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning.
In Conference on Robot Learning 2020, 2020. URL https://corlconf.github.io/
corl2020/paper_217/.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Jian Shen, Mingcheng Chen, Zhicheng Zhang, Zhengyu Yang, Weinan Zhang, and Yong Yu. Model-
based offline policy optimization with distribution correcting regularization. volume 12975
LNAI, pp. 174–189. Springer Science and Business Media Deutschland GmbH, 2021. ISBN
9783030864859. doi: 10.1007/978-3-030-86486-6 11.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters Chess,
Shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6404.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Alexander L. Strehl, John Langford, Lihong Li, and Sham M. Kakade. Learning from logged im-
plicit exploration data. In Proceedings of the 23rd International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’10, pp. 2217–2225, Red Hook, NY, USA, 2010. Curran
Associates Inc.

13

http://arxiv.org/abs/1912.02074
https://arxiv.org/abs/2107.08924
https://arxiv.org/abs/2107.08924
https://arxiv.org/abs/2007.09055
https://openreview.net/forum?id=H1gdF34FvS
https://openreview.net/forum?id=H1gdF34FvS
https://arxiv.org/abs/2104.10159
https://arxiv.org/abs/2104.10159
https://corlconf.github.io/corl2020/paper_217/
https://corlconf.github.io/corl2020/paper_217/
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Under review as a conference paper at ICLR 2023

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2:160–163, 7 1991. ISSN 0163-5719. doi: 10.1145/122344.122377. URL
https://dl.acm.org/doi/10.1145/122344.122377.

Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style planning
with linear function approximation and prioritized sweeping. Moore and Atkeson, 1992.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. Engineering Applications of Artificial Intelligence, 104:104366,
2021. ISSN 0952-1976. doi: https://doi.org/10.1016/j.engappai.2021.104366. URL https:
//www.sciencedirect.com/science/article/pii/S0952197621002141.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive
density-estimator. In Advances in Neural Information Processing Systems 26, pp. 2175–2183.
Curran Associates Inc., 2013.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. J. Mach. Learn. Res., 17(1):7184–7220, jan 2016. ISSN
1532-4435.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 1747–1756. JMLR.org, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, pp. 1–5, 2019.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. In 8th Inter-
national Conference on Learning Representations, ICLR 2020, 2020.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2020. URL https://openreview.net/forum?id=BJg9hTNKPH.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 14129–14142. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 28954–28967. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
f29a179746902e331572c483c45e5086-Paper.pdf.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory prun-
ing. 2021.

14

https://dl.acm.org/doi/10.1145/122344.122377
https://www.sciencedirect.com/science/article/pii/S0952197621002141
https://www.sciencedirect.com/science/article/pii/S0952197621002141
https://openreview.net/forum?id=BJg9hTNKPH
https://proceedings.neurips.cc/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf

Under review as a conference paper at ICLR 2023

Bangnig Zhang, Raghunandan Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland
Chua, Frank Hutter, and Roberto Calandra. On the importance of hyperparameter optimization
for model-based reinforcement learning. In AISTATS, 2021a.

Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, ziyu wang, and
Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and opti-
mization. In International Conference on Learning Representations, 2021b. URL https:
//openreview.net/forum?id=kmqjgSNXby.

15

https://openreview.net/forum?id=kmqjgSNXby
https://openreview.net/forum?id=kmqjgSNXby

Under review as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

MOPO Implementation details. Following MBPO, MOPO uses a bootstrap ensemble of proba-
bilistic neural networks p̂ℓθ = N (µℓ

θ, σ
ℓ
θ)}Dℓ=1 trained independently by log-likelihood maximization.

The dynamics model is a four-layer neural network with 200 units each, swish activation functions
and ridge regularization with different weight decays on each hidden layer. During the model roll-
out generation phase, MOPO first samples initial states from the offline dataset, then performs short
rollouts on the learned dynamics (with the horizon h ∈ {1, 5}).

Our Implementation details. For all the models, we use a neural network composed of a com-
mon number of hidden layers and two output heads (with Tanh activation functions) for the mean
and standard deviation of the learned probabilistic dynamics. We use batch normalization (Ioffe
& Szegedy, 2015), Dropout layers (Srivastava et al., 2014), and set the learning rate of the Adam
optimizer (Kingma & Ba, 2015), the number of common layers, and the number of hidden units
as hyperparameters that we tune using the built-in hyperoptimization engine in the RAMP frame-
work (Kégl et al., 2018). For the ensemble implementation, we replicate the DMDN model with the
optimal hyperparameters and train them by shuffling the training set (a practical variation to boot-
strapping (Chua et al., 2018; Pineda et al., 2021)). In all experiments, we use an ensemble of three
models. Table 4 shows the grid search ranges for the hyperparameters of our models.

Table 4: Model hyperparameters Grid search range.
Model DARMDN DMDN

Learning rate (Lr) 10−3, 3 × 10−4 10−3, 3 × 10−4

Number of hidden units (Nhu) 50, 100, 200 100, 200, 500
Number of common layers (Ncl) 1, 2 2, 3, 4

Using the one-million-timestep D4RL data sets, we first determine the best model hyperparameters
(in terms of the aggregate validation static metrics) on a subset of 50K training points (and 500K
validation points), then we train the best models on 90% of the whole data sets.

For the dynamic scores, we use Ray-tune (Moritz et al., 2018) to find the optimal hyperparameters
(short rollouts horizon h ∈ {1, 5, 50, 100}, uncertainty penalty λ ∈ {0.1, 1, 5, 25}, and uncertainty
heuristic for ensembles u ∈ {Max aleatory (MA), Max pairwise difference (MPD), Ensemble stan-
dard deviation (ESD)} on each model/data pair. We use the implementation of the open-source
library StableBaselines3 (Raffin et al., 2021) for the SAC agents.

We give the best hyperparameters for each model/data pair in Table 5.

Table 5: The optimal hyperparameters for all model/data pair.
Model Lr Nhu Ncl h λ u

D4RL random dataset

DMDN 3 × 10−4 500 3 5 0.1 -
DARMDN 10−3 200 2 100 1.0 -
ENS 3 × 10−4 500 3 5 5 ESD

D4RL medium dataset

DMDN 3 × 10−4 500 3 5 0.1 -
DARMDN 10−3 200 1 5 0.1 -
ENS 3 × 10−4 500 3 50 25 ESD

D4RL medium-replay dataset

DMDN 3 × 10−4 500 3 5 0.1 -
DARMDN 10−3 200 2 100 0.1 -
ENS 3 × 10−4 500 3 50 5 MPD

D4RL medium-expert dataset

DARMDN 10−3 200 1 100 0.1 -
ENS 3 × 10−4 200 3 5 0.1 ESD

B CHARACTERISTICS OF THE BENCHMARK ENVIRONMENT: HOPPER

The hopper environment consists of a robot leg with 11 observations (rootz, rooty, thigh, leg, foot,
rootx dot, rootz dot, rooty dot, thigh dot, leg dot, foot dot) including the angular positions and ve-
locities of the leg joints, except for the x position of the root joint. The action is a control signal

16

Under review as a conference paper at ICLR 2023

applied by three actuators located in the three joints. The goal of the system is to hop forward as
fast as possible (maximizing the velocity in the direction of x) while applying the smallest possi-
ble control (measured by ∥at∥22), and without falling into unhealthy states (terminal states where
the position of the leg is physically unfeasible). We detail the characteristics of the environment in
Table 6.

Table 6: Hopper characteristics.
dimension of the observable space dimension of the action space task horizon reward function

11 3 1000 ẋt − 0.1 × ∥at∥2
2 + 1{state is healthy}

C STATIC METRICS

We define our static metrics based on the marginal one-dimensional densities of each predicted
feature. For autoregressive models, these densities are learned separately while non-autoregressive
models learn a multivariate density that is separated using the product rule:

p(st+1|st, at) = p1(s
1
t+1|x1

t)

ds∏
j=2

pj(s
j
t+1|x

j
t) where xj

t =
(
s1t+1, . . . , s

j−1
t+1 , st, at

)
.

All metrics will be evaluated on a data set D of size N , consisting of transitions in the real system.
D stands for a held-out validation set on the offline training datasets.

EXPLAINED VARIANCE (R2): Measures the precision of the mean predictions.

R2(D; θ; j ∈ {1, . . . , ds}) = 1−
1
N

∑N
i=1

(
sji,t+1 − µj

θ(s
j
i,t, ai,t)

)2

1
N

∑N
i=1

(
sji,t+1 − s̄jt+1

)2 (1)

where θ are the model parameters and s̄jt+1 the sample mean of the jth dimension of st+1. R2 is
between 0 and 1, the higher the better.

LIKELIHOOD RATIO (LR): The average log-likelihood evaluated on D is defined as

L(D; θ; j ∈ {1, . . . , ds}) =
1

N

N∑
i=1

log pjθ (si,t+1|si,t, ai,t) (2)

where pθ is the PDF of the Gaussian distribution induced by the learned parameters:
N
(
µθ(st, at), σθ(st, at)

)
. The log-likelihood is an uninterpretable unitless measure that we ide-

ally want to maximize. Following Kégl et al. (2021), we normalize L with the log-likelihood of a
multivariate unconditional Gaussian distribution (Lbaseline) whose parameters are estimated from the
dataset D.

LR(D; θ; j ∈ {1, . . . , ds}) =
eL(D;θ;j∈{1,...,ds})

eLbaseline(D;j∈{1,...,ds})
(3)

OUTLIER RATE (OR): In practice, the log-likelihood estimator is dominated by out-of-distribution
test points where the likelihood tends to zero. For this reason, we omit the data points that have a
likelihood smaller or equal to pmin = 1.47 × 10−6 when computing the LR. The OR metric is the
proportion of data points that fall in this category. Formally:

OR(D; θ; j ∈ {1, . . . , ds}) = 1−
|
{
(st, at, st+1) ∈ D : pjθ(st+1|st, at) > pmin

}
|

N
(4)

OR is between 0 and 1, the lower the better.

17

Under review as a conference paper at ICLR 2023

Figure 5: Kolmogorov-Smirnov
(KS) statistic (in red) of the pre-
dicted reward.

CALIBRATEDNESS (KS): This metric is computed using the
quantile (under the model distribution) of the ground truth val-
ues. Hypothetically, these quantiles are uniform if the error
we make on the ground truth is a random variable distributed
according to a Gaussian having the predicted standard devi-
ation, a property we characterize as calibratedness. To as-
sess this, we compute the Kolmogorov-Smirnov (KS) statis-
tics. Formally, starting from the model cumulative distribu-
tion function (CDF) Fθ(st+1|st, at), we define the empirical
CDF of the quantiles of ground truth values by Fθ,j(x) =∣∣{(st,at,st+1)∈D|F j

θ (st+1|st,at)≤x
}∣∣

N for x ∈ [0, 1]. We denote
by U(x) the CDF of the uniform distribution over the interval
[0, 1], and we define the KS statistics as the largest absolute
difference between the two CDFs across the data set D:

KS(D; θ; j ∈ {1, . . . , ds}) =

max
i∈{1,...,N}

∣∣∣Fθ,j(F
j
θ (si,t+1|si,t, ai,t))− U(F j

θ (si,t+1|si,t, ai,t))
∣∣∣ (5)

The KS score is between zero and one, the lower the better.

LONG HORIZON METRICS KS(L) AND R2(L): Although the models are trained to optimize
the one-step prediction log-likelihood score, we want to assess their precision and calibratedness
at a longer horizon. Indeed, during the agent learning phase we sample trajectories of multiple
steps which can lead to uncertain regions in the case of significant compounding errors down the
horizon. For this purpose, we use ground truth actions from a system trace to generate a population
of n ∈ N trajectories of length Lmax: YL = [ŝℓ,t+1:t+Lmax]nℓ=1

and use the mean predictions to
compute a Monte-Carlo estimate of the R2(L) metric, for L = 0, . . . , Lmax, using the sample mean
µ̂θ(st+L|st, at) = 1

n

∑
ŝ∈YL

ŝt+L as approximate prediction. For the KS(L) metric, we estimate

the model CDF with the order statistic Fθ(st+L|st, at) = |{ŝ∈YL:ŝt+L≤st+L}|
n among the population

of trajectories.

D PER-DIMENSION STATIC METRICS

In all plots, as in Table 1, the KS score is multiplied by 1000, and the OR and R2 scores are multi-
plied by 10000,

18

Under review as a conference paper at ICLR 2023

D.1 RANDOM DATASET

Figure 6: Per-dimension static metrics in the random dataset. The metrics include: R2, KS, LR,
and OR. They are computed for all Hopper observables, in addition to the predicted reward (labeled
obs reward). The dots show the mean ± the standard deviation among the training and the validation
scores for each metric.

19

Under review as a conference paper at ICLR 2023

D.2 MEDIUM DATASET

Figure 7: Per-dimension static metrics in the medium dataset. The metrics include: R2, KS, LR,
and OR. They are computed for all Hopper observables, in addition to the predicted reward (labeled
obs reward). The dots show the mean ± the standard deviation among the training and the validation
scores for each metric.

20

Under review as a conference paper at ICLR 2023

D.3 MEDIUM-REPLAY DATASET

Figure 8: Per-dimension static metrics in the medium-replay dataset. The metrics include: R2, KS,
LR, and OR. They and are computed for all Hopper observables, in addition to the predicted reward
(labeled obs reward). The dots show the mean ± the standard deviation among the training and the
validation scores for each metric.

21

Under review as a conference paper at ICLR 2023

D.4 MEDIUM-REPLAY DATASET

Figure 9: Per-dimension static metrics in the medium-expert dataset. The metrics include: R2, KS,
LR, and OR. They are computed for all Hopper observables, in addition to the predicted reward
(labeled obs reward). The dots show the mean ± the standard deviation among the training and the
validation scores for each metric.

22

Under review as a conference paper at ICLR 2023

E ERROR QUANTILE HISTOGRAMS

E.1 RANDOM DATASET

Figure 10: Per-dimension Error quantile histograms in the random dataset. The plot shows the
ground truth validation quantiles under the model distribution. The legend includes the value of the
KS calibratedness metric, and the dotted red line indicates the ideal case when the quantiles follow
a uniform distribution. The histograms are computed for all Hopper observables, in addition to the
predicted reward (labeled obs reward).

23

Under review as a conference paper at ICLR 2023

E.2 MEDIUM DATASET

Figure 11: Per-dimension Error quantile histograms in the medium dataset. The plot shows the
ground truth validation quantiles under the model distribution. The legend includes the value of the
KS calibratedness metric, and the dotted red line indicates the ideal case when the quantiles follow
a uniform distribution. The histograms are computed for all Hopper observables, in addition to the
predicted reward (labeled obs reward).

24

Under review as a conference paper at ICLR 2023

E.3 MEDIUM-REPLAY DATASET

Figure 12: Per-dimension Error quantile histograms in the medium-replay dataset. The plot shows
the ground truth validation quantiles under the model distribution. The legend includes the value
of the KS calibratedness metric, and the dotted red line indicates the ideal case when the quantiles
follow a uniform distribution. The histograms are computed for all Hopper observables, in addition
to the predicted reward (labeled obs reward).

25

Under review as a conference paper at ICLR 2023

E.4 MEDIUM-EXPERT DATASET

Figure 13: Per-dimension Error quantile histograms in the medium-expert dataset. The plot shows
the ground truth validation quantiles under the model distribution. The legend includes the value
of the KS calibratedness metric, and the dotted red line indicates the ideal case when the quantiles
follow a uniform distribution. The histograms are computed for all Hopper observables, in addition
to the predicted reward (labeled obs reward).

26

Under review as a conference paper at ICLR 2023

F LONG HORIZON METRICS

Figure 14: Long horizon explained variance R2(L) and calibratedness KS(L). The metric is aggre-
gated by averaging over Hopper’s observables and predicted reward.

27

Under review as a conference paper at ICLR 2023

G STATIC AND DYNAMIC METRICS CORRELATIONS

G.1 RANDOM DATASET

Figure 15: The Spearman and Pearson correlations between the episodic return and the static metrics
(LR, negative OR, R2(1), negative KS(1), R2(10), negative KS(10), R2(20), negative KS(20)) in
the random dataset. To uniformly evaluate the metrics’ positive correlation with the episodic return,
we take the negative of the metrics where the smaller is the better (KS(L) and OR).

28

Under review as a conference paper at ICLR 2023

G.2 MEDIUM DATASET

Figure 16: The Spearman and Pearson correlations between the episodic return and the static metrics
(LR, negative OR, R2(1), negative KS(1), R2(10), negative KS(10), R2(20), negative KS(20)) in
the medium dataset. To uniformly evaluate the metrics’ positive correlation with the episodic return,
we take the negative of the metrics where the smaller is the better (KS(L) and OR).

29

Under review as a conference paper at ICLR 2023

G.3 MEDIUM-REPLAY DATASET

Figure 17: The Spearman and Pearson correlations between the episodic return and the static metrics
(LR, negative OR, R2(1), negative KS(1), R2(10), negative KS(10), R2(20), negative KS(20)) in
the medium-replay dataset. To uniformly evaluate the metrics’ positive correlation with the episodic
return, we take the negative of the metrics where the smaller is the better (KS(L) and OR).

30

Under review as a conference paper at ICLR 2023

G.4 MEDIUM-EXPERT DATASET

Figure 18: The Spearman and Pearson correlations between the episodic return and the static metrics
(LR, negative OR, R2(1), negative KS(1), R2(10), negative KS(10), R2(20), negative KS(20)) in
the medium-expert dataset. To uniformly evaluate the metrics’ positive correlation with the episodic
return, we take the negative of the metrics where the smaller is the better (KS(L) and OR).

31

	Introduction
	Related work
	Preliminaries
	A baseline: model-based offline policy optimization (MOPO)
	Experimental setup
	Static metrics
	Dynamic metrics

	Experiments & Results
	Conclusion
	Implementation details
	Characteristics of the benchmark environment: Hopper
	Static metrics
	Per-dimension static metrics
	Random dataset
	Medium dataset
	Medium-replay dataset
	Medium-replay dataset

	Error quantile histograms
	Random dataset
	Medium dataset
	Medium-replay dataset
	Medium-expert dataset

	Long horizon metrics
	Static and dynamic metrics correlations
	Random dataset
	Medium dataset
	Medium-replay dataset
	Medium-expert dataset

