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ABSTRACT

As large language models (LLMs) are widely applied across various fields, model
compression has become increasingly crucial for reducing costs and improving
inference efficiency. Post-training pruning is a promising method that does not
require resource-intensive iterative training and only needs a small amount of
calibration data to assess the importance of parameters. Recent research has en-
hanced post-training pruning from different aspects but few of them systematically
explore the effects of calibration data, and it is unclear if there exist better calibra-
tion data construction strategies. We fill this blank and surprisingly observe that
calibration data is also crucial to post-training pruning, especially for high spar-
sity. Through controlled experiments on important influence factors of calibration
data, including the pruning settings, the amount of data, and its similarity with
pre-training data, we observe that a small size of data is adequate, and more simi-
lar data to its pre-training stage can yield better performance. As pre-training data
is usually inaccessible for advanced LLMs, we further provide a self-generating
calibration data synthesis strategy to construct feasible calibration data. Experi-
mental results on recent strong open-source LLMs (e.g., DCLM, and LLaMA-3)
show that the proposed strategy can enhance the performance of strong pruning
methods (e.g., Wanda, DSnoT, OWL) by a large margin (up to 2.68%).

1 INTRODUCTION

Recently, Large Language Models (LLMs) have exhibited remarkable performance and enormous
potential in Natural Language Processing (NLP) and Artificial Intelligence (AI) (OpenAI, 2022;
2023; Bubeck et al., 2023; Yang et al., 2023). The success of LLMs is closely tied to scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022): training language models with more parameters,
using more data and greater computational resources leads to more powerful capabilities. However,
LLMs with more parameters increase the difficulty and cost of deployment and inference. Therefore,
much work has been devoted to compressing LLMs to achieve a trade-off between efficiency and
performance, such as pruning (Ma et al., 2023; Xia et al., 2024) and quantization (Frantar et al.,
2023; Huang et al., 2024; Shao et al., 2024).

Pruning is a model compression technique that has evolved over many years (LeCun et al., 1989)
and remains full of potential and challenges. Based on the over-parameterization of neural networks,
it aims to remove redundant parameters while minimizing the degradation of model performance.
Pruning has been successfully applied to compress small to medium-sized neural networks. Through
sparse training (Lee et al., 2019; Frankle & Carbin, 2019; Yuan et al., 2021; Lasby et al., 2024) or
pruning-aware training (Sanh et al., 2020; Lagunas et al., 2021; Jiang et al., 2023) methods, it can
achieve performance comparable to dense models with a high sparsity ratio (≥70%). However, these
methods require iterative training, which is costly and time-consuming for LLMs with billions of
parameters. As a result, post-training pruning that does not require iterative training has become the
preferred approach for pruning LLMs.

The challenge of post-training pruning is how to perform training-free parameter importance estima-
tion. Frantar & Alistarh (2023) note that simple parameter magnitude-based metrics perform poorly
in post-training pruning with over 20% sparsity. Therefore, they use a small amount of calibration
data to compute the inverse Hessian matrix, estimating parameter importance through second-order
gradient information. Sun et al. (2024) propose a simpler method by using the product of weight
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(a) Peformance differences of repre-
sentative pruning methods with the
commonly-used C4 calibration data.

(b) Performance differences of vari-
ous calibration data on SparseGPT.
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Figure 1: The effects of pruning methods and calibration data on commonsense reasoning tasks.

magnitudes and the L2 norm of the corresponding input activations. Dong et al. (2024) utilize the
genetic algorithm to search for the optimal combination of information from magnitude, activation,
and gradient as an importance metric. Overall, current advanced parameter importance metrics rely
on calibration data. Although most papers claim their pruning methods are robust to calibration
data, Williams & Aletras (2024)’s empirical study challenges this view. They demonstrate the per-
formance differences of various methods using different calibration data. Our experiments further
revealed that the performance gains from selecting better calibration data can even surpass those of
advanced pruning methods (Figure 1).

To learn more about calibration data, we design experiments to explore (1) the impact of calibration
data with increased sparsity and varied pruning types, (2) the influence of the amount of calibra-
tion data, and (3) the selection strategy of calibration data. Our empirical results demonstrate that
as sparsity increases, the performance differences among different calibration data become more
pronounced, and simply increasing the data volume does not reduce this disparity. We further find
that calibration data similar to the pretraining data yields better performance. Based on this, we
propose the self-generation strategy to construct appropriate calibration data for pruning in practical
settings with unavailable training data. To evaluate the effectiveness of our proposed calibration
data sampling method, we conduct experiments on DCLM, LLaMA-2, and LLaMA-3 models. The
results show that our proposed method performs better than the commonly used calibration data and
is compatible with strong pruning methods by substantially improving their performance.

2 BACKGROUND

Model compression is a crucial way to improve inference efficiency by reducing the required mem-
ory, including pruning (Guo et al., 2023; Zhang et al., 2024b; Xia et al., 2024), quantization (Xiao
et al., 2023; Lin et al., 2024), low-rank decomposition (Kaushal et al., 2023; Yuan et al., 2024;
Wang et al., 2024; Ji et al., 2024), etc. The enormous memory requirements and inefficient infer-
ence speeds for LLMs urgently necessitate model compression. However, many successful model
compression methods have required substantial computational resources for retraining, which limits
their application for LLMs in low-resource settings. Therefore, post-training compression, which
does not require retraining, has become a current research focus.

Post-training compression methods typically approximate model compression as an optimization
problem for layer-wise compression (Frantar & Alistarh, 2022):

min
Ŵl

||WlXl − ŴlXl||F , (1)

where Wl, Ŵl are the original and compressed l-th linear layer, respectively, and Xl is the input fea-
ture activation. For post-training pruning, to optimize the objective, OBC (Frantar & Alistarh, 2022)
and SparseGPT (Frantar & Alistarh, 2023) utilize second-order gradient information to measure pa-
rameter importance and propose an efficient algorithm for computing the inverse Hessian matrix.
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Wanda (Sun et al., 2024) evaluates weight importance by combining their magnitudes with input
activations without requiring backpropagation. Zhang et al. (2024c) propose the relative importance
and activation metric (RIA), which integrates weight, input, and output activation. They also utilize
the channel permutation to minimize pruning loss under N:M semi-structured pruning. Pruner-
Zero (Dong et al., 2024) designs a genetic algorithm-based framework to automatically search the
best pruning metric. Recently, several studies (Sung et al., 2024; Xu et al., 2024a; Yin et al., 2024)
indicate that layer-wise compression, which typically applies a uniform sparsity rate across all lay-
ers and evaluates weight importance within the layer, often results in suboptimal performance due
to the lack of overall consideration. Specifically, Xu et al. (2024a) proposes a differentiable pruning
framework designed to search for optimal pruning rates for each layer. OWL (Yin et al., 2024) in-
troduces outlier weighed layerwise sparsity, which relates the sparsity of each layer to the observed
outliers in a proportional manner.

In the aforementioned post-training compression methods, calibration data is an indispensable com-
ponent. Calibration data is a small subset randomly sampled from unlabeled pretraining text. Many
methods (Frantar & Alistarh, 2023; Sun et al., 2024; Dettmers et al., 2024) claim their robustness to
the quantity and distribution of calibration data, requiring only dozens or hundreds of samples with
2,048 sequence length. However, this conclusion is based on the perplexity of certain datasets (such
as Wikitext2), which does not fully reflect the true capabilities of the LLMs. Even if perplexity
shows no significant change, the compressed model may still experience substantial performance
declines in downstream tasks (Jaiswal et al., 2024). Khanal & Capone (2024) suggest that using
task-specific calibration data helps improve performance on specific downstream tasks. Williams &
Aletras (2024) observe in extensive experiments that the selection of calibration data in post-training
pruning and quantization methods significantly impacts downstream tasks’ performance, especially
post-training pruning, which is highly sensitive to calibration data. Nevertheless, current research on
calibration data remains under-explored, with few studies providing guidelines for selecting calibra-
tion data. Different from previous works, our paper (1) explores the impact of calibration data under
varying sparsity ratios and types, (2) investigates the effect of data amount on various calibration
data, not limited to the widely used C4 calibration data, (3) further addresses which calibration data
is suitable for LLM pruning and provides a practical and effective method.

3 THE IMPACT OF CALIBRATION DATA FOR PRUNING

Though Williams & Aletras (2024) have noted that calibration data significantly impacts post-
training pruning, there exist many open questions. How much does calibration data affect prun-
ing performance? How does the amount of calibration data affect compressed model performance?
What data sources are more suitable for calibration? We investigate these questions in this section.

3.1 EXPERIMENTAL DETAILS

Dense Model To study the impact of data from different sources on post-training pruning methods,
we need a comprehensive knowledge of the data used in model training. We select the powerful and
fully open-source LLM (including training data), DCLM-7B1 (Li et al., 2024), as the dense model
and conduct post-training pruning with different calibration data on it.

Post-training Pruning Methods We choose three competitive and representative post-training
pruning methods for evaluation: Wanda (Sun et al., 2024), DSnoT (Zhang et al., 2024d) and
OWL (Yin et al., 2024). These methods apply to both unstructured and semi-structured pruning.

Calibration Data We consider various data sources to be calibration data. Following the main-
stream works, the calibration data sources are all from the unlabeled pre-trained corpus:

• C4 (Raffel et al., 2020)2 is a widely used calibration data source, consisting of a large amount of
multilingual web text filtered from Common Crawl. We sample from the English training set.

1https://huggingface.co/apple/DCLM-7B
2https://huggingface.co/datasets/allenai/c4
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Figure 2: Pruning performance range (Max.-Min.) of different datasets (C4, Wikipedia, Slimpa-
jama, DCLM) under various sparsity ratios (a) and sparsity types (b) on Wanda.

• Wikipedia3 is a source of high-quality encyclopedic text. We use the first shard of the cleaned
English version until 2023-11-01.

• Slimpajama4 is a cleaned and deduplicated version of RedPajama. It is a high-quality pre-training
corpus with diverse sources, including C4, ArXiv, GitHub, Books, etc.

• DCLM (Li et al., 2024) is the pre-training data of DCLM-7B model. It includes 2.6T tokens
extracted from Common Crawl. We sample from a subset5 of the DCLM.

Aside from the experiments in Section 3.3, we follow prior works and randomly sample 128 se-
quences with 2048 tokens as calibration data. To mitigate the impact of sampling randomness, all
our experiments repeat the calibration data sampling 20 times with different random seeds and report
the average performance.

Evaluation Tasks Some pruning works focus on the perplexity of certain datasets while neglect-
ing performance on various downstream tasks, which often fails to fully reflect the capabilities of
compressed models. Therefore, we choose multiple widely used and challenging commonsense
reasoning tasks for evaluation, including BoolQ (Clark et al., 2019), Winogrande (Sakaguchi et al.,
2021), PIQA (Bisk et al., 2020), Hellaswag (Zellers et al., 2019), ARC-e, ARC-c (Clark et al., 2018)
and MMLU (Hendrycks et al., 2021). For MMLU, we use a 5-shot setting, while all other tasks are
evaluated in a zero-shot setting. Our evaluation code is based on the lm-evaluation-harness
repository6. We report the average performance of these seven tasks.

3.2 HOW MUCH DOES CALIBRATION DATA AFFECT PRUNING PERFORMANCE?

In practical applications, evaluating and comparing the impact of different calibration data on pruned
models inevitably consumes time and computational resources. Therefore, we wonder how signif-
icant the impact of calibration data is on pruning performance and whether it’s worth our effort
to seek optimal calibration data in research and practice. We consider different sparsity ratios and
sparsity types. Our experiments cover sparsity ratios ranging from 30% to 60%, and at 50% sparsity
ratio, we further compare unstructured, 4:8 semi-structured, and 2:4 semi-structured sparsity types.

We use Wanda as an example to illustrate the model’s performance range, defined as the difference
between the maximum and minimum values, after pruning with four calibration data sets, as shown
in Figure 2. More details on the performance of the different calibration data can be found in
Figure 6 in Appendix A. Specifically, at low sparsity ratios (<50%), the performance difference
between different calibration data is minimal, less than 0.1%. As sparsity increases, the impact
of calibration data on pruning gradually amplifies, rising from a 0.5% difference at 50% sparsity
to 2.3% at 60% sparsity. Notably, as shown in Figure 6, inappropriate calibration data can even

3https://huggingface.co/datasets/wikimedia/wikipedia
4https://huggingface.co/datasets/DKYoon/SlimPajama-6B
5https://huggingface.co/datasets/robbiegwaldd/dclm-micro
6https://github.com/EleutherAI/lm-evaluation-harness
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Figure 3: The impact of calibration data amount for different pre-training data resources (i.e., C4,
Wikipedia, Slimpajama, DCLM) and pruning methods, i.e., Wanda (a) and DSnoT (b). Shaded areas
represent the standard deviations of 20 random seeds.

have a negative effect at moderate sparsity levels. For instance, at 60% sparsity, using Wikipedia
and Slimpajama as calibration data performs worse than magnitude pruning without any calibration
data. For sparsity types, we observe that as the sparsity pattern becomes more structured, the choice
of calibration data becomes increasingly important, with the maximum difference reaching 1.5%
to 1.8%. We also report results on DSnoT and OWL in Appendix A. Although different pruning
methods exhibit varying performance, they show similar trends regarding the impact of calibration
data. Overall, at moderate to high sparsity ratios and with semi-structured sparsity types,
different calibration data significantly affect the performance of pruned LLMs. For all pruning
methods, higher sparsity ratios and more structured sparsity types are key to achieving effective
inference acceleration. Therefore, paying more attention to the choice of calibration data is crucial.

3.3 IS CALIBRATION DATA FROM DIFFERENT SOURCES EQUALLY ROBUST TO DATA
AMOUNT?

Currently, almost all post-training pruning methods for LLMs have empirically demonstrated ro-
bustness in terms of the amount of calibration data they use. Typically, model performance reaches
a plateau when the data amount reaches 128, and more calibration data do not lead to additional
performance gains. We wonder whether these methods are equally robust to the amount of data
for calibration data from different sources. Can certain calibration data that lead to poorer pruned
models be improved by increasing the data amount?

We perform Wanda and DSnoT pruning on DCLM-7B in the 2:4 semi-structured pruning setting.
We randomly sample 64, 128, 256, 512, 1024, and 2048 samples from different data sources as
calibration data. Figure 3 shows how the performance of pruned models changes with increasing
data amount using different calibration data. We observe that the average performance of pruned
models is robust to data amount, regardless of the calibration data source, with fluctuations of
only 0.1%-0.2%. Therefore, we cannot expect that increasing the amount of calibration data will
narrow the performance gap between different calibration data. Additionally, as the data amount
increases, the standard deviation of the pruned model’s performance decreases.

3.4 WHAT CALIBRATION DATA IS SUITABLE FOR PRUNING?

Since the choice of calibration data is crucial and cannot be improved by increasing the amount
alone, we have to figure out what calibration data is more suitable for pruning. We propose two
reasonable hypotheses: (1) The more similar the calibration data is to the training data of the LLMs,
the better the pruning performance. (2) The higher the quality of the calibration data, the better the
pruning performance.

To verify the hypotheses, we perform three post-training pruning methods on DCLM-7B with var-
ious calibration data in the 2:4 semi-structured pruning setting. We report our results in Table 1.
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Table 1: Pruning performance of three pruning meth-
ods with four different sources of calibration data.

Method C4 Wikipedia Slimpajama DCLM

Wanda 62.520.21 61.030.21 62.310.22 62.880.20

DSnoT 61.710.21 60.480.24 61.200.21 62.250.22

OWL 63.400.19 62.230.19 63.100.22 63.600.16

Among these data, using DCLM from
the training data as calibration data con-
sistently achieves the best performance.
C4 and Slimpajama, which are also ex-
tracted from Common Crawl, perform
slightly worse. In contrast, the source
of Wikipedia differs significantly from the
other three datasets. Although Wikipedia
is recognized as high-quality data, it shows the worst performance, falling short of DCLM by 1.3%
to 1.8%. Therefore, we assert that the quality of calibration data is not the primary factor affecting
pruning performance. We further quantify the similarity between different calibration data and the
training data. We utilize the MinHash-LSH algorithm to encode the 3-grams of C4, SlimPajama,
Wikipedia, and DCLM, calculating their Jaccard similarities. The results show that the Jaccard sim-
ilarity between C4 and DCLM is 0.070, SlimPajama is 0.016, and Wikipedia is 0.008. This indicates
that C4 is the most similar to the training data, followed by SlimPajama, while Wikipedia has the
lowest similarity. This ranking aligns with their performance as calibration data in pruning. There-
fore, we believe that the similarity of calibration data to the training data has a more significant
impact on pruning performance than the quality of the calibration data. Training data or data
similar to the training data is better suited as calibration data. We conjecture that this may be
due to LLMs learning the patterns in the training data better. Therefore, using data with similar
patterns as calibration data during the pruning process can more accurately reflect the importance of
model parameters.

4 CALIBRATION DATA SAMPLING METHOD

In the Section 3, our empirical study of the open-source DCLM-7B model demonstrates that se-
lecting calibration data similar to the training data can yield better pruning performance. However,
in practical scenarios, the training data of many LLMs is not publicly available to users. In this
section, we will propose the “self-generating then sampling” strategy for sampling calibration data
when the training data is unavailable. Formally, given a dataset D as the source of calibration data
and an LLM M pre-trained on an inaccessible dataset Dt, we aim to sample n instances from D as
calibration data Dc that has a similar distribution to Dt.

Recently, Xu et al. (2024b) disclosed that LLMs internalize patterns such as language structure, word
distribution, and even commonsense knowledge from the training data during the training process.
Due to their auto-regressive nature, LLMs leverage these internalized patterns when predicting the
next token, producing the generated text similar to the training data. Thus, we propose using self-
generated synthetic data as a proxy for the training data for calibration in post-training pruning.
Specifically, for a sample from the source of calibration data D, we truncate the first t tokens as the
prefix and then allow the LLM M to generate contextually relevant subsequent content:

xi ∼ pM(x<i), i = t · · ·N. (2)

After generating the data, we filter the synthetic data to prevent low-quality generated data from
negatively impacting pruning effectiveness. We calculate each generated sample’s perplexity and
filter the k% samples with the highest perplexity. Higher perplexity indicates that the patterns are not
well-fitted by the LLM and may differ significantly from the training data, making them unsuitable
as calibration data.

5 EXPERIMENTS

5.1 EXPERIMENTAL DETAILS

To evaluate the effectiveness of our proposed calibration data sampling method, we apply it to vari-
ous LLMs, including DCLM-7B, LLaMA-2-7B, LLaMA-2-13B (Touvron et al., 2023) and LLaMA-
3-8B (Dubey et al., 2024). As described in Section 3.1, we use C4, Wikipedia, Slimpajama, and
DCLM as baselines for calibration data, employing three post-training pruning methods: Wanda,
DSnoT, and OWL, to prune the dense models. In the main experiments, we report performance
at the 60% sparsity ratio. We follow previous work to evaluate the compressed LLMs’ language

6
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Table 2: Pruning performance of different calibration data on DCLM-7B in 60% sparsity ratio. The
best performance method is indicated in bold. Wiki, Slim, and Syn are abbreviations for Wikipedia,
SlimPajama, and our synthetic data, respectively. Underline means the improved performance of
synthetic calibration data over the original calibration data for a certain task. ∆ denotes the average
performance change of pruned models on commonsense reasoning tasks. ✓, ✗ and ✓✗ indicate that
the calibration data belongs, does not belong, or partially belongs to DCLM-7B’s pretraining data,
respectively.

Data Pretrain Alpaca (↓) BoolQ Winogrande PIQA Hellaswag ARC-e ARC-c MMLU Avg. ∆

Wanda

Wiki ✗ 9.99 72.05 68.40 74.33 64.79 73.14 39.91 42.20 62.12
w/ Syn 9.40 78.73 70.06 75.78 66.16 74.34 42.83 45.04 64.71 +2.59

C4 ✓✗ 9.67 78.47 70.27 75.12 66.32 72.84 40.84 43.31 63.88
w/ Syn 9.57 78.81 70.52 75.95 66.35 74.23 42.01 45.64 64.78 +0.90

Slim ✓✗ 9.76 78.56 70.16 74.27 65.07 72.37 39.94 43.40 63.40
w/ Syn 9.58 78.51 70.02 75.63 65.90 74.12 42.13 45.26 64.51 +1.11

DCLM ✓ 9.54 79.11 70.51 75.13 66.25 73.37 41.66 44.58 64.37
w/ Syn 9.59 79.23 70.69 75.64 66.17 74.04 42.01 45.42 64.74 +0.37

DSnoT

Wiki ✗ 10.16 69.97 68.08 73.95 63.23 72.09 38.69 41.63 61.09
w/ Syn 9.40 77.58 69.20 75.38 64.76 73.27 41.66 44.53 63.77 +2.68

C4 ✓✗ 9.81 76.11 69.44 74.76 65.08 72.10 39.08 41.62 62.60
w/ Syn 9.56 75.61 69.30 75.56 65.13 73.06 41.11 45.24 63.57 +0.97

Slim ✓✗ 9.87 75.58 69.21 73.80 63.88 71.37 38.63 42.25 62.10
w/ Syn 9.62 76.08 69.27 75.09 64.57 73.16 40.97 44.57 63.39 +1.29

DCLM ✓ 9.70 77.39 69.36 74.63 64.89 72.06 39.83 43.73 63.13
w/ Syn 9.52 76.56 68.35 75.55 64.70 73.43 41.43 44.81 63.55 +0.42

OWL

Wiki ✗ 9.96 75.27 67.11 74.25 63.07 73.01 38.35 38.75 61.40
w/ Syn 9.20 78.45 68.92 76.03 65.18 73.72 40.29 42.73 63.61 +2.21

C4 ✓✗ 9.52 78.14 68.90 75.55 65.22 72.46 38.24 39.04 62.51
w/ Syn 9.31 78.55 68.67 76.38 65.45 74.05 40.03 42.94 63.72 +1.21

Slim ✓✗ 9.59 78.09 68.69 74.56 64.00 72.35 37.95 39.84 62.21
w/ Syn 9.32 78.56 68.71 75.83 64.47 73.81 40.44 43.61 63.64 +1.43

DCLM ✓ 9.38 78.45 69.47 75.10 65.07 72.76 38.81 40.73 62.91
w/ Syn 9.28 78.80 67.77 75.90 64.77 73.84 40.56 43.67 63.61 +0.70

modeling and commonsense reasoning capabilities. We do not use the Wikitext2 dataset, which is
common in most papers for evaluating language modeling ability, as its similarity to Wikipedia may
introduce bias when assessing the impact of different calibration data on language modeling ability.
Instead, we choose the Alpaca (Taori et al., 2023) dataset, distinct from all four calibration data
sources, as our language modeling test data.

When replicating DSnoT and OWL, we follow the hyperparameter settings detailed in their papers.
During the self-generation process, we use Top-k and Top-p sampling to improve the diversity of
the generated data. Specifically, we set the p-value to 0.95, the k-value to 50, and the temperature
to 0.6. We apply the repetition penalty of 1.2 to avoid repeatedly generating low-quality fragments.
We randomly sample 5,000 examples from C4, Slimpajama, Wikipedia, and DCLM respectively for
generation. In the filtering phase, we eliminate the top 20% of samples based on their perplexity.

5.2 OVERALL PERFORMANCE

We report the main results in Table 2 and Table 5. Overall, our self-generated synthetic calibra-
tion data exceeds other baseline calibration data in language modeling and commonsense reasoning
tasks and is compatible with different pruning methods. On DCLM-7B, Wikipedia, which is not
part of the pretraining data, achieves the greatest performance improvement through self-generating
synthetic data. It improves performance in commonsense reasoning tasks by an average of 2.2% to
2.6% compared to the original Wikipedia data, and even surpasses the commonly used C4 calibra-
tion data, achieving an average increase of 0.8% to 1.2%. For C4 and Slimpajama, which partially
overlap with the pretraining data, the self-generation strategy also yields a 0.9-1.5% improvement.
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On LLaMA family models, the self-generated synthetic data also performs better than the origi-
nal data, with improvements ranging from approximately 0.9% to 1.1%, and surpasses the C4 data
by about 0.3% to 0.5%. Surprisingly, the performance of the self-generated calibration data even
exceeds that of calibration data sampled from the DCLM-7B training set, with an average improve-
ment of 0.3% to 0.7%. We think this may be due to certain patterns in the calibration data that LLMs
have not adequately learned. Using these patterns as calibration data may misestimate the impor-
tance of parameters. In contrast, due to the nature of maximum likelihood training, self-generated
calibration data typically generates patterns that LLMs have better learned, thus avoiding using un-
derrepresented patterns as calibration data. Additionally, we observe that regardless of the source
of synthetic data, the pruned models’ performances are similar. It indicates that self-generated cal-
ibration data is versatile, as it can generate suitable calibration data even when the available data is
significantly different from the pretraining data.

6 DISCUSSION

6.1 IS THE SYNTHETIC CALIBRATION DATA SUITABLE FOR OTHER PRUNING SETTINGS?

Table 3: Pruning performance of differ-
ent calibration data.

Setting C4 Wiki Slim DCLM Syn

50% 69.43 69.07 69.26 69.62 69.64
65% 57.22 53.97 56.10 58.14 58.11

4:8 66.27 64.82 66.17 66.28 67.02
2:4 62.52 61.03 62.31 62.88 63.61

We further validate the effectiveness of self-generated
synthetic calibration data across more pruning settings.
Table 3 illustrates the commonsense reasoning perfor-
mance of DCLM-7B during Wanda pruning using differ-
ent calibration data at unstructured 50% and 65% spar-
sity ratios, as well as semi-structured 4:8 and 2:4 settings.
In all pruning settings, our synthetic calibration data ei-
ther matches or exceeds the performance of the optimal
calibration data from the training set DCLM. Notably,
the synthetic data improve performance by approximately
0.8% in the two semi-structured pruning settings. Since semi-structured pruning can achieve prac-
tical inference acceleration and advanced GPUs already support 2:4 sparse tensor cores. Thus, we
think the self-generated synthetic calibration data will effectively enhance the performance of pruned
models in real-world deployment.

6.2 HOW DOES PREFIX LENGTH AFFECT THE PERFORMANCE OF SYNTHETIC DATA?

0 1 2 4 8 16 32 64 128 256 512 1024
60

61

62

63

64

65

Wikipedia
DCLM
Synthetic

Figure 4: Wanda pruning performance
using self-generated synthetic calibration
data with different prefix lengths.

The prefix length during self-generation is a crucial hy-
perparameter. If the prefix is too short, the synthetic text
is likely to be far from the semantics of the original text;
if it is too long, the synthetic calibration data may retain
excessive patterns from the original text. Therefore, it
is essential to explore the selection of prefix length. Our
experiments range from 0 to 1024 prefix lengths, where
a prefix length of 0 indicates only a special token rep-
resenting the start of the text. Figure 4 shows the trend
of commonsense reasoning performance as the prefix
length varies. Once there is a prefix, the performance
exceeds that of the original calibration data. However,
longer prefixes do not yield better results, as perfor-
mance gradually declines with increased prefix length.
The results indicate that using 1 to 4 tokens as a pre-
fix is optimal. This suggests that semantic consistency
with the original text is not critical in synthetic calibration data; instead, the key is to avoid retaining
patterns that could have negative effects.

6.3 HOW DOES PERPLEXITY-BASED DATA FILTERING AFFECT PRUNING PERFORMANCE?

After generating synthetic data, we employ a simple perplexity-based method to filter low-quality
data. Is this perplexity-based filtering method effective, and what should the filtering rate be?

8
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Table 4: Impact of perplexity-
based data filtering.

Data Alpaca (↓) Commonsense

Wiki 9.99 62.12

w/o filter - 64.49

10% filter 9.42 64.76

20% filter 9.40 64.71

30% filter 9.40 64.49

40% filter 9.47 64.51

We conduct experiments on the DCLM-7B model. As shown in Ta-
ble 4, even without any filtering strategy, the synthetic data outper-
forms the original data. The perplexity-based filtering has proved
to be a simple yet effective approach, with the best pruning perfor-
mance at a filtering rate of 10%-20%. As the filtering rate increases,
pruning effectiveness gradually declines, ultimately matching the
performance of the unfiltered data. Therefore, we recommend fil-
tering only the outliers based on perplexity, as overly aggressive
filtering may compromise the diversity of the calibration data, neg-
atively impacting pruning performance.

6.4 WHETHER SELF-GENERATED SYNTHETIC CALIBRATION DATA IS MORE SIMILAR TO
TRAINING DATA?

0.8 0.6 0.4 0.2 0.00

1

2

3

4

5

6

7

De
ns

ity

C4
Wikipedia

Slimpajama
Synthetic

Figure 5: The Min-50%++ score distribu-
tion of C4, Wikipedia, Slimpajama and self-
generated synthetic data.

In Section 3.4, we assert that data similar to the train-
ing data is more suitable as calibration data for post-
training pruning. Based on the auto-regressive gen-
eration characteristics of LLMs, we propose using
self-generated data as an approximation of the train-
ing data. But is the self-generated synthetic data
truly similar to the model’s training data than other
calibration data? We use an efficient and effective
Min-K%++ method (Zhang et al., 2024a) for mea-
suring. Min-K%++ notes that after maximum like-
lihood training, the probability distribution of the
training data always lies at local maxima along the
input dimensions. Therefore, for a given token se-
quence (x<t, xt), if the sequence is belong to the
training data, the p(x<t, xt) should be higher than
that of other candidate tokens in the vocabulary. The
Min-K%++ is formulated as follows:

W (x<t, xt) =
logp(xt|x<t)− µx<t

σx<t

,

Min-K%++(x) =
1

|min-k%|
∑

(x<t,xt)∈min-k%
W (x<t, xt),

(3)

where µx<t
, σx<t

is the expectation and standard deviation of the next token’s log probability given
the prefix x<t, respectively. min-k% refers to choosing the bottom k% of subsequences based on
scores from the sequence x. Thus, the higher a sample’s Min-K%++ score, the more likely it is
to appear in the training data. Figure 5 uses kernel density estimation to show the distribution of
Min-K%++ values for C4, Wikipedia, SlimPajama and our self-generated synthetic data. We can
clearly observe that the self-generated synthetic data has higher Min-50%++ scores than the other
calibration data. It indicates that the self-generated synthetic calibration data is indeed similar to the
training data, confirming the validity of using self-generated data as a proxy for the training data.

7 CONCLUSION AND FUTURE WORK

In this paper, we highlight the critical role that calibration data plays in post-training pruning for
LLMs. Through systematic exploration, we demonstrate that calibration data similar to the origi-
nal training data leads to superior pruning performance. To address the challenge of inaccessible
training data in practical scenarios, we propose a self-generating synthetic calibration data strategy,
which effectively samples suitable calibration data for LLMs. Experimental results on the DCLM,
LLaMA-2, and LLaMA-3 models demonstrate that our method significantly outperforms existing
common-used calibration data. We firmly believe that calibration data, as an essential part of post-
training pruning, still holds significant potential for further research.

Our work still has some limitations that are worth exploring further. First, we do not fully optimize
the hyperparameters when generating synthetic calibration data, such as using more advanced de-
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coding strategies or refined filtering methods. We believe that improving these details could further
enhance the effectiveness of the synthetic calibration data. Second, our experiments are limited to
unstructured and semi-structured pruning on 7B-13B LLMs. In future work, we will validate our
method on 70B LLMs and in structured pruning scenarios. Additionally, we will continue to explore
how to synthesize high-quality instruction data as calibration data to help compress aligned LLMs.
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Figure 6: Pruning performance of different datasets (C4, Wikipedia, Slimpajama, DCLM) under
various sparsity ratios (a-d) and sparsity types (e-f) on Wanda. The gray dash lines represent the
performance of magnitude-based pruning.
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Figure 7: Pruning performance of different datasets (C4, Wikipedia, Slimpajama, DCLM) under
various sparsity ratios (a-d) and sparsity types (e-f) on DSnoT. The gray dash lines represent the
performance of magnitude-based pruning.
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Figure 8: Pruning performance of different datasets (C4, Wikipedia, Slimpajama, DCLM) under
various sparsity ratios (a-d) and sparsity types (e-f) on OWL. The gray dash lines represent the
performance of magnitude-based pruning.

Table 5: Pruning performance of different calibration data on LLaMA-2-7B in 60% sparsity ra-
tio. The best performance method is indicated in bold. Wiki, Slim, and Syn are abbreviations for
Wikipedia, SlimPajama, and our synthetic data, respectively. Underline means the improved perfor-
mance of synthetic calibration data over the original calibration data for a certain task. ∆ denotes
the average performance change of pruned models on commonsense reasoning tasks.

Method Data Alpaca (↓) BoolQ Winogrande PIQA Hellaswag ARC-e ARC-c MMLU Avg. ∆

Wanda

Wiki 10.42 66.80 63.84 70.55 56.69 64.78 34.23 22.94 54.26
w/ Syn 9.62 68.29 64.40 71.49 58.89 64.73 35.41 24.01 55.32 +1.06

C4 10.42 66.30 64.50 71.12 58.92 64.92 33.91 23.06 54.68
w/ Syn 10.07 67.46 64.15 71.38 59.05 65.64 33.83 23.92 55.06 +0.38

Slim 10.23 66.83 63.68 71.10 57.54 64.68 33.98 22.95 54.39
w/ Syn 9.92 67.91 64.63 71.45 58.52 65.28 33.93 23.29 55.00 +0.61

DCLM 9.88 68.92 64.25 71.15 58.72 64.81 33.98 23.65 55.07
w/ Syn 9.77 68.90 64.56 71.71 58.90 65.24 34.47 23.61 55.34 +0.27

DSnoT

Wiki 10.92 66.24 62.72 70.55 55.55 64.10 33.16 23.05 53.62
w/ Syn 10.40 65.44 64.01 71.49 57.77 64.86 34.30 23.90 54.54 +0.92

C4 10.88 65.25 64.04 71.22 57.15 64.40 32.82 23.45 54.05
w/ Syn 9.90 66.18 64.72 71.00 57.19 64.86 33.45 24.87 54.61 +0.56

Slim 10.76 65.66 63.66 70.82 56.17 64.43 32.51 23.15 53.77
w/ Syn 10.04 65.23 63.22 70.84 56.56 65.11 33.11 23.67 53.97 +0.20

DCLM 10.37 66.65 63.99 71.44 56.77 64.56 33.30 23.73 54.35
w/ Syn 9.82 66.24 64.01 71.00 57.64 64.86 33.70 24.09 54.51 +0.16

OWL

Wiki 9.30 66.50 66.05 71.82 61.90 67.57 35.89 26.07 56.54
w/ Syn 9.13 69.85 66.38 73.18 62.86 67.89 35.07 26.34 57.37 +0.83

C4 9.19 66.73 67.34 72.74 62.87 67.54 35.68 26.20 57.02
w/ Syn 9.11 68.47 67.40 72.52 62.99 66.75 35.41 27.28 57.26 +0.24

Slim 9.21 67.52 66.91 72.32 62.25 66.70 34.91 26.05 56.67
w/ Syn 9.04 69.30 67.80 72.31 62.56 67.17 35.75 26.86 57.39 +0.72

DCLM 9.08 69.79 67.94 72.39 62.73 67.06 35.85 26.45 57.46
w/ Syn 9.10 69.57 67.72 72.63 62.60 67.59 35.84 26.32 57.47 +0.01
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Table 6: Pruning performance of different calibration data on LLaMA-2-13B in 60% sparsity ra-
tio. The best performance method is indicated in bold. Wiki, Slim, and Syn are abbreviations for
Wikipedia, SlimPajama, and our synthetic data, respectively.

Method Data Alpaca BoolQ Winogrande PIQA Hellaswag ARC-e ARC-c MMLU Avg.

Wanda

C4 8.99 77.36 68.68 75.45 66.51 69.18 39.74 26.80 60.53
Wiki 9.21 74.39 67.97 74.97 64.39 68.66 38.62 24.96 59.14
Slim 8.76 76.82 68.42 75.25 65.18 69.03 39.56 28.01 60.32
DCLM 8.73 77.50 68.37 75.16 66.34 69.95 40.15 27.98 60.78
Syn 8.73 77.06 68.68 75.19 66.25 70.03 40.19 29.06 60.92

DSnoT

C4 9.03 77.16 66.60 74.92 65.76 69.81 38.45 25.73 59.77
Wiki 9.34 76.02 65.89 74.43 63.84 68.93 37.95 25.19 58.89
Slim 9.03 76.31 66.79 74.84 64.44 70.13 38.33 26.97 59.69
DCLM 9.04 77.22 67.56 74.52 65.38 69.94 38.72 26.97 60.04
Syn 8.96 77.09 67.64 74.54 65.33 70.29 39.68 27.08 60.23

OWL

C4 7.56 78.92 70.02 75.95 69.12 70.90 41.14 32.75 62.69
Wiki 8.25 77.93 69.47 75.23 68.13 71.20 39.23 31.75 61.85
Slim 7.68 79.41 69.69 75.55 68.42 70.60 40.19 32.47 62.33
DCLM 7.33 79.85 70.23 75.57 69.21 71.62 40.48 33.77 62.96
Syn 7.35 79.05 69.61 76.50 69.11 71.51 41.55 31.19 62.65

Table 7: Pruning performance of different calibration data on LLaMA-3-8B in 60% sparsity ra-
tio. The best performance method is indicated in bold. Wiki, Slim, and Syn are abbreviations for
Wikipedia, SlimPajama, and our synthetic data, respectively.

Data BoolQ Winogrande PIQA Hellaswag ARC-e ARC-c MMLU Avg.

C4 69.02 60.55 67.98 49.47 59.95 30.59 23.60 51.59
Wiki 66.82 59.02 67.40 47.14 59.79 29.67 24.14 50.57
Slim 66.86 60.11 67.53 48.07 59.38 29.96 23.52 50.77
DCLM 70.14 61.17 67.83 49.97 60.04 31.16 23.22 51.93
Syn 70.03 61.88 68.06 50.11 59.85 31.66 23.19 52.11
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