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Abstract

A new algorithm named the Adaptive Message Passing Sign (AMPS) algorithm
is introduced for online prediction, missing data imputation, and impulsive noise
removal in time-varying graph signals. This work investigates the potential of
message passing on spectral adaptive graph filters to define online localized node
aggregations. AMPS updates a sign error derived from l1-norm optimization
between observation and estimation, leading to fast and robust predictions in the
presence of impulsive noise. The combination of adaptive spectral graph filters with
message passing reveals a different perspective on viewing message passing and
vice versa. Testing on a real-world network formed by a map of nationwide weather
stations, the AMPS algorithm accurately forecasts time-varying temperatures.

1 Introduction

Recently, network and graph-structured data have become increasingly popular across various research
fields including computer science, social science, biology, engineering, and finance, owing to their
unique ability to represent multivariate irregularities [1–4]. Time-varying data on the nodes are
recorded on graphs constructed based on geographical locations, for example, a map of 5G signal
reception strength [5] or temperature recorded at multiple locations [6]. In GSP, a combination of
classical adaptive filters with graph shift operations performs efficiently on the online processing of
time-varying graph signals owing to its simplicity of implementation. Adaptive graph filtering in
the spectral domain utilizes a predefined bandlimited filter on the global level derived from Graph
Fourier Transform (GFT), which could avoid the time-consuming training process, and then update
in the direction opposite to the error at each time step based on convex optimization. The graph least
mean squares (GLMS) algorithm, first proposed among all the adaptive graph filters, estimates graph
signals using l2-norm optimization with the presumption of Gaussian noise [5]; several extensions
of the GLMS algorithm have emerged, including Normalized GLMS (GNLMS) [6], and Graph-
Sign algorithm [7]. Spatial graph algorithms can be approximated from the before-mentioned
spectral algorithms using Chebyshev polynomials to transform spectral filtering into spatial graph
diffusion, notable examples are the Graph Diffusion LMS [8] and the Graph-Sign-Diffusion (GSD)
[9]. Merging time series analysis techniques with GSP points the direction to another problem-solving
solution, leading to the introduction of the graph Vector Autoregressive model [10], the graph Vector
Autoregressive–Moving-Average model [11], and the graph GARCH model [12].

Gaussian noise assumption is seen in most noise models, and l2-norm optimization is the go-to option
for Gaussian noise because minimizing the squared error corresponds to the maximum likelihood
estimate solution [13]. However, the underlying noise in a variety of realistic applications, including
meteorological recordings [14] and powerline communication [15], is verified to possess impulsive
behaviors that could be represented by heavy-tailed, non-Gaussian distributions, such as generalized
Gaussian, Student’s t, and α-stable distributions [13]. The impulsiveness presented in heavy-tailed
distributions can be characterized by large or infinite variance, causing l2-norm optimization-based
algorithms like GLMS and GNLMS to be unstable [16]. For the purpose of eliminating the downsides
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caused by performing l2-norm optimization under non-Gaussian noise, the graph Least Mean pth

power (GLMP) [17], the Normalized GLMP [18], and Graph-Sign algorithm [7] were proposed to
use lp-norm optimization instead.

By introducing nonlinear activation functions into GSP, architectures such as Graph Convolutional
Neural Networks (GCN) and Graph Attention Networks have extended the spatial and spectral GSP
methods to machine learning tasks such as node classification, link prediction, and image classification
[19–22]. The Spatio-Temporal Graph Convolutional Networks extend GCN by introducing the ability
to process time-varying data [23]. These graph neural network (GNN) architectures can be generalized
by the Message Passing Neural Networks (MPNN) where the graph representations and operations
are defined locally on the nodes by a message passing scheme instead of globally on the graph
topology [24, 25]. Compared to specific architectures such as the GCN, MPNN provides more
degrees of freedom by having several choices of aggregation functions such as sum, mean, or max
and allowing us to tune the magnitude of the localized aggregation flexibly [25]. Compared to graph
representation done by the Adjacency matrix or the Laplacian matrix that gives the global view of
the graph, MPNNs provide localized representations based on node neighborhood relationships. In
addition, edge weights can also be incorporated into the aggregations through message passing.

With insights from the simplicity of implementation of adaptive GSP algorithms and the expres-
siveness power of message passing of GNNs, we would like to take a step further by breaking the
convention of using only global information to define adaptive graph filters. In this paper, we propose
the Adaptive Message Passing Sign (AMPS) algorithm, which is a novel adaptive graph filter defined
using the localized node message passing scheme with high robustness under impulsive noise.

2 Preliminaries

A graph G = (V, E) is defined with node set V , where the N nodes are v1...vN , and an edge set E ,
with edge weights e1...eE . The function value or the data features x[t] defined on the nodes of G is
a time-varying graph signal. The neighborhood relationship of how nodes are connected by edges
can form an adjacency matrix A: the ikth entry of A is the edge weight of the edge between nodes
vi and vk. The degree matrix D can be formed by summing all the rows of A and then forming a
diagonal matrix of size N by N . The well known graph Laplacian matrix L is L = D−A. If we
perform eigendecomposition with L, we can define the graph Fourier transform (GFT) L = UΛUT

where U is the orthonormal eigenvectors of L and Λ is the eigenvalue matrix. The eigenvector
eigenvalue pairs are sorted in increasing order of eigenvalues to create a notion of graph frequency. A
filtering operation defines a function h(Λ) on the frequency components to manipulate the frequency
content through graph convolution h(L)x[t] = Uh(Λ)UTx[t]. Missing values can be defined using
a diagonal masking matrix DS of 0s and 1s, with the 0s indicating missing [5].

The symmetric α-stable (SαS) distribution is used in this paper as the impulsive noise model. SαS is
governed by the characteristic exponent α, the location parameter µ, and the scale parameter γ. The
SαS has no analytic PDF but has the characteristic function ϕ(t) = exp {jµt− γ|t|α}. The mean
and variance of SαS are undefined unless only when 1 < α ⩽ 2 so the mean can be defined or when
α = 2 so the variance can be defined. Setting α = 2 will make SαS into Gaussian distribution, and
α = 1 makes SαS the Cauchy distribution [13].

3 Methodology

In this section, we focus on how to use message passing to derive a robust adaptive graph algorithm.
Let x[t] denote the ground truth signal, and η[t] be the SαS noise i.i.d. among the nodes. To achieve
robust estimation, AMPS uses an adaptive update message passing strategy that minimizes the error
between a noisy partial observation y[t] = DS(x[t] + η [t]) and the estimation x̂[t]. Following
adaptive filter conventions, instead of treating the node signals as the message, the error of each node
observation from its neighborhood will be aggregated in AMPS, meaning that z = DS(y[t]−x[t]) in
(3). To let AMPS output robust estimation unaffected by the SαS noise η[t], the minimum dispersion
criterion is used to define an optimization problem that leads to l1-norm [26]:

J (x̂[t]) = E
∥∥y[t]−DSUh(Λ)UT x̂[t]

∥∥1
1
. (1)

In GSP, adaptive graph filters such as the Graph Diffusion LMS [8] or GSD [9] use a global
update strategy along the graph convolution can be approximated by the Chebyshev polynomial
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approximation derived in [20] to conduct online filtering:

Uh(Λ)UT ≈
P∑

p=0

θpTp(L) =

P∑
p=0

θ̂pL
p;Tp(L) =


1, if p = 0
2L−λN I

λN
, if p = 1

4L−2λN I
λN

Tp−1(L)− Tp−2(L), if p ≥ 2.

(2)
In (2), θ0 and θ̂0 are the coefficients, P is the number of polynomials used in the approximation, and
Tp(L) is the shifted Chebyshev polynomial.

It is easy to check that (2) is a global method: all the node signals are being processed at the same
time by Uh(Λ)UTx[t] ≈

∑P
p=0 θ̂pL

px[t]. In AMPS, we would like to replace this global filtering
with localized message passing to achieve online data imputation and denoising. The message passing
on node vi is an aggregation of the graph signal or node feature in the local neighborhood [25]:

agg(vi) = Ωk=1...K(zi,mi,k, zk), (3)

where zk is the signal on the kth neighboring node that is directly connected by an edge with a
distance 1-hop away or the self-loop, and mi,k is the weight of the message. The function Ω is a
differentiable and permutation invariant operation suitable for aggregation; common choices seen in
previous literature include sum, mean, or max [25]. This message passing scheme is naturally an data
imputation algorithm because the missing data can be estimates by properly setting the weights and
then aggregating the neighborhood graph signal. Fig. 1 shows an example of message passing.

To replace global filtering in (2) with localized message passing in (3), the choice of Ω is sum
aggregation. Setting weights mi,k = −ei,k and mi,i = Li,i leads to

Lz = vec
(
agg(vi)

∣∣
i=0...N

)
= vec

zi −
Nj∑
j=0

ei,kzk

∣∣∣∣∣∣
i=0...N

 = F (z), (4)

where vec() is the vectorize operation. After some algebraic manipulations, we can confirm that the
pth power multiplication Lpz can be achieved by recursively applying (4) p times; we will denote this
as F p(z). The update strategy of AMPS follows the graph adaptive filters seen in [7] by calculating
the gradient of (1) and replacing the approximation (2) with message passing shown in (3):

x̂ [t+ 1] = x̂[t]− µ
∂J (x̂[t])

∂x̂[t]
= x̂[t] + µ

(
P∑

p=1

θ̂pF
p (ẑ[t]) + θ̂0 ˆz[t]

)
, (5)

where ẑ[t] = DSsign (y[t]− x̂[t]) and µ is the parameter that controls the magnitude of the update
following classical adaptive filtering convention.

Each aggregation in (5) is a message passing based on the estimation error controlled by µ in the
direction opposite to the difference between x̂[t] and y[t]. We should point out that the N node
aggregations at p = 1 are conducted on the sign(), F 1 (ẑ[t]) = LDSsign (y[t]− x̂[t]), which means
that the messages passed by F 1 (ẑ[t]) are sign-errors fixed in magnitude therefore unaffected by
the impulsive noise η[t]. The proceeding p = 2...P aggregations will recursively aggregate based
on results F 1 (ẑ[t]), which means that AMPS will update based on a p-hop message passing, with

Z1

Z2 Z3

Z4
Ω(z1,m1,4,z4)Ω(z1,m1,1,z1)

Figure 1: An illustration of message passing.
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Figure 2: A time instance of the time-varing
temperature graph signal of the U.S.
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the very first messages being the sign-error unaffected by η[t]. In this way, missing data can be
interpolated simply by aggregating the neighborhood signals. AMPS assumes that the graph signals
have frequency components mainly in the low-frequency bands, in other words, the graph signals
are smooth [27]. Ideally, we can use a low pass filter with passband [0, λl] to define the filter
h(Λ) =diag(hl). The constant l is the lth eigenvalue index in Λ and hl is a N by 1 vector with the
first l elements being 1 and last N − l elements being 0. The coefficients θ of (2) can be efficiently
solved by first using an iterative approach in a distributed manner shown in [28]. Combining low pass
filters with the l1-optimization results in (5) will allow AMPS to effectively remove the noise η[t].

4 Experimental results and discussion

The dataset in the study represents a dynamic, time-evolving graph signal consisting of 95 hourly-
recorded temperatures collected from 197 weather stations across the United States [29]; 130 out
of the 197 stations are observed and the rest are assumed to be missing. For the observed signal,
we manually added SαS noise with α = 1.3 and γ = 0.1. The missing temperatures are treated as
zero. All tested algorithms follow a zero initialization of x̂[0] = 0̄ and the experiments are repeated
100 times. We use 8-nearest-neighbor according to the latitude and longitude of all weather stations
to form the global graph topology, following [6]. An illustration of the temperature graph at one
selected time instance is shown in Figure 2.
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Figure 3: The MSE from t = 1 to 95.
The experiment aims to forecast temperature at time t + 1 given the missing value and noisy
observation of temperature at time t. The parameter choice of step size µ in AMPS is set using grid
search; the best-performing value is acquired as µ = 1.9. The performance of all algorithms will
be measured in the spatial domain using the mean squared error (MSE) at each time step between
the estimation value and the ground truth graph signal: MSE[x[t]] = 1

N

∑N
i=1 (xi[t]− x̂i[t])

2. Here,
subscript i indicates the ith node in the graph. The MSEs of all the algorithms are calculated at
each time point for the forecasted temperature as illustrated in Fig. 3. We can find that AMPS
has the lowest MSE compared with GLMS, GNLMS, and GSD at most time points. The reason
that GLMS and GNLMS perform worse is that the distribution of noise here is SαS rather than
Gaussian, reflecting the fact that l1-norm optimization is more suitable than l2-norm optimization
on impulsive noise. The aggregation used in AMPS is a message passing of sign-error in (5), with
the initial message being fixed magnitude from the optimization results of the minimum dispersion
criterion, behaving robustly under SαS noise. Our proposed AMPS algorithm outperforms GSD due
to adopting a message passing scheme on top of graph sign aggregation, which is more flexible and
expressive at leveraging the localized information at each graph node.

5 Conclusion

In this paper, we proposed the AMPS algorithm for robust time-varying graph signal estimation under
the presence of SαS noise by adopting a localized node message passing scheme. This preliminary
work examined the potential for leveraging the combination of message passing, l1-norm optimization,
and adaptive filters to form a robust, localized, flexible, and expressive algorithm for processing
time-varying graph signals under impulsive noise.
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