NATEXT: FASTER SCENE TEXT RECOGNITION WITH NON AUTOREGRESSIVE TRANSFORMER

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive-based attention methods have made a significant advance in scene text recognition. However, the inference speed of these methods is limited due to their iterative decoding scheme. In contrast, the non-autoregressive methods adopt the parallel decoding paradigm, making them much faster than the autoregressive decoder. The dilemma is that, though the speed is increased, the nonautoregressive methods are based on the character-wise independent assumption, making them perform much worse than the autoregressive methods. In this paper, we propose a simple non-autoregressive transformer-based text recognizer named NAText, by proposing a progressive learning approach to force the network to focus on hard samples and learn the relationship between characters. Furthermore, we redesign the query composition by introducing positional encoding of the character center. And it has more clear physical meanings than the conventional one. Experiments show that our NAText helps to better utilize the positional information for 2D feature aggregation. With all these techniques, the NAText has achieved competitive performance to the state-of-the-art methods. The code will be released.

025 026 027

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 029

Reading and processing text from natural scenes has a lot of applications in reality, such as reading road signs, billboards, product labels, logos, etc. Due to its high-demanding characteristics, scene text recognition has attracted a lot of researchers and has been studied for years. Recently, autoregressive methods have achieved great success in scene text recognitionYue et al. (2020)Li et al. (2019)Zhong et al. (2022)Lee et al. (2020b). Structurally, they usually consist of an encoder to extract image features and an autoregressive decoder to transcribe the encoded features into text sequence. By the attention mechanism and autoregressive decoding style, the autoregressive models can extract robust and discriminative features for scene text.

Although the autoregressive models have many advantages in recognition accuracy, the employment of the iterative decoding style results in extremely low efficiency, especially for long text. In contrast, 040 the non-autoregressive models adopt a parallel decoding paradigm. They share similar decoder structure with their autoregressive counterparts but run much faster. As there is no free lunch, while 041 increasing the speed, the performance suffers greatly. For example, in machine translation, the naive 042 non-autoregressive model performs 4% lower than autoregressive modelsGu et al. (2018). In scene 043 text recognition, we notice that in some recent workQiao et al. (2021)Bautista & Atienza (2022) 044 the non-autoregressive recognizers perform about 2% lower than autoregressive models. This is 045 consistent with our experimental findings that the non-autoregressive model performs 1.7% lower in 046 regular text and 3.4% lower in irregular text. For scene text recognition, such performance drop is 047 considerable. Despite the non-satisfactory performance, the huge advantage in decoding speed is too 048 attracting that some of the most recent workYu et al. (2020a)Fang et al. (2021a)Qiao et al. (2021) on scene text recognition still attempts to adopt such parallel decoding scheme. To remedy the performance degeneration, they either introduce large language modelsFang et al. (2021a) to correct 051 the error prediction in a post-process manner or design a heavy predictionQiao et al. (2021) pipeline. These methods are all designed to be very complex and require considerable computational burden. 052 In a sense, they do not fundamentally solve the problem of why non-autoregressive models get inferior performance. Therefore, in this case, we try to answer the question: Is it possible to design

Figure 1: Schematic overview of two stage structure of NAText. Note that the progressive sampling is only applied during training.

a non-autoregressive scene text recognizer to match its autoregressive counterpart in performance without resorting to other language models or any complex decoding pipeline?

In this paper, we propose NAText as a solution to the above question. NAText is short for Non-071 Autoregressive scene Text recognizer. It uses a simple encoder-decoder structure without extra modules and extra post-process. We start by digging into the inferior performance and find that 072 the harder situations usually suffer more significant drop, e.g., the irregular text(Table-6 and the 073 longer text(Figure-3a. To better resist the performance drop in these harder situations, we propose 074 three techniques. First, we argue that the independent assumption adopted by the non-autoregressive 075 model is the main reason to blame. For hard cases, the character-wise inter-dependency provides 076 rich information for prediction. We drop the independent assumption entirely and design incremen-077 tal learning to enforce mutual constraints on character predictions. Specifically, during training, we sample some characters and replace them with their ground truth token embeddings, and force the 079 remaining characters to be learned under this condition. In this way, the network will gradually capture the character-wise relationships. Second, we design progressive sampling to force the train-081 ing to focus on hard characters. During sampling, the confident predictions are more likely to be replaced, leaving the hard characters to be learned. Together with the first technique, we name this 083 learning scheme the progressive sampled learning. Third, to better capture each character's visual information, we follow the recently proposed DAB-DETRLiu et al. (2022) to adopt a re-designed 084 decoder structure in which the character center explicitly models the positional information. It uni-085 fies the physical meaning of the positional encoding from the image features and query embeddings. 086 This is in contrast to the inconsistency of the positional encoding of query and encoded features of 087 traditional decoders. 088

We experiment on six popular scene text recognition benchmarks to verify the effectiveness of NA-Text. Detailed exploration into each part is also conducted. In summary, this paper's contributions mainly include: 1) We propose NAText as a simple and powerful non-autoregressive scene text recognizer. It is both fast and strong compared to most recent work. 2) We research deep into the reason behind the inferior performance of non-autoregressive decoding and propose progressive sampled learning to overcome it. 3) We re-design the decoder structure to utilize the positional information that leads to better visual perception.

096

054

055

057

060

061

062

063 064

065 066 067

068

069

2 RELATED WORK

098

Based on the topic of our method, we roughly divide the current methods into autoregressive and non-autoregressive methods.

 Autoregressive Text Recognition. Autoregressive methods can be grouped into 1D-attention based and 2D-attention based. Earlier methods usually encode the image features to 1D feature sequence and use 1D attention in the decoding period. For example, the R²AMLee & Osindero (2016) design an autoregressive CNN that can capture broader features as the feature extractor and a 1D-attentionbased decoder to transcribe the sequence. FANCheng et al. (2017) employs a focusing attention mechanism to automatically draw back the attention drift. Fang et al. (2018) proposes a fully CNNbased network to extract visual and language features separately. However, these methods usually lack the ability to process irregular text(e.g., curved, rotated). To this end, recent methodsLee et al. (2020b)Fang et al. (2021a)Bautista & Atienza (2022)Qiao et al. (2021) of scene text recognition usually encode the image into 2D features and adopt the 2D attention in the decoder. With the help of 2D attention, they consistently show strong performance on irregular text recognition. In this paper, we also choose the 2D attention-based transformer to build our baseline method. We mainly focus on the design of the decoder query and show that by re-designing the query, the simple and concise structure can also lead to powerful performance.

114 Non-Autoregressive Text Recognition. Non-autoregressive methods predict the target sequence 115 at a single iteration or constant time independent of the sequence length. They can be categorized 116 into three groups: the CTC-Based methods, the segmentation-based methods, and the attention-117 based. The attention-based non-autoregressive methods have been widely applied in machine trans-118 lationGhazvininejad et al. (2019)Gu et al. (2018)Wang et al. (2019)Qian et al. (2021), auto speech recognitionTian et al. (2020)Chi et al. (2021)Chan et al. (2020) and capture generationGuo et al. 119 (2021). In comparison, there is less workQiao et al. (2021)Fang et al. (2021a)Yu et al. (2020a) 120 for the research of non-autoregressive model on scene text recognition. Recent methodsFang et al. 121 (2021a)Yu et al. (2020a) on scene text recognition that is relative to the non-autoregressive model 122 mainly pay attention to the employment of language models to assist the text recognition. They 123 usually design a complex multi-model system to get a high-performance text recognizer, but the 124 efficiency of the model is often overlooked. In contrast, our work is focused on the nature of the 125 non-autoregressive model itself. This work aims to explore how we can design a simple and power-126 ful non-autoregressive model that keeps the merit of high efficiency and high performance.

127 Masking Technique. The masking technique has been widely applied to the pre-training of trans-128 formersDevlin et al. (2018)Joshi et al. (2020)Song et al. (2019)Lewis et al. (2019)Song et al. (2020). 129 Different from these works, the masked tokens in NAText are replaced with their ground truth em-130 beddings. They are ignored in loss calculation. For the masking technique, the most relevant works 131 are Mask-PredictGhazvininejad et al. (2019) and GLMQian et al. (2021) proposed for machine 132 translation. They both randomly mask tokens to replace and the remaining tokens are predicted 133 under such condition. However, the random sampling that is suitable for machine translation has 134 little effect on scene text recognition. The reason is that the task of scene text recognition has to 135 deal with lots of noised inputs, e.g., blurry, occluded, and incomplete while the inputs of machine translation are clean. Based on the task characteristics, we follow the idea of hard sample mining 136 and propose progressive sampling to feed more informative samples for training, which is proved 137 crucial for scene text recognition. Besides, they need multiple decoding times, either for training 138 or testing. While we design a two-stage decoding scheme to avoid repetitive decoding. In all, the 139 masking technique in NAText is specially designed for scene text recognition. It is both concise and 140 effective. 141

141 142 143

144

145

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE

The structure of NAText is depicted in Figure 1. The NAText adopts the transformer based encoderdecoder structure. Given an input image, the encoder will extract the image features and generates the coarse sequence prediction. Then the predicted sequence is fed to the decoder to generate the final refined result. Along with the sequence output, the character coordinate will be predicted by the regression head.

NAText mainly optimizes the decoder structure. Compared to conventional text recognizers, we highlight two differences in structure. The first is the parallel decoding style. Parallel decoding does not need much modification to the decoder structure. It only needs to discard the masking operation used to guarantee uni-directional self-attention. The second is that we introduce the concept of location query into the decoder structure. It has the exact physical meaning and makes the decoding process easier to interpret while also performing better.

157 158 Query Composition. Inspired by the recent advance in object detection, we follow DAB-DETRLiu et al. (2022) to introduce the positional query(embedding) into the decoding process. For clarity, we refer to the original query embedding in conventional decoder as content embedding, denoted as c_q . In self-attention(Shown in Figure-2), the query, key, and value embeddings are obtained by

query, key :=
$$c_q + p_q + s_q, p_q = PE(x, y)$$
 value := c_q (1)

Figure 2: Decoder structure of NAText.

where c_q and s_q denote the content embedding and the sequential positional encoding used in con-179 ventional decoders respectively. p_q denotes the newly introduced positional embedding. (x, y)denotes character's center coordinate. PE is the positional encoding function. Following previous 181 work, we use the sinusoidal function to generate the positional encoding. 182

183 Note that in conventional decoder, the query and key for self-attention are calculated by $c_q + s_q$.

185 DECOUPLED NON-AUTOREGRESSIVE DECODER 3.2

The detailed structure of the decoder is shown in Figure-2. In cross attention, the query, key, and 187 value embeddings are defined by 188

query :=
$$CAT(c_q, p_q)$$
 key := $CAT(X, X_p)$ value := X (2)

190 where CAT is the concatenation operation. X denotes the encoded image features. X_p denotes the 191 per-pixel positional encoding of X. The encoding function of p_q and X_p is the same. 192

Note that in conventional decoder, the query for cross attention contains only c_q . The key is obtained 193 by $X + X_p$. 194

Based on the query design, the cross attention is decomposed into content attention and spatial 195 attention. Given the query q, k, v, the cross attention of decoder can be formulated as: 196

Attention
$$(q, k, v) = \operatorname{softmax}(\frac{qk^T}{\sqrt{d_k}}v),$$
 (3)

where the d_k is the channel dimension, and the attention part of qk^T can be decomposed into the two 200 dot-products of content embeddings and positional embeddings respectively $c_q^T X + p_q^T X_p$. Thus, 201 the cross attention can be viewed as the feature aggregation process influenced by both the content 202 information and spatial information. 203

Coordinate Regression. Unlike the traditional text recognition model, we design the decoder output 204 to include both character categorization and coordinate regression. The character's coordinate is 205 regressed via an iterative style. Given the coordinate prediction from previous decoder layer (x', y'), 206 the current coordinate prediction is calculated by 207

$$(x,y) = \sigma(\operatorname{FFN}(f) + \sigma^{-1}(x',y')), \tag{4}$$

209 where σ is the sigmoid function used to normalize the coordinates to range (0,1) and σ^{-1} is the 210 reverse sigmoid function. FFN aims to regress the relative offset from the decoder embedding f.

212 3.3 PROGRESSIVE SAMPLED LEARNING

213

211

208

177

186

189

197

199

In this part, we start by comparing the different probability models between autoregressive and non-214 autoregressive methods. It partially explains the reason for the non-autoregressive model's inferior 215 performance. Then, we introduce the progressive learning strategy for non-autoregressive models.

216 Assumptions behind autoregressive and Non-autoregressive models. The text recognition can be 217 formally defined as a sequence generation problem: given the source features X extracted from the 218 image, to generate the target character sequence $Y = \{y_1, y_2, ..., y_T\}$ according to the conditional 219 probability $P(Y|X;\theta)$, where θ is the parameter set of the model. For autoregressive models, the 220 conditional probability is factorized to maximize the following likelihood:

221 222

224

237

245

246 247

$$L_{rec} = \log P(Y|X;\theta) = \sum_{t=1}^{T} \log p(y_t|y < t, X;\theta),$$
(5)

where y < t is the short for $\{y_1, ..., y_{t-1}\}$. The autoregressive factorization adopts the assumption 225 of an uni-directional inter-dependency between characters where each token is conditioned by the 226 previous token sequence. 227

For non-autoregressive models, each character is assumed to be independent for parallel decoding. 228 The independent factorization is written as 229

$$L_{nrec} = \sum_{t=1}^{T} \log P(y_t | X; \theta).$$
(6)

The autoregressive factorization in Eq-5 and non-autoregressive factorization in Eq-6 both serve as the approximation to the conditional probability $P(Y|X;\theta)$. As the independent assumption does 235 not hold in general, the corresponding factorization deviates further from the real conditional prob-236 ability $P(Y|X;\theta)$. So non-autoregressive models trained under such biased objective gets inferior performance. 238

239 **Rectified Learning Objective**. Based on the above analysis of the two factorizations Eq-5, Eq-6, we argue that the independent assumption should be abandoned and more suitable factorization needs to 240 be designed to better fit the real optimization objective. In our design, the character-wise dependency 241 is also encouraged. Different from the autoregressive factorization, we encourage the model to learn 242 dependency from any other characters in the sequence, not just the previous characters. Specifically, 243 we design the following factorization: 244

$$L_{PM} = \sum_{y_t \notin \mathbb{PS}(Y, \hat{Y}),} \log p(y_t | \mathbb{PS}(Y, \hat{Y}), X; \theta),$$
(7)

where Y is the ground truth sequence and \hat{Y} is the predicted sequence. $\mathbb{PS}(Y, \hat{Y})$ denotes the 248 249 sampling operation based on the ground truth and predicted sequence. The sampled result is a subset 250 of tokens of Y that will be directly replaced with the corresponding character embedding, serving as the prior knowledge input to the decoding process. For example, given $Y = \{y_1, y_2, y_3, y_4, y_5\}$ 251 and $\mathbb{PS}(Y) = \{y_2, y_3\}$, the input queries corresponding to $\{y_2, y_3\}$ will be replaced by their target 252 character embeddings, which are obtained from the softmax embedding matrix. The sampled tokens 253 will not be considered during the loss calculation. Only the remaining $\{y_1, y_4, y_5\}$ will contribute 254 to the final loss. In this way, the learning objective is to learn a refinement model θ that can predict 255 the remaining tokens given the ground truth of the sampled tokens and source image features X. 256

Progressive sampling. Following the designed factorization in Eq-7, we find that the naive random 257 sampling even leads to worse performance. The reason is twofold. First, as most characters are 258 easy samples, the training hardly focuses on the informative samples. Such scheme is inefficient 259 and leads to low performance. Second, the model is trained and tested under different conditions. 260 During training, the model is always encouraged to predict with the help of extra knowledge while 261 during testing, there is not. In other words, the model is tested in a more difficult condition than 262 training. Therefore, we design progressive sampling scheme in which the characters are sampled 263 based on their predicted confidence. Specifically, given the predicted sequence \hat{Y} , the ground truth 264 sequence Y and the confidence $C = \{c_1, c_2, ..., c_T\}$ corresponding to \hat{Y} , we first determine the sampling number by $N = \lambda \cdot \sum_{t=1}^{T} (c_t < \tau)$, where τ is the confidence threshold and λ is the 265 266 hyper-parameter controlling the sampling ratio. Then the top-N confident characters are sampled as 267 the prior knowledge, forcing the network to learn the remaining hard samples. 268

The designed progressive sampling can well solve the above problems. First, the remaining char-269 acters are unconfident or even incorrect predictions. They are more informative for the training process. Second, during training, as the overall predictions become more and more confident, the sampling number will gradually reduce. At the beginning phase of training, the model is encouraged to learn under extra knowledge. While at the end phase, the model is forced to learn to predict in parallel. This is in accord with our expectations for progressive learning, by which the learning difficulty gradually increases.

275

277

276 3.4 Optimization Objective

We further design a two-stage decoding scheme to simplify the progressive sampled learning. The extra bonus is that the first stage decoding will also bring performance improvement.

280 To get the characters' predicted confidence for progressive sampling, the direct thought is a two-pass 281 decoding manner. In the first pass, the confidence is generated. In the second pass, the progressive sampling is applied. We argue that this way is tedious and unnecessary. In our two-stage decoding 282 scheme, we directly use the encoder network to make a coarse sequence prediction, which serves as 283 the predicted confidence for the progressive sampling. The coarse prediction can also serve as the 284 prior knowledge of the decoding process. The pipeline of the two-stage proceeds as follows, given 285 the image, features output from the encoder X, and the target sequence Y, we first use a prediction 286 head FFN to get the per-pixel classification S = FFN(X). Then we apply the connectionist temporal 287 classification(CTC) loss as the supervision between the predicted logits S and target Y. 288

289

$$\mathcal{L}_{enc} = \operatorname{CTCLoss}(S, Y). \tag{8}$$

The predicted sequence is obtained via evaluating the result of $\operatorname{argmax}(S)$. In this way, the encoder output is capable of making coarse predictions. After we get the coarse sequence prediction \hat{Y}' , we take the corresponding character embedding $\{h_1, h_2, ..., h_{T'}\}$ from the decoder softmax matrix to substitute the content part of the initial query. Here, T' denotes the prediction length of the coarse sequence.

Using the per-pixel classification S, we can also get the coarse normalized character coordinate for each predicted token. The coordinate is used to generate the initial positional embedding of the query. Finally, using Eq-2, we combine the two parts to get the initial query proposals. Considering that the coarse-predicted sequence length T' may be incorrect, the number of queries of the decoder remains unchanged. We only use the proposals to replace the first T' queries.

The training objective includes the CTC loss applied to the encoder output and the character classification and regression loss applied to decoder output. We use the cross entropy loss for classification and the L1 loss for regression. For decoder, the loss is formulated as

303 304 305

$$\mathcal{L}_{dec} = \frac{1}{L} \sum_{l=1}^{L} \sum_{t=1}^{T} (\log \hat{p}_l(y_t) + \mathbb{1}(y_t \neq [EOS]) \mathcal{L}_{reg}(\hat{c}_{lt}, c_t)),$$
(9)

where $\hat{p}_l(y_t)$ denotes the predicted probability corresponding to ground truth token y_t by the *l*th decoder layer. \hat{c}_{lt} and c_t represents the *l*-th predicted and ground truth character coordinates, respectively. They are both normalized by the image scale. We note that the character coordinate is not always annotated. Usually, the synthetic datasets contain this annotation, while the real dataset does not. Thus, the regression loss is only applied when the annotation is available. The final loss is the weighted sum of the Eq-8 and Eq-9.

312 313

314

316

4 EXPERIMENTS

315 4.1 IMPLEMENTATION DETAILS

Structure We follow SATRNLee et al. (2020b) to build the basic model structure. Specifically, the number of hidden units for self-attention layers is 512. The numbers of self-attention layers in the encoder and decoder are $N_e = 12$ and $N_d = 6$ respectively. We set the number of classes to 91, including 10 digits, 52 case-sensitive letters, 28 punctuation characters, and an < EOS > token. Specially, similar to a left-to-right autoregressive decoder, < EOS > token is viewed as the end of the sequence, so there is no need to predict the sequence length in advance.

Optimization. All experiments are conducted on servers with 8 NVIDIA Tesla A100 GPUs. For fair comparison, all models are trained from scratch using Adam optimizer. The whole training

SVTP CT80 79.8 81.6	Avg
79.8 81.6	
	85.8
80.0 84.4	86.1
77.1 90.3	88.6
83.1 83.1	88.7
86.4 89.6	89.2
84.5 -	-
88.6 89.2	91.4
88.9 92.2	91.9
87.1 89.7	89.8
85.1 87.8	90.2
	-
81.8 81.3	83.8
79.4 84.7	86.7
86.1 84.5	88.6
84.2 86.5	89.6
87.9 91.4	90.7
86.5 91.3	90.9
86.7 90.3	91.1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1: Accuracy comparison with other methods. Note that ABINet-LV-NL refers to ABINet-LV without language model.

process contains 6 epochs, and the initial learning rate is 3×10^{-4} while decreases to 3×10^{-5} at the 3^{rd} epoch and 3×10^{-6} at the 5^{rd} epoch. The batch size is set to 256.

4.2 DATASETS

We use two publicly available synthetic datasets, i.e., Mjsynth(MJ)Jaderberg et al. (2014), and SynthText(ST)Gupta et al. (2016) as training datasets and test on six standard benchmarks: IIIT 5k-word (IIIT5K) Mishra et al. (2012), CUTE80 (CUTE) Risnumawan et al. (2014), Street View Text (SVT)
Wang et al. (2011), SVT-Perspective (SVTP)Phan et al. (2013), ICDAR 2013 (IC13) Karatzas et al. (2013), and ICDAR 2015 (IC15) Karatzas et al. (2015).

IIIT5K is a large natural scene dataset collected from Google, containing 5000. CUTE contains
288 cropped high-resolution images, many of which are curved or irregular text images. SVT is
a Google Street View dataset, which consists of 647 patches for testing. SVTP consists of 639
patches, cropped from side view snapshots in Google Street View. In SVTP, many patches encounter
severe perspective distortions. IC13 contains 848 patches for training and 1095 for evaluation. IC15
consists of incidental scene text images under arbitrary angles. Therefore, most word patches in this
dataset are irregular (oriented, perspective, or even curved).

364 365

346 347

348

349 350

351

326

4.3 PERFORMANCE COMPARISON

366 Comparison to State of the Art. We compare NAText to three types of methods including the 367 autoregressive models(AR), the pure non-autoregressive models(NAR) and the language model en-368 hanced non-autoregressive models(NAR+LM). The results are shown in Table-1. For the data pro-369 cessing, we strictly follow the setup of PARSeqABautista & Atienza (2022). Specifically, images are 370 resized to 32×128 with data augmentation such as geometric transformation, image quality deteri-371 oration and color jitter, etc. We reproduce SATRN and its non-autoregressive version to serve as the 372 baseline methods. It is seen that the NAR version of SATRN performs 2.8% lower than its AR ver-373 sion. For fair comparison, we also report the result of NAText without positional supervision(NAText 374 W/O PO) in Table-1. The proposed NAText performs best among all the current non-autoregressive 375 models. The comparison to autoregressive models and language model enhanced non-autoregressive 376 based models is also challenging. Specifically, compared with its baseline method, NAText increases the overall performance by 2.5%. Besides, it also outperforms some language model based methods. 377 These comparison results validate the effectiveness of NAText.

Speed Comparison. For fair speed and accuracy comparison, we re-implement the SATRN and its non-autoregressive version. The speed and accuracy comparison is shown in Table-6. NAText almost shares a similar structure with the naive non-autoregressive version. They are almost three times faster than the autoregressive model on average. But the SATRN-NAR suffers a significant performance drop on both regular and irregular text. NAText nearly matches the SATRN with litter speed decrease compared with SATRN-NAR.

Contribution of Each Part. We experiment to figure out the contribution of each part, namely, PO for positional query design, PS for progressive sampling, and TS for the two-stage scheme. Note that for the setting of PS, as we can not get the confidence from the first stage predictor, the confidence is generated via the decoder. The decoder runs twice during training. The results are shown in Table-3. We can see that each part will effectively improve the baseline performance. While when all modules are applied, the whole performance will further be increased. Specifically, NAText will improve by 1.6% in the regular text and 2.8% in the irregular text.

Comparison under Different Text Length. In Figure-3a, we compare NAText with the autore-gressive and non-autoregressive baseline under different text length. We can see that the SATRN-NAR performs especially poorly for the long text. It is lower by 3% than its AR version when the text length is greater than 10. Our NAText performs better than SATRN for the short text and medium-length text. Although the performance for long text is still inferior to the autoregressive model(-1.3%), the performance gap under such setting has been improved by 1.7%.

Table 2: Comparison between fixedratio sampling and progressive sampling. Table 3: Ablation on the effect of each module. **PO** is for positional query design. **PS** is for progressive sampling. **TS** is for two-stage training and testing.

	ratio	Acci	uracy					
	Tatio	Regular	Iregular]	Module)	Acc	uracy
	0.00	93.3	80.5	PO	PS	TS	Regular	Irregular
Fiv	0.25	93.9	80.4				93.3	80.5
TIX	0.50	93.6	80.4	\checkmark			93.8	81.3
ratio	0.75	93.5	80.3		\checkmark		94.0	81.3
	1.00	93.3	79.9			\checkmark	93.9	81.8
Progressive	-	94.0	81.3	\checkmark	\checkmark	\checkmark	94.9	83.3

4.4 ABLATION STUDY

397

399

400

409 410

411

412 For fair comparison, no augmentation is used for experiments in this part.

Query Design. We experiment with different designs of queries to demonstrate the effectiveness of 414 NAText. The query design mainly influences the cross attention in the decoding process. NAText 415 uses the concatenation of content embedding and positional embedding to form the query embed-416 ding. We denote it as $CAT(c_a, p_a)$. Note that the positional embedding for NAText has a clear 417 physical explanation. It is the encoding of the characters' 2D coordinate. Such positional embed-418 ding has never been adopted in the conventional recognizer. We choose several types of designs 419 for comparison. (1) c_q : The query contains only the content part. The cross attention is obtained 420 by computing the dot product of the projection of query content embedding c_a and image features 421 X. (2) p_q : the query contains only the positional part. The cross attention is obtained by com-422 puting the dot product of query positional embedding p_q and image positional embedding X_p . (3) 423 $ADD(c_a, p_a)$: The query is the summation of the content embedding and the positional embedding. The conventional recognizer usually uses the c_a -only for the query. It does not mean that they di-424 rectly drop the positional information. Rather, the content query will still be added by a sinusoidal 425 encoding that represents the sequential order. The results are shown in Table-4. We can see that 426 only using the positional embedding performs the worst, both in the regular and irregular text. The 427 conventional style c_q -only will be further improved when the positional information is introduced. 428 And we find that the concatenation performs better than the add operation. It is consistent with the 429 conclusion in previous workLiu et al. (2022). 430

To further understand the influence of content embedding and positional embedding, we conduct a quality experiment by visualizing the attention plot of each component. It is shown in Figure-

8

Figure 3: (a)Accuracy of different lengths on test set.(b)Ablation on the two-stage confidence thresh-old on regular and irregular text. Conf is short for confidence threshold. The influence on both train and test phase are reported.

Figure 4: Quality visualization of attention plot. For our query design, the final attention(3-rd coloum) is the composition of the position part(1-st coloum) and content part(2-nd coloum). For conventional query design. the attention(4-th coloum) only contains the content part.

4. We find the effect of the two parts has much difference. The content embedding will attend to many of the neighboring characters while the positional embedding will strictly focus on the current character. Thus, with the help of the positional part, the final attention of NAText is more accurate than the naive non-autoregressive model.

Influence of the Positional Supervision. We have validated the effectiveness of the query design. While we have no idea whether the contribution comes from the query design or the positional supervision. So in this experiment, we explore the influence of positional supervision on different query compositions. The results are shown in Table-5. We can see that the positional supervision can always improve the performance no matter the query composition. However, for conventional query design that only contains the content part. The improvement is very small. While adding the positional part will further improve the performance by a large margin, +0.4% in regular text and +0.5% in irregular text. We also find that even when no positional supervision is applied, our query design also beat the baseline method. It even surpasses the conventional query design with positional supervision.

Sampling matters We explore other alternative sampling strategies for progressive learning(Shown in Table-7. Including the default sampling strategy, we compare five sampling strategies. (1) c_t : Each character is sampled under the probability proportional to its predicted confidence c_t . (2) 1 – c_t : Each character is sampled under the probability proportional to its inverted predicted confidence $1 - c_t$. (3) **T-N**: Top-N confidently predicted characters are sampled for replacement. (4) **B-N**: Top486Table 4: Ablation on the query design: c_q for487content embedding only. It is the way that conventional decoder uses. p_q for the positional embedding only. ADD (c_q, p_q) for adding two parts.489CAT (c_q, p_q) for concatenating two parts.

 Table 5: Influence of the positional supervision

Design	Acc	conte	ntn	osition	position	Acc	uracy	
Design	Regular	Irregular	- conte	mp	osition	supervison	Regular	Irregular
c_q	93.3	80.5	\checkmark				93.3	80.5
p_q	93.3	80.5	\checkmark			\checkmark	93.4	80.8
$ADD(c_q, p_q)$	93.5	81.3	\checkmark		\checkmark		93.6	81.0
$CAT(c_q, p_q)$	93.8	81.3	\checkmark		\checkmark	\checkmark	93.8	81.3

Table 6: Speed Comparision

Table 7: Different sampling strategies.

					_							
Mathod	Accuracy		EDS			SATRN	rand	0	1 0	T-N	р N	
	Withild	Regular	Irregular	115			-NAR	(GLM)	c_t	$1 - c_t$	(ours)	D-IN
	SATRN	95.0	83.9	188	-	Regular	93.3	94.0	93.6	93.7	94.0	93.4
	SATRN-NAR	93.3	80.5	551	-							
	NAText	94.9	83.3	543		Irregular	80.5	80.1	81.0	80.4	81.3	79.9

508 N un-confident predicted characters are sampled for replacement. (5) **Rand**: N random characters 509 are sampled for replacement. It is the way that GLMQian et al. (2021) adopts. Intuitively, the c_t and T-N encourage the well-learned characters to be replaced, making the training concentrate more 510 on the hard cases. While the $1 - c_t$ and B-N are the opposite. It is seen that for regular text, all 511 sampling methods can improve performance. While for irregular, only c_t and T-N that follow the 512 idea of hard sample mining can improve the performance. The others all perform even worse than 513 the baseline. In Table-2, we further compare the fixed-ratio sampling strategy and the progressive 514 sampling strategy. The fixed-ratio strategy means the sampling number is always proportional to the 515 text length. We can see that without progressive strategy, the performance is damaged, especially 516 for irregular text. 517

Why Two Stage Helps. As shown in Table-3, the two-stage training and testing scheme can effec-518 tively improve the baseline by 0.6% in regular text and 1.3% in two-stage text. While the reason 519 behind the improvement is not fully understood. We experiment with different confidence thresholds 520 for the two-stage scheme. The results are shown in Figure-3b. For results of train, it is obtained by 521 varying the thresh and training the network from scratch. For results of test, we use the best trained 522 network to evaluate various thresholds. It is seen that the confidence has different influence on the 523 train and test phase. For training, the low threshold will lead to better performance. Practically, 524 we set threshold to zero. It means that all predictions from the first stage are used to initialize the query no matter the value of confidence. For testing, although the trend is similar, the influence is 525 relatively small. Even when setting the threshold to 1.0, by which the first stage will never generate 526 proposals, the performance is still better than the baseline. Based on the comparison between train 527 and test, we conclude that the two-stage works in two aspects. First, the extra supervision on the first 528 stage encoder benefits the recognizer, especially for irregular text. Second, the query initialization 529 also helps the decoder to perform better. 530

531 532

491 492

499 500 501

5 CONCLUSION

533 534

In this paper, we propose a simple and powerful non-autoregressive text recognizer NAText. It
 elegantly solves the problem that non-autoregressive model often performs inferior to its counterpart.
 Specifically, We rectify the basic assumption and design a progressive sampled learning to help non-autoregressive model to perform better. We also introduce positional encoding that has clear physical
 meaning for better visual perception. Experiments on various datasets verify the effectiveness of our method.

540 REFERENCES

556

561

562 563

564

565

566

567

568

569

570

571

576

577

578

579

580

- 542 Rowel Atienza. Vision transformer for fast and efficient scene text recognition. In *Document*543 *Analysis and Recognition–ICDAR 2021: 16th International Conference, Lausanne, Switzerland,*544 *September 5–10, 2021, Proceedings, Part I*, pp. 319–334, 2021.
- Darwin Bautista and Rowel Atienza. Scene text recognition with permuted autoregressive sequence
 models. In *European Conference on Computer Vision*, pp. 178–196. Springer, 2022.
- William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep Jaitly. Imputer: Sequence modelling via imputation and dynamic programming. In *International Conference on Machine Learning*, pp. 1403–1413. PMLR, 2020.
- Lei Chen, Haibo Qin, Shi-Xue Zhang, Chun Yang, and Xucheng Yin. Scene text recognition with
 single-point decoding network. *arXiv preprint arXiv:2209.01914*, 2022.
- Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang Pu, and Shuigeng Zhou. Focusing attention: Towards accurate text recognition in natural images. In *Proceedings of the IEEE international conference on computer vision*, pp. 5076–5084, 2017.
- Ethan A Chi, Julian Salazar, and Katrin Kirchhoff. Align-refine: Non-autoregressive speech recognition via iterative realignment. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1920–1927, 2021.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
 - Shancheng Fang, Hongtao Xie, Zheng-Jun Zha, Nannan Sun, Jianlong Tan, and Yongdong Zhang. Attention and language ensemble for scene text recognition with convolutional sequence modeling. In *Proceedings of the 26th ACM international conference on Multimedia*, pp. 248–256, 2018.
 - Shancheng Fang, Hongtao Xie, Yuxin Wang, Zhendong Mao, and Yongdong Zhang. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7098–7107, 2021a.
- Shancheng Fang, Hongtao Xie, Yuxin Wang, Zhendong Mao, and Yongdong Zhang. Read like
 humans: Autonomous, bidirectional and iterative language modeling for scene text recognition.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7098–7107, 2021b.
 - Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel decoding of conditional masked language models. *arXiv preprint arXiv:1904.09324*, 2019.
 - Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive neural machine translation. In *International Conference on Learning Representations*, 2018.
- Longteng Guo, Jing Liu, Xinxin Zhu, Xingjian He, Jie Jiang, and Hanqing Lu. Non-autoregressive image captioning with counterfactuals-critical multi-agent learning. In *Proceedings of the Twenty- Ninth International Conference on International Joint Conferences on Artificial Intelligence*, pp. 767–773, 2021.
- Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for text localisation in nat ural images. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 pp. 2315–2324, 2016.
- Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Synthetic data and artificial neural networks for natural scene text recognition. *arXiv preprint arXiv:1406.2227*, 2014.
- Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert: Improving pre-training by representing and predicting spans. *Transactions of the Association for Computational Linguistics*, 8:64–77, 2020.

- 594 Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura, Lluis Gomez i Bigorda, 595 Sergi Robles Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Almazan, and Lluis Pere 596 De Las Heras. Icdar 2013 robust reading competition. In 2013 12th international conference on 597 document analysis and recognition, pp. 1484–1493. IEEE, 2013. 598 Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shi-600 jian Lu, et al. Icdar 2015 competition on robust reading. In 2015 13th international conference 601 on document analysis and recognition (ICDAR), pp. 1156–1160. IEEE, 2015. 602 603 Chen-Yu Lee and Simon Osindero. Recursive recurrent nets with attention modeling for ocr in the 604 wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 605 2231-2239, 2016. 606 Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, and Hwalsuk Lee. 607 On recognizing texts of arbitrary shapes with 2d self-attention. In Proceedings of the IEEE/CVF 608 Conference on Computer Vision and Pattern Recognition Workshops, pp. 546–547, 2020a. 609 610 Junycop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, and Hwalsuk Lee. 611 On recognizing texts of arbitrary shapes with 2d self-attention. In *Proceedings of the IEEE/CVF* 612 Conference on Computer Vision and Pattern Recognition Workshops, pp. 546–547, 2020b. 613 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer 614 Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-615 training for natural language generation, translation, and comprehension. arXiv preprint 616 arXiv:1910.13461, 2019. 617 Hui Li, Peng Wang, Chunhua Shen, and Guyu Zhang. Show, attend and read: A simple and strong 618 baseline for irregular text recognition. In Proceedings of the AAAI conference on artificial intel-619 *ligence*, volume 33, pp. 8610–8617, 2019. 620 621 Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang. 622 Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329, 623 2022. 624 625 A. Mishra, K. Alahari, and C. V. Jawahar. Scene text recognition using higher order language priors. In BMVC, 2012. 626 627 Trung Ouy Phan, Palaiahnakote Shivakumara, Shangxuan Tian, and Chew Lim Tan. Recogniz-628 ing text with perspective distortion in natural scenes. In Proceedings of the IEEE International 629 Conference on Computer Vision, pp. 569–576, 2013. 630 631 Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li. Glancing transformer for non-autoregressive neural machine translation. In Proceedings of the 632 59th Annual Meeting of the Association for Computational Linguistics and the 11th International 633 Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1993–2003, 634 2021. 635 636 Zhi Qiao, Yu Zhou, Jin Wei, Wei Wang, Yuan Zhang, Ning Jiang, Hongbin Wang, and Weiping 637 Wang. Pimnet: a parallel, iterative and mimicking network for scene text recognition. In Pro-638 ceedings of the 29th ACM International Conference on Multimedia, pp. 2046–2055, 2021. 639 Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng Chan, and Chew Lim Tan. A robust 640 arbitrary text detection system for natural scene images. Expert Systems with Applications, 41 641 (18):8027-8048, 2014. 642 643 Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-based 644 sequence recognition and its application to scene text recognition. *IEEE transactions on pattern* 645 analysis and machine intelligence, 39(11):2298–2304, 2016. 646
- 647 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence to sequence pre-training for language generation. *arXiv preprint arXiv:1905.02450*, 2019.

- 648 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-649 training for language understanding. Advances in Neural Information Processing Systems, 33: 650 16857-16867, 2020.
- Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai, Shuai Zhang, and Zhengqi Wen. Spike-652 triggered non-autoregressive transformer for end-to-end speech recognition. arXiv preprint 653 arXiv:2005.07903, 2020. 654
- 655 Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In 2011 International conference on computer vision, pp. 1457–1464. IEEE, 2011. 656
 - Tianwei Wang, Yuanzhi Zhu, Lianwen Jin, Canjie Luo, Xiaoxue Chen, Yaqiang Wu, Qianying Wang, and Mingxiang Cai. Decoupled attention network for text recognition. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 12216–12224, 2020.
- Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive 661 machine translation with auxiliary regularization. In Proceedings of the AAAI conference on 662 artificial intelligence, volume 33, pp. 5377–5384, 2019. 663
- Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, and Errui Ding. Towards ac-665 curate scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF 666 Conference on Computer Vision and Pattern Recognition, pp. 12113–12122, 2020a.
- 667 Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, and Errui Ding. Towards ac-668 curate scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF 669 Conference on Computer Vision and Pattern Recognition, pp. 12113–12122, 2020b. 670
- 671 Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, and Wayne Zhang. Robustscanner: Dynamically enhancing positional clues for robust text recognition. In European Conference on 672 Computer Vision, pp. 135–151. Springer, 2020. 673
- 674 Hui Zhang, Quanming Yao, James T Kwok, and Xiang Bai. Searching a high performance feature extractor for text recognition network. IEEE Transactions on Pattern Analysis and Machine 676 Intelligence, 2022.
- Dajian Zhong, Shujing Lyu, Palaiahnakote Shivakumara, Bing Yin, Jiajia Wu, Umapada Pal, and 678 Yue Lu. Sgbanet: Semantic gan and balanced attention network for arbitrarily oriented scene text 679 recognition. In European Conference on Computer Vision, pp. 464–480. Springer, 2022. 680
- 681 682

683 684

685

696 697

699 700

675

677

651

657

658

659

660

APPENDIX А

TRADE-OFF BETWEEN EFFICIENCY AND ACCURACY A.1

686 In this part, we present the speed and accuracy of NAText under different encoder and decoder layers. The results are shown in Table-8. 687

Table 8: Results for accuracy and speed under different number of layers. Enc and Dec denotes the 688 number of encoder layers and decoder layers, respectively. The accuracy is the weighted average of 689 the 6 scene text recognition benchmarks. 690

E	nc	Dec	Acc	Time(ms)
1	2	1	90.6	17
1	2	2	90.6	18
1	2	3	90.9	19
1	2	4	90.9	21
1	2	5	91.0	22
1	2	6	91.1	23
1	.0	6	91.0	21
	8	6	90.8	19
	6	6	90.7	17
	4	6	89.4	15
	2	6	88.4	13

702 A.2 FURTHER COMPARISON WITH PEER METHODS 703

704 To further validate the effectiveness of NAText, we design VIT-NAText as a light weight fully transformer-based recognizer. It uses a 12-layer VIT as the encoder. The speed and accuracy com-705 parison is presented in Table-9. Note that for fair comparison, we reproduce ParseqN using the 706 identical experimental conditions with NAText. It gets 90.0, lower than its published result. We 707 suspect that it may have something to do with the hardware conditions. We also find that the author 708 of ParseqN has explained the phenomenon of performance fluctuation in their GitHub issues. 709

710 Table 9: Further comparison on speed and accuracy. The accuracy is the weighted average of the 6 711 scene text recognition benchmarks. 712

Method	Acc	Time(ms)
ParseqA	91.9	37
SATRN	90.6	126
ParseqN	90.7	11
ParseqN(Reproduced)	90.0	11
ABINet	89.8	27
NAText	91.1	23
VIT-NAText	90.8	13

A.3 THRESHOLD FOR PROGRESSIVE LEARNING

722 In Table-10, we explore the influence of the confidence threshold for progressive learning. The 723 threshold affects the number of samples to be replaced. The larger threshold means more sampling 724 number. When setting threshold to 0, no token is sampled (no character will has lower confidence 725 than 0), which is the baseline method. When setting threshold to 1, it means the number of sampling 726 tokens is always equal to the character length. We can see that the two extremes both get poor 727 performance. In default, we set the confidence threshold to 0.5. 728

Table 10: Threshold for Progressive Learning

Conf	0.0	0.1	0.3	0.5	0.7	0.9	1.0
Acc	88.2	88.9	88.5	89.0	88.5	88.8	88.2

A.4 COORDINATE REGRESSION

734 Most of the regressed coordinates are fairly ac-735 curate, though the training of coordinate regres-736 sion is applied on part of the training dataset. 737 For the qualitative analysis, some samples are 738 selected to visualize the coordinate regression, 739 including both correct and incorrect samples. It 740 is shown in Figure-5. We find that the incorrect predictions are more likely to appear in sit-741 uations like dense located texts, artistic-styled 742 texts and those with complicated background. 743 We take some representative examples for vi-744 sualization. They are also challenging cases for 745 scene text recognition. 746

747

733

- A.5 ABLATION
- 748 OF SUPERVISION ON FIRST STAGE 749

750 In this part, we further explore into the influ-751 ence of the supervision applied to the encoder 752 output. In default, we use CTCLoss as the first

Correct predictions posternius co i Incorrect predictions

Figure 5: Qualitative results for characters' coor-

753 stage supervision. We change the CTCLoss to cross entropy loss and report the results in Table-11. The CTCLoss will implicitly locate each character in the feature map. While the cross entropy 754 loss simply takes the first K tokens for supervision, where K equals to the word length. We find 755 that the performance is still improved even with cross entropy loss as the supervision. We further

dinates regression.

compare the attention map of the encoder output for each character. The quality result is shown in Figure-6. We can see that the attention map with CTCLoss is more accurate and concentrate than the other two. The phenomenon suggests the improvement of the first stage supervision comes from two folds. The first is that the supervision helps the representation of different characters to be more discriminative. The second is that the features of each token in the encoded feature map become more concentrated.

Table 11: Ablation on the supervision for the first stage. CTC is for CTCLoss. CE is for cross entropy loss.

	Accuracy				
	Regular	Irregular			
CTC	0.942	0.816			
CE	0.937	0.815			
Baseline	0.933	0.805			

771	The second s	T	
772	B	A B I	ARI
773	1 m	TH	A H
774	3		
775	D T	T R	D T
776	A D I	E H I	ARI
777		C. C. C.	e l l
778	3	3	0
779	BI	TU	I a I
780	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second	K U I
781	C	5	21
782			
783	N 8 1		I H .
784	TAN	TH	TAT
785	S	5	S
786			
787	A R .		ARI
788	C T M	ALA	c T M
789	3	2	>

Figure 6: Quality plot of the attention map from the encoder output. Each row represents the attention of each character. 1-st column shows the attention from CTCLoss. 2-nd column shows the attention for the cross entropy loss. **3-rd** column shows the attention for the baseline method.