
Quantized Side Tuning: Fast and Memory-Efficient Tuning of
Quantized Large Language Models

Anonymous ACL submission

Abstract
Finetuning large language models (LLMs) has001
been empirically effective on a variety of down-002
stream tasks. Existing approaches to finetun-003
ing an LLM either focus on parameter-efficient004
finetuning, which only updates a small num-005
ber of trainable parameters, or attempt to re-006
duce the memory footprint during the training007
phase of the finetuning. Typically, the memory008
footprint during finetuning stems from three009
contributors: model weights, optimizer states,010
and intermediate activations. However, exist-011
ing works still require considerable memory012
and none can simultaneously mitigate memory013
footprint for all three sources. In this paper,014
we present Quantized Side Tuing (QST), which015
enables memory-efficient and fast finetuning of016
LLMs by operating through a dual-stage pro-017
cess. First, QST quantizes an LLM’s model018
weights into 4-bit to reduce the memory foot-019
print of the LLM’s original weights; QST also020
introduces a side network separated from the021
LLM, which utilizes the hidden states of the022
LLM to make task-specific predictions. Using a023
separate side network avoids performing back-024
propagation through the LLM, thus reducing025
the memory requirement of the intermediate ac-026
tivations. Furthermore, QST leverages several027
low-rank adaptors and gradient-free downsam-028
ple modules to significantly reduce the train-029
able parameters, so as to save the memory foot-030
print of the optimizer states. Experiments show031
that QST can reduce the total memory footprint032
by up to 2.3 × and speed up the finetuning pro-033
cess by up to 3 × while achieving competent034
performance compared with the state-of-the-035
art. When it comes to full finetuning, QST can036
reduce the total memory footprint up to 7 ×.037

1 Introduction038

Recent advancements in large language models (LLMs),039
including GPT (Brown et al., 2020; Floridi and Chiri-040
atti, 2020; OpenAI, 2023), PaLM (Chowdhery et al.,041
2022), OPT (Zhang et al., 2022), and LLaMA (Tou-042
vron et al., 2023), have showcased remarkable task-043
generalization capabilities across diverse applications044

(Stiennon et al., 2020; Dosovitskiy et al., 2020). The on- 045
going evolution of LLMs’ capabilities is accompanied 046
by exponential increases in LLMs’ sizes, with some 047
models encompassing 100 billion parameters (Raffel 048
et al., 2020; Scao et al., 2022). Finetuning pre-trained 049
LLMs (Min et al., 2021; Wang et al., 2022b,a; Liu et al., 050
2022) for customized downstream tasks provides an 051
effective approach to introducing desired behaviors, mit- 052
igating undesired ones, and thus boosting the LLMs’ 053
performance (Ouyang et al., 2022; Askell et al., 2021; 054
Bai et al., 2022). Nevertheless, the process of LLM 055
finetuning is characterized by its substantial memory de- 056
mands. For instance, finetuning a 16-bit LLaMA model 057
with 65 billion parameters requires more than 780GB 058
of memory (Dettmers et al., 2023). 059

To reduce the computational requirement of LLM 060
finetuning, recent work introduces parameter-efficient 061
finetuning (PEFT), which updates a subset of train- 062
able parameters from an LLM or introduces a small 063
number of new parameters into the LLM while keep- 064
ing the vast majority of the original LLM parameters 065
frozen (Houlsby et al., 2019; Li and Liang, 2021; Pfeif- 066
fer et al., 2020; Hu et al., 2021; He et al., 2021; Lester 067
et al., 2021). PEFT methods achieve comparable per- 068
formance as full finetuning while enabling fast adaption 069
to new tasks without suffering from catastrophic forget- 070
ting (Pfeiffer et al., 2020). However, PEFT methods 071
necessitate caching intermediate activations during for- 072
ward processing, since these activations are needed to 073
update trainable parameters during backward propaga- 074
tion. As a result, PEFT methods require saving more 075
than 70% of activations and almost the same training 076
time compared to full finetuning (Liao et al., 2023; Sung 077
et al., 2022). Concisely, existing PEFT techniques can- 078
not effectively reduce the memory footprint of LLM 079
finetuning, restricting their applications in numerous 080
real-world memory-constrained scenarios. 081

Recent work has also introduced approaches to com- 082
bining PEFT and quantization. For example, QLoRA 083
(Dettmers et al., 2023) quantizes an LLM’s weights to 084
4-bit and leverages low-rank adaption (LoRA) (He et al., 085
2021) to finetune the quantized LLM. QLoRA reduces 086
the memory footprint of an LLM’s weights and opti- 087
mizer states, and as a result, finetuning a 65B LLM 088
requires less than 48 GB of memory. However, QLoRA 089
does not consider the memory footprint of intermediate 090

1

140GB

420GB

197GB

Full Funtuning

36GB

13GB

Reduce the
weights
and the

optimzer states

QLoRA

24GB197GB

78GB

140GB

LST

4GB
69GB

QST (Ours)

36GB

Reduce the
intermediate activations

and the
optimzer states

Reduce all

Intermediate
activations

Optimizer
states

Weights

(a) Comparing the memory requirement of different methods.

50 100 150 200 250 300
Memory (GB)

45

50

55

60

65

A
cc

ur
ac

y
(%

)

QLoRA
LST
QST (Ours)

(b) Comparing the predictive performance of different
finetuning techniques.

Figure 1: Figure 1a shows the memory footprint of different methods of fintuning LLaMA-2-70b. Figure 1b shows
the MMLU 5-shot accuracy of different methods when tuning LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B.
Note that we set the batch size to 16 and the sequence length to 384. Larger markers represent larger models.

activations, which can be particularly large when using091
a large batch size for finetuning. As a result, QLoRA092
only supports small-batch training (e.g. a batch size093
of 1), and finetuning a 65B LLM requires checkpoint-094
ing gradients (Chen et al., 2016) to fit the LLM on a095
single 48GB GPU, resulting in long training time. Be-096
sides, our evaluation also reveals that the performance097
of QLoRA becomes unstable when using 16-bit float-098
ing points. Sung et al. (2022) and Zhang et al. (2020)099
propose to use a side network to reduce the memory100
footprint of intermediate activations by avoiding back-101
propagation of the LLM on natural language processing102
(NLP) and computer vision (CV) tasks, respectively.103
Even with the adoption of a side network, the inherent104
model size of the LLM remains a challenge. Meanwhile,105
these approaches focus on small models (i.e., less than 3106
billion parameters), and their applicability and efficacy107
for larger models remain unexplored.108

In this paper, we propose a fast, memory-efficient109
LLM finetuning framework, called Quantized Side-110
Tuning (QST), which operates through a dual-stage111
process as shown in Figure 2. First, QST quantizes an112
LLM into 4-bit to reduce the memory footprint of its113
model weights. Second, QST introduces a side network114
separating from the quantized LLM to avoid perform-115
ing backward propagation for the quantized LLM, thus116
saving the memory footprint of intermediate activations.117
During the training phase of QST, the input to each118
layer of the side network is formed by combining (1)119
the downsampled output of the corresponding quantized120
LLM layer and (2) the output of the previous layer of the121
side network. A larger LLM usually has a larger model122
depth (i.e., the number of layers) and width (the hidden123
size of each layer), which in turn requires more train-124
able parameters for the downsampling layers. Unlike125
Sung et al. (2022) that leverages linear layer to per-126
form downsampling, QST uses several low-rank adapter127

methods (He et al., 2021; Edalati et al., 2022) such as 128
MaxPooling (LeCun et al., 1998) and AvgPooling, sig- 129
nificantly reducing the required trainable parameters 130
and the memory footprint for the optimizer states. After 131
that, we use a learnable parameter to assign weights and 132
subsequently aggregate the hidden states of the quan- 133
tized LLM and the side network. Finally, we reuse 134
the LLM head or classifier to predict. Combined with 135
4-bit quantization and side tuning, QST significantly 136
reduces all three main contributors of the memory foot- 137
print and training time during the training phase. Be- 138
sides, QST does not increase inference latency since 139
the LLM and side network can be computed in paralle. 140
Figure 1 compares the memory footprint of QST and 141
existing parameter-efficient fine-tuning methods, includ- 142
ing QLoRA and LST. 143

To validate the effectiveness of our QST, we conduct 144
extensive evaluations for different types of LLMs (e.g., 145
OPT, LLaMA 2), with 1.3B to 70B parameters, on var- 146
ious benchmarks. Experiment results show that QST 147
can reduce the total memory footprint by up to 2.3 × 148
and speed up the finetuning process by up to 3 × while 149
achieving competent performance compared with the 150
state-of-the-art. Our codes are released to the GitHub 151
anonymously 1. 152

2 Related Work 153

2.1 Parameter-Efficient Finetuning 154

Finetuning allows an LLM to adapt to specialized do- 155
mains and tasks (Devlin et al., 2018; Radford et al., 156
2019; Brown et al., 2020). However, fully finetuning 157
an LLM comes with high computation costs due to the 158
rapidly increasing LLM sizes. Parameter-efficient fine- 159
tuning (PEFT) methods are proposed to solve this issue. 160
Drawing inspiration from the pronounced sensitivity of 161

1https://anonymous.4open.science/r/QST-0242

2

https://anonymous.4open.science/r/QST-0242

Embedding

Input

LM head

Output

Step 1

4-bit Quantization

Embedding

Input

LM head

Output

Step 2

Side Tuning

Embedding

Input

LM head

Output

Dequantize
to 16bit

Dequantize
to 16bit

Downsample

Upsample

Task Switch

Forward
Backprogation

Figure 2: A overview of quantized side tuning.

LLMs to prompts as highlighted in Schick and Schütze162
(2020), a series of studies introduce trainable prompt163
embeddings prepended to the input text or attention164
components while preserving the original LLM parame-165
ters (Liu et al., 2023; Li and Liang, 2021; Lester et al.,166
2021). Rusu et al. (2016) and Houlsby et al. (2019)167
propose adapter modules to introduce new task-specific168
parameters, which are inserted into the Transformer lay-169
ers inside the LLM. LoRA (Hu et al., 2021) leverages170
the low-rank decomposition concept to construct train-171
able parameters inserted into the original LLM weights.172
(IA)3 (Liu et al., 2022) proposes to scale the pre-trained173
model weights of an LLM with a trainable vector. Of174
late, there has been a surge in the proposal of unified175
approaches that amalgamate various PEFT methods by176
leveraging human heuristics (He et al., 2021) or em-177
ploying neural architecture search (Zhou et al., 2023;178
Zoph and Le, 2016; Mao et al., 2021). Existing PEFT179
approaches focus on optimizing model performance180
while minimizing trainable parameters. However, a re-181
duction in the number of trainable parameters does not182
inherently imply a corresponding reduction in memory183
footprint.184

2.2 Memory-Efficient Training and Finetuning185

Memory-efficient training and finetuning aims to reduce186
the memory footprint during the LLM training and/or187
finetuning phase. Reversible neural networks (Gomez188
et al., 2017; Kitaev et al., 2020; Mangalam et al., 2022)189
allow the intermediate activations of each layer to be190
recomputed from the activation of its next layer, thus191
exempting the need to save intermediate activations.192
Gradient checkpointing (Chen et al., 2016) offers an193
optimization strategy that balances computational re-194
sources against memory footprint. Specifically, it re-195

duces memory requirement by selectively discarding 196
certain intermediate activations, which are subsequently 197
recomputed through an additional forward pass when 198
needed. Another line to enhancing memory efficiency 199
involves network compression, that is, the original LLM 200
is reduced to a more compact form, thereby making 201
both the training and inference phases more computa- 202
tionally economical. Network pruning and distillation 203
are the most prevalent strategies for network compres- 204
sion. Network distillation (Hinton et al., 2015; Koratana 205
et al., 2019) involves the creation of a student network 206
that is trained to approximate the output distribution 207
of a teacher network across a specified dataset. Net- 208
work pruning (Frankle and Carbin, 2018; Frankle et al., 209
2020) aims to streamline models by ascertaining the 210
significance of individual parameters and subsequently 211
eliminating those deemed non-essential. Compared with 212
PEFT methods, network compression yields models op- 213
timized for expedited inference, whereas PEFT methods 214
may achieve superior performance by updating a small 215
set of trainable parameters. 216

Recently, QLoRA (Dettmers et al., 2023) quantizes 217
the LLM to 4-bit and then adds LoRA to finetune the 218
quantized LLM. QLoRA significantly reduces the mem- 219
ory footprint of weights and optimizer states compared 220
with full finetuning while retaining similar performance. 221
QLoRA does not consider the memory footprint of inter- 222
mediate activations, and thus falls short in finetuning the 223
LLM with a large batch size, resulting in a long training 224
time. In the context of NLP and CV tasks, the studies 225
by (Sung et al., 2022) and (Zhang et al., 2020) intro- 226
duce the concept of employing a side network. The side 227
network aims to obviate the need for backpropagation 228
through the LLM, thereby reducing the memory foot- 229
print associated with intermediate activations. Despite 230

3

incorporating the side network, the inherent model size231
(i.e., the memory footprint of weights) of the LLM still232
poses computational challenges. Hence, both methods233
can only focus exclusively on models with fewer than234
3 billion parameters, and fail to finetune models with235
more parameters.236

3 Quantized Side Tuning237

In this section, we first describe the process of quantiz-238
ing an LLM into 4-bit, and then introduce our design of239
the side network for side tuning.240

3.1 4-bit Quantization241

Quantization is the process of converting a data type242
with more bits (e.g., 32- or 16-bit floating points) into243
another data type with fewer bits (e.g., 8-bit integers or244
4-bit floating points). QST first quantizes an LLM from245
16-bit into 4-bit, formulated as follows.246

X4bit =round
(

M4bit

Absmax(X16bit)
X4bit

)
(1)247

=round
(
c16bit ·X16bit

)
, (2)248

where X4bit and X16bit are tensors in 4- and 16-bit,249
respectively. M4bit is the maximum value of the 4-bit250
data type. For example, MNF4 = 1, where NF4 is an251
information-theoretically optimal data type that ensures252
each quantization bin has an equal number of values as-253
signed from the input tensor. QST considers both NF4254
and FP4 to quantize an LLM. We empirically demon-255
strate that NF4 performs the best in our experiments (see256
Section 4.6). c16bit is the quantization constant (or quan-257
tization scale) of the 16-bit data type. Correspondingly,258
dequantization is given by259

dequant(c16bit, X4bit) =
X4bit

c16bit
= X16bit. (3)260

The key limitation of this method arises when the in-261
put tensor contains values with very large magnitudes,262
commonly referred to as outliers. Such outliers can263
result in under-utilization of the quantization bins, lead-264
ing to sparsely populated or even empty bins in some265
instances. To address this issue, a prevalent strategy in-266
volves partitioning the input tensor into discrete blocks,267
each subjected to independent quantization with its own268
associated quantization constant. As a result, the input269
tensor X ∈ Rb×h is decomposed into n contiguous270
blocks, each comprising B elements. This decomposi-271
tion is facilitated by flattening X into a 1-dimensional ar-272

ray, which is then partitioned into n = (b×h)
B individual273

blocks. Then, we can leverage E.q. (1) to independently274
quantize these n blocks using different quantization con-275
stants. Typically, minimizing the error associated with276
4-bit quantization would necessitate the utilization of277
smaller block sizes. This is attributed to the reduced278
influence of outliers on other weights. However, using279
a small block size leads to high memory overhead since280
we need to allocate more memory for these quantization281

Multi-head Attention
a

Add & Norm

Feed Forward
a

Add & Norm

Linear
M

axPooling
LoR

A

Downsample Multi-head
Attention

Add & Norm

Feed Forward

Add & Norm

Figure 3: Illustration of ith layer of QST.

constants. To reduce the memory footprint of quantiza- 282
tion constants, we can use the same quantization strategy 283
to quantize these quantization constants (Dettmers et al., 284
2023). In this paper, we use 8-bit float points to quantize 285
the quantization constants, and the forward pass of a 286
single linear layer in the LLM is defined as Y 16bit = 287
dequant(dequant(c16bit2 , c8bit1),W 4bit)X16bit. 4-bit 288
quantization can significantly reduce the memory foot- 289
print of weights, facilitating easier storage and deploy- 290
ment of LLMs. Besides, low-precision floating numbers 291
are faster to execute on modern accelerators such as 292
GPUs, leading to faster model training and inference. 293
Nonetheless, the high to low precision data type conver- 294
sion process during quantization can lead to accuracy 295
degradation, attributable to the inherent information 296
loss. 297

3.2 Side Tuning 298

We now analyze the memory footprint of LLM training 299
and then introduce the neural architecture of the side 300
network, which reduces the inherent information loss 301
and minimizes accuracy drop during quantization. 302

Memory footprint during the training phase. For a 303
given LLM with N layers, let yi = fi(Wi, xi) denotes 304
the ith transformer layer of the LLM, where xi is the 305
input to the ith layer (i.e., xi = yi−1). The memory 306
required during the training phase of the LLM predomi- 307
nantly comprises three main contributors: M1) weights 308
of the LLM {Wi}Ni=1, M2) the optimizer state, which 309
is threefold the size of the trainable parameters when 310
employing the Adam optimizer (Kingma and Ba, 2014) 311
(one for gradient and two for moments), and M3) the in- 312
termediate activations {y′i}Ni=1. The memory footprint 313
of intermediate activations is related to model depth, 314
width, and several training settings, e.g., batch size and 315
sequence length. QLoRA reduces the memory footprint 316
of an LLM’s weights and optimizer states (M1 and M2) 317
but fails to reduce intermediate activations (M3). When 318
finetuning an LLM with a large batch size and/or long 319
sequence length, the memory footprint of QLoRA in- 320
creases significantly. However, using a small batch size 321
results in long training time. Sung et al. (2022) only re- 322
duces the memory footprint of intermediate activations 323
(M3), thus it struggles to finetune a model with more 324
than 3 billion parameters. 325

4

Side network. Our side network g serves as a326
lightweight version of the quantized LLM f . The327
hidden state and weight dimension of g are r times328
smaller than those of f , where r is the reduction fac-329
tor. During the forward pass, the hidden state of the330
ith layer of the side network hgi is formulated by331
h16bit
gi = (1−βi)∗downsamplei(h

16bit
fi

)+βi ∗h16bit
gi−1

,332

where h16bit
fi

is the hidden state of the ith layer of f333
and can be computed using E.q. (3). The illustration334
of ith layer of our QST is shown in Figure 3. Note335
that we use the output of the embedding layer and336
the downsampled embedding layer as h16bit

f0
and h16bit

g0 .337

βi = sigmoid(αi) is a learned gate parameter of ith338
layer, where αi is a learnable zero-initialized scalar.339
downsamplei is the downsample module of the ith340
layer to reduce the hidden state dimension of f by r341
times. Prior work leverages linear projections to down-342
sample (i.e., × 1

r) the high-dimensional hidden states343
of f to the low-dimensional hidden states of g. How-344
ever, an LLM typically comprises plenty of layers with345
substantially high-dimensional hidden states, particu-346
larly when the number of parameters exceeds 3 billion.347
Using linear projections to downsample involves a sig-348
nificant amount of trainable parameters, requiring a high349
memory footprint for the parameters and their optimizer350
states. For example, if the LLM has 24 layers, the di-351
mension of its hidden state is 2048 and the reduction352
factor r is 4, the downsample module consumes about353
50% of the overall trainable parameters.354

To address this problem, we leverage several differ-355
ent downsample methods, including LoRA (He et al.,356
2021), Adapter (Edalati et al., 2022), MaxPooling (Le-357
Cun et al., 1998) and AvgPooling. LoRA augments a358
linear projection through an additional factorized pro-359
jection, which can be formulated as W = L1L2, where360
W ∈ Rdin×dout , L1 ∈ Rdin×dr and L2 ∈ Rdr×dout .361
Adapter is similar to LoRA but introduces an extra non-362
linear function between L1 and L2. Using LoRA or363
Adapter can reduce the ratio of the trainable parame-364
ters of these downsample modules from 56% to 8%.365
MaxPooling and AvgPooling do not introduce extra366
trainable parameters. We empirically demonstrate that367
the Adapter performs the best in our experiments. Fi-368
nally, we upsample (i.e., ×r) from low-dimensional369
hidden states of g to high-dimensional hidden states370
of f , and subsequently leverage the LLM’s head or371
classifier to perform task-specific predictions. When372
switching across different downstream tasks, QST alters373
the side network and therefore eliminates the necessity374
to redeploy the LLM.375

QST only updates the parameters of the side network376
g, but not the 4-bit weights in the LLM f . Unlike377
QLoRA, the calculation of the gradient ∂L

∂g does not378

entail the calculation of ∂L
∂f , thus avoiding the extensive379

computational costs of performing backpropagation on380
f , which ultimately reduces the memory footprint of381
intermediate activations and speeds up finetuning.382

In summary, QST leverages a 4-bit data type to store383

an LLM’s model weights, thus reducing the memory 384
footprint of weights (M1). In addition, QST lever- 385
ages a 16-bit computation data type for the forward 386
pass and backpropagation computation and only com- 387
putes the gradient of weights in g (M3). Finally, QST 388
leverages several factorized projection and gradient-free 389
downsample methods to reduce the trainable parameters 390
(M2). These techniques together allow QST to reduce 391
the memory requirement for all three factors, resulting 392
in fast and memory-efficient finetuning with a nearly 393
1% performance drop. 394

4 Evaluation 395

In this section, we empirically validate the effectiveness 396
of our QST method by examining its performance for 397
LLMs with different types (e.g., OPT and LLaMA 2), 398
sizes (from 1.3B to 70B), and benchmarks. 399

4.1 Experimental Setup 400

Datasets. We evaluate the performance of QST and sev- 401
eral baselines on natural language understanding (NLU) 402
and natural language generation tasks. For NLU exper- 403
iments, we use the GLUE (Wang et al., 2018) (Gen- 404
eral Language Understanding Evaluation) and MMLU 405
(Hendrycks et al., 2020) (Massively Multitask Language 406
Understanding) benchmarks. The GLUE benchmark 407
provides a comprehensive evaluation of models across 408
a range of linguistic tasks. These tasks encompass lin- 409
guistic acceptability as examined in CoLA (Warstadt 410
et al., 2019), sentiment analysis as portrayed in SST2 411
(Socher et al., 2013), tasks probing similarity and para- 412
phrase distinctions such as MRPC (Dolan and Brockett, 413
2005), QQP (Iyer, 2017), and STS-B (Cer et al., 2017), 414
in addition to natural language inference tasks including 415
MNLI (Williams et al., 2017), QNLI (Rajpurkar et al., 416
2016), and RTE (Bentivogli et al., 2009). We report 417
accuracy on MNLI, QQP, QNLI, SST-2, MRPC, and 418
RTE, Pearson correlation coefficients on SST-B, and 419
Mathews correlation coefficients (Matthews, 1975) on 420
CoLA. The MMLU benchmark consists of 57 tasks in- 421
cluding elementary mathematics, US history, computer 422
science, law, and more. We report the average 5-shot 423
test accuracy on the 57 tasks. 424
Models. We use decoder-only LLMs such as the 425
OPT series (OPT-1.3B, OPT-2.7B, OPT-6.7B, OPT- 426
13B, OPT-30B, and OPT-66B) and the LLaMA-2 series 427
(LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B). 428
Baselines. We compare QST with QLoRA (Dettmers 429
et al., 2023), LST (Sung et al., 2022), LoRA (He et al., 430
2021), and Adapter (Houlsby et al., 2019). Note that 431
we only compare LST, LoRA, and Adapter when the 432
model size is less than 3B since their memory footprint 433
of weights can be excessively huge beyond that. 434
Implementation. We set the reduction factor r to 16 by 435
default. We use Adapter as the downsample module, a 436
linear layer as the upsample module, and set the rank of 437
the Adapter to 16. We use the NF4 data type to store the 438
weights of the LLM and bfloat16 as the data type for 439

5

Method # Param. (%) Memory (GB) RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.

OPT-1.3B (batchsize=16, sequence length=512)
QLoRA 4.41% 31.3 81.3±1.6 83.3±1.1 89.9±0.5 62.1±2.3 94.9±0.1 86.3±0.2 87.1±0.1 76.0±0.3 82.6

LST 2.39% 20.9 82.0±2.2 83.1±1.3 88.6±0.4 59.5±3.1 94.4±0.3 86.1±0.3 86.4±0.6 77.8±0.5 82.2
LoRA 2.36% 32.9 82.7±1.9 83.4±0.9 89.3±0.2 62.5±1.7 93.7±0.7 81.4±9.3 86.9±0.3 81.2±0.1 82.6

Adapter 0.48% 32.5 82.2±0.8 82.7±1.4 89.7±1.6 60.6±3.0 93.8±0.2 83.6±0.1 86.3±0.4 80.5±0.1 82.4
QST 0.45% 17.7 79.5±2.5 81.7±1.1 88.4±1.1 59.7±2.9 94.3±0.3 85.7±0.5 84.3±0.7 77.1±0.6 81.3

OPT-2.7B (batchsize=16, sequence length=512)
QLoRA 3.57% 47.0 83.6±1.5 84.8±1.2 91.2±0.6 63.7±2.6 95.6±0.2 88.7±0.1 89.5±0.2 78.3±0.4 84.4

LST 2.39% 30.7 82.5±2.9 83.9±1.5 89.1±0.9 60.7±3.5 95.3±0.4 87.3±0.2 88.8±1.0 80.4±0.7 83.5
LoRA 1.90% 50.4 84.7±1.4 84.6±0.8 90.9±0.1 64.5±2.4 95.3±0.6 83.0±7.4 90.7±0.1 82.6±0.2 84.5

Adapter 0.37% 49.9 84.4±0.7 83.7±1.4 91.5±1.9 63.4±3.8 95.4±0.3 83.6±0.2 90.2±0.3 81.1±0.1 84.2
QST 0.43% 24.4 80.1±2.1 83.7±1.2 88.9±1.4 62.0±3.4 95.2±0.8 86.6 ±0.9 86.5±0.9 80.4±0.6 83.0

OPT-6.7B (batchsize=16, sequence length=512)
QLoRA 2.33% 63.6 84.5±1.2 85.9±0.7 92.0±0.8 64.3±2.8 96.2±0.1 90.2±0.2 90.7±0.2 79.8±0.3 85.5

QST 0.42% 27.5 80.8±1.4 85.2±1.0 89.6±0.7 62.8±2.6 96.4±0.6 87.3±1.1 89.4±0.8 81.6±0.5 84.2

Table 1: Experiments results on GLUE benchmark (using BF16 data type).

computation. We adopt the same parameters reported440
in QLoRA, LST, LoRA, and Adapter to construct the441
baselines. Other hyperparameters are specified in Ap-442
pendix A and Appendix B. We run each experiment443
three times under different random seeds and report the444
average performance. We conduct all the experiments445
using Pytorch (Paszke et al., 2017) and HuggingFace446
library (Wolf et al., 2019) on 4 NVIDIA RTX A5000447
GPUs, each with 24GB memory.448

4.2 Experiments on GLUE Benchmark449

Table 1 shows the performance of different methods450
on the GLUE benchmark. Overall, QST achieves the451
lowest memory footprint among all methods while at-452
taining competent accuracy. Particularly, for relatively453
small models (i.e., OPT-1.3B and OPT-2.7B), QST re-454
duces the memory footprint by around 2× compared455
with QLoRA, LoRA, and Adapter, while achieving com-456
parable accuracy. Compared with LST, QST reduces457
the memory requirement by 3.2GB and 6.3GB for fine-458
tuning OPT-1.3B and OPT-2.7B. QST also reduces the459
trainable parameters by around 10× and 5× compared460
with QLoRA and the other baselines, respectively.461

For larger models such as OPT-6.7B, we focus on462
comparing QST with QLoRA. This is because QLoRA463
has similar accuracy with the other baselines, but LoRA,464
Adapter, and LST all have excessively huge memory465
footprints of weights when it comes to finetuning OPT-466
6.7B2. Compared with QLoRA, QST reduces the mem-467
ory footprint and trainable parameters by 2.3× and468
5.5×, while only introducing a 1.3% accuracy drop.469

4.3 Experiments on MMLU Benchmark470

The experiment results of the MMLU benchmark are471
shown in Table 2. We set the batch size to 4 and the472
sequence length to 384. We use the Alpaca dataset473
(Taori et al., 2023) to finetune both QLoRA and QST.474

2QLoRA can leverage gradient accumulation to finetune
with a batch size of 16 while guaranteeing an affordable mem-
ory footprint.

We compare QST with QLoRA on accuracy and mem- 475
ory requirement over OPT-1.3B, OPT-2.7B, OPT-6.7B, 476
OPT-13B, OPT-30B, OPT-66B, LLaMA-2-7B, LLaMA- 477
2-13B, and LLaMA-2-70B. QST improves the accu- 478
racy by 0.1% on average while reducing the memory 479
footprint by 1.8× compared with QLoRA. Particularly, 480
QST yields an enhancement of 2.1% in accuracy over 481
QLoRa when finetuning LLaMA-2-13B. When finetun- 482
ing the OPT-2.7B, OPT-6.7B, and OPT-13B models, 483
QST achieves 0.3%, 0.6%, and 0.3% accuracy improve- 484
ments, respectively. 485

4.4 Memory Footprint Analysis 486

Effects of batch size. Figure 5(a) illustrates the effects 487
of batch size for different methods. We use LLaMA- 488
2-70B as the LLM and set the sequence length to 512. 489
While the memory footprint of all methods increases 490
as the batch size increases, QST achieves the lowest 491
memory footprint among all, regardless of the batch 492
size. Particularly, the memory footprint of QST is only 493
one-third of LoRA and Adapter. Besides, the memory 494
footprint of both QST and LST grows less drastically 495
than QLoRa, Adapter, and LoRa as the batch size in- 496
creases. This is because both LST and QST use side 497
tuning to reduce the hidden dimension of the intermedi- 498
ate activations, thereby alleviating the growth of mem- 499
ory footprint induced by intermediate activations. QST 500
also achieves an additional reduction of approximately 501
100GB in memory footprint compared to LST, thanks to 502
the 4-bit quantization design that effectively compresses 503
the memory footprint of the weights and well design of 504
the downsample modules to reduce the optimizer states. 505

Effects of the model size. Figure 5(b) shows the effects 506
of the total model bits on different methods. We use 507
the OPT model series and set the batch size to 4. Due 508
to the 4-bit quantization, QST and QLoRA reduce the 509
memory footprint compared with the other baselines. 510
The memory footprint gap further widens as the model 511
size increases. Besides, QST achieves around 2 times 512
reduction in memory footprint compared with QLoRA 513

6

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.

QLoRA 25.0/6.3 25.2/10.1 25.6/15.5 26.5/25.4 27.7/46.8 36.4/87.5 45.9/15.6 54.7/25.4 64.1/95.5 36.8/36.5
QST 24.3/3.2 25.5/4.8 26.2/7.2 26.8/12.6 27.3/25.7 36.0/52.3 45.1/7.3 56.8/12.6 63.9/56.0 36.9/20.2

Table 2: Experiment results (accuracy/memory) on MMLU 5-shot.

20 21 22 23 24 25 26

Batch size

0

100

200

300

400

500

600

700

800

M
em

or
y

(G
B

)

QLoRA
LST
LoRA
Adapter
QST

(a) Effect of batch size.

1010

Model size

0
25
50
75

100
125
150
175
200

M
em

or
y

(G
B

)

QLoRA
LST
LoRA
Adapter
QST

(b) Effect of total model bits.

26 27 28 29

Sequence length

100

200

300

400

500

M
em

or
y

(G
B

)

QLoRA
LST
LoRA
Adapter
QST

(c) Effect of sequence length.

Figure 4: Effects of the batch size, total model bits, and sequence length on memory footprint.

Method FLOPS per token (10−5)

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

QLoRA 11.7 16.0 38.1
LST 11.0 19.0 80.7

LoRA 11.3 15.6 37.2
Adapter 11.2 15.6 27.2

QST 4.4 6.1 15.3

Table 3: Experiments on FLOPS per token of different
methods.

thanks to its small volume of trainable parameters and514
intermediate activations.515
Effects of sequence length. Figure 5(c) shows the516
effects of sequence length on different methods. We use517
LLaMA-2-70B and set the batch size to 4. Similar to the518
effect of batch size, LST and QST alleviate the growth519
rate of memory footprint of intermediate activations,520
while QST further achieves around 100GB reduction in521
memory footprint compared with LST.522

4.5 Experiments on Training Throughput523

Table 3 shows the training throughput of different meth-524
ods, measured by FLOPS per token (the lower the bet-525
ter), on LLaMA-2-7B, LLaMA-2-13B, and LLaMA-526
2-70B. While the FLOPS per token of all methods527
increases as the model size grows, QST achieves the528
lowest FLOPS per token among all. Particularly, QST529
achieves around 2.5× speed up compared with the base-530
lines. LST suffers from the highest FLOPS per token.531
The FLOPS per token of QLoRA is slightly higher than532
LoRA and Adapter since QLoRA adds more LoRA533
components.534

4.6 Sensitive Analysis535

Effects of reduction factor r. We conduct experiments536
using LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-537

Method LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.

FP4 44.5 55.4 63.5 54.5
NF4 45.1 56.8 63.9 55.3

Table 4: Experiments on 4-bit data types.

70B to verify the effects of reduction factor r (from 538
2 to 64) on memory footprint, MMLU accuracy, and 539
throughput. We set the batch size to 4 and the sequence 540
length to 384. The MMLU accuracy changes slightly as 541
r varies as shown in Figure 5a. QST achieves the best 542
accuracy of finetuning LLaMA-2-7B and LLaMA-2- 543
13B when r is set to 16. As shown in Figure 5b and 5c, 544
the memory footprint and the FLOPS per token decrease 545
drastically when r varies from 2 to 16 for finetuning all 546
the models. The memory footprint and the FLOPS per 547
token decrease slightly when r varies from 16 to 64. 548
Therefore, we use r to 16 in our experiments as default. 549

Effects of 4-bit data types. We evaluate two 4-bit data 550
types: FP4 and NF4 using the LLaMA-2 model series 551
and the MMLU benchmark. As shown in Table 4, NF4 552
improves the average accuracy by about 0.8% compared 553
with FP4. Therefore, we use NF4 as the default 4-bit 554
data type in our experiments. 555

Method MRPC QNLI

QLoRA 68.0 60.3
QST 85.6 87.2

Table 5: Experiments of
QLoRA and QST using
FP16.

Effects of computa- 556
tion data types. We 557
analyze the effects of 558
two computation data 559
types: BF16 (results 560
shown in Table 1) and 561
FP16 (results shown 562
in Table 5). As can be 563
seen, QST retains similar results using FP16 and BF16. 564
On the other hand, QLoRA is unstable using FP16 as 565
the computation data type. We finetune OPT-6.7B on 566
the GLUE benchmark and discover that QLoRA fails to 567
finetune on the MRPC and QNLI datasets. We run each 568

7

21 22 23 24 25 26

r

45

50

55

60

65

A
cc
ur
ac
y)

LLaMA-2-7b
LLaMA-2-13b
LLaMA-2-70b

(a) Effect of r on MMLU accuracy.

21 22 23 24 25 26

r

0

20

40

60

80

100

120

140

M
em

or
y

(G
B

)

LLaMA-2-7b
LLaMA-2-13b
LLaMA-2-70b

(b) Effect of r on memory footprint.

21 22 23 24 25 26

r

5

10

15

20

25

FL
O

PS
 p

er
 to

ke
n

(1
0−5

) LLaMA-2-7b
LLaMA-2-13b
LLaMA-2-70b

(c) Effect of r on training throughput.

Figure 5: Effects of the reduction factor r on MMLU accuracy, memory footprint, and training throughput.

Method # Param. (%) Ratio Memory Accuracy

Linear 0.85% 56.0% 7.8 44.9
LoRA 0.41% 7.8% 7.3 44.7

Adapter 0.41% 7.8% 7.3 45.1
MaxPooling 0.38% 0% 7.3 43.7
AvgPooling 0.38% 0% 7.3 42.5

Table 6: Experiments on downsample modules. Note
that the ratio represents the ratio of downsample mod-
ules trainable parameter in all trainable parameters.

Method Training Time Memory Score

QLoRA-70B ~80h 96.3 6.61
QST-70B ~25h 56.1 6.60

Table 7: Chatbot performance on QLoRA and QST.

dataset under three different random seeds and QLoRA569
fails on two of them.570

Effects of downsample modules. We conduct experi-571
ments on different downsample modules: Linear, LoRA,572
Adapter, MaxPooling, and AvgPooling using LLaMA-573
2-7B and the MMLU benchmark. As shown in Table 6,574
using Adapter as the downsample module achieves the575
best performance among all baselines, and reduces the576
trainable parameters and memory footprint.577

4.7 Experiments on Chatbot Performance578

We conduct experiments on Chatbot performance using579
MT-benchmark (Zheng et al., 2023). MT-benchmark is580
a set of challenging multi-turn open-ended questions for581
evaluating the chat assistant’s performance in writing,582
roleplay, reasoning, math, coding, extraction, STEM,583
and humanities categories. In our experiments, we use584
GPT-4 to act as judges and assess the quality of the585
responses of the model finetuned by QLoRA and QST.586
We finetune LLaMA-2-70B using a variant of OASST1587
(Dettmers et al., 2023). Table 6 shows the experiment588
results of QLoRA and QST on the total training time,589
memory footprint, and the average MT-Bench score590
over 8 categories. QST speeds up the training by 3.2591
× and reduces memory footprint by 1.7 ×, with just a592
slight score drop of 0.16 compared withe QLoRA. As593

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 1 2 3 4 5 6 7 8 9

QLoRA-70B
QST-70B

Figure 6: MT-Bench scores of QLoRA and QST in
different categories.

shown in Figure 6, QST performs better than QLoRA 594
in STEM, Extraction, Coding, and reasoning. This may 595
contribute to the transformer block of the side network, 596
which can reconstruct the inherent information loss of 597
context. QST performs slightly worse than QLoRA in 598
other categories. 599

5 Conclusion 600

In this paper, we propose Quantized Side Tuing (QST), 601
a novel fast and memory-efficient finetuning framework. 602
QST operates through a dual-stage process: first, QST 603
quantizes the LLM into 4-bit to reduce the memory foot- 604
print of the weights in LLM; then QST introduces a side 605
network separated from the LLM, which utilizes the hid- 606
den states of the LLM to make task-specific predictions. 607
QST can significantly reduce the memory footprint of 608
LLM finetuning compared to existing approaches. In 609
particular, experiments show that QST can reduce the 610
total memory footprint by up to 2.3 × and speed up the 611
finetuning process by up to 3 × while achieving compa- 612
rable performance compared with the state-of-the-art. 613

8

References614

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,615
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas616
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A617
general language assistant as a laboratory for align-618
ment. arXiv preprint arXiv:2112.00861.619

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda620
Askell, Anna Chen, Nova DasSarma, Dawn Drain,621
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.622
2022. Training a helpful and harmless assistant with623
reinforcement learning from human feedback. arXiv624
preprint arXiv:2204.05862.625

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo626
Giampiccolo. 2009. The fifth pascal recognizing627
textual entailment challenge. TAC, 7:8.628

Tom Brown, Benjamin Mann, Nick Ryder, Melanie629
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind630
Neelakantan, Pranav Shyam, Girish Sastry, Amanda631
Askell, et al. 2020. Language models are few-shot632
learners. Advances in neural information processing633
systems, 33:1877–1901.634

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-635
Gazpio, and Lucia Specia. 2017. Semeval-2017636
task 1: Semantic textual similarity-multilingual and637
cross-lingual focused evaluation. arXiv preprint638
arXiv:1708.00055.639

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos640
Guestrin. 2016. Training deep nets with sublinear641
memory cost. arXiv preprint arXiv:1604.06174.642

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,643
Maarten Bosma, Gaurav Mishra, Adam Roberts,644
Paul Barham, Hyung Won Chung, Charles Sutton,645
Sebastian Gehrmann, et al. 2022. Palm: Scaling646
language modeling with pathways. arXiv preprint647
arXiv:2204.02311.648

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and649
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning650
of quantized llms. arXiv preprint arXiv:2305.14314.651

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and652
Kristina Toutanova. 2018. Bert: Pre-training of deep653
bidirectional transformers for language understand-654
ing. arXiv preprint arXiv:1810.04805.655

Bill Dolan and Chris Brockett. 2005. Automati-656
cally constructing a corpus of sentential paraphrases.657
In Third International Workshop on Paraphrasing658
(IWP2005).659

Alexey Dosovitskiy, Lucas Beyer, Alexander660
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,661
Thomas Unterthiner, Mostafa Dehghani, Matthias662
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.663
An image is worth 16x16 words: Transformers664
for image recognition at scale. arXiv preprint665
arXiv:2010.11929.666

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-667
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.668
2022. Krona: Parameter efficient tuning with kro-669
necker adapter. arXiv preprint arXiv:2212.10650.670

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3: 671
Its nature, scope, limits, and consequences. Minds 672
and Machines, 30:681–694. 673

Jonathan Frankle and Michael Carbin. 2018. The lottery 674
ticket hypothesis: Finding sparse, trainable neural 675
networks. arXiv preprint arXiv:1803.03635. 676

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel 677
Roy, and Michael Carbin. 2020. Linear mode con- 678
nectivity and the lottery ticket hypothesis. In Inter- 679
national Conference on Machine Learning, pages 680
3259–3269. PMLR. 681

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and 682
Roger B Grosse. 2017. The reversible residual net- 683
work: Backpropagation without storing activations. 684
Advances in neural information processing systems, 685
30. 686

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 687
Kirkpatrick, and Graham Neubig. 2021. Towards a 688
unified view of parameter-efficient transfer learning. 689
arXiv preprint arXiv:2110.04366. 690

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 691
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 692
2020. Measuring massive multitask language under- 693
standing. arXiv preprint arXiv:2009.03300. 694

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 695
Distilling the knowledge in a neural network. arXiv 696
preprint arXiv:1503.02531. 697

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 698
Bruna Morrone, Quentin De Laroussilhe, Andrea 699
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 700
Parameter-efficient transfer learning for nlp. In In- 701
ternational Conference on Machine Learning, pages 702
2790–2799. PMLR. 703

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 704
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 705
and Weizhu Chen. 2021. Lora: Low-rank adap- 706
tation of large language models. arXiv preprint 707
arXiv:2106.09685. 708

Shankar Iyer. 2017. First quora dataset release: 709
Question pairs. https://quoradata.quora. 710
com/First-Quora-Dataset-Release-\ 711
Question-Pairs. 712

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 713
method for stochastic optimization. arXiv preprint 714
arXiv:1412.6980. 715

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 716
2020. Reformer: The efficient transformer. arXiv 717
preprint arXiv:2001.04451. 718

Animesh Koratana, Daniel Kang, Peter Bailis, and 719
Matei Zaharia. 2019. Lit: Learned intermediate rep- 720
resentation training for model compression. In In- 721
ternational Conference on Machine Learning, pages 722
3509–3518. PMLR. 723

9

https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick724
Haffner. 1998. Gradient-based learning applied to725
document recognition. Proceedings of the IEEE,726
86(11):2278–2324.727

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.728
The power of scale for parameter-efficient prompt729
tuning. arXiv preprint arXiv:2104.08691.730

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:731
Optimizing continuous prompts for generation. arXiv732
preprint arXiv:2101.00190.733

Baohao Liao, Shaomu Tan, and Christof Monz. 2023.734
Make your pre-trained model reversible: From param-735
eter to memory efficient fine-tuning. arXiv preprint736
arXiv:2306.00477.737

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-738
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-739
fel. 2022. Few-shot parameter-efficient fine-tuning740
is better and cheaper than in-context learning. Ad-741
vances in Neural Information Processing Systems,742
35:1950–1965.743

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,744
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt745
understands, too. AI Open.746

Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-747
Yuan Wu, Bo Xiong, Christoph Feichtenhofer, and748
Jitendra Malik. 2022. Reversible vision transform-749
ers. In Proceedings of the IEEE/CVF Conference750
on Computer Vision and Pattern Recognition, pages751
10830–10840.752

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-753
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian754
Khabsa. 2021. Unipelt: A unified framework for755
parameter-efficient language model tuning. arXiv756
preprint arXiv:2110.07577.757

Brian W Matthews. 1975. Comparison of the pre-758
dicted and observed secondary structure of t4 phage759
lysozyme. Biochimica et Biophysica Acta (BBA)-760
Protein Structure, 405(2):442–451.761

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-762
naneh Hajishirzi. 2021. Metaicl: Learning to learn in763
context. arXiv preprint arXiv:2110.15943.764

OpenAI. 2023. GPT-4 technical report. CoRR,765
abs/2303.08774.766

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,767
Carroll Wainwright, Pamela Mishkin, Chong Zhang,768
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.769
2022. Training language models to follow instruc-770
tions with human feedback. Advances in Neural In-771
formation Processing Systems, 35:27730–27744.772

Adam Paszke, Sam Gross, Soumith Chintala, Gregory773
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,774
Alban Desmaison, Luca Antiga, and Adam Lerer.775
2017. Automatic differentiation in pytorch.776

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 777
Kyunghyun Cho, and Iryna Gurevych. 2020. Adapter- 778
fusion: Non-destructive task composition for transfer 779
learning. arXiv preprint arXiv:2005.00247. 780

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 781
Dario Amodei, Ilya Sutskever, et al. 2019. Language 782
models are unsupervised multitask learners. OpenAI 783
blog, 1(8):9. 784

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 785
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 786
Wei Li, and Peter J Liu. 2020. Exploring the limits 787
of transfer learning with a unified text-to-text trans- 788
former. The Journal of Machine Learning Research, 789
21(1):5485–5551. 790

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, 791
and Percy Liang. 2016. Squad: 100,000+ questions 792
for machine comprehension of text. arXiv preprint 793
arXiv:1606.05250. 794

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des- 795
jardins, Hubert Soyer, James Kirkpatrick, Koray 796
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 797
2016. Progressive neural networks. arXiv preprint 798
arXiv:1606.04671. 799

Teven Le Scao, Angela Fan, Christopher Akiki, El- 800
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman 801
Castagné, Alexandra Sasha Luccioni, François Yvon, 802
Matthias Gallé, et al. 2022. Bloom: A 176b- 803
parameter open-access multilingual language model. 804
arXiv preprint arXiv:2211.05100. 805

Timo Schick and Hinrich Schütze. 2020. Exploit- 806
ing cloze questions for few shot text classification 807
and natural language inference. arXiv preprint 808
arXiv:2001.07676. 809

Richard Socher, Alex Perelygin, Jean Wu, Jason 810
Chuang, Christopher D Manning, Andrew Y Ng, and 811
Christopher Potts. 2013. Recursive deep models for 812
semantic compositionality over a sentiment treebank. 813
In Proceedings of the 2013 conference on empiri- 814
cal methods in natural language processing, pages 815
1631–1642. 816

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel 817
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, 818
Dario Amodei, and Paul F Christiano. 2020. Learn- 819
ing to summarize with human feedback. Advances 820
in Neural Information Processing Systems, 33:3008– 821
3021. 822

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. 823
Lst: Ladder side-tuning for parameter and memory 824
efficient transfer learning. Advances in Neural Infor- 825
mation Processing Systems, 35:12991–13005. 826

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 827
Dubois, Xuechen Li, Carlos Guestrin, Percy 828
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 829
ford alpaca: An instruction-following llama 830
model. https://github.com/tatsu-lab/ 831
stanford_alpaca. 832

10

https://doi.org/10.48550/arXiv.2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier833
Martinet, Marie-Anne Lachaux, Timothée Lacroix,834
Baptiste Rozière, Naman Goyal, Eric Hambro,835
Faisal Azhar, et al. 2023. Llama: Open and effi-836
cient foundation language models. arXiv preprint837
arXiv:2302.13971.838

Alex Wang, Amanpreet Singh, Julian Michael, Felix839
Hill, Omer Levy, and Samuel R Bowman. 2018.840
Glue: A multi-task benchmark and analysis platform841
for natural language understanding. arXiv preprint842
arXiv:1804.07461.843

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-844
isa Liu, Noah A Smith, Daniel Khashabi, and Han-845
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-846
guage model with self generated instructions. arXiv847
preprint arXiv:2212.10560.848

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-849
labashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana850
Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,851
Atharva Naik, David Stap, et al. 2022b. Super-852
naturalinstructions: Generalization via declarative853
instructions on 1600+ nlp tasks. arXiv preprint854
arXiv:2204.07705.855

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-856
man. 2019. Neural network acceptability judgments.857
Transactions of the Association for Computational858
Linguistics, 7:625–641.859

Adina Williams, Nikita Nangia, and Samuel R Bow-860
man. 2017. A broad-coverage challenge corpus for861
sentence understanding through inference. arXiv862
preprint arXiv:1704.05426.863

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien864
Chaumond, Clement Delangue, Anthony Moi, Pierric865
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,866
et al. 2019. Huggingface’s transformers: State-of-867
the-art natural language processing. arXiv preprint868
arXiv:1910.03771.869

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas870
Guibas, and Jitendra Malik. 2020. Side-tuning: a871
baseline for network adaptation via additive side net-872
works. In Computer Vision–ECCV 2020: 16th Euro-873
pean Conference, Glasgow, UK, August 23–28, 2020,874
Proceedings, Part III 16, pages 698–714. Springer.875

Susan Zhang, Stephen Roller, Naman Goyal, Mikel876
Artetxe, Moya Chen, Shuohui Chen, Christopher De-877
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.878
Opt: Open pre-trained transformer language models.879
arXiv preprint arXiv:2205.01068.880

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan881
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,882
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,883
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging884
llm-as-a-judge with mt-bench and chatbot arena.885

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korho-886
nen. 2023. Autopeft: Automatic configuration search887
for parameter-efficient fine-tuning. arXiv preprint888
arXiv:2301.12132.889

Barret Zoph and Quoc V Le. 2016. Neural architecture 890
search with reinforcement learning. arXiv preprint 891
arXiv:1611.01578. 892

A Hyperparameters of QST on the 893

GLUE benchmark 894

The hyperparameters of QST on GLUE benchmark are 895
shown in Table 7. 896

B Hyperparameters of QST on MMLU 897

benchmark 898

The hyperparameters of QST on the MMLU benchmark 899
are shown in Table 8. 900

11

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Model Dataset RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

OPT-1.3B

Batch Size 32 8 32 32 32 8 8 32
Epochs 20

Learning Rate 2E-04
r 16

the rank of downsamples 16

OPT-2.7B

Batch Size 16 8 16 16 16 8 8 16
Epochs 15

Learning Rate 2E-04
r 16

the rank of downsamples 16

OPT-6.7B

Batch Size 8 4 8 8 8 4 4 8
Epochs 10

Learning Rate 2E-04
r 16

the rank of downsamples 16

Table 8: The hyperparameters of QST on the GLUE benchmark.

OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Optimizer AdamW
Warmup Ratio 0.03
LR Schedule Constant
Batch Size 8 8 4 2 1 1 4 2 1
Epochs 5 5 3 3 2 2 3 2 2

Learning Rate 2E-04 2E-04 2E-04 1E-04 1E-04 1E-04 2E-04 2E-04 1E-04
r 16

the rank of downsamples 16

Table 9: The hyperparameters of QST on the MMLU benchmark.

12

