Quantized Side Tuning: Fast and Memory-Efficient Tuning of
Quantized Large Language Models

Anonymous ACL submission

Abstract

Finetuning large language models (LLMs) has
been empirically effective on a variety of down-
stream tasks. Existing approaches to finetun-
ing an LLM either focus on parameter-efficient
finetuning, which only updates a small num-
ber of trainable parameters, or attempt to re-
duce the memory footprint during the training
phase of the finetuning. Typically, the memory
footprint during finetuning stems from three
contributors: model weights, optimizer states,
and intermediate activations. However, exist-
ing works still require considerable memory
and none can simultaneously mitigate memory
footprint for all three sources. In this paper,
we present Quantized Side Tuing (QST), which
enables memory-efficient and fast finetuning of
LLMs by operating through a dual-stage pro-
cess. First, QST quantizes an LLM’s model
weights into 4-bit to reduce the memory foot-
print of the LLM’s original weights; QST also
introduces a side network separated from the
LLM, which utilizes the hidden states of the
LLM to make task-specific predictions. Using a
separate side network avoids performing back-
propagation through the LLM, thus reducing
the memory requirement of the intermediate ac-
tivations. Furthermore, QST leverages several
low-rank adaptors and gradient-free downsam-
ple modules to significantly reduce the train-
able parameters, so as to save the memory foot-
print of the optimizer states. Experiments show
that QST can reduce the total memory footprint
by up to 2.3 x and speed up the finetuning pro-
cess by up to 3 x while achieving competent
performance compared with the state-of-the-
art. When it comes to full finetuning, QST can
reduce the total memory footprint up to 7 x.

1 Introduction

Recent advancements in large language models (LLMs),
including GPT (Brown et al., 2020; Floridi and Chiri-
atti, 2020; OpenAl, 2023), PaLM (Chowdhery et al.,
2022), OPT (Zhang et al., 2022), and LLaMA (Tou-
vron et al., 2023), have showcased remarkable task-
generalization capabilities across diverse applications

(Stiennon et al., 2020; Dosovitskiy et al., 2020). The on-
going evolution of LLMs’ capabilities is accompanied
by exponential increases in LLMs’ sizes, with some
models encompassing 100 billion parameters (Raffel
et al., 2020; Scao et al., 2022). Finetuning pre-trained
LLMs (Min et al., 2021; Wang et al., 2022b,a; Liu et al.,
2022) for customized downstream tasks provides an
effective approach to introducing desired behaviors, mit-
igating undesired ones, and thus boosting the LLMs’
performance (Ouyang et al., 2022; Askell et al., 2021;
Bai et al., 2022). Nevertheless, the process of LLM
finetuning is characterized by its substantial memory de-
mands. For instance, finetuning a 16-bit LLaMA model
with 65 billion parameters requires more than 780GB
of memory (Dettmers et al., 2023).

To reduce the computational requirement of LLM
finetuning, recent work introduces parameter-efficient
finetuning (PEFT), which updates a subset of train-
able parameters from an LLM or introduces a small
number of new parameters into the LLM while keep-
ing the vast majority of the original LLM parameters
frozen (Houlsby et al., 2019; Li and Liang, 2021; Pfeif-
fer et al., 2020; Hu et al., 2021; He et al., 2021; Lester
et al., 2021). PEFT methods achieve comparable per-
formance as full finetuning while enabling fast adaption
to new tasks without suffering from catastrophic forget-
ting (Pfeiffer et al., 2020). However, PEFT methods
necessitate caching intermediate activations during for-
ward processing, since these activations are needed to
update trainable parameters during backward propaga-
tion. As a result, PEFT methods require saving more
than 70% of activations and almost the same training
time compared to full finetuning (Liao et al., 2023; Sung
et al., 2022). Concisely, existing PEFT techniques can-
not effectively reduce the memory footprint of LLM
finetuning, restricting their applications in numerous
real-world memory-constrained scenarios.

Recent work has also introduced approaches to com-
bining PEFT and quantization. For example, QLoRA
(Dettmers et al., 2023) quantizes an LLM’s weights to
4-bit and leverages low-rank adaption (LoRA) (He et al.,
2021) to finetune the quantized LLM. QLoRA reduces
the memory footprint of an LLM’s weights and opti-
mizer states, and as a result, finetuning a 65B LLM
requires less than 48 GB of memory. However, QLoRA
does not consider the memory footprint of intermediate

Reduce the Reduce the

Intermediate | 197GB weights intermediate activations 65
activations and the and the
optimzer states optimzer states
—— ,?60
X
420GB <
Reduce all 5 55
E—/— 78GB g
e 197GB 24GB 3
< 50 ——QLoRA
69GB —&— LST
Weights | 120G6B 13GB 140GB 4GB A
45 —4— QST (Ours)
36GB 36GB 21
50 100 150 200 250 300
Full Funtuning QLoRA LST QST (Ours) Memory (GB)

(a) Comparing the memory requirement of different methods.

(b) Comparing the predictive performance of different
finetuning techniques.

Figure 1: Figure 1a shows the memory footprint of different methods of fintuning LLaMA-2-70b. Figure 1b shows
the MMLU 5-shot accuracy of different methods when tuning LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B.
Note that we set the batch size to 16 and the sequence length to 384. Larger markers represent larger models.

activations, which can be particularly large when using
a large batch size for finetuning. As a result, QLoRA
only supports small-batch training (e.g. a batch size
of 1), and finetuning a 65B LLM requires checkpoint-
ing gradients (Chen et al., 2016) to fit the LLM on a
single 48GB GPU, resulting in long training time. Be-
sides, our evaluation also reveals that the performance
of QLoRA becomes unstable when using 16-bit float-
ing points. Sung et al. (2022) and Zhang et al. (2020)
propose to use a side network to reduce the memory
footprint of intermediate activations by avoiding back-
propagation of the LLM on natural language processing
(NLP) and computer vision (CV) tasks, respectively.
Even with the adoption of a side network, the inherent
model size of the LLM remains a challenge. Meanwhile,
these approaches focus on small models (i.e., less than 3
billion parameters), and their applicability and efficacy
for larger models remain unexplored.

In this paper, we propose a fast, memory-efficient
LLM finetuning framework, called Quantized Side-
Tuning (QST), which operates through a dual-stage
process as shown in Figure 2. First, QST quantizes an
LLM into 4-bit to reduce the memory footprint of its
model weights. Second, QST introduces a side network
separating from the quantized LLM to avoid perform-
ing backward propagation for the quantized LLM, thus
saving the memory footprint of intermediate activations.
During the training phase of QST, the input to each
layer of the side network is formed by combining (1)
the downsampled output of the corresponding quantized
LLM layer and (2) the output of the previous layer of the
side network. A larger LLM usually has a larger model
depth (i.e., the number of layers) and width (the hidden
size of each layer), which in turn requires more train-
able parameters for the downsampling layers. Unlike
Sung et al. (2022) that leverages linear layer to per-
form downsampling, QST uses several low-rank adapter

methods (He et al., 2021; Edalati et al., 2022) such as
MaxPooling (LeCun et al., 1998) and AvgPooling, sig-
nificantly reducing the required trainable parameters
and the memory footprint for the optimizer states. After
that, we use a learnable parameter to assign weights and
subsequently aggregate the hidden states of the quan-
tized LLM and the side network. Finally, we reuse
the LLM head or classifier to predict. Combined with
4-bit quantization and side tuning, QST significantly
reduces all three main contributors of the memory foot-
print and training time during the training phase. Be-
sides, QST does not increase inference latency since
the LM and side network can be computed in paralle.
Figure 1 compares the memory footprint of QST and
existing parameter-efficient fine-tuning methods, includ-
ing QLoRA and LST.

To validate the effectiveness of our QST, we conduct
extensive evaluations for different types of LLMs (e.g.,
OPT, LLaMA 2), with 1.3B to 70B parameters, on var-
ious benchmarks. Experiment results show that QST
can reduce the total memory footprint by up to 2.3 x
and speed up the finetuning process by up to 3 x while
achieving competent performance compared with the
state-of-the-art. Our codes are released to the GitHub
anonymously .

2 Related Work

2.1 Parameter-Efficient Finetuning

Finetuning allows an LLM to adapt to specialized do-
mains and tasks (Devlin et al., 2018; Radford et al.,
2019; Brown et al., 2020). However, fully finetuning
an LLM comes with high computation costs due to the
rapidly increasing LLM sizes. Parameter-efficient fine-
tuning (PEFT) methods are proposed to solve this issue.
Drawing inspiration from the pronounced sensitivity of

"https://anonymous.4open.science/r/QST-0242

https://anonymous.4open.science/r/QST-0242

Output Output

: :

A 4 \ 4

LM head LM head

1
1

4bit
N

Step 1

4-bit Quantization

Embedding

N

Input

Step 2

Dequantize Va
to 16bit . B
. . 16bit
Side Tuning 91ﬁ

Output
1

U Upsample
L 4 p p!

LM head -->

Dequantize 1
to 16bit 16bit t
9N

4bit

f—>
<«

Downsample

Embedding

Forward

]
T. —>

A\ <€ - - Backprogation
Input

Figure 2: A overview of quantized side tuning.

LLMs to prompts as highlighted in Schick and Schiitze
(2020), a series of studies introduce trainable prompt
embeddings prepended to the input text or attention
components while preserving the original LLM parame-
ters (Liu et al., 2023; Li and Liang, 2021; Lester et al.,
2021). Rusu et al. (2016) and Houlsby et al. (2019)
propose adapter modules to introduce new task-specific
parameters, which are inserted into the Transformer lay-
ers inside the LLM. LoRA (Hu et al., 2021) leverages
the low-rank decomposition concept to construct train-
able parameters inserted into the original LLM weights.
(IA)3 (Liu et al., 2022) proposes to scale the pre-trained
model weights of an LLM with a trainable vector. Of
late, there has been a surge in the proposal of unified
approaches that amalgamate various PEFT methods by
leveraging human heuristics (He et al., 2021) or em-
ploying neural architecture search (Zhou et al., 2023;
Zoph and Le, 2016; Mao et al., 2021). Existing PEFT
approaches focus on optimizing model performance
while minimizing trainable parameters. However, a re-
duction in the number of trainable parameters does not
inherently imply a corresponding reduction in memory
footprint.

2.2 Memory-Efficient Training and Finetuning

Memory-efficient training and finetuning aims to reduce
the memory footprint during the LLM training and/or
finetuning phase. Reversible neural networks (Gomez
et al., 2017; Kitaev et al., 2020; Mangalam et al., 2022)
allow the intermediate activations of each layer to be
recomputed from the activation of its next layer, thus
exempting the need to save intermediate activations.
Gradient checkpointing (Chen et al., 2016) offers an
optimization strategy that balances computational re-
sources against memory footprint. Specifically, it re-

duces memory requirement by selectively discarding
certain intermediate activations, which are subsequently
recomputed through an additional forward pass when
needed. Another line to enhancing memory efficiency
involves network compression, that is, the original LLM
is reduced to a more compact form, thereby making
both the training and inference phases more computa-
tionally economical. Network pruning and distillation
are the most prevalent strategies for network compres-
sion. Network distillation (Hinton et al., 2015; Koratana
et al., 2019) involves the creation of a student network
that is trained to approximate the output distribution
of a teacher network across a specified dataset. Net-
work pruning (Frankle and Carbin, 2018; Frankle et al.,
2020) aims to streamline models by ascertaining the
significance of individual parameters and subsequently
eliminating those deemed non-essential. Compared with
PEFT methods, network compression yields models op-
timized for expedited inference, whereas PEFT methods
may achieve superior performance by updating a small
set of trainable parameters.

Recently, QLoRA (Dettmers et al., 2023) quantizes
the LLM to 4-bit and then adds LoRA to finetune the
quantized LLM. QLoRA significantly reduces the mem-
ory footprint of weights and optimizer states compared
with full finetuning while retaining similar performance.
QLoRA does not consider the memory footprint of inter-
mediate activations, and thus falls short in finetuning the
LLM with a large batch size, resulting in a long training
time. In the context of NLP and CV tasks, the studies
by (Sung et al., 2022) and (Zhang et al., 2020) intro-
duce the concept of employing a side network. The side
network aims to obviate the need for backpropagation
through the LLM, thereby reducing the memory foot-
print associated with intermediate activations. Despite

incorporating the side network, the inherent model size
(i.e., the memory footprint of weights) of the LLM still
poses computational challenges. Hence, both methods
can only focus exclusively on models with fewer than
3 billion parameters, and fail to finetune models with
more parameters.

3 Quantized Side Tuning

In this section, we first describe the process of quantiz-
ing an LLM into 4-bit, and then introduce our design of
the side network for side tuning.

3.1 4-bit Quantization

Quantization is the process of converting a data type
with more bits (e.g., 32- or 16-bit floating points) into
another data type with fewer bits (e.g., 8-bit integers or
4-bit floating points). QST first quantizes an LLM from
16-bit into 4-bit, formulated as follows.

; Mypit ;
X4b1,t _ d ? i 4bit 1
routt Absmax (X 16bit) M
—round (cl6bit X Xleit) , (2)

where X% and X16% are tensors in 4- and 16-bit,
respectively. Myp;; is the maximum value of the 4-bit
data type. For example, M rq4 = 1, where NF4 is an
information-theoretically optimal data type that ensures
each quantization bin has an equal number of values as-
signed from the input tensor. QST considers both NF4
and FP4 to quantize an LLM. We empirically demon-
strate that NF4 performs the best in our experiments (see
Section 4.6). ¢'%%* is the quantization constant (or quan-
tization scale) of the 16-bit data type. Correspondingly,
dequantization is given by

b " X4bit b
16bit it 16bit
, X 4bity = = .

dequant(c = ot = 3)

The key limitation of this method arises when the in-
put tensor contains values with very large magnitudes,
commonly referred to as outliers. Such outliers can
result in under-utilization of the quantization bins, lead-
ing to sparsely populated or even empty bins in some
instances. To address this issue, a prevalent strategy in-
volves partitioning the input tensor into discrete blocks,
each subjected to independent quantization with its own
associated quantization constant. As a result, the input
tensor X € RY*" is decomposed into n contiguous
blocks, each comprising B elements. This decomposi-
tion is facilitated by flattening X into a 1-dimensional ar-
ray, which is then partitioned into n = (b;fh) individual
blocks. Then, we can leverage E.q. (1) to independently
quantize these n blocks using different quantization con-
stants. Typically, minimizing the error associated with
4-bit quantization would necessitate the utilization of
smaller block sizes. This is attributed to the reduced
influence of outliers on other weights. However, using
a small block size leads to high memory overhead since
we need to allocate more memory for these quantization

16bit 16bit
hy; hg;

Add & Norm
Add & Norm
Feed Forward Feed Forward
dequant to 16bit
(J gloit
fit 4 Add & Norm '
> Add & Norm bownsamnl Multi-head
wnsample Attention
Multi-head Attention
dequant to 16bit 16bit
= ; h
A A gt (1= B+ Bt
— 253 ; T
88 Lovit
=) fi
a
T
160t X 1 160t
fic1 T 9i-1

Figure 3: Illustration of i*" layer of QST.

constants. To reduce the memory footprint of quantiza-
tion constants, we can use the same quantization strategy
to quantize these quantization constants (Dettmers et al.,
2023). In this paper, we use 8-bit float points to quantize
the quantization constants, and the forward pass of a
single linear layer in the LLM is defined as Y160 =
dequant(dequant (ci6%, c§bit) W4bit) X 16bit - 4 pit
quantization can significantly reduce the memory foot-
print of weights, facilitating easier storage and deploy-
ment of LLMs. Besides, low-precision floating numbers
are faster to execute on modern accelerators such as
GPUs, leading to faster model training and inference.
Nonetheless, the high to low precision data type conver-
sion process during quantization can lead to accuracy
degradation, attributable to the inherent information
loss.

3.2 Side Tuning

We now analyze the memory footprint of LLM training
and then introduce the neural architecture of the side
network, which reduces the inherent information loss
and minimizes accuracy drop during quantization.

Memory footprint during the training phase. For a
given LLM with N layers, let y; = f;(W;, x;) denotes
the i transformer layer of the LLM, where z; is the
input to the i'" layer (i.e., z; = y;_1). The memory
required during the training phase of the LLM predomi-
nantly comprises three main contributors: M1) weights
of the LLM {W,} ,, M2) the optimizer state, which
is threefold the size of the trainable parameters when
employing the Adam optimizer (Kingma and Ba, 2014)
(one for gradient and two for moments), and M3) the in-
termediate activations {y.} ;. The memory footprint
of intermediate activations is related to model depth,
width, and several training settings, e.g., batch size and
sequence length. QLoRA reduces the memory footprint
of an LLM’s weights and optimizer states (M1 and M2)
but fails to reduce intermediate activations (M3). When
finetuning an LLM with a large batch size and/or long
sequence length, the memory footprint of QLoRA in-
creases significantly. However, using a small batch size
results in long training time. Sung et al. (2022) only re-
duces the memory footprint of intermediate activations
(M3), thus it struggles to finetune a model with more
than 3 billion parameters.

Side network. Our side network g serves as a
lightweight version of the quantized LLM f. The
hidden state and weight dimension of g are r times
smaller than those of f, where 7 is the reduction fac-
tor. During the forward pass, the hidden state of the
i" layer of the side network hg, is formulated by
hgfhit = (1— ;) * downsamplei(h}?b”) + B * h 0%,
where 73" is the hidden state of the " layer of f
and can be computed using E.q. (3). The illustration
of i*" layer of our QST is shown in Figure 3. Note
that we use the output of the embedding layer and
the downsampled embedding layer as 2} and h .
B; = sigmoid(a;) is a learned gate parameter of ‘"
layer, where «; is a learnable zero-initialized scalar.
downsample; is the downsample module of the it"
layer to reduce the hidden state dimension of f by r
times. Prior work leverages linear projections to down-
sample (i.e., X %) the high-dimensional hidden states
of f to the low-dimensional hidden states of g. How-
ever, an LLM typically comprises plenty of layers with
substantially high-dimensional hidden states, particu-
larly when the number of parameters exceeds 3 billion.
Using linear projections to downsample involves a sig-
nificant amount of trainable parameters, requiring a high
memory footprint for the parameters and their optimizer
states. For example, if the LLM has 24 layers, the di-
mension of its hidden state is 2048 and the reduction
factor r is 4, the downsample module consumes about
50% of the overall trainable parameters.

To address this problem, we leverage several differ-
ent downsample methods, including LoRA (He et al.,
2021), Adapter (Edalati et al., 2022), MaxPooling (Le-
Cun et al., 1998) and AvgPooling. LoRA augments a
linear projection through an additional factorized pro-
jection, which can be formulated as W = L; Lo, where
W € RdinXdour [, € RdinXdr and Ly € RIr*dout,
Adapter is similar to LoRA but introduces an extra non-
linear function between L; and L». Using LoRA or
Adapter can reduce the ratio of the trainable parame-
ters of these downsample modules from 56% to 8%.
MaxPooling and AvgPooling do not introduce extra
trainable parameters. We empirically demonstrate that
the Adapter performs the best in our experiments. Fi-
nally, we upsample (i.e., xr) from low-dimensional
hidden states of g to high-dimensional hidden states
of f, and subsequently leverage the LLM’s head or
classifier to perform task-specific predictions. When
switching across different downstream tasks, QST alters
the side network and therefore eliminates the necessity
to redeploy the LLM.

QST only updates the parameters of the side network
g, but not the 4-bit weights in the LLM f. Unlike
QLoRA, the calculation of the gradient ‘3—5 does not

entail the calculation of ‘g—L, thus avoiding the extensive
computational costs of performing backpropagation on
f, which ultimately reduces the memory footprint of
intermediate activations and speeds up finetuning.

In summary, QST leverages a 4-bit data type to store

an LLM’s model weights, thus reducing the memory
footprint of weights (M1). In addition, QST lever-
ages a 16-bit computation data type for the forward
pass and backpropagation computation and only com-
putes the gradient of weights in g (M3). Finally, QST
leverages several factorized projection and gradient-free
downsample methods to reduce the trainable parameters
(M2). These techniques together allow QST to reduce
the memory requirement for all three factors, resulting
in fast and memory-efficient finetuning with a nearly
1% performance drop.

4 Evaluation

In this section, we empirically validate the effectiveness
of our QST method by examining its performance for
LLMs with different types (e.g., OPT and LLaMA 2),
sizes (from 1.3B to 70B), and benchmarks.

4.1 Experimental Setup

Datasets. We evaluate the performance of QST and sev-
eral baselines on natural language understanding (NLU)
and natural language generation tasks. For NLU exper-
iments, we use the GLUE (Wang et al., 2018) (Gen-
eral Language Understanding Evaluation) and MMLU
(Hendrycks et al., 2020) (Massively Multitask Language
Understanding) benchmarks. The GLUE benchmark
provides a comprehensive evaluation of models across
a range of linguistic tasks. These tasks encompass lin-
guistic acceptability as examined in CoLA (Warstadt
et al., 2019), sentiment analysis as portrayed in SST2
(Socher et al., 2013), tasks probing similarity and para-
phrase distinctions such as MRPC (Dolan and Brockett,
2005), QQP (Iyer, 2017), and STS-B (Cer et al., 2017),
in addition to natural language inference tasks including
MNLI (Williams et al., 2017), QNLI (Rajpurkar et al.,
2016), and RTE (Bentivogli et al., 2009). We report
accuracy on MNLI, QQP, QNLI, SST-2, MRPC, and
RTE, Pearson correlation coefficients on SST-B, and
Mathews correlation coefficients (Matthews, 1975) on
CoLA. The MMLU benchmark consists of 57 tasks in-
cluding elementary mathematics, US history, computer
science, law, and more. We report the average 5-shot
test accuracy on the 57 tasks.

Models. We use decoder-only LLMs such as the
OPT series (OPT-1.3B, OPT-2.7B, OPT-6.7B, OPT-
13B, OPT-30B, and OPT-66B) and the LLaMA-2 series
(LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B).
Baselines. We compare QST with QLoRA (Dettmers
et al., 2023), LST (Sung et al., 2022), LoRA (He et al.,
2021), and Adapter (Houlsby et al., 2019). Note that
we only compare LST, LoRA, and Adapter when the
model size is less than 3B since their memory footprint
of weights can be excessively huge beyond that.
Implementation. We set the reduction factor r to 16 by
default. We use Adapter as the downsample module, a
linear layer as the upsample module, and set the rank of
the Adapter to 16. We use the NF4 data type to store the
weights of the LLM and bfloat16 as the data type for

Method # Param. (%) Memory (GB) RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.
OPT-1.3B (batchsize=16, sequence length=512)
QLoRA 4.41% 31.3 813116 833111 899105 62.1i03 949101 863102 87.di01 760103 82.6
LST 2.39% w 82.0i2_2 83.1i1_3 88.6i0_4 595i31 %io,g 867.1i0_3 86.4i0_6 77‘8i0_5 82.2
LoRA 2.36% 329 827119 834i09 893102 625:i17 937107 8l4igz 869103 812101 82.6
Adapter 0.48% 32.5 8224108 827114 897116 60.6430 93.8102 83.6401 863104 80.5101 824
QST 0.45% 17.7 795105 817411 884111 5974009 943103 857105 843107 71110 813
OPT-2.7B (batchsize=16, sequence length=512)
QLORA 3.57% 47.0 83.6:&1‘5 84.8;{:1(2 &10.6 @12.6 95.61[)}2 88.71()(1 89.510,2 78.3:{:(],4 %
LST 2.39% 30.7 825429 839115 89liog 607135 953104 873102 88.8+10 804107 835
LoRA 1.90% 50.4 84714 846408 909101 645124 953106 83.0174 907101 82.6102 845
Adapter 0.37% 49.9 %igj 83.7i144 91-5i1.9 63-4i3.8 ﬁig.g 83.6i042 wio_g &io.l 84.2
QST 0.43% 24.4 80.1421 837112 889414 620434 952.0s8 86.6109 865109 80406 83.0
OPT-6.7B (batchsize=16, sequence length=512)
QLoRA 2.33% 63.6 845119 859107 920408 643128 962.01 902102 907102 798103 85.5
QST 0.42% 27.5 80.8414 852410 89.6407 628106 96.4.0¢ 873111 894.0s 8l.6405 842

Table 1: Experiments results on GLUE benchmark (using BF16 data type).

computation. We adopt the same parameters reported
in QLoRA, LST, LoRA, and Adapter to construct the
baselines. Other hyperparameters are specified in Ap-
pendix A and Appendix B. We run each experiment
three times under different random seeds and report the
average performance. We conduct all the experiments
using Pytorch (Paszke et al., 2017) and HuggingFace
library (Wolf et al., 2019) on 4 NVIDIA RTX A5000
GPUs, each with 24GB memory.

4.2 Experiments on GLUE Benchmark

Table 1 shows the performance of different methods
on the GLUE benchmark. Overall, QST achieves the
lowest memory footprint among all methods while at-
taining competent accuracy. Particularly, for relatively
small models (i.e., OPT-1.3B and OPT-2.7B), QST re-
duces the memory footprint by around 2x compared
with QLoRA, LoRA, and Adapter, while achieving com-
parable accuracy. Compared with LST, QST reduces
the memory requirement by 3.2GB and 6.3GB for fine-
tuning OPT-1.3B and OPT-2.7B. QST also reduces the
trainable parameters by around 10x and 5x compared
with QLoRA and the other baselines, respectively.

For larger models such as OPT-6.7B, we focus on
comparing QST with QLoRA. This is because QLoRA
has similar accuracy with the other baselines, but LoRA,
Adapter, and LST all have excessively huge memory
footprints of weights when it comes to finetuning OPT-
6.7B2. Compared with QLoRA, QST reduces the mem-
ory footprint and trainable parameters by 2.3x and
5.5x, while only introducing a 1.3% accuracy drop.

4.3 Experiments on MMLU Benchmark

The experiment results of the MMLU benchmark are
shown in Table 2. We set the batch size to 4 and the
sequence length to 384. We use the Alpaca dataset
(Taori et al., 2023) to finetune both QLoRA and QST.

2QLoRA can leverage gradient accumulation to finetune
with a batch size of 16 while guaranteeing an affordable mem-
ory footprint.

We compare QST with QLoRA on accuracy and mem-
ory requirement over OPT-1.3B, OPT-2.7B, OPT-6.7B,
OPT-13B, OPT-30B, OPT-66B, LLaMA-2-7B, LLaMA-
2-13B, and LLaMA-2-70B. QST improves the accu-
racy by 0.1% on average while reducing the memory
footprint by 1.8 x compared with QLoRA. Particularly,
QST yields an enhancement of 2.1% in accuracy over
QLoRa when finetuning LLaMA-2-13B. When finetun-
ing the OPT-2.7B, OPT-6.7B, and OPT-13B models,
QST achieves 0.3%, 0.6%, and 0.3% accuracy improve-
ments, respectively.

4.4 Memory Footprint Analysis

Effects of batch size. Figure 5(a) illustrates the effects
of batch size for different methods. We use LLaMA-
2-70B as the LLM and set the sequence length to 512.
While the memory footprint of all methods increases
as the batch size increases, QST achieves the lowest
memory footprint among all, regardless of the batch
size. Particularly, the memory footprint of QST is only
one-third of LoRA and Adapter. Besides, the memory
footprint of both QST and LST grows less drastically
than QLoRa, Adapter, and LoRa as the batch size in-
creases. This is because both LST and QST use side
tuning to reduce the hidden dimension of the intermedi-
ate activations, thereby alleviating the growth of mem-
ory footprint induced by intermediate activations. QST
also achieves an additional reduction of approximately
100GB in memory footprint compared to LST, thanks to
the 4-bit quantization design that effectively compresses
the memory footprint of the weights and well design of
the downsample modules to reduce the optimizer states.
Effects of the model size. Figure 5(b) shows the effects
of the total model bits on different methods. We use
the OPT model series and set the batch size to 4. Due
to the 4-bit quantization, QST and QLoRA reduce the
memory footprint compared with the other baselines.
The memory footprint gap further widens as the model
size increases. Besides, QST achieves around 2 times
reduction in memory footprint compared with QLoRA

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.
QLoRA 25.0/6.3 25.2/10.1 25.6/15.5 26.5/254 27.7/46.8 36.4/87.5 45.9/15.6 54.7/25.4 64.1/95.5 36.8/36.5
QST 243/32 25548 262/72 268/12.6 27.3/257 36.0/52.3 45.1/7.3 56.8/12.6 63.9/56.0 36.9/20.2
Table 2: Experiment results (accuracy/memory) on MMLU 5-shot.
800 H n
—*— QLoRA o/ 2007 == "QLoRA '; s00l—*— QLORA
700 LST '/ 175 ——2— LST —4&— LST W e
7 6007 ===TToRA /’ 2 150 —=—TLoRaA 0 4001 —8——LoRA '// 7
©5000 - Adapter e S5 Adapter Y £ Adapter P /s/‘
§400 —— OST Y. o y E 100 —49— QST Pod g‘ 300 —9— QS "/
£ 300 4 A 5 200 e S
= P /“ "/ e A= —5 & e
2001 5 ——m—% v e /
100} g 100f g ——9¢~ Y
— — 4//0/) a— o9
0 (3 7 3 9
20 2 22 2 2t 2 2f 10" 2 2 2 2
Batch size Model size Sequence length
(a) Effect of batch size. (b) Effect of total model bits. (c) Effect of sequence length.
Figure 4: Effects of the batch size, total model bits, and sequence length on memory footprint.
Method FLOPS per token (107°) Method LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.
etho
LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B FP4 44.5 55.4 63.5 54.5
NF4 45.1 56.8 63.9 553
QLoRA 11.7 16.0 38.1
LST 11.0 19.0 80.7 . .
Table 4: Experiments on 4-bi .
LoRA 113 156 372 able Xxperiments on 4-bit data types
Adapter 11.2 15.6 27.2
QST 4.4 6.1 153

Table 3: Experiments on FLOPS per token of different
methods.

thanks to its small volume of trainable parameters and
intermediate activations.

Effects of sequence length. Figure 5(c) shows the
effects of sequence length on different methods. We use
LLaMA-2-70B and set the batch size to 4. Similar to the
effect of batch size, LST and QST alleviate the growth
rate of memory footprint of intermediate activations,
while QST further achieves around 100GB reduction in
memory footprint compared with LST.

4.5 Experiments on Training Throughput

Table 3 shows the training throughput of different meth-
ods, measured by FLOPS per token (the lower the bet-
ter), on LLaMA-2-7B, LLaMA-2-13B, and LLaMA-
2-70B. While the FLOPS per token of all methods
increases as the model size grows, QST achieves the
lowest FLOPS per token among all. Particularly, QST
achieves around 2.5 x speed up compared with the base-
lines. LST suffers from the highest FLOPS per token.
The FLOPS per token of QLoRA is slightly higher than
LoRA and Adapter since QLoRA adds more LoRA
components.

4.6 Sensitive Analysis

Effects of reduction factor . We conduct experiments
using LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-

70B to verify the effects of reduction factor r (from
2 to 64) on memory footprint, MMLU accuracy, and
throughput. We set the batch size to 4 and the sequence
length to 384. The MMLU accuracy changes slightly as
r varies as shown in Figure 5a. QST achieves the best
accuracy of finetuning LLaMA-2-7B and LLaMA-2-
13B when 7 is set to 16. As shown in Figure 5b and Sc,
the memory footprint and the FLOPS per token decrease
drastically when r varies from 2 to 16 for finetuning all
the models. The memory footprint and the FLOPS per
token decrease slightly when 7 varies from 16 to 64.
Therefore, we use r to 16 in our experiments as default.
Effects of 4-bit data types. We evaluate two 4-bit data
types: FP4 and NF4 using the LLaMA-2 model series
and the MMLU benchmark. As shown in Table 4, NF4
improves the average accuracy by about 0.8% compared
with FP4. Therefore, we use NF4 as the default 4-bit
data type in our experiments.

Effects of computa-

tion data types. We Method MRPC QNLI
analyze the effects of QLoRA 68.0 60.3
two computation data QST 85.6 87.2
types: BF16 (results

shown in Table 1) and Table 5: Experiments of

FP16 (results shown QLoRA and QST using
in Table 5). Ascanbe FPI16.

seen, QST retains similar results using FP16 and BF16.
On the other hand, QLoRA is unstable using FP16 as
the computation data type. We finetune OPT-6.7B on
the GLUE benchmark and discover that QLoRA fails to
finetune on the MRPC and QNLI datasets. We run each

By % a 140 I & LLaMA27b | | ~ s K e LLaMA-2-7b
05 e~ LLaMA27b 120 K e LLaMA-2-13b & \ —4— LLaMA-2-13b
o —a— LLaMA-2-13b 2 100 —=— LLaMA-2-70b | 5 \‘+ LaMA-2-70b
5 —m— [LaMA-2-70b 0 v} —
=] T
2 55 /“\\ g \\ =15 S
3 4| E 60 < g
< g T —a | .,
50 40 “\\ & 10
e R s S |
d5re——g¢— T ¢ 0 ';ii — 5 e ——9 ¢
21 22 23 24 25 26 21 22 23 24 25 26 21 22 23 24 25 26

(a) Effect of » on MMLU accuracy.

(b) Effect of » on memory footprint.

r
(c) Effect of r on training throughput.

Figure 5: Effects of the reduction factor » on MMLU accuracy, memory footprint, and training throughput.

Method # Param. (%) Ratio Memory Accuracy
Linear 0.85% 56.0% 7.8 449
LoRA 0.41% 7.8% 7.3 447
Adapter 0.41% 7.8% 73 45.1
MaxPooling 0.38% 0% 7.3 43.7
AvgPooling 0.38% 0% 73 42.5

Table 6: Experiments on downsample modules. Note
that the ratio represents the ratio of downsample mod-
ules trainable parameter in all trainable parameters.

Method Training Time Memory Score
QLoRA-70B ~80h 96.3 6.61
QST-70B ~25h 56.1 6.60

Table 7: Chatbot performance on QLoRA and QST.

dataset under three different random seeds and QLoRA
fails on two of them.

Effects of downsample modules. We conduct experi-
ments on different downsample modules: Linear, LoRA,
Adapter, MaxPooling, and AvgPooling using LLaMA-
2-7B and the MMLU benchmark. As shown in Table 6,
using Adapter as the downsample module achieves the
best performance among all baselines, and reduces the
trainable parameters and memory footprint.

4.7 Experiments on Chatbot Performance

We conduct experiments on Chatbot performance using
MT-benchmark (Zheng et al., 2023). MT-benchmark is
a set of challenging multi-turn open-ended questions for
evaluating the chat assistant’s performance in writing,
roleplay, reasoning, math, coding, extraction, STEM,
and humanities categories. In our experiments, we use
GPT-4 to act as judges and assess the quality of the
responses of the model finetuned by QLoRA and QST.
We finetune LLaMA-2-70B using a variant of OASST1
(Dettmers et al., 2023). Table 6 shows the experiment
results of QLoRA and QST on the total training time,
memory footprint, and the average MT-Bench score
over 8 categories. QST speeds up the training by 3.2
x and reduces memory footprint by 1.7 x, with just a
slight score drop of 0.16 compared withe QLoRA. As

N QLoRA-70B
ertlng QST_70B
Humanities Roleplay
STEM Reasoning
0123456789
Extraction Math

Coding

Figure 6: MT-Bench scores of QLoRA and QST in
different categories.

shown in Figure 6, QST performs better than QLoRA
in STEM, Extraction, Coding, and reasoning. This may
contribute to the transformer block of the side network,
which can reconstruct the inherent information loss of
context. QST performs slightly worse than QLoRA in
other categories.

5 Conclusion

In this paper, we propose Quantized Side Tuing (QST),
a novel fast and memory-efficient finetuning framework.
QST operates through a dual-stage process: first, QST
quantizes the LLM into 4-bit to reduce the memory foot-
print of the weights in LLM; then QST introduces a side
network separated from the LLM, which utilizes the hid-
den states of the LLM to make task-specific predictions.
QST can significantly reduce the memory footprint of
LLM finetuning compared to existing approaches. In
particular, experiments show that QST can reduce the
total memory footprint by up to 2.3 x and speed up the
finetuning process by up to 3 x while achieving compa-
rable performance compared with the state-of-the-art.

References

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7:8.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kro-
necker adapter. arXiv preprint arXiv:2212.10650.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel
Roy, and Michael Carbin. 2020. Linear mode con-
nectivity and the lottery ticket hypothesis. In Infer-
national Conference on Machine Learning, pages
3259-3269. PMLR.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and
Roger B Grosse. 2017. The reversible residual net-
work: Backpropagation without storing activations.

Advances in neural information processing systems,
30.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shankar Iyer. 2017. First quora dataset release:
Question pairs. https://quoradata.quora.
com/First-Quora-Dataset—-Release-\
Question-Pairs.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Animesh Koratana, Daniel Kang, Peter Bailis, and
Matei Zaharia. 2019. Lit: Learned intermediate rep-
resentation training for model compression. In In-
ternational Conference on Machine Learning, pages

3509-3518. PMLR.

https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-\Question-Pairs

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278-2324.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Baohao Liao, Shaomu Tan, and Christof Monz. 2023.
Make your pre-trained model reversible: From param-
eter to memory efficient fine-tuning. arXiv preprint
arXiv:2306.00477.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,

35:1950-1965.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. Al Open.

Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-
Yuan Wu, Bo Xiong, Christoph Feichtenhofer, and
Jitendra Malik. 2022. Reversible vision transform-
ers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10830-10840.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. arXiv
preprint arXiv:2110.07577.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442-451.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

OpenAl. 2023. CoRR,

abs/2303.08774.

GPT-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730-27744.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

10

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020. Adapter-
fusion: Non-destructive task composition for transfer
learning. arXiv preprint arXiv:2005.00247.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. The Journal of Machine Learning Research,
21(1):5485-5551.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.

2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Timo Schick and Hinrich Schiitze. 2020. Exploit-
ing cloze questions for few shot text classification

and natural language inference. arXiv preprint
arXiv:2001.07676.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991-13005.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following Ilama
model. https://github.com/tatsu-lab/
stanford_alpaca.

https://doi.org/10.48550/arXiv.2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana
Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,
Atharva Naik, David Stap, et al. 2022b. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas
Guibas, and Jitendra Malik. 2020. Side-tuning: a
baseline for network adaptation via additive side net-
works. In Computer Vision—ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part 111 16, pages 698—714. Springer.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
Ilm-as-a-judge with mt-bench and chatbot arena.

Han Zhou, Xingchen Wan, Ivan Vuli¢, and Anna Korho-
nen. 2023. Autopeft: Automatic configuration search
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2301.12132.

11

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

A Hyperparameters of QST on the
GLUE benchmark

The hyperparameters of QST on GLUE benchmark are
shown in Table 7.

B Hyperparameters of QST on MMLU
benchmark

The hyperparameters of QST on the MMLU benchmark
are shown in Table 8.

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

Model Dataset RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Batch Size 32 8 32 32 32 32
Epochs 20
OPT-1.3B Learning Rate 2E-04
r 16
the rank of downsamples 16
Batch Size 16 8 16 16 16 16
Epochs 15
OPT-2.7B Learning Rate 2E-04
r 16
the rank of downsamples 16
Batch Size 8 4 8 8 8 8
Epochs 10
OPT-6.7B Learning Rate 2E-04
r 16
the rank of downsamples 16
Table 8: The hyperparameters of QST on the GLUE benchmark.
OPT-1.3B OPT-27B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B
Optimizer AdamW
Warmup Ratio 0.03
LR Schedule Constant
Batch Size 8 8 4 2 1 1 4 2 1
Epochs 5 5 3 3 3 2 2
Learning Rate 2E-04 2E-04 2E-04 1E-04 1E-04 1E-04 2E-04 2E-04 1E-04

r
the rank of downsamples

16
16

Table 9: The hyperparameters of QST on the MMLU benchmark.

12

