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ABSTRACT

We consider the problem of making AI agents that collaborate well with humans
in partially observable fully cooperative environments given datasets of human be-
havior. Inspired by piKL, a human-data-regularized search method that improves
upon a behavioral cloning policy without diverging far away from it, we develop
a three-step algorithm that achieve strong performance in coordinating with real
humans in the Hanabi benchmark. We first use a regularized search algorithm and
behavioral cloning to produce a better human model that captures diverse skill
levels. Then, we integrate the policy regularization idea into reinforcement learn-
ing to train a human-like best response to the human model. Finally, we apply
regularized search on top of the best response policy at test time to handle out-
of-distribution challenges when playing with humans. We evaluate our method in
two large scale experiments with humans. First, we show that our method out-
performs experts when playing with a group of diverse human players in ad-hoc
teams. Second, we show that our method beats a vanilla best response to behav-
ioral cloning baseline by having experts play repeatedly with the two agents.

1 INTRODUCTION

One of the most fundamental goals of artificial intelligence research, especially multi-agent re-
search, is to produce agents that can successfully collaborate with humans to achieve common goals.
Although search and reinforcement learning (RL) from scratch without human knowledge have
achieved impressive superhuman performance in competitive games (Silver et al., 2017; Brown &
Sandholm, 2019), prior works (Hu et al., 2020; Carroll et al., 2019) have shown that agents produced
by vanilla multi-agent reinforcement learning do not collaborate well with humans.

A canonical way to obtain agents that collaborate well with humans is to first use behavioral cloning
(BC) (Bain & Sammut, 1996) to train a policy that mimics human behavior and then use RL to
train a best response (BR policy) to the fixed BC policy. However, such an approach has a few
issues. The BC policy is hardly a perfect representation of human play. It may struggle to mimic
strong players’ performance without search (Jacob et al., 2022). The BC policy’s response to new
conventions developed during BR training is also not well defined. Therefore, the BR policy may
develop strategies that exploit those undefined behaviors and confuse humans and causes humans to
diverge from routine behaviors or even quit the task because they believe the partner is non-sensible.

Recently, Jacob et al. (2022) introduced piKL, a search technique regularized towards BC policies
learned from human data that can produce strong yet human-like policies. In some environments,
the regularized search, with the proper amount of regularization, achieves better performance while
maintaining or even improving its accuracy when predicting human actions. Inspired by piKL, we
propose a three-step algorithm to create agents that can collaborate well with humans in complex
partially observable environments. In the first step, we repeatedly apply imitation learning and piKL
(piKL-IL) with multiple regularization coefficients to model human players of different skill levels.
Secondly, we integrate the regularization idea with RL to train a human-like best response agent
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(piKL-BR) to the agents from step one. Thirdly and finally, at test time, we apply piKL on the
trained best response agent to further improve performance. We call our method piKL3.

We test our method on the challenging benchmark Hanabi (Bard et al., 2020) through large-scale ex-
periments with real human players. We first show that it outperforms human experts when partnering
with a group of unknown human players in an ad hoc setting without prior communication or warm-
up games. Players were recruited from a diverse player group and have different skill levels. We
then evaluate piKL3 when partnered with expert human partners. We find that piKL3 outperforms
an RL best response to a behavioral cloning policy (BR-BC) – a strong and established baseline for
cooperative agents – in this setting.

2 RELATED WORK

The research on learning to collaborate with humans can be roughly categorized into two groups
based on whether or not they rely on human data. With human data, the most straightforward
method is behavioral cloning, which uses supervised learning to predict human moves and executes
the move with the highest predicted probability. The datasets often contain sub-optimal decisions
and mistakes made by humans and behavioral cloning inevitably suffers by training on such data. A
few methods from the imitation learning and offline RL community have been proposed to address
such issues. For example, conditioning the policy on a reward target (Kumar et al., 2019; Chen et al.,
2021) can help guide the policy towards imitating the human behaviors that achieve the maximum
future rewards at test time. Behavioral cloning with neural networks alone may struggle to model
sufficiently strong humans, especially in complex games that require long-term planning (McIlroy-
Young et al., 2020). Jacob et al. (2022) address this issue by regularizing search towards a behavioral
cloning policy. The proposed method, piKL, not only improves the overall performance as most
search methods do, but also achieves better accuracy when predicting human moves in a wide variety
of games compared to the behavioral cloning policy on which it is based.

Human data can also be used in combination with reinforcement learning. Observationally Aug-
mented Self-Play (OSP) (Lerer & Peysakhovich, 2019) augments the normal MARL training pro-
cedure with a behavioral cloning loss on a limited amount of data collected from a test time agent
to find an equilibrium policy that may work well with that agent. OSP increases the probability of
learning conventions that are compatible with the test time agents. However it may not be able to
model partners with diverse skill levels given a large aggregation of data from various players. We
can also use RL to train a best response policy to the behavioral cloning policy (Carroll et al., 2019).
This method is the optimal solution given a perfect human model. In practice, however, RL is prone
to overfitting to the imperfections of the human model. In addition, RL alone may not be sufficient
in practice to learn superhuman strategies (Silver et al., 2018; Brown & Sandholm, 2019).

A parallel research direction seeks to achieve better human-AI coordination without using any hu-
man data. Some of them take inspiration from human behavior or the human learning process. Hu
et al. (2020) enforce the RL policies to not break the symmetries in the game arbitrarily, a com-
mon practice of human players in certain games. Inspired by humans’ learning and reasoning pro-
cess, Off-belief learning (Hu et al., 2021c) and K-level reasoning (Costa-Gomes & Crawford, 2006;
Cui et al., 2021b) train sequences of policies with increasing cognitive capabilities. Both methods
achieve strong performance with a human proxy model trained with behavioral cloning. Another
group of methods use population-based training and various diversity metrics (Strouse et al., 2021;
Lupu et al., 2021; Tang et al., 2021) to first obtain a set of different policies and then train a common
best response that may generalize better to human partners than best response to a single RL policy.

3 BACKGROUND

3.1 DEC-POMDP AND DEEP REINFORCEMENT LEARNING

We consider human-AI coordination in a decentralized partially observable Markov decision process
(Dec-POMDP) (Nayyar et al., 2013). A Dec-POMDP consists of N agents indexed by (1, . . . , N),
a state space S, a joint action space A = A1 × · · · × AN , a transition function T : S × A → S,
a reward function r : S × A → R and a set of observation function oi = Ωi(s), s ∈ S for each
agent i. We further assume that the joint actions a and rewards r are observable by all agents. We
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then define the trajectory of true states until time step t as τt = (s0, a0, r0, . . . , st) and its partially
observed counterpart (action-observation history, AOH) for agent i as τ it = (oi0, a0, r0, . . . , oit). An
agent’s policy πi(τ it ) = P (ait|τ it ) maps each possible AOH to a distribution over the action space of
that agent. We use π to denote the joint policy of all agents and π−i to denote the joint policy of all
other agents excluding agent i.

Deep multi-agent RL (MARL) has been successfully applied in many Dec-POMDP environments.
Deep MARL algorithms often consist of a strong RL backbone such as (recurrent) DQN (Kaptur-
owski et al., 2019) or PPO (Schulman et al., 2017) and additional modules such as a centralized
value function (Yu et al., 2021), value-decomposition (Sunehag et al., 2017; Rashid et al., 2018)
to handle challenges posed by having multiple agents. In this paper, we use recurrent DQN to
train a best response to fixed policies. Specifically, a recurrent network is trained to model the
expected total return for each action given the input AOH, Q(τ it , a) = Eτ∼P (τt|τ i

t )
R(τt) where

R(τt) =
∑

t′≥t γ
(t′−t)rt is the sum of discounted future reward by unrolling the joint policy π on

the sampled true game trajectory until termination. The joint policy is the greedy policy derived
from each agent’s Q-function.

3.2 SEARCH AND REGULARIZED SEARCH IN DEC-POMDP

Search has been critical to achieve superhuman performance in many games (Silver et al., 2018;
Brown & Sandholm, 2019; Bakhtin et al., 2021). SPARTA (Lerer et al., 2020) and its faster and
more generalized variant Learned Belief Search (Hu et al., 2021b) are competitive and efficient
search algorithms in Dec-POMDPs. SPARTA assumes that a joint blueprint policy (BP) π has
been agreed on beforehand. In single-agent SPARTA, one agent performs search at every time step
assuming that their partners follow the BP. Specifically, the search agent i keeps track of the belief
B(τ it ) = P (τt|τ it ,π−1), which is the distribution of the trajectory of states given the AOH and
partners’ policies. It picks the action a′ that returns the highest sum of undiscounted future rewards
assuming a′ is executed at time t and everyone follows the joint BP afterwards, i.e.

ait = argmax
a

Qπ(τ
i
t , a) = argmax

a
Eτt∼B(τ i

t )
[r(τt, a) +Rπ(τt+1)], (1)

where r(τt, a) is the reward at time t after executing a and Rπ(τt+1) is the sum of future rewards
following joint policy π. This notation assumes a deterministic transition function as the randomness
can be absorbed into the belief function.

The belief tracking in SPARTA is computationally expensive and may have null support when part-
ners deviate even slightly from the BP. Learned Belief Search (Hu et al., 2021a, LBS) mitigates
those problems by using a neural network belief model B̂ trained with data generated by the BP with
some exploration. For environments where the observation can be factorized into public and private
parts, such as Hanabi, LBS also proposes to use a two-stream architecture where one stream with
LSTM takes the public information as input while the other stream consists of only feed-forward
layers takes the private information. The outputs of the two streams are fused to compute Q-values.
This special architecture further reduces the computation cost as it no longer needs to re-unroll the
LSTM from the beginning of the game for each sampled τt.

Although the learned belief technique was originally proposed to speed up SPARTA, it becomes
critical in scenarios where the game trajectory does not exactly follow the assumed joint policy. For
example, when playing with humans, humans’ real moves may differ from our model’s predictions
and the learned belief model can often generalize well in those cases. In this paper we use LBS as
the search component in piKL.

PiKL (Jacob et al., 2022) was proposed to address the problem where search policy can diverge quite
far from the underlying blueprint policy, which is undesirable in environments where collaborating
with human partners is crucial. In general, they propose to sample actions following

P (a) ∝ πanc(a|τ it ) · exp
[
Qπroll(τ

i
t , a)

λ

]
, (2)

where Qπroll(τ
i
t , a) is the value output of a search algorithm like SPARTA, Monte Carlo tree search or

regret matching using πroll as the blueprint policy for rollouts and/or value estimation, πanc(a|τ it ) is
the anchor policy that we want our final policy to be close to and λ is a hyper-parameter controlling
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the degree of regularization. In fully cooperative games where mixed strategies are not necessary,
Jacob et al. (2022) show that a greedy variant that select the argmax works better in practice.

4 METHOD

In this section we introduce piKL3. We first use piKL-IL with a probability distribution over the
regularization parameter λ to model human players with varying skill levels. Then, we use RL
regularized toward the behavioral cloning policy to train a human-compatible best response piKL-
BR. Finally, we use piKL-LBS at test time with high regularization toward the BR to fix severe
mistakes when playing with real humans.

4.1 PIKL-IL FOR MODELING DIFFERENT LEVELS OF HUMAN PLAY

Algorithm 1 piKL-IL: modeling human with different skill levels. P (λ) can be a discrete uniform distribution
over a set of values or over a set of Gaussian distributions centered around those values. piKL-LBS(λi, πroll, B̂,
πanc) is a function to act following Eq. 2 or its greedy variant. It samples from the learned approximate belief
model τt ∼ B̂(τ i

t ) to estimate Qπroll .

1: procedure PIKL-IL(πBC , P (λ), k, d)
▷ πBC : behavioral cloning policy trained from human data;
▷ P (λ) : distribution of λ ;
▷ k: number of iterations
▷ d: size of the dataset

2: πpiKL-IL ← πBC

3: for i← 1, . . . , k do
4: Train a belief model B̂ from self-play games of πpiKL-IL
5: Initialize dataset D = ∅
6: while len(D) < d do
7: Sample λi ∼ P (λ) for every player independently
8: Generate a game g where player i follows piKL-LBS(λi, πpiKL-IL, B̂, πBC)
9: Add the game g to dataset D

10: end while
11: Train a new policy π′ with behavior cloning on D
12: πpiKL-IL ← π′

13: end for
14: return πpiKL-IL
15: end procedure

PiKL-IL is a search-augmented imitation learning method. It first trains an imitation policy πBC via
behavioral cloning (Bain & Sammut, 1996) on a dataset collected from the population of humans we
want to model. Then piKL-IL iteratively improves a policy πpiKL-IL, alternating between generating
higher quality data with piKL-LBS and training a better model using the generated dataset to produce
a new πpiKL-IL. Each iteration of piKL-LBS uses πBC as the anchor policy πanc and πpiKL-IL as the
rollout policy πroll in Eq. 2, so that we always anchor the generated data to never differ too much
from human play, while using the best rollout policy so far to generate the next. The pseudocode is
in Algorithm 1.

piKL was shown to maintain the same or even higher prediction accuracy on human moves while
achieving much higher performance with certain λs, indicating that it may be better at modeling
stronger human players (Jacob et al., 2022) than behavioral cloning. As λ becomes smaller, the pre-
diction accuracy drops while the performance keeps increasing, moving closer to the unregularized
search policy. We therefore use a distribution of λs to generate a spectrum of policies with strength
ranging from average human players to exceptional policies that still resemble human behaviors
reasonably well. When training a new policy on the generated data, we can condition the policy
on the λ so that we can explicitly control the distribution of different skill levels in the subsequent
iterations as well as in the piKL-BR of Section 4.2.

Theoretically, we should apply multi-agent piKL-LBS but it is too computationally demanding to
generate enough data for imitation learning. Instead we run single-agent piKL-LBS with learned
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beliefs independently for both players. Prior work (Jacob et al., 2022) shows that although running
piKL-LBS independently for more than one player lacks theoretical guarantees because both players
are unsoundly assuming that the other player is playing according to the pre-search policy when both
players in fact play according to the post-search policy, the algorithm still achieves high performance
since all policies are regularized towards the same πBC , thus the learned belief models are still in
practice a good approximation of the true beliefs despite the shift in the underlying policies. For a
theoretically sound version, we could alternatively run single-agent piKL-LBS on only one player
and only collect training data only from that player’s perspective while fixing the other player to
only play the pre-search policy that the learned belief assumes they will.

Once we have collected enough data, we can train a new model with imitation learning and proceed
to a new iteration. The process can be repeated until πpiKL-IL stops improving. Note that the anchor
policy is always the same human behavior-cloned policy to prevent the final policy from drifting
away from human conventions.

The algorithm is presented here in the iterative form. However, if computational resources permit, it
can be formulated as an asynchronous RL algorithm similar to AlphaZero (Silver et al., 2018) where
πpiKL-IL is constantly trained with data generated many parallel workers on the fly.

4.2 PIKL-BR FOR A HUMAN-LIKE BEST RESPONSE

A popular approach to human-AI coordination is to train a best response to a human model. This BR
training is similar to standard single-agent RL in POMDP settings as the partners are fixed policies
and thus can be viewed as part of the environment. In practice, this method has a few issues due to
the imperfection of the human model as well as the overfitting problem in RL.

Given a normally distributed dataset in which the majority of the humans have intermediate skill
levels, the vanilla behavioral-cloning model often converges to an intermediate average score in
self-play. Moreover, as observed in Jacob et al. (2022), BC often nontrivially underperforms even
the average of the players it is trained on. This can make it hard for the BR agent to learn the
true best response to stronger-than-average players, or even to average players. We can address this
problem by training a BR πpiKL-BR against the final piKL-IL policy πpiKL-IL instead of the original
human behavior cloning policy πBC.

Similar to how single-agent RL can overfit to its exact training environment, an RL best response
may overfit to its fixed neural partner, including finding unusual or out-of-distribution actions that
happen to cause its partner to perform slightly better actions but that might not generalize to actual
human players. In this case, instead of greedily picking an action that has slightly higher return as
in normal RL, it would be better to err on the side of what humans tend to do in order to remain
in-distribution. To address these issues, we propose to add piKL regularization during BR training.

Specifically, we train a policy πpiKL-BR to be a best response to πpiKL-IL via Q-learning, but we modify
the Q-learning update as

Q(τ it , at)← rt(τt, a) + γ ·Q(τ it+1, a
′
t+1), (3)

where a′t+1 = argmax
a

[Q(τ it+1, a) + λ · log πBC(τ
i
t+1, a)], (4)

and where the exploration policy is ϵ-Greedy[Q(τ it , a) + λ · log πBC(τ
i
t , a)].The difference from the

normal Q-learning is highlighted in red. At test time, ϵ is set to 0. The λ here can be set to a smaller
value than that in piKL-IL because the main purpose is no longer modeling human moves but rather
regularization and tie-breaking when multiple actions have small differences in expected return.

It is worth noting that if we run piKL-IL with the same small λ for many iterations, then the final
πpiKL-IL with the small λ input converges to the same policy as piKL-BR. PiKL-BR is the amortized
model-free version of piKL-IL and this step can be omitted if there are enough resources to run
piKL-IL for enough iterations with additional λs.

4.3 PIKL-LBS FOR ROBUSTNESS AGAINST OOD ERRORS

The πpiKL-BR policy is a strong human-like policy that performs well with piKL-IL and humans
who play similarly. When playing with a diverse group of human players in real life, however,
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λ Input 10 5 2 1

Self-Play 21.81 ± 0.05 22.06 ± 0.04 22.36 ± 0.04 22.66 ± 0.03
w/ piKL-BR 22.99 ± 0.04 23.10 ± 0.03 23.20 ± 0.03 23.34 ± 0.03

Table 1: The performance of piKL-IL in self-play and in cross-play with piKL-BR. The piKL-IL model is a
single neural network model whose input contains the mean of the Gaussian distribution from which the λ of
the player is sampled. It is evaluated with all possible input conditions (λ input). Each cell (mean ± standard
error) is evaluated over 5000 games with different random seeds. For reference, πBC learned on the original
human dataset gets 19.72± 0.10 in self-play.

it may suffer from out-of-distribution (OOD) errors when encountering trajectories that have low
probability under training distributions. The actions produced by πpiKL-BR on OOD input sequences
can be arbitrarily bad as the neural network has never been trained on such data.

However, search or other model-based planning algorithms can mitigate this problem by avoiding
the most devastating mistakes, because it often takes only a few steps of simulated rollouts to directly
observe the negative outcomes caused by those mistakes. Inspired by this observation, we run piKL-
LBS at test time on top of πpiKL-BR. We use πpiKL-BR for both of πanc and πroll in Eq. 2 when it is our
turn, and assume the partner acts according to πpiKL-IL on their turn. The belief model is trained on
data generated by cross-play between piKL-BR and piKL-IL. Since the main purpose of this step is
to avoid catastrophic OOD errors that are usually associated with substantially lower Q-values, we
can set λ high so the search policy to avoid unnecessary divergence from πpiKL-BR.

5 EXPERIMENTAL SETUP

We implement and test our method in the Hanabi benchmark environment (Bard et al., 2020). In
this section, we introduce the game rules of Hanabi, as well as how we implement piKL3 and a best
response to πBC (BR-BC) baseline.

Hanabi is a 2 to 5 player card game. In this paper we use the standard 2-player version. The deck
consists of five color suits and each suit has ten cards divided into five ranks with three 1s, two 2s,
two 3s, two 4s and one 5. At the beginning, each player draws five cards from the shuffled deck.
Players can see other players’ cards but not their own. On each turn, the active player can either hint
a color or rank to another player or play or discard a card. Hinting a color or rank, will inform the
recipient which cards in their hand have that specific color/rank. Hinting costs an information token
and the team starts with eight tokens. The goal of the team to play exactly one card of each rank 1
to 5 of each color suit, in increasing order of rank, The order of plays between different color suits
does not matter. A successful play scores the team one point while a failed play one costs one life.
If all three lives are lost, the team will get 0 in this game, losing all collected points. The maximum
score is 25 points. The team regains a hint token when a card is discarded or when a suit is finished
(playing all 5 of a suit successfully). The player draws a new card after a play or discard move.
Once the deck is exhausted, the game terminates after each player makes one more final move.

We acquire a dataset of roughly 240K 2-player Hanabi games from BoardGameArena to train the
human policy πh. The dataset contains all the games played in a certain period on that online
platform and we do not perform any filtering. The dataset is randomly split into a training set of
235K games, a validation set of 1K games and a test set of 4K games. The average score of games
in the training set is 15.88. The policy πθ is parameterized by a Public-LSTM neural network
(See Hu et al. (2021b) or Section 3.2). The policy is trained to minimize the cross-entropy loss
L(θ) = −Eτ i∼D

∑
t πθ(a

i
t|τ it ). Note that it treats the AOH of each player τi as a separate data point

for training. Similar to prior works (Hu et al., 2021c), we apply color shuffling Hu et al. (2020) for
data augmentation. Every time we sample τi ∼ D, we generate a random permutation f of the five
colors, e.g. f : a b c d e→ b d c a e, and apply f to both the input and the target of the training data.
This model is trained with Adam (Kingma & Ba, 2014) optimizer until the prediction accuracy on
the validation set peaks. The converged πh gets 19.72± 0.10 in self-play and 63.63% in prediction
accuracy on the test set. In evaluation, we take the argmax from the policy instead of sampling,
which also explains why it achieves higher average score than the training set.
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PiKL-LBS requires a learned approximate belief model. In Hanabi, the belief model takes the same
AOH τ i as the policy and returns a distribution over player i’s own hand. The hand consists of 5
cards and we can predict them sequentially from the oldest to the newest based on the time they
are drawn. The belief network ϕ consists of an LSTM encoder to encode sequence of observations
and an LSTM decoder for predicting cards autoregressively. Note that the belief is a function of
partner’s policy. The belief for a given policy π partnering with ρ is trained with cross-entropy
loss L(ϕ) = −Eτπ∼D(π,ρ)

∑
t

∑
j log pϕ(cj |τπt , c1, · · · .cj−1), where cj is the j-th card in hand to

predict. D(π, ρ) is an infinite data stream generated by cross-play using π and ρ and τπ ∼ D means
that we only use data from π’s perspective for training. In piKL-IL, we use π = ρ = πroll.

We set P (λ) to be a uniform mixture of truncated Gaussian distributions to model players of diverse
skill levels. Specifically, we use Gaussian distributionsN (µ, σ2) truncated at 0 and 2µ with (µ, σ) =
(1, 1/4), (2, 2/4), (5, 5/4), (10, 10/4) and each Gaussian is sampled with equal probability. We
generate d = 250K games in each iteration to train the new policy and we find that one outer
iteration (k = 1 in Algo. 1) is sufficient to achieve good performance in Hanabi. In every LBS step,
we perform M = 10K Monte Carlo rollouts evenly distributed over |A| legal actions. We sample
M/|A| valid private hands from the belief model to reset the simulator for rollouts. Invalid sampled
hands are rejected. With this setting, each game with 2 player running piKL-LBS independently
takes roughly 5 minutes with 1 GPU and we use 500 GPUs in parallel for 42 hours to generate the
entire dataset. To better imitate policies under different λs, we feed the µ of the Gaussian distribution
from which the λ is sampled to the policy network in the form of a one-hot vector concatenated with
the input. The self-play performance of the piKL-IL model conditioning on different λ input is
shown in the top row of Table 1. Clearly, piKL-IL performs significantly better than πh and the
score increases as regularization λ decreases.

The BR is trained under a standard distributed RL setup where many parallel workers generate data
with cross-play between the training policy and the fixed IL policy. The generated data is added into
a prioritized replay buffer Schaul et al. (2015) and the training loop samples mini-batches of games
to update the policy with TD errors. We use the same Public-LSTM architecture for the BR policy as
it will also be used in piKL-LBS at test time. The BR policy explores with ϵ-greedy to a distribution
of ϵ sampled every new game while the IL policy does not explore but it samples a new λ input
from {1, 2, 5, 10} every game. The λ in Eq. 4 is set to 0.1. The cross-play performance between the
converged piKL-BR and piKL-IL is shown in the bottom row of Table 1. As expected, piKL-BR is
better at collaborating with piKL-IL than piKL-IL itself and the gap shrinks as the regularization λ
decreases. The reasons are that piKL-BR is trained with lower regularization and RL can optimize
for multi-step best response while search can only optimize for one step.

We run piKL-LBS on the piKL-BR policy with high regularization λ = 2. The search assumes
that our blueprint is πbp and our partner always follows πIL, the final output policy of piKL-IL. To
avoid predicting the λ input for partner model πIL, we replace it with an imitation learning policy
π′

IL trained on the same dataset as πIL but without the λ input. The belief model is trained the same
way as in piKL-IL but with π = πBR and ρ = π′

IL in D(π, ρ). The number of Monte Carlo rollouts
per step is reduced to 5K to make it faster and suitable for real world testing.

Finally, we train an unregularized λ = 0 best response to the vanilla behavioral clone policy πBC as
our baseline. This agent achieves 23.19 ± 0.03 in cross-play with πBC in convergence. This score
is quite high considering that its partner πBC is much worse than the piKL-IL policy, indicating that
the unreguarlized BR may be overfitting to the imperfect human model.

6 RESULTS

We carry out two large scale experiments with real humans to evaluate piKL3. The first experiment
focuses on ad-hoc team play with a diverse group of players without any prior communication (zero-
shot). In the second experiment, we invite a group of expert players to play multiple games with
piKL3 and the BR-BC baseline in alternating order to further differentiate the gap between them.

The experiments are hosted on our customized version of the open sourced Hanab.Live platform.
The modified platform disables chat, observe and replay functionalities. Additionally, participants
cannot create games themselves nor invite others to form a team. All games are created automatically
following the design of the experiments below.
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w/ Human Experts w/ BR-BC w/ piKL3

All Testers (56) 14.54 ± 1.47 16.73 ± 1.27 17.18 ± 1.28
Newcomer (2) 0.00 ± 0.00 0.00 ± 0.00 10.00 ± 7.07
Beginner (17) 9.12 ± 2.65 14.82 ± 2.42 14.47 ± 2.63

Intermediate (23) 14.57 ± 2.27 19.48 ± 1.64 18.52 ± 1.79
Expert (14) 23.14 ± 0.60 16.93 ± 2.41 19.29 ± 2.14

Table 2: The performance of different groups of players partnering with a group of testers. Testers are recruited
from diverse sources to represent the general population with different skill levels and different conventions in
Hanabi. Each tester is matched with one of the available human experts, one BR-BC baseline agent and one
piKL3 agent in random order. The bottom 4 rows shows the results for each subgroup of testers. The number
in parentheses after the group name is the headcount of that group. Each cell contains mean ± standard error.

w/ BR-BC w/ piKL3

Experts 21.21 ± 0.59 22.23 ± 0.52
22.52% ± 3.96% 31.86% ± 4.38%

Table 3: The performance of experts playing with BR-BC baseline and piKL3 in alternating order repeatedly
for a maximum of 20 games in total. The cells contain mean ± standard error (top row) averaged over 111
(BR-BC) and 113 (piKL3) valid games, and percentage of perfect games (bottom row).

6.1 AD-HOC TEAM PLAY

In the first experiment, we recruited players with different skill levels from diverse sources. We
posted invitations on the board game Reddit, the forum of BoardGameArena, Twitter and Facebook
Ads, as well as on two popular Discord channels where enthusiasts discuss conventions and organize
tournaments. This group of players are referred to as testers. A $40 or $80 gift card was sent to the
testers who successfully completed the required games to encourage participation. Meanwhile, we
recruited a group of expert human players from a well-known Discord group to study how well
humans can do when playing with unknown partners. The experts have all played Hanabi for more
than 500 hours. The experts were paid proportional to the time they spend waiting for and playing
with the testers. Each tester signed up for a 45-60 minute time slot. During their session, they were
automatically matched with the BR-BC baseline agent, the piKL3 agent and one of the available
experts in random order. Usernames of all players including AI agents were randomly decided, to
maintain anonymity of the participants and of which players were the experts or the agents. Both
AI agents sampled a sleep time t proportional to the entropy of softmax(Q) and waited for at
least t seconds before sending the action. This further helped to hide the identity of AI agents and
to mitigate the potential side effect that piKL3 and the BR-BC need different amounts of time to
compute an action.

The results are shown in Table 2. From the overall result in the first row, we see that both BR-BC
and piKL3 outperformed human experts in this task, indicating that playing with a diverse range
of players in the zero-shot ad-hoc setting is challenging for humans. Still, it is worth noting that
the 2-player no-variant version of Hanabi is not a particularly popular variant within the advanced
Hanabi community and many people mostly play with people they know so that they can discuss
and perfect strategies after games.

We let testers self-identify as one of four skill levels spanning from newcomer who has just learned
the rules to expert who has played extensively. The results for each skill level group together with
the number of players from each group are shown in the table as well. Although the standard
errors are large due to the small number of games within each group, we can see a trend that the
AI agents generally worked better with non-expert players, while experts have a clear lead when
collaborating with other experts. This is likely because experts’ behaviors are more predictable and
the community has converged to a few well-known convention sets that are easy to identify for the
experts who follow them closely in forums and discussion channels. It might also reflect the fact
that our training data matches a more diverse pool of players with fewer experts in it, since those
experts tend to play on sites other than BoardGameArena, which is our only source of training data.
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The difference between BR-BC and piKL3 in this set of results is not significant given the standard
errors. Unfortunately, it is challenging to collect more games in this setting due to both the difficulty
to recruit enough people with good intent and the logistic overhead to manage anonymous human-
human matches.

We hypothesized that piKL3 might work better with experts thanks to its abilities to model stronger
human players and to be more robust against OOD errors. We design a different experiment to verify
this in the next section.

6.2 REPEATED GAMES WITH EXPERTS

In this experiment, we recruited a group of expert players to play with the two AI agents in alter-
nating order for a maximum of 20 games. Each expert started randomly with one of the agents and
switched to the other one after each game. They were aware of the matching rule and which AI was
in their current game. As an incentive to do well, the players were compensated with $0.6 for every
point they got. A terminated game with all life tokens lost counted as 0 points.

We collected 111 games for the BR-BC agent and 113 games for the piKL3 agent. The numbers are
slightly different for the two agents because some games terminated unexpectedly due to platform
related technical reasons. The average score and the percentage of perfect games for each agent are
shown in Table 3. A perfect game is where the team achieves full score. Although the improvement
may seem small numerically, the mechanics of Hanabi makes it increasingly difficult to improve as
the score gets closer to a perfect 25. In RL training, for example, learning a 20-point policy from
scratch takes roughly the same amount of time and data as improving that policy to a 21-point one.

piKL3 outperformed the BR-BC in terms of both average score and percentage of perfect games.
Although the statistical significance of both results is somewhat limited given the amount of data
p = 0.097 and p = 0.058, respectively, both are strongly suggestive and consistent with our ini-
tial hypothesis. It is also encouraging to see that piKL3 can achieve more perfect games with the
experts. Experienced human players are particularly excited about perfect games as they are often
significantly harder than getting 23 or 24 in a given deck.

Due to the limitation on budget and the overhead of managing experiments with humans, we were
unable to collect enough games to perform ablations for each component of piKL3, nor to include
more baselines. In this experiment, we focused on demonstrating the effectiveness of this combina-
tion compared to the popular BR-BC baseline. In practice, researchers may use any combination of
the three components of piKL3 based on the properties and challenges of their specific domains.

Most existing works targeting human-AI coordination in Hanabi (Hu et al., 2021c; Cui et al., 2021a)
do not directly use human data. They get around 16 points with a similar but slightly stronger πBC
while piKL3 and BR-BC get around 23. Therefore, despite being interesting, it will not be a fair
comparison to include them. Previously, Hu et al. (2020) also tested their agent with human players.
However, these results are not directly comparable as they use a different scoring method that keeps
all the points when losing all life tokens. Additionally, the population of the human testers has a
profound impact on the numerical results.

7 CONCLUSION AND FUTURE WORK

We present piKL3, a three-step algorithm centered around the idea of regularizing search, imitation
learning and reinforcement learning towards a policy learned from human data. We performed two
large-scale experiments with human players in the Hanabi benchmark to demonstrate the effective-
ness of this method and its superiority over the popular baseline of training an ordinary best response
to a plain imitation policy. We also for the first time report human experts’ perhaps surprisingly low
performance on zero-shot ad-hoc team play with a diverse population.

The main limitation of this method is that it requires large amounts of data to learn the initial human
policy used as anchor and blueprint in piKL search. Therefore, an interesting future direction is to
extend this method onto more domains, especially ones with less high quality human data. Another
direction would be to create personalized regularization that adapts to each individual player in
repeated games in an attempt to better model them.
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