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ABSTRACT

Medical image segmentation is fundamental to clinical decision-making, yet ex-
isting models remain fragmented. They are usually trained on single knowledge
sources and specific to individual tasks, modalities, or organs. This fragmenta-
tion contrasts sharply with clinical practice, where experts seamlessly integrate
diverse knowledge: anatomical priors from training, exemplar-based reasoning
from reference cases, and iterative refinement through real-time interaction. We
present K-Prism, a unified segmentation framework that mirrors this clinical flex-
ibility by systematically integrating three knowledge paradigms: (i) semantic pri-
ors learned from annotated datasets, (ii) in-context knowledge from few-shot ref-
erence examples, and (iii) interactive feedback from user inputs like clicks or
scribbles. Our key insight is that these heterogeneous knowledge sources can
be encoded into a dual-prompt representation: 1-D sparse prompts defining what
to segment and 2-D dense prompts indicating where to attend, which are then
dynamically routed through a Mixture-of-Experts (MoE) decoder. This design
enables flexible switching between paradigms and joint training across diverse
tasks without architectural modifications. Comprehensive experiments on 18 pub-
lic datasets spanning diverse modalities (CT, MRI, X-ray, pathology, ultrasound,
etc.) demonstrate that K-Prism achieves state-of-the-art performance across se-
mantic, in-context, and interactive segmentation settings. Code is available at
https://github.com/bangwayne/K-Prism.

1 INTRODUCTION

Medical image segmentation is a cornerstone of modern clinical workflows, supporting tasks such
as tumor delineation (Heller et al., 2019; Bilic et al., 2023), organ quantification (Wasserthal et al.,
2023), and vessel segmentation (Livne et al., 2019). While deep learning achieves strong results
on individual benchmarks (Isensee et al., 2021; Hatamizadeh et al., 2022), real-world deployment
remains challenging: healthcare institutions must maintain dozens of task-specific models tailored
to different organs, modalities, and clinical scenarios, resulting in high deployment complexity and
inconsistent performance (Zhou et al., 2021). This fragmentation stems from a deeper limitation:
most existing models are constrained to a single knowledge type. They either depend on semantic
priors learned from large labeled datasets (Liu et al., 2023a; Gao, 2024), adapt through in-context
knowledge with few-shot examples (Butoi et al., 2023), or rely on interactive feedback (Ma et al.,
2024; Isensee et al., 2025). Yet clinical practice is rarely confined to a single knowledge paradigm.

Consider a radiologist examining a rare pediatric tumor: they may leverage their semantic knowl-
edge of anatomy, retrieve similar historical cases for reference, and iteratively refine boundaries
through interactive feedback. Such flexible integration of diverse knowledge is routine for human
experts, who dynamically adapt their strategies to the different clinical settings. In contrast, current
AI models remain rigid, unable to seamlessly combine multiple knowledge sources. This forces
clinicians to switch between separate models, disrupting workflows and limiting the potential of
AI assistance. Recent efforts have attempted partial unification, combining two paradigms at a
time (Gao et al., 2025; Guo et al., 2025; Wong et al., 2024), but no framework yet integrates all
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Figure 1: K-Prism integrates three forms of external knowledge, semantic priors (from annotated
training datasets), in-context exemplars (from reference image–mask pairs), and interactive feedback
(from user clicks and previous masks) into a single framework, enabling robust segmentation across
diverse modalities and targets.

three knowledge types within a single architecture, see Table 1. This gap persists due to a key tech-
nical challenge: how to represent and process fundamentally different forms of knowledge within a
unified framework that delivers strong performance across all modes.
We propose that achieving true universality in medical segmentation requires simultaneously ad-
dressing three clinically essential knowledge sources: (1) semantic prior knowledge from large-scale
annotated datasets, capturing common anatomical and modality patterns, (2) in-context knowledge
from reference examples, critical for rare diseases or new protocols where labeled data is scarce, (3)
interactive feedback knowledge from user interactions such as clicks or scribbles, enabling iterative
refinement. To realize this vision, we propose a knowledge-guided and prompt-integrated universal
medical image segmentation model, K-Prism, which can integrate all three knowledge forms and
adapt seamlessly across diverse inference scenarios and imaging domains (Figure 1).

To support joint training and inference across heterogeneous tasks and knowledge paradigms, we
design a novel dual-prompt representation coupled with a Mixture-of-Experts (MoE) decoder. Our
key insight is that diverse knowledge sources can be encoded into two complementary prompt types:
1-D sparse prompts to encode what to segment and 2-D dense prompts to encode where to attend,
which are then dynamically routed through specialized experts based on the task requirements. This
design enables K-Prism to not only match state-of-the-art (SOTA) performance in each individ-
ual paradigm but also support fluid transitions between modes, mirroring clinical workflows where
different knowledge sources are combined based on availability and task demands. Beyond perfor-
mance, K-Prism reduces deployment complexity by unifying all three paradigms, positioning itself
as both a robust segmentation model and practical infrastructure for medical foundation models.

In summary, our key contributions are:

• We propose K-Prism, a unified framework and practical foundation for medical image segmenta-
tion that integrates three clinically relevant knowledge types.

• We design a dual-prompt representation that combines 1-D sparse and 2-D dense prompts with a
MoE decoder for dynamic routing, enabling joint training across diverse tasks and modalities.

• We conduct comprehensive experiments on 18 datasets covering diverse anatomical targets, imag-
ing modalities (CT, MRI, X-ray, pathology, etc.), and segmentation paradigms (semantic, in-
context, interactive), achieving SOTA performance and strong cross-dataset generalization.
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2 RELATED WORK

2.1 MEDICAL IMAGE SEGMENTATION UNDER DIVERSE KNOWLEDGE

Medical image segmentation has conventionally relied on task-specific, fully supervised models
trained on well-annotated single-modality datasets (Isensee et al., 2021; Hatamizadeh et al., 2022).
While effective in constrained settings, these models often fail to generalize to real-world scenarios
where the available knowledge varies across cases (Zhou et al., 2022). To improve adaptability,
recent studies have explored knowledge-driven strategies across diverse segmentation paradigms.
In semantic segmentation, Liu et al. (2023a) leverage CLIP to encode anatomical descriptions into
semantic priors, while Hermes (Gao, 2024) introduces learnable task-specific embeddings to guide a
universal model. In in-context segmentation, Universeg (Butoi et al., 2023) and Tyche (Rakic et al.,
2024) employ annotated support exemplars as visual references, enabling few-shot generalization
across diverse tasks and datasets. In interactive segmentation, MedSAM (Ma et al., 2024) and
nnInteractive (Isensee et al., 2025) refine model predictions by incorporating user prompts such as
clicks and bounding boxes. Despite these advances, most existing methods are restricted to a single
segmentation paradigm, limiting their ability to integrate heterogeneous knowledge sources.

2.2 UNIFIED SEGMENTATION FRAMEWORKS AND GENERALIZATION

Table 1: Comparison of representative medical image seg-
mentation methods across different paradigms.

Method Semantic In-context Interactive

nnU-Net (Isensee et al., 2021) ✓ – –
UNETR (Hatamizadeh et al., 2022) ✓ – –
Clip-driven (Liu et al., 2023a) ✓ – –
Hermes (Gao, 2024) ✓ – –
UniverSeg (Butoi et al., 2023) – ✓ –
Tyche (Rakic et al., 2024) – ✓ –
MedSAM (Ma et al., 2024) – – ✓
nnInteractive (Isensee et al., 2025) – – ✓
MultiverSeg (Wong et al., 2024) – ✓ ✓
Iris (Gao et al., 2025) ✓ ✓ –
Verse (Guo et al., 2025) ✓ – ✓

Ours (K-Prism) ✓ ✓ ✓

Recent work has explored unified med-
ical segmentation frameworks capable
of integrating multiple tasks and knowl-
edge types. As shown in Table 1,
Iris (Gao et al., 2025) encodes refer-
ence image–label pairs into 1-D to-
kens, supporting both semantic and
in-context segmentation. Verse (Guo
et al., 2025) unifies semantic and inter-
active segmentation, enabling iterative
refinement of initial predictions, while
MultiverSeg (Wong et al., 2024) com-
bines in-context and interactive seg-
mentation to learn from a small num-
ber of annotated examples and improve
results through expert feedback. How-
ever, no existing medical image seg-
mentation framework integrates seman-
tic, in-context, and interactive feedback knowledge within a single architecture, leaving a gap for
models that can adapt across all three paradigms.

3 METHOD

3.1 PROBLEM DEFINITION

Conventional medical image segmentation methods follow a knowledge-specific paradigm, where a
dedicated model fθt is trained for specific segmentation task t, relying solely on a single knowledge
type such as semantic priors or in-context knowledge. K-Prism moves beyond this limitation by
jointly integrating three complementary clinical knowledge sources, each aligned with a specific
operational mode within a unified architecture:

• Mode-1: Semantic segmentation leverages learned class-level priors. Given a learnable em-
bedding matrix P ∈ RNcls×(p×C) and input image I , where Ncls is the number of classes in the
training set, and each entry pn ∈ Rp×C encodes semantic knowledge for class n ∈ {1, . . . , Ncls}
through p query vectors of dimension C, the model predicts Ŷn = fθ(I | pn).

• Mode-2: In-context segmentation uses reference examples to guide segmentation. Given
a support set S = {Iref,Mref} containing reference images and masks, the model predicts
Ŷq = fθ(Iq | S).
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Figure 2: (a) Overview of the proposed K-Prism framework. Our model integrates three forms of
external knowledge via the prompt fusion modules, encoding them into 1-D sparse queries and 2-D
dense prompts to produce fusion feature maps. (b) The MoE decoder dynamically routes different
prompts to specialized experts through cross-attention and gating, enabling task-aware specialization
and robust segmentation across diverse scenarios.

• Mode-3: Interactive segmentation incorporates user feedback through clicks, enabling iterative
refinement. Given click set C = {ci}Nc

i=1, the model predicts Ŷ = fθ(I | C). This mode can also
refine the initial predictions from Mode-1 and Mode-2.

In the following sections, we describe how K-Prism’s unified architecture realizes each mode and
seamlessly integrates multiple knowledge sources to achieve efficient, accurate, and broadly gener-
alizable medical image segmentation.

3.2 INTEGRATING DIVERSE KNOWLEDGE INTO UNIFIED PROMPTS

Figure 2(a) shows the K-Prism framework. To process different knowledge types within a single
architecture, we propose a dual-prompt design that captures two complementary aspects of segmen-
tation by converting the inputs from each operational mode into a unified prompt representation:
(i) 1-D sparse prompts, which define what the model should focus on by encoding task-level or
instance-specific queries, and (ii) 2-D dense prompts, which indicate where the model should attend
by modulating spatial feature maps to inject localization cues and refine structural details. Given an
input image I ∈ R3×H×W , we first extract its feature map F through the encoder:

F = Encoder(I), F ∈ RC×h×w, (1)

where C is the feature dimension and h,w are the spatial resolutions of the encoded features.

3.2.1 SEMANTIC SEGMENTATION

In this mode, we use only 1-D sparse prompts, since semantic segmentation task relies solely on
high-level class knowledge. The semantic prior embedding matrix P ∈ RNcls×(p×C) is a learnable
parameter, optimized through gradient backpropagation during training to learn class knowledge.
To segment class n, the corresponding query set pn is combined with the feature map F and fed
into the decoder, without requiring any prompt fusion:

Outputn = Decoder(F |pn). (2)

3.2.2 IN-CONTEXT SEGMENTATION

This mode requires both 1-D sparse prompts and 2-D dense prompts. Let the support set be S =
{Iref,Mref}, where Iref ∈ RNref×3×H×W denotes the reference images and Mref ∈ RNref×1×H×W

denotes the corresponding segmentation masks.
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Given a query image Iq and the reference images Iref, the image encoder first extracts query and key
features as shown in Figure 2(a):

Fq = Encoder(Iq),Fk = Encoder(Iref), (3)

and the reference image–mask pairs are encoded into value features via a lightweight mask encoder:

Fv = MaskEncoder(Concat[Iref,Mref]). (4)

For 2-D dense prompts, these encoded features are flattened and utilized in the prompt fusion:

Kref = Flat(Fk) ∈ RC×Nrefhw, V ref = Flat(Fv) ∈ RC×Nrefhw, Kq = Flat(Fq) ∈ RC×hw.
(5)

In our design, Kref and Kq are extracted by the same encoder, placing them in a shared feature space
where the similarity matrix can be computed to align query and reference images. The value features
V ref, derived from reference image–mask pairs, are then projected via this similarity matrix into the
query-aligned space, transferring mask semantics to the query image representation. Both Kref and
V ref thus serve as 2-D dense prompts. Formally, for any similarity function c : RC × RC → R, we
compute the softmax-normalized affinity matrix W by:

Ai,j = c
(
Kref

:,i ,K
q
:,j

)
, Wi,j =

exp(Ai,j)∑
n exp(An,j)

, A,W ∈ RNrefhw×hw. (6)

We use negative squared Euclidean distance for c(·, ·) following Cheng et al. (2021; 2024). The
affinity matrix W projects the value features V ref to align with the query features, producing the
fusion feature map Ffuse = V refW , Ffuse ∈ RC×hw, which is then passed to the decoder.

For the 1-D sparse prompt, given the encoded reference features Kref, we construct a set of ns object
queries Qs ∈ Rns×C , where each query encodes compact, high-level object information. The first
half represents the foreground, while the second half represents the background. A pooling mask
M pool ∈ [0, 1]Nrefhw is obtained by downsampling and flattening Mref, and the n-th object query at
location i is then derived via masked average pooling:

mn
i =


0, n ≤ ns

2 and M pool
i < 0.5,

0, n > ns

2 and M pool
i ≥ 0.5,

1, otherwise.

, Qs
n,: =

∑Nrefhw
i=1 (Kref)⊤i: m

n
i∑Nrefhw

i=1 mn
i

,Qs
n,: ∈ RC . (7)

In summary, Qs provides a 1-D sparse prompt encoding object-level foreground and background
information, while Kref and V ref act as 2-D dense prompts for spatial modulation. This dual-prompt
design enables the MoE decoder in the in-context setting to reason jointly over object semantics and
spatial context. Further details and settings are provided in Appendix.

3.2.3 INTERACTIVE SEGMENTATION

For interactive segmentation, given an image I and user click set C = {ci}Nc
i=1, we construct a three-

channel prompt Iclick ∈ R3×H×W encoding positive clicks, negative clicks, and the previous mask
prediction (Sofiiuk et al., 2022; Liu et al., 2023b). This prompt serves as a 2-D dense signal and is
additively fused with the image features.

Ffuse =

{
PromptEncoder(Iclick) + Encoder(I), Mode-3 or refine Mode-1

PromptEncoder(Iclick) + V refW , Refine Mode-2
, Ffuse ∈ RC×hw.

(8)

Each click is also encoded as a 1-D sparse query. Following Guo et al. (2025), a click at image
coordinates (x, y) is mapped to feature map coordinates (x′, y′) = (⌊x/s⌋, ⌊y/s⌋), with s denot-
ing the downsampling ratio. Features within a local window of size 2r+1 centered at (x′, y′) are
average-pooled, linearly transformed, and combined with a SAM-style positional embedding (Kir-
illov et al., 2023) to form the sparse query for that click. The Nc clicks together form the query set
Qc ∈ RNc×C , which is then fed into the decoder to produce the segmentation.
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Output =


Decoder(Ffuse |pn,Q

c), Refine Mode-1

Decoder(Ffuse |Qs,Qc), Refine Mode-2

Decoder(Ffuse |Qc), Mode-3

(9)

3.3 MIXTURE-OF-EXPERTS CROSS-ATTENTION DECODER

The unified nature of K-Prism makes it challenging for a single decoder to effectively process fun-
damentally different knowledge types, as each requires distinct processing strategies. A standard
decoder would struggle to optimize across all three paradigms simultaneously, potentially leading
to suboptimal performance. To address this, we introduce a Mixture-of-Experts (MoE) decoder that
enables dynamic, task-aware specialization while maintaining shared representational capacity. Our
decoder adopts a bidirectional cross-attention design to effectively fuse 1-D sparse prompt and 2-D
fusion feature maps (Figure 2(b)). In the first layer, 1-D sparse prompts are projected into queries
Q ∈ Rq×C , while 2-D fusion feature maps are projected into keys and values K,V ∈ Rhw×C .
MoE is applied to both cross-attention (CA) and the feed-forward network (FFN). And each MoE-
CA layer consists of M multi-head attention experts {Am}Mm=1, where each computes the cross-
attention: Om = Am(Q+PQ,K+PK ,V ), Om ∈ Rq×C , with PQ and PK denoting positional
embeddings. Cross-attention is given by:

CrossAttnm(Q,K,V ) = softmax

(
QK⊤
√
C

)
V , (10)

To adaptively combine the outputs of multiple experts, a gating network G : Rq×C → Rq×M

predicts query-specific expert weights: α = softmax(G(Q)), α ∈ Rq×M . The expert outputs
are stacked as Ostack ∈ Rq×M×C , and the gating weights are broadcast to αb ∈ Rq×M×1. The final
MoE output is then obtained via element-wise multiplication and summation:

Omoe =

M∑
m=1

αb
:,m,: ⊙Ostack

:,m,:, Omoe ∈ Rq×C . (11)

We then apply residual addition and layer normalization to obtain the updated query representation
Q′, which is then passed to Self-Attention and MoE-FFN blocks to further update. In the second
MoE cross-attention layer, the updated 1-D queries are projected into keys and values, while the
2-D fusion feature maps serve as queries, establishing bidirectional interaction between the sparse
queries and fusion feature maps. More details of the decoder are provided in Appendix.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We train on 12 publicly available datasets (Ji et al., 2022; Campello et al., 2021; Bilic
et al., 2023; Heller et al., 2019; Li et al., 2020; 2021; 2022a;b; Al-Dhabyani et al., 2020; Jaeger
et al., 2013; Candemir et al., 2013; Deng et al., 2025; Kovalyk et al., 2022; Ngoc Lan et al., 2021;
Codella et al., 2019; Tschandl et al., 2018) spanning diverse imaging modalities (CT, MRI, pathol-
ogy, ultrasound, etc.) and clinical targets (organs, tumors, lesions, etc.). For evaluation, we use (i)
four external datasets: BTCV (Landman et al., 2015), ACDC (Bernard et al., 2018), UW-SC (Uni-
versity of Waterloo), and BUS (Yap et al., 2020), to test cross-dataset generalization, and (ii) two
unseen-class datasets: BraTS (Baid et al., 2021) and M&Ms-2 (Campello et al., 2021), to assess
adaptation to novel structures. Details are provided in Appendix.

Baselines. We compare against SOTA methods in three categories: (1) Semantic segmentation: the
task-specific model nnU-Net (Isensee et al., 2021), and universal models Clip-driven (Liu et al.,
2023a), UniSeg (Ye et al., 2023), and Hermes (Gao, 2024); (2) In-context segmentation: Uni-
verSeg (Butoi et al., 2023), Tyche (Rakic et al., 2024), MultiverSeg (Wong et al., 2024), and Iris (Gao
et al., 2025); (3) Interactive segmentation: nnInteractive (Isensee et al., 2025), MedSAM (Ma et al.,
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Table 2: Comparison of semantic and in-context segmentation across different in-distribution
datasets, measured by mean Dice scores (%). All in-context models use one-shot inference.

Method
AMOS

CT
AMOS
MRI

M&Ms LiTS
Tumor

KiTS
Tumor

LAScarQS Breast
Cancer

Chest
X-ray

KPIs PAPILA BKAI
POLY

ISIC AVG

Semantic (Task-specific Model)
nnU-Net 76.26 76.57 85.42 56.84 73.39 84.28 71.68 94.95 86.22 96.17 83.45 86.76 81.00

Semantic (Universal Models)
Clip-driven 84.37 83.20 84.10 60.12 75.99 80.94 76.47 95.45 85.82 95.81 86.32 86.04 84.31
UniSeg 84.91 85.36 85.34 56.97 73.41 81.57 75.71 96.02 80.88 91.40 82.57 84.24 83.96
Hermes 85.06 84.65 85.87 58.66 73.64 83.30 78.09 95.64 85.41 95.87 85.59 88.64 85.02
K-Prism 85.21 84.39 86.15 64.22 78.70 83.27 76.86 95.93 86.68 95.71 86.76 89.36 86.21
In-context
UniverSeg 60.51 59.02 60.51 49.02 58.60 72.18 54.82 94.65 81.07 95.45 73.93 80.01 71.53
Tyche 61.62 59.52 61.21 50.01 59.68 72.26 54.94 94.42 81.05 95.60 74.73 80.80 72.12
MultiverSeg 58.48 58.13 58.83 50.60 65.43 67.74 67.02 94.01 82.36 94.98 72.77 85.10 72.41
Iris 74.10 76.59 83.37 59.26 74.65 78.14 75.47 95.86 83.96 95.31 82.96 85.87 81.76
K-Prism 79.72 78.21 85.22 62.93 79.12 81.22 75.55 95.80 86.48 95.74 84.88 89.78 84.82

Table 3: Comparison of semantic and in-context segmentation across external and unseen-class
datasets, measured by mean Dice scores (%). All in-context models use one-shot inference.

Method External Unseen-Class
BTCV ACDC UW-SC BUS AVG BraTS M&Ms-2 AVG

Semantic (Task-specific Model)
nnU-Net 67.25 84.64 79.78 68.00 74.92 - - -
Semantic (Universal Models)
Clip-driven 78.43 85.35 83.19 69.86 79.21 - - -
UniSeg 80.89 86.69 84.47 69.24 80.82 - - -
Hermes 79.25 85.87 87.64 72.49 81.81 - - -
K-Prism 80.24 87.26 87.54 78.75 83.45 - - -
In-context
UniverSeg 55.63 56.87 75.08 47.56 58.29 15.61 21.16 18.39
Tyche 57.07 57.62 74.60 43.68 58.74 15.92 21.95 18.94
MultiveSeg 48.69 51.15 78.76 62.08 60.67 18.23 26.21 22.22
Iris 74.97 83.36 86.82 68.93 78.52 25.83 26.30 26.07
K-Prism 76.82 85.89 87.66 79.59 82.49 22.20 41.61 31.91

2024), MultiverSeg (Wong et al., 2024), SAM2 (Ravi et al., 2024), and SegNext (Liu et al., 2024a).
All models are trained with 2-D slices extracted from our curated datasets under identical conditions.
Implementation details are described in the Appendix.

4.2 RESULTS

4.2.1 SEMANTIC SEGMENTATION

Table 2 shows that K-Prism achieves the highest average Dice scores (86.21%) across 12 in-
distribution datasets of diverse modalities, surpassing Hermes (85.02%), Clip-driven (84.31%),
and UniSeg (83.96%). As a task-specific model, nnU-Net performs well on certain single-organ
datasets (e.g., PAPILA 96.17%, LAScarQS 84.28%), consistent with its per-dataset optimization
strategy (Isensee et al., 2021). However, its accuracy drops notably on multi-organ 2D slice segmen-
tation (Liu et al., 2024b), such as AMOS-MRI (76.57%), and declines further on external datasets.
In contrast, universal models achieve more stable performance across modalities, and K-Prism con-
tinues this trend with even greater consistency. On challenging tasks such as tumor segmentation,
it achieves notable performance improvements: 64.22% for LiTS and 78.70% for KiTS. These re-
sults demonstrate the effectiveness of our framework in capturing anatomical context and delivering
robust segmentation. Table 3 presents results on external datasets. Our model yields the best gen-
eralization across datasets with 83.45% average Dice score. These results establish K-Prism as the
new state-of-the-art for semantic medical segmentation, with strong generalization across diverse
modalities and clinical settings.
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Table 4: Comparison of interactive segmentation performance across in-distribution, external and
unseen-class datasets. To maintain clarity, only the mean values of key metrics are reported across
multiple datasets. NoC90/NoC95 denote the average number of clicks required to reach 90% and
95% Dice scores, while Dice(1)/Dice(5) refer to Dice scores after 1 and 5 clicks, respectively.

Method In-distribution External Unseen-Class

NoC90↓ NoC95↓ Dice(1)↑ Dice(5)↑ NoC90↓ NoC95↓ Dice(1)↑ Dice(5)↑ NoC90↓ NoC95↓ Dice(1)↑ Dice(5)↑

Interactive
nnInteractive 3.44 5.08 73.36 88.44 3.52 5.58 68.43 85.53 4.96 7.42 47.60 86.77
MedSAM 3.17 5.16 88.23 91.21 3.35 6.40 87.26 90.93 6.69 8.88 65.44 80.13
MultiverSeg 3.32 5.19 70.57 92.97 3.27 5.64 73.45 92.80 5.47 7.98 53.15 87.93
SAM2 3.94 6.27 86.46 87.96 3.59 7.34 87.57 89.00 8.71 9.84 59.88 66.81
SegNext 2.50 4.08 89.53 93.80 2.63 5.00 88.43 92.96 4.77 7.22 71.99 87.72
K-Prism 1.95 3.51 89.55 95.50 2.01 4.24 88.67 94.92 4.32 6.62 68.67 90.67

4.2.2 IN-CONTEXT SEGMENTATION

Table 2 (bottom) summarizes in-context segmentation performance across 12 in-distribution
datasets. Our method achieves the highest average Dice score (84.82%) and ranks first on 11 out of
12 datasets. Table 3 further evaluates generalization to external and unseen-class datasets. Across
four external datasets (BTCV, ACDC, UW-SC, and BUS), our method consistently outperforms all
prior in-context segmentation models, achieving an average Dice score of 82.49%. In the unseen-
class setting, our model attains 31.91% on average, including a notable 15% improvement over Iris
on M&Ms-2 (41.61% vs. 26.30%), demonstrating strong adaptability to novel anatomical structures
under limited supervision.

Compared to semantic segmentation, the in-context segmentation mode of K-Prism shows
highly competitive performance—even surpassing Mode-1 (semantic segmentation) on challeng-
ing datasets such as KiTS (79.12% vs. 78.70%) and ISIC (89.78% vs. 89.36%), though perfor-
mance drops are observed on AMOS CT (85.21% → 79.72%), AMOS MRI (84.39% → 78.21%)
and BTCV (80.24% → 76.82%), due to the complexity of multi-organ segmentation tasks where
2-D reference slices provide limited anatomical context. Despite this, K-Prism sets a new SOTA
for in-context medical segmentation and remains competitive with fully supervised counterparts,
highlighting its effectiveness and potential for future in-context learning frameworks.

4.2.3 INTERACTIVE SEGMENTATION

We further evaluate our model in the interactive segmentation setting, where user clicks iteratively
refine predictions (Table 4). Our method consistently achieves the best performance across in-
distribution, external, and unseen-class datasets. With five clicks, our model reaches a 95.50%
Dice score on in-distribution datasets, surpassing strong baselines like SegNext (93.80%), SAM2
(87.96%), MedSAM (91.21%) and MultiverSeg (92.97%). Notably, our method also achieves the
lowest NoC90 and NoC95 (1.95 and 3.51, respectively), indicating high-accuracy predictions with
fewer interactions. On external datasets, our model maintains strong generalization, attaining a
94.92% Dice score at five clicks, along with the best NoC scores (2.01 and 4.24). For unseen-class
datasets, our method delivers clear advantages, reaching a 90.67% Dice score at five clicks, while
maintaining efficient convergence (4.32 for NoC90).

To further examine model behavior during interactive segmentation, we analyze the convergence
curves (Figure 3). CNN-based methods, nnInteractive and MultiverSeg, that emphasize local struc-
tural biases, show low initial Dice scores but improve rapidly with more clicks. SAM-family models,
SAM2 and MedSAM, achieve relatively high initial Dice scores but show only marginal gains with
additional clicks. Because clicks are encoded only as 1-D sparse points without any 2-D spatial
point map, these models show very limited improvement even with more user feedback. SegNext
achieves a better balance with strong initialization and steady improvement. In comparison, our
model which fuses 1-D sparse and 2-D dense prompts, achieves the best of both: high starting Dice
and click-efficiency, demonstrating the effectiveness of unified prompt integration for precise and
efficient interaction.

8



Published as a conference paper at ICLR 2026

Figure 3: Convergence curves of interactive segmentation on in-distribution, external, and unseen-
class datasets. K-Prism consistently achieves higher Dice scores and faster convergence compared
to all baselines.

Table 5: K-Prism ablations.

(a) MoE-based Cross-Attention (CA) and FFN layers contribute to perfor-
mance gains. We remove one component at a time.

Method # Params Semantic In-context Interactive

Dice Dice NoC90↓ NoC95↓ Dice(1)↑ Dice(5)↑

Ours 43.29M 81.28 79.21 2.31 4.80 86.76 93.79
w/o MoE CA 30.64M 77.38 77.11 2.47 5.11 86.55 93.23
w/o MoE FFN 40.13M 78.57 78.37 2.37 4.84 86.50 93.67
w/o MoE FFN & CA 27.48M 76.77 75.10 2.62 5.04 84.16 92.22

(b) Evaluates the impact of dif-
ferent components in the in-
context segmentation mode.

Method Dice

Ours 80.84

w/o 2-D fusion 54.65

w/o 1-D queries 77.19

(c) Evaluates the impact of different components
in the interactive segmentation mode.

Method NoC90↓ NoC95↓ Dice(1)↑ Dice(5)↑

Ours 2.34 4.97 86.55 93.68

w/o 2-D fusion 5.07 7.84 77.65 79.21

w/o 1-D queries 2.57 5.01 85.44 93.39

(d) Impact of refinement in interactive segmentation on
the ACDC and BUS dataset.

Method ACDC BUS

NoC90↓ NoC95↓ NoC90↓ NoC95↓

Mode-3 2.67 4.97 1.67 4.05
Mode-1 refine 1.67 4.52 1.10 3.47
Mode-2 refine 1.77 4.59 1.17 3.53

4.3 ABLATION

This section covers component ablations (Tables 5(a)–(c)) and a separate refinement-efficiency study
(Table 5(d)). Parts (a)–(c) are based on models trained on M&Ms and Breast Cancer and evaluated
on ACDC and BUS. Part (a) examines the impact of MoE components across all modes: remov-
ing either MoE cross-attention or the MoE FFN noticeably degrades performance, while removing
both leads to the largest drop. Parts (b) and (c) evaluate single-mode settings (in-context and inter-
active, respectively). In both cases, 2-D fusion proves indispensable—its removal nearly collapses
performance—whereas removing 1-D queries causes only a modest decline, showing that they are
complementary but less critical.

Table 5(d) evaluates refinement efficiency in the interactive setting using the model trained in our
main experiment. Mode-3 serves as a pure interactive baseline, while Mode-1 and Mode-2 leverage
semantic or in-context knowledge to provide an initial mask, which is then refined with user clicks.
With such initialization, the required clicks to reach 90% Dice scores decrease by over 30%. This
initialization strategy transforms the clinical workflow from manual delineation to efficient refine-
ment, substantially reducing annotation burden while maintaining flexibility through seamless mode
switching. Further ablation studies and analyses are included in Appendix.

5 DISCUSSION

Our work presents a unified framework for medical image segmentation that integrates semantic
priors, in-context, and interactive feedback knowledge. While the results demonstrate strong perfor-
mance and generalization, several aspects merit further discussion.

K-Prism provides a flexible framework that unifies different knowledge sources, enabling seamless
switching across paradigms. This positions it as a foundation for universal medical segmentation.
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Future work may refine components like semantic priors, in-context retrieval, or interactive refine-
ment, making K-Prism not just a model but a platform for ongoing innovation. Our model can
also serve as an efficient annotation tool for building large-scale medical image datasets. Clini-
cians can generate initial segmentation from semantic priors or in-context inference and refine them
with minimal clicks, creating a human-in-the-loop pipeline that highlights K-Prism’s value as both
a segmentation framework and a practical infrastructure for large-scale medical modeling.

Despite these strengths, several challenges remain. The accuracy of in-context segmentation still re-
lies on the quality of reference examples, and the MoE decoder introduces additional computational
cost that may hinder real-time deployment. Furthermore, large domain shifts, such as unseen-class
datasets or new imaging protocols, continue to pose difficulties, often leading to degraded perfor-
mance. In unseen-class scenarios, we observe that K-Prism’s interactive mode remains highly ro-
bust, as click-based refinement relies on local boundary and texture cues rather than global semantic
priors, enabling reliable adaptation even to anatomy never seen during training. In contrast, in-
context segmentation exhibits larger performance degradation under severe anatomical or modality
shifts, reflecting the intrinsic difficulty of exemplar-based matching when the reference and query
differ substantially. These observations highlight both the strengths and natural limitations of dif-
ferent knowledge paradigms, and they further demonstrate the strength of our unified design, which
maintains reliable performance by allowing interactive refinement to compensate when exemplar-
guided inference becomes unreliable. Furthermore, our current 2D slice-based formulation inher-
ently limits the full utilization of 3D volumetric context. Although 2D interactive refinement aligns
well with real clinical workflows, where radiologists typically correct boundaries on a slice-by-
slice basis, future work could explore efficient 2D-to-3D propagation strategies that transfer refined
slice-level predictions to full volumetric outputs. Additional research may also focus on (i) optimiz-
ing expert specialization across segmentation paradigms and (ii) enhancing robustness for unseen
anatomical classes and domain-shifted scenarios.

6 CONCLUSION

We introduced K-Prism, a unified segmentation framework that integrates semantic priors, in-
context, and interactive feedback knowledge into a unified dual-prompt representation, coupled with
a Mixture-of-Experts decoder for dynamic routing. This design supports flexible adaptation across
clinical scenarios, from supervised segmentation to few-shot adaptation and interactive refinement.
Experiments on 18 public datasets show consistent state-of-the-art performance with strong robust-
ness and transferability to unseen domains. We view this work as a step toward universal medical
image segmentation models that can serve as reliable backbones for diverse clinical applications,
narrowing the gap between algorithmic advances and real-world deployment.

7 ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics and its guiding principles of responsible steward-
ship, fairness, and transparency. All experiments are conducted exclusively on publicly available,
de-identified datasets. No identifiable patient data were collected or generated, and all datasets in-
clude appropriate ethical approvals from their original organizers. Our goal is to advance trustworthy
and socially beneficial AI for medical image analysis. While the proposed framework demonstrates
strong performance, it is intended for research use only and not for direct clinical deployment with-
out further validation. We acknowledge that premature use of automated segmentation could in-
troduce risks, including potential bias across populations, imaging protocols, or disease types. To
mitigate these concerns, we evaluate extensively across diverse datasets and modalities and high-
light limitations in out-of-distribution generalization. We also stress the importance of fairness,
reproducibility, and responsible application in any future clinical translation.

8 REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide extensive details throughout the main text and Ap-
pendix, including dataset descriptions, preprocessing steps, model architecture, training hyperpa-
rameters, and evaluation protocols. Comprehensive ablation studies are included to highlight the
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contribution of each component. All experiments are conducted on publicly available datasets. To
further facilitate replication, we will release the full codebase and pretrained model weights upon
paper acceptance. Together, these resources ensure that our results can be faithfully reproduced and
extended.
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A APPENDIX

A.1 DATASET

A.1.1 DATASET DETAILS

Abdominal Multi-Organ Segmentation (AMOS) (Ji et al., 2022). The AMOS dataset comprises
500 CT and 100 MRI abdominal scans from 600 patients at Longgang District People’s Hospital.
It provides annotations for 13 anatomical structures, including spleen, right kidney, left kidney,
gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, pancreas, right adrenal gland, left
adrenal gland, duodenum, bladder, and prostate/uterus. The AMOS CT set includes 200 training
and 100 validation cases, while the AMOS MRI set offers 40 training and 20 validation cases. We
use both modalities for upstream training with a 95%/5% split on the official training set to train and
validate, then test on the provided test set.

Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge
(M&Ms) (Campello et al., 2021). The M&Ms dataset from the MICCAI 2020 Challenge includes
multi-center, multi-vendor cardiac MRI scans from patients with cardiomyopathies and healthy con-
trols. All scans are short-axis cine images and have expert annotations for left/right ventricles and
left ventricular myocardium at end-diastolic and end-systolic phases. The official train and test sets
are used.

The Liver Tumor Segmentation Benchmark (LiTS) (Bilic et al., 2023). This dataset includes
201 contrast-enhanced abdominal CT scans (131 training, 70 testing) from multiple international
medical centers. It covers patients with diverse liver tumors, including hepatocellular carcinoma
and metastases from colorectal, breast, and lung cancers. All scans contain expert annotations for
liver and tumor regions. We use the 131 public training cases, split 80%/20%, for upstream training
and testing. In our experiments, only the tumor labels from each CT volume are utilized.

The Kidney Tumor Segmentation 2019 dataset (KiTS) (Heller et al., 2019), This dataset is
collected at the University of Minnesota Medical Center between 2010 and 2018, includes CT scans
and clinical treatment outcomes from 300 patients who underwent nephrectomy for kidney tumors.
Of these, 210 cases are publicly available, while the remaining 90 are reserved for evaluation. In
our upstream training, we utilize the public portion by splitting it into 80% for training, and 20% for
testing. In our experiments, only the tumor labels from each CT volume are utilized.

Left Atrial and Scar Quantification & Segmentation Challenge (LAScarQS) (Li et al., 2020;
2021; 2022a;b). The LAScarQS dataset was released as part of a MICCAI challenge dedicated to
left atrial (LA) cavity and scar segmentation from late gadolinium enhancement (LGE) cardiac MRI.
It comprises 130 LGE MRI volumes from patients with atrial fibrillation (AF), acquired across mul-
tiple clinical centers. Each volume contains expert annotations for both the LA cavity and atrial scar
regions. The dataset reflects substantial real-world variability in image quality, atrial morphology,
and scar patterns, with many cases presenting significant segmentation challenges. Following the
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official protocol, we adopt the 80%/20% split of the training set for model training and testing. In
our experiments, only the LA cavity annotations are used.

Dataset of Breast Ultrasound Images (Breast Cancer) (Al-Dhabyani et al., 2020). This dataset
comprises 780 grayscale ultrasound images collected from 600 female patients (aged 25–75) at
Baheya Hospital for Early Detection and Treatment of Women’s Cancer, Egypt. Each image is
categorized into one of three classes: normal, benign, or malignant. Expert-annotated segmentation
masks are provided for all lesion-containing images. The dataset reflects real-world variability in
breast anatomy, lesion characteristics, and image quality, making it valuable for developing and
evaluating models for breast cancer classification, detection, and segmentation. We use only the 647
images labeled as benign or malignant and adopt an 80%/20% split for training and testing.

Chest X-ray Masks and Labels (Chest X-ray) (Al-Dhabyani et al., 2020; Jaeger et al., 2013).
Chest X-ray is a chest radiograph dataset provided by the National Library of Medicine, National
Institutes of Health (Bethesda, USA) and Shenzhen No.3 People’s Hospital (Guangdong, China).
This dataset includes a wide spectrum of abnormalities such as effusions and miliary patterns and is
widely used for tuberculosis screening, lung segmentation, and domain adaptation studies. In this
study, we only use the lung segmentation mask to train our models. We adopt an 80%/20% split of
the training set for model training and testing.

Kidney Pathology Image Segmentation (KPIs) Challenge (Deng et al., 2025). The KPIs dataset
was released as part of the MICCAI 2024 Challenge to benchmark glomeruli segmentation per-
formance in chronic kidney disease (CKD) pathology. We focus on the patch-level segmentation
task, which involves pixel-wise identification of glomeruli within PAS-stained image patches. The
patches exhibit variations in glomeruli morphology and surrounding tissue structures due to differ-
ences in disease states and slide preparation. We adopt a 75%/5%/20% split on the official training
set for training, validation, and testing. The original images are then uniformly partitioned into non-
overlapping patches of size 512×512, and patches without any glomeruli annotations are discarded.

PAPILA Dataset (Kovalyk et al., 2022). The PAPILA dataset provides fundus photographs from
both eyes of individual patients, accompanied by expert annotations. Each image is annotated with
optic disc and optic cup segmentations, while patient-level clinical labels are available for disease
evaluation. In this study, we focus exclusively on the optic disc segmentation task, using the provided
disc masks to train and evaluate our models. We adopt a 80%/20% split on the official dataset with
488 image-mask pairs for training and testing.

BKAI-IGH NeoPolyp Dataset (BKAI POLY) (Ngoc Lan et al., 2021). The BKAI-IGH NeoPolyp
dataset, released by the BKAI Research Center (Hanoi University of Science and Technology) in
collaboration with the Institute of Gastroenterology and Hepatology (IGH), Vietnam, consists of
1,200 colonoscopy images (1,000 white-light imaging (WLI) and 200 flexible spectral imaging color
enhancement (FICE) images). The dataset is split into 1,000 training and 200 test images. Each
polyp is annotated with both segmentation masks and binary labels indicating neoplastic (red) or
non-neoplastic (green) classes, verified by two experienced endoscopists. We adopt an 80%/20%
split on the official training set for training and testing.

International Skin Imaging Collaboration (ISIC) Dataset (Tschandl et al., 2018; Codella et al.,
2019). The ISIC dataset is a large-scale dermoscopic image collection, introduced through the ISIC
Skin Lesion Analysis Challenges. It contains high-resolution skin lesion images accompanied by
expert-annotated segmentation masks delineating lesion boundaries. In this study, we use the ISIC
2018 segmentation subset. The dataset encompasses diverse lesion appearances and acquisition
conditions, capturing real-world variability in skin tone, lighting, and lesion morphology. We adopt
the official dataset split, using it for model training, validation, and testing.

Beyond the Cranial Vault (BTCV) Dataset (Landman et al., 2015). The BTCV dataset, released
as part of the MICCAI 2015 Multi-Atlas Labeling Beyond the Cranial Vault challenge, is a widely
used benchmark for abdominal organ segmentation. It consists of 50 contrast-enhanced abdominal
CT scans provided by Vanderbilt University Medical Center, acquired in the portal venous phase
from patients with either metastatic liver cancer or postoperative abdominal wall hernia. Each scan
is annotated with 13 abdominal organs, including the liver, spleen, pancreas, kidneys, stomach,
gallbladder, esophagus, aorta, inferior vena cava, and duodenum, among others. The scans exhibit
variable field of view and resolution, with in-plane spacing ranging from 0.54×0.54 mm2 to 0.98×
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0.98 mm2 and slice thickness between 2.5 mm and 5.0 mm. In this study, we adopt 30 scans from the
official training set as an external test set to evaluate the generalization performance of our model.

Automatic Cardiac Diagnosis Challenge (ACDC) Dataset (Bernard et al., 2018). The ACDC
dataset comprises cardiac MRI scans collected over six years at the University Hospital of Dijon,
acquired with 1.5T and 3.0T Siemens scanners. Each case includes short-axis cine sequences with
expert annotations of the same anatomical structures as in M&Ms, at both end-systolic and end-
diastolic phases. In our study, ACDC serves as an external benchmark to assess the generalization
capability of our model, where we adopt the 200 official training cases as validation data and the
100 official test cases for final evaluation.

University of Waterloo Skin Cancer (UW-SC) Dataset (University of Waterloo). The UWaterloo
Skin Cancer Dataset comprises 167 dermoscopic images of skin lesions, with manual segmentation
masks provided for each lesion and verified by experts. In our work, we leverage this dataset to
evaluate the segmentation performance in a challenging and heterogeneous clinical image collection.

Breast Ultrasound Dataset B (BUS) (Al-Dhabyani et al., 2020). BUS is a breast ultrasound
collection designed for region-of-interest (ROI) detection and lesion localization. It contains 163
ultrasound images with expert-annotated lesion regions. In our study, all benign and malignant
lesions are merged into a single lesion class to simplify the task. We use this dataset solely as an
external validation set to assess the generalization capability of our model.

BraTS Dataset (Baid et al., 2021). The BraTS series of datasets is a widely used benchmark in brain
tumor analysis. It provides multimodal MRI scans with expert annotations of glioma substructures.
In our experiments, we test our method on the same 369 slices as in (Liu et al., 2023b).

M&Ms-2 Dataset (Campello et al., 2021). The Multi-Centre, Multi-Vendor & Multi-Disease
(M&Ms-2) dataset was released as part of the M&Ms-2 challenge at MICCAI 2021. For the M&Ms-
2 dataset, we utilize only the long-axis (LA) cine MRI images, which are not present in the M&Ms-1
dataset. This setting enhances data diversity and allows us to assess the generalization ability of our
model under an unseen-class scenario. In our experiments, we exclusively use the 320 long-axis
(LAX) cine MRI images from the official M&Ms-2 test set as an external test set to evaluate model
generalization. The 400 LAX images from the official training set are adopted as a validation set,
while none of the M&Ms-2 images are used during model training.

A.1.2 DATASET STATISTICS

As shown in Table 5, we train and evaluate our framework on a diverse set of publicly avail-
able medical image segmentation datasets spanning multiple imaging modalities and anatomical
regions. The training pool covers 12 datasets: abdominal CT/MRI (e.g., AMOS, LiTS, KiTS), car-
diac MRI (M&Ms, ACDC, LAScarQS), ultrasound (Breast cancer), dermoscopy (ISIC), endoscopy
(BKAI POLY), pathology (KPIs), fundus imaging (PAPILA), and chest X-rays. These datasets
vary substantially in size, with sample counts ranging from a few hundred to several thousand 3D
volumes or 2-D slices, and in annotation granularity, from single-organ labels to multi-organ delin-
eations. For evaluation, we adopt both external and unseen-class test sets to assess generalization
across modalities, anatomical structures, and imaging centers.

A.2 IMPLEMENTATION

Training details. Our models are trained for 75 epochs with a batch size of 16 on 8 Quadro RTX
8000 GPUs using the AdamW optimizer with a base learning rate of 1× 10−4. A cosine annealing
scheduler with 10 warm-up epochs is applied, where the minimum learning rate is scaled by 1 ×
10−5. Images are resized to 512× 512 during training, with augmentations including random flips,
affine transforms (shift, scale, rotation), brightness/contrast adjustments, Gaussian blur/noise, and
grid distortions. To encompass all operational modes, each training batch is randomly assigned to
one mode, with probabilities of 0.3, 0.3, and 0.4 for Mode-1, Mode-2, and Mode-3, respectively.
During inference, input images are resized with the long side fixed to 512 while preserving aspect
ratio, and Dice scores are computed after remapping predictions to the original resolution. We use a
combination of binary cross-entropy loss and Dice loss to compute the mask loss L = Lce + Ldice.
The same settings are applied on our ablation study.
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Table 6: Datasets statistics.

Dataset # cls Modality 3D Volumes 2-D Slices

Train Validate Test Train Validate Test

AMOS CT 13 CT 190 10 100 33944 1689 17861
AMOS MRI 13 MRI 38 2 20 5160 263 2614
M&Ms 3 MRI 300 - 340 2475 - 2821
LiTS 1 CT 104 - 27 5687 - 1625
KiTS 1 CT 168 - 42 5269 - 1609
LAScarQS 1 MRI 98 - 32 3561 - 1183
Chest X-ray 1 X ray - - - 450 - 116
Breast Cancer 1 Ultrasound - - - 518 - 129
KPIs 1 Pathology - - - 8261 500 4055
PAPILA 1 Fundus - - - 390 - 98
BKAI POLY 2 Endoscopy - - - 800 - 200
ISIC 1 Dermoscopy - - - 2594 100 1000

BTCV 13 CT - - 30 - - 3791
ACDC 3 MRI - 200 100 - 1841 1001
UW-SC 1 Dermoscopy - - - - - 167
BUS 1 Ultrasound - - - - - 163

BraTS 1 MRI – – – - - 369
M&Ms-2 3 MRI – 400 320 - 400 320

Click representation. In both training and inference, user clicks are encoded as disk-shaped maps
with a fixed radius of 1 pixel. Consistent with previous studies (Sofiiuk et al., 2022; Liu et al.,
2023b), simulated clicks are generated by comparing the predicted segmentation against the ground
truth. Differing from prior strategies, however, we place each new click at the centroid of the largest
misclassified connected component, which more closely mimics practical user interactions in medi-
cal image analysis. We consider three operating modes: in Mode-1 and Mode-2, the model produces
an initial mask and then refines it using two clicks, whereas in Mode-3 the model iteratively applies
three clicks, yielding three successive segmentation masks.

Additional implementation details for baseline models. For SAM2, which is pretrained on
large-scale natural images, we initialize the model using the official sam2.1 hiera base plus
checkpoint and fine-tune it on our curated medical datasets under the same training settings as all
other methods. For SegNext and MedSAM, the ViT-based encoder is first initialized using MAE-
pretrained ViT-Base weights. After loading these pretrained encoder weights, the entire network is
jointly trained end-to-end on our curated medical datasets. For other medical segmentation models
such as MultiverSeg, to avoid any potential data overlap with their original training data sources,
we train them from scratch on our curated datasets to ensure fair comparison and full convergence.
User interactions (positive/negative clicks) are simulated consistently across all methods following
the same policy described above.

A.3 MODEL ARCHITECTURE

Image encoder. We employ UNet (Isensee et al., 2021) as the image encoder, a widely adopted
lightweight backbone for medical image segmentation. The encoder extracts hierarchical features at
three different resolutions, namely 1/16, 1/8, and 1/4 of the original image, yielding a comprehen-
sive multi-scale representation (S = 3). In our experiments, the feature maps have spatial sizes of
32× 32, 64× 64, and 128× 128, with channel dimensions of 384, 192, and 96, respectively.

Mask encoder & Interactive prompt encoder. We utilize a lightweight mask encoder to extract
hierarchical representations from the reference masks. The mask encoder employs simple consecu-
tive convolutional blocks to generate hierarchical features that are spatially aligned with those from
the image encoder, producing reference mask features at the same scales (1/4, 1/8, and 1/16 of the
input resolution). For the interactive prompt encoder, we adopt an identical architectural design to
ensure consistency.

Fusion of image features and 2-D dense prompts. After extracting features from the image en-
coder and either the mask encoder or the interactive prompt encoder, we employ a unified prompt
fusion module to combine them. To fully exploit contextual cues, our model operates on multi-
scale features. For clarity, the main paper illustrates the architecture with a single-scale example,
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while the appendix provides the details of the multi-scale processing. Specifically, the feature maps
{F32,F64,F128} are obtained from the image encoder at different resolutions.

For Mode-3 (interactive segmentation), fusion is straightforward: the image features are directly
added to the interactive click and mask features, as they share the same dimensionality. For Mode-2,
as discussed earlier, fusion is applied only at the lowest resolution F32 (384×32×32). The resulting
fused features are then propagated across higher scales using the residual connections described in
the following section.

After flattening, we define the reference keys, values, and query keys as:

Kref = Flat(Fk) ∈ RC×Nrefhw, V ref = Flat(Fv) ∈ RC×Nrefhw, Kq = Flat(Fq) ∈ RC×hw,
(12)

where h = w = 32, C = 384.

For any similarity function c : RC × RC → R, the pairwise affinity matrix A and its softmax-
normalized form W are computed as:

Ai,j = c
(
Kref

:,i ,K
q
:,j

)
, Wi,j =

exp(Ai,j)∑
n exp(An,j)

, A,W ∈ RNrefhw×hw. (13)

Following Cheng et al. (2021; 2024), we adopt the negative squared Euclidean distance to compute
A:
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∥∥2
2
, (14)

where the last term can be omitted as shown in (Cheng et al., 2021), which improves efficiency and
reduces computational cost. Finally, the 2-D fusion feature map is aggregated as:

Ffuse = V refW , Ffuse ∈ RC×hw, (15)

and is passed into the decoder for mask prediction. To facilitate subsequent operations, the feature
channels at all scales are projected to 256 via a linear layer before being fed into the decoder.

Generating the click queries. In this section, we provide additional details on how user clicks
are encoded into 1-D query embeddings for interactive segmentation. Given a user click at pixel
coordinates P0 = (x, y) in the original image I ∈ R3×H×W , we first map it to the downsampled
feature space F s ∈ RC×(H/s)×(W/s), where s denotes the stride of the encoder. The corresponding
coordinates are:

x′ =
⌊
x
s

⌋
, y′ =

⌊
y
s

⌋
. (16)

Around the mapped point (x′, y′), we extract a (2r + 1)× (2r + 1) local window to capture neigh-
borhood context. We set r = 1 in our experiments. The pooled feature vector is then obtained via
average pooling:

fpooled =
1

(2r + 1)2

r∑
i=−r

r∑
j=−r

F s
x′+i,y′+j . (17)

The pooled feature is projected into the query space using a multilayer perceptron (MLP):

xf = MLP(fpooled), xf ∈ R1×C . (18)

To obtain the final single click query embedding, we incorporate the positional encoding from
SAM (Kirillov et al., 2023):

qc = xf + PosEmbed(x, y), qc ∈ R1×C . (19)

We generate two separate groups of click queries, Qpos for positive clicks and Qneg for negative
clicks which correspond to the positive and negative attention masks. Since the number of clicks in
the two groups may differ during interaction, the smaller group is padded with dummy queries (zero
vectors) to maintain balance. This design ensures stable training and inference when combining
click queries across interaction steps. The two groups are then concatenated into the final 1-D click
queries Qc.
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Decoder. As shown in Figure 2 (b), we use L = 6 layers in total in the transformer decoder. Similar
to Mask2Former (Cheng et al., 2022), we adopt a round-robin strategy for multi-scale interaction
between image features and integrated queries. The blocks are scheduled in a cyclic order across
scales (i.e., 1 → 2 → 3 → 1 → 2 → 3), ensuring balanced cross-scale information exchange
throughout the decoding process. Finally, the decoded features are passed through a lightweight
mask decoder that projects them back to the spatial resolution of the input, producing the final
segmentation masks.

Residual connections across scales. Following Verse (Guo et al., 2025), we adopt residual resam-
pling connections to enhance the interaction between 2-D fusion features and 1-D queries across
multiple scales. Concretely, for a feature map Fl at layer l, we first resample it to match the resolu-
tion of the next layer Fl+1:

F resampled
l = Resample (Fl) , (20)

where Resample(·) denotes upsampling or downsampling depending on the relative scales. We then
compute a residual representation via a convolutional layer and add it to the next-layer features:

F updated
l+1 = Fl+1 + Res

(
F resampled
l

)
. (21)

By iteratively resampling and aggregating residuals across layers, the model improves the interaction
between features and queries over different scales.

Foreground-background masked attention. Attention masks have been shown to improve the
efficiency of attention by constraining it to more relevant regions (Cheng et al., 2022; 2024). There-
fore, we employ attention masks in every decoder block to consistently guide query updating and
feature refinement. We take in-context segmentation as an example to illustrate how attention masks
are used. In this setting, we obtain a 1-D query set Qs ∈ Rns×C , where the first ns

2 queries corre-
spond to the foreground and the remaining ns

2 queries correspond to the background. The queries
are then updated through a foreground-background masked attention mechanism. This design en-
ables multiple queries to focus on target-related image features while also leveraging complementary
background information.

The foreground-background masked cross-attention at the l-th decoder layer is formulated as:

Q′
l = softmax(Ml +QlK

⊤
l )Vl +Ql, (22)

where Ql denotes the transformed queries at layer l, and Kl,Vl are the linear projections of
the key features Fl. We omit the standard 1√

C
scaling term for brevity. The binary mask

Ml ∈ {0,−∞}ns×hlwl is used to enforce the foreground-background separation. At each layer
l, we first predict a probability mask Pl ∈ [0, 1]hl×wl , where each value represents the foreground
probability at spatial location (i, j), which is obtained from the pixel features Fl−1 of the previous
layer using a lightweight mask decoder followed by resizing. The n-th mask Ml(i, j) at spatial
location (i, j) is defined as:

Ml(i, j) =


0, Pl(i, j) ≥ 0.5 and n < ns

2 ,

0, Pl(i, j) < 0.5 and n ≥ ns

2 ,

−∞, otherwise.
(23)

The same procedure is applied in mode-3 interactive segmentation, where positive and negative click
queries represent the foreground and background masks, respectively. When the number of positive
and negative clicks is unbalanced, dummy clicks are added to equalize the query set. For semantic
segmentation, only the foreground (positive) mask is applied.

Other hyperparameters. For semantic segmentation, the number of 1-D queries is set to p = 2,
while in context segmentation we use ns = 6. We observe only minor performance differences when
varying the query number. In the transformer decoder, all feature channels are fixed at 256, and each
attention block uses 8 heads. We set the number of experts M = 5 in our main experiments. During
training, single image–mask pair is employed as the reference.

A.4 MORE EXPERIMENTS

Analysis of expert weights. Figure 4 illustrates the distribution of softmax expert weights across
different modes when tested on external ACDC dataset. We observe that the weighting patterns vary
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Figure 4: Distribution of softmax expert weights across different modes on the external ACDC
dataset.

substantially by mode, reflecting the task-specific routing behavior of the MoE decoder. In Mode-1,
Expert 5 receives the highest weight, suggesting specialization toward that expert, while the other
experts contribute more evenly. In contrast, Mode-2 strongly favors Expert 1, with minimal reliance
on Experts 4 and 5, indicating a different specialization strategy. Mode-3 shows a more balanced
distribution across all experts, with moderate weights assigned consistently. These results confirm
that the model dynamically allocates expert capacity depending on the input mode, which supports
the effectiveness of the MoE design in capturing heterogeneous segmentation requirements.

Analysis of convergence curves of all datasets. Figure 5 shows how interactive segmentation
(Mode-3) performance of K-Prism changes as the number of clicks increases across all datasets. In
most cases, accuracy improves quickly with just a few clicks and then gradually levels off, which
highlights the benefit of interactive refinement. Our model consistently achieves the strongest results
on the majority of datasets, keeping a clear advantage over baselines across the entire interaction
range. We also note some variation: certain datasets reach high accuracy after only a few clicks,
while others need more interactions to stabilize, likely due to differences in image quality, structural
complexity, or segmentation difficulty.

Analysis of multi-mode training. Table 7(a) compares joint training with single-mode training
under the same ablation setting as used in the main paper, where models are trained on the M&Ms
and Breast Cancer dataset and evaluated on ACDC and BUS. We find that our unified framework
achieves performance on par with or better than training each mode individually, while being much
more efficient since a single model handles all paradigms simultaneously. This indicates that knowl-
edge sharing across modes is beneficial: semantic and in-context learning provide complementary
supervision that improves overall representation quality, and interactive refinement benefits from the
shared backbone. These results highlight the practicality of our unified design, which avoids train-
ing separate models yet still delivers competitive or superior accuracy across different segmentation
settings.

Analysis of number of experts. Table 7(b) analyzes the effect of varying the number of experts
in the MoE decoder. We observe a consistent performance improvement as the number of experts
increases from 2 to 5 across semantic, in-context, and interactive settings. Dice scores steadily rise
while the number of clicks required to reach target accuracy decreases. These gains, however, come
with larger parameter count and additional computational overhead. Due to resource constraints, we
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Table 7: Extensive ablation studies.

(a) Joint training achieves performance comparable to single-mode train-
ing, while being three times more efficient.

Method Semantic In-context Interactive

Dice Dice NoC90 ↓ NoC95 ↓ Dice(1) ↑ Dice(5) ↑

Ours 81.28 79.21 2.31 4.80 86.76 93.79
Mode-1 only 80.57 - - - - -
Mode-2 only - 80.84 - - - -
Mode-3 only - - 2.34 4.97 86.55 93.68

(b) As the number of experts increases, model performance improves,
albeit at the cost of a larger number of parameters.

# Expert # Params Semantic In-context Interactive

Dice Dice NoC90 ↓ NoC95 ↓ Dice(1) ↑ Dice(5) ↑

5 (Ours) 43.29M 81.28 79.21 2.31 4.80 86.76 93.79
4 39.34M 79.80 77.97 2.38 4.96 86.02 93.43
3 35.39M 79.24 76.81 2.58 5.03 84.24 92.70
2 31.43M 77.62 75.55 2.64 5.12 84.16 92.22

Table 8: Throughput (FPS) with different numbers of experts in MoE decoder on a single A100
GPU.

# Experts 5 4 3 2 1 (Plain)

FPS 3.63 4.24 4.61 5.10 5.38

were unable to scale beyond five experts, but the trend suggests that larger expert capacity may yield
further benefits. This indicates strong potential for scaling K-Prism into even more powerful seg-
mentation models, potentially improving initialization robustness and reducing annotation workload
in clinical workflows. To further quantify inference efficiency, we evaluate throughput on the ACDC
dataset using a single A100 GPU across different numbers of experts (Table 8). The results show
that increasing the number of experts introduces only moderate overhead: the throughput decreases
by roughly 1.7 FPS (frames per second) when moving from a plain decoder (1 expert) to a 5-expert
MoE decoder. Importantly, in practical clinical deployments that typically operate on multi-GPU
servers, throughput scales nearly linearly with available GPUs, meaning that adding more experts
does not compromise real-time usability.

Analysis of reference exemplar sensitivity in in-context segmentation. To further assess the ro-
bustness of the in-context segmentation mode (Mode-2), we evaluate how performance varies with
different choices of reference exemplars. We conduct experiments on two representative external
datasets: BUS (2D ultrasound) and ACDC (3D cardiac MRI). For each dataset, we randomly select
10 distinct reference exemplars (independent subjects/images). Using each exemplar as the sole ref-
erence, we run one-shot in-context segmentation on all query images, yielding 10 independent eval-
uations per dataset. Table 9 reports the resulting mean, standard deviation, and minimum–maximum
range across these evaluations. The BUS dataset shows extremely low variance (78.43 ± 0.72), in-
dicating that Mode-2 predictions remain highly stable across different reference choices in typical
2D settings. For ACDC, where anatomical and positional variability across subjects is inherently
larger, the variance is somewhat higher (83.68±2.38) but still falls within a moderate and acceptable
range. Overall, these results demonstrate that K-Prism is robust to reasonable variations in reference
exemplar quality and does not depend on a highly specific exemplar to achieve strong in-context
segmentation performance.

Analysis of reference quantity for few-shot in-context segmentation. To further examine the
Mode-2 bottleneck in complex multi-organ scenarios, we conduct a few-shot in-context study on the
AMOS MRI dataset. Because axial slices in 3D multi-organ volumes exhibit substantial anatomical
variability, a single reference exemplar may misalign with many target slices. To assess whether
additional exemplars can mitigate this issue, we evaluate 1-, 3-, 5-, and 9-shot settings, where refer-
ence slices are sampled from fixed axial locations corresponding to typical anatomical positions of
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Table 9: Sensitivity of in-context segmentation to reference exemplar selection. Results are averaged
over 10 independent 1-shot evaluations per dataset.

Dataset Mean Std Min Max
ACDC 83.68 2.38 79.10 86.18
BUS 78.43 0.72 77.09 79.15

Table 10: Few-shot in-context segmentation results on AMOS MRI. Increasing the number of ref-
erence exemplars improves performance in multi-organ scenarios.

Shots 1 3 5 9

Dice (%) 78.21 79.22 79.70 79.90

the target organ within the 3D volume (1-shot: 50%; 3-shot: 20/50/80%; 5-shot: 20/40/50/60/80%;
9-shot: 10–90% at 10% intervals). As shown in Table 10, accuracy improves consistently with more
exemplars, rising from 78.21% (1-shot) to 79.90% (9-shot). This shows that the performance drop
observed under strict 1-shot conditions is not an inherent limitation of our framework: when ad-
ditional exemplars are provided, K-Prism can effectively exploit them. These results highlight the
adaptability and robustness of K-Prism’s in-context mode in challenging multi-organ segmentation
scenarios.

A.5 VISUALIZATION

Figures 6,7 and 8 present qualitative comparisons of semantic, in-context, and interactive segmen-
tation across diverse datasets and modalities. For semantic segmentation (Figure 6), K-Prism pro-
duces more accurate and consistent results than competing methods such as Clip-driven, UniSeg,
and Hermes, particularly on challenging tumor and pathology cases. For in-context segmentation
(Figure 7), K-Prism achieves clearer boundaries and higher Dice scores across both CT/MRI (e.g.,
AMOS, M&Ms) and endoscopic datasets (e.g., BKAI POLY). For interactive segmentation (Fig-
ure 8), we visualize results at the fifth click, showing that K-Prism converges faster and yields more
precise masks compared with strong baselines such as nnInteractive, MultiverSeg, SAM2, and Seg-
Next. Overall, these visualizations demonstrate the robustness and versatility of K-Prism across
three segmentation paradigms.

A.6 ANALYSIS OF FAILURE CASES FOR K-PRISM

In the BraTS example (Figures 9, top-left), the model mistakenly segments the bright peritumoral
edematous/invaded tissue (Yousef et al., 2023) as tumor. Because the reference image contains a
rounded, high-intensity tumor with a compact mass-like morphology and the peritumoral edema-
tous/invaded tissue signal in the query slice exhibits a superficially similar intensity distribution, the
appearance-driven matching in Mode-2 incorrectly aligns this region with the tumor exemplar. Cru-
cially, brain MRI is a completely unseen domain for our model: no brain anatomy, texture patterns,
or disease manifestations appear in the training datasets. As a result, the model lacks any semantic
prior to distinguish true oncologic tissue from peritumoral edematous/invaded tissue hyperintensi-
ties. Under such severe domain and anatomical shifts, Mode-2 naturally over-relies on low-level
intensity correspondences in the absence of domain knowledge, causing misleading but internally
consistent matches.

In the M&Ms-2 example (Figures 9, bottom-left), the model incorrectly segments part of the left
atrial wall as left ventricle myocardium. M&Ms-2 long-axis cardiac MRI has never appeared in
the training data, and its anatomical geometry differs substantially from the short-axis cardiac MRI
datasets used for model development. Importantly, the left atrial wall and the left ventricular my-
ocardium exhibit highly similar shaped appearances in the long-axis view. Because Mode-2 relies
heavily on appearance-based alignment between the reference exemplar and the query slice, the
model is misled by this shape similarity. As a result, the model aligns the atrial wall with the “my-
ocardium” region from the exemplar, despite the anatomical mismatch.
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A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used solely as general-purpose writing assistants
for text polishing and formatting adjustments. They did not contribute to research ideation, experi-
mental design, analysis, or result interpretation.
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Figure 5: Convergence curves of K-Prism’s interactive segmentation (Mode-3) on all datasets.
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Input image Clip-driven K-PrismHermesUniSeg Ground truth

Dice: 67.86% Dice: 78.82%Dice: 73.40%Dice: 73.94%

Dice: 90.50%Dice: 88.16%Dice: 89.87% Dice: 59.43%

Dice: 91.86% Dice: 93.27%Dice: 87.68%Dice: 85.22%

LiTS
(Tumor)

KiTS
(Tumor)

Breast cancer
(Tumor)

Dice: 93.94% Dice: 94.47%Dice: 94.17%Dice: 92.90%

KPIs
(Glomeruli)

Figure 6: Qualitative comparison of semantic segmentation across representative datasets: LiTS
(tumor), KiTS (tumor), KPIs (glomeruli), and Breast cancer (tumor). From left to right: input image,
predictions from universal models Clip-driven, UniSeg, Hermes, and K-Prism, and the ground truth.
Reported Dice scores highlight that K-Prism produces more accurate and consistent results across
diverse modalities and targets.

Input image UniverSeg IrisMultiverSegTyche Ground truth

Dice: 74.17% Dice: 78.82%Dice: 74.35%Dice: 83.44%

Dice: 84.27% Dice: 95.59%Dice: 89.87%Dice: 85.38%

Dice: 80.66% Dice: 86.53%Dice: 61.31%Dice: 85.22%

AMOS_MRI
(Right kidney)

M&Ms 
(Myocardium)

BTCV
(Liver)

Dice: 69.03% Dice: 67.65%Dice: 69.29%Dice: 68.59%

BKAI_POLY 
(Tumor)

K-Prism

Dice: 90.89%

Dice: 95.85%

Dice: 90.94%

Dice: 95.23%

Figure 7: Qualitative comparison of in-context segmentation across four representative datasets:
AMOS MRI (right kidney), M&Ms (myocardium), BKAI POLY (tumor), and BTCV (liver). From
left to right: input image, predictions from UniverSeg, Tyche, MultiverSeg, Iris, and K-Prism, and
the ground truth. Reported Dice scores show that K-Prism achieves the most accurate and consistent
results across diverse modalities and targets.
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Input image nnInteractive SegNextSAM2MultiverSeg Ground truth

Dice: 95.64% Dice: 96.31%Dice: 92.15%Dice: 95.78%

Dice: 93.75% Dice: 95.59%Dice: 96.09%Dice: 94.20%

Dice: 95.31% Dice: 86.53%Dice: 93.79%Dice: 93.91%

BraTS
(Tumor)

BUS
(Tumor)

UW-SC
(Skin cancer)

Dice: 92.59% Dice: 94.58%Dice: 89.87%Dice: 94.66%

K-Prism

Dice: 96.70%

Dice: 96.88%

Dice: 96.37%

Dice: 95.73%

M&Ms-2
(Left Ventricle)

MedSAM

Dice: 94.87%

Dice: 90.98%

Dice: 95.73%

Dice: 92.47%

Figure 8: Qualitative comparison of interactive segmentation results at the fifth click across four
representative datasets: BraTS (tumor), BUS (tumor), M&Ms-2 (left ventricle), and UW-SC (skin
cancer). From left to right: input image, predictions from nnInteractive, MedSAM, MultiverSeg,
SAM2, SegNext, and K-Prism, and the ground truth. Reported Dice scores show that K-Prism
consistently produces the most accurate and reliable segmentations across diverse modalities and
targets.

Query image Reference image

Image                    Ground truth                Prediction

Image                    Ground truth                Prediction

Image                    Ground truth

Image                    Ground truth

Dice: 35.19%

Dice: 6.67%

BraTS
(Tumor)

M&Ms-2
(Myocardium)

Figure 9: Representative failure cases of in-context segmentation (Mode-2) on unseen datasets:
BraTS and M&Ms-2.
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