
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NATEXT: FASTER SCENE TEXT RECOGNITION WITH
NON AUTOREGRESSIVE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive-based attention methods have made a significant advance in scene
text recognition. However, the inference speed of these methods is limited due
to their iterative decoding scheme. In contrast, the non-autoregressive methods
adopt the parallel decoding paradigm, making them much faster than the autore-
gressive decoder. The dilemma is that, though the speed is increased, the non-
autoregressive methods are based on the character-wise independent assumption,
making them perform much worse than the autoregressive methods. In this paper,
we propose a simple non-autoregressive transformer-based text recognizer named
NAText , by proposing a progressive learning approach to force the network to
focus on hard samples and learn the relationship between characters. Further-
more, we redesign the query composition by introducing positional encoding of
the character center. And it has more clear physical meanings than the conven-
tional one. Experiments show that our NAText helps to better utilize the positional
information for 2D feature aggregation. With all these techniques, the NAText has
achieved competitive performance to the state-of-the-art methods. The code will
be released.

1 INTRODUCTION

Reading and processing text from natural scenes has a lot of applications in reality, such as read-
ing road signs, billboards, product labels, logos, etc. Due to its high-demanding characteristics,
scene text recognition has attracted a lot of researchers and has been studied for years. Recently,
autoregressive methods have achieved great success in scene text recognitionYue et al. (2020)Li
et al. (2019)Zhong et al. (2022)Lee et al. (2020b). Structurally, they usually consist of an encoder
to extract image features and an autoregressive decoder to transcribe the encoded features into text
sequence. By the attention mechanism and autoregressive decoding style, the autoregressive models
can extract robust and discriminative features for scene text.

Although the autoregressive models have many advantages in recognition accuracy, the employment
of the iterative decoding style results in extremely low efficiency, especially for long text. In contrast,
the non-autoregressive models adopt a parallel decoding paradigm. They share similar decoder
structure with their autoregressive counterparts but run much faster. As there is no free lunch, while
increasing the speed, the performance suffers greatly. For example, in machine translation, the naive
non-autoregressive model performs 4% lower than autoregressive modelsGu et al. (2018). In scene
text recognition, we notice that in some recent workQiao et al. (2021)Bautista & Atienza (2022)
the non-autoregressive recognizers perform about 2% lower than autoregressive models. This is
consistent with our experimental findings that the non-autoregressive model performs 1.7% lower in
regular text and 3.4% lower in irregular text. For scene text recognition, such performance drop is
considerable. Despite the non-satisfactory performance, the huge advantage in decoding speed is too
attracting that some of the most recent workYu et al. (2020a)Fang et al. (2021a)Qiao et al. (2021)
on scene text recognition still attempts to adopt such parallel decoding scheme. To remedy the
performance degeneration, they either introduce large language modelsFang et al. (2021a) to correct
the error prediction in a post-process manner or design a heavy predictionQiao et al. (2021) pipeline.
These methods are all designed to be very complex and require considerable computational burden.
In a sense, they do not fundamentally solve the problem of why non-autoregressive models get
inferior performance. Therefore, in this case, we try to answer the question: Is it possible to design

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Encoder

Parallel Decoder

S
H
O
W

(𝑥! , 𝑦!)
(𝑥" , 𝑦")
(𝑥# , 𝑦#)
(𝑥$ , 𝑦$)

Progressive SamplingCoarse Results

2D Position 
Embedding

𝑦$$

𝑦$#

𝑦$"

𝑦$%

𝑦$&…

𝑦$

𝑦#

𝑦$"

𝑦$%

𝑦$&…

+

…

Character Center Position

…

Figure 1: Schematic overview of two stage structure of NAText. Note that the progressive sampling
is only applied during training.

a non-autoregressive scene text recognizer to match its autoregressive counterpart in performance
without resorting to other language models or any complex decoding pipeline?

In this paper, we propose NAText as a solution to the above question. NAText is short for Non-
Autoregressive scene Text recognizer. It uses a simple encoder-decoder structure without extra
modules and extra post-process. We start by digging into the inferior performance and find that
the harder situations usually suffer more significant drop, e.g., the irregular text(Table-6 and the
longer text(Figure-3a. To better resist the performance drop in these harder situations, we propose
three techniques. First, we argue that the independent assumption adopted by the non-autoregressive
model is the main reason to blame. For hard cases, the character-wise inter-dependency provides
rich information for prediction. We drop the independent assumption entirely and design incremen-
tal learning to enforce mutual constraints on character predictions. Specifically, during training, we
sample some characters and replace them with their ground truth token embeddings, and force the
remaining characters to be learned under this condition. In this way, the network will gradually
capture the character-wise relationships. Second, we design progressive sampling to force the train-
ing to focus on hard characters. During sampling, the confident predictions are more likely to be
replaced, leaving the hard characters to be learned. Together with the first technique, we name this
learning scheme the progressive sampled learning. Third, to better capture each character’s visual
information, we follow the recently proposed DAB-DETRLiu et al. (2022) to adopt a re-designed
decoder structure in which the character center explicitly models the positional information. It uni-
fies the physical meaning of the positional encoding from the image features and query embeddings.
This is in contrast to the inconsistency of the positional encoding of query and encoded features of
traditional decoders.

We experiment on six popular scene text recognition benchmarks to verify the effectiveness of NA-
Text. Detailed exploration into each part is also conducted. In summary, this paper’s contributions
mainly include: 1) We propose NAText as a simple and powerful non-autoregressive scene text rec-
ognizer. It is both fast and strong compared to most recent work. 2) We research deep into the reason
behind the inferior performance of non-autoregressive decoding and propose progressive sampled
learning to overcome it. 3) We re-design the decoder structure to utilize the positional information
that leads to better visual perception.

2 RELATED WORK

Based on the topic of our method, we roughly divide the current methods into autoregressive and
non-autoregressive methods.

Autoregressive Text Recognition. Autoregressive methods can be grouped into 1D-attention based
and 2D-attention based. Earlier methods usually encode the image features to 1D feature sequence
and use 1D attention in the decoding period. For example, the R2AMLee & Osindero (2016) design
an autoregressive CNN that can capture broader features as the feature extractor and a 1D-attention-
based decoder to transcribe the sequence. FANCheng et al. (2017) employs a focusing attention
mechanism to automatically draw back the attention drift. Fang et al. (2018) proposes a fully CNN-
based network to extract visual and language features separately. However, these methods usually
lack the ability to process irregular text(e.g., curved, rotated). To this end, recent methodsLee et al.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(2020b)Fang et al. (2021a)Bautista & Atienza (2022)Qiao et al. (2021) of scene text recognition
usually encode the image into 2D features and adopt the 2D attention in the decoder. With the help
of 2D attention, they consistently show strong performance on irregular text recognition. In this
paper, we also choose the 2D attention-based transformer to build our baseline method. We mainly
focus on the design of the decoder query and show that by re-designing the query, the simple and
concise structure can also lead to powerful performance.

Non-Autoregressive Text Recognition. Non-autoregressive methods predict the target sequence
at a single iteration or constant time independent of the sequence length. They can be categorized
into three groups: the CTC-Based methods, the segmentation-based methods, and the attention-
based. The attention-based non-autoregressive methods have been widely applied in machine trans-
lationGhazvininejad et al. (2019)Gu et al. (2018)Wang et al. (2019)Qian et al. (2021), auto speech
recognitionTian et al. (2020)Chi et al. (2021)Chan et al. (2020) and capture generationGuo et al.
(2021). In comparison, there is less workQiao et al. (2021)Fang et al. (2021a)Yu et al. (2020a)
for the research of non-autoregressive model on scene text recognition. Recent methodsFang et al.
(2021a)Yu et al. (2020a) on scene text recognition that is relative to the non-autoregressive model
mainly pay attention to the employment of language models to assist the text recognition. They
usually design a complex multi-model system to get a high-performance text recognizer, but the
efficiency of the model is often overlooked. In contrast, our work is focused on the nature of the
non-autoregressive model itself. This work aims to explore how we can design a simple and power-
ful non-autoregressive model that keeps the merit of high efficiency and high performance.

Masking Technique. The masking technique has been widely applied to the pre-training of trans-
formersDevlin et al. (2018)Joshi et al. (2020)Song et al. (2019)Lewis et al. (2019)Song et al. (2020).
Different from these works, the masked tokens in NAText are replaced with their ground truth em-
beddings. They are ignored in loss calculation. For the masking technique, the most relevant works
are Mask-PredictGhazvininejad et al. (2019) and GLMQian et al. (2021) proposed for machine
translation. They both randomly mask tokens to replace and the remaining tokens are predicted
under such condition. However, the random sampling that is suitable for machine translation has
little effect on scene text recognition. The reason is that the task of scene text recognition has to
deal with lots of noised inputs, e.g., blurry, occluded, and incomplete while the inputs of machine
translation are clean. Based on the task characteristics, we follow the idea of hard sample mining
and propose progressive sampling to feed more informative samples for training, which is proved
crucial for scene text recognition. Besides, they need multiple decoding times, either for training
or testing. While we design a two-stage decoding scheme to avoid repetitive decoding. In all, the
masking technique in NAText is specially designed for scene text recognition. It is both concise and
effective.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE

The structure of NAText is depicted in Figure 1. The NAText adopts the transformer based encoder-
decoder structure. Given an input image, the encoder will extract the image features and generates
the coarse sequence prediction. Then the predicted sequence is fed to the decoder to generate the
final refined result. Along with the sequence output, the character coordinate will be predicted by
the regression head.

NAText mainly optimizes the decoder structure. Compared to conventional text recognizers, we
highlight two differences in structure. The first is the parallel decoding style. Parallel decoding does
not need much modification to the decoder structure. It only needs to discard the masking operation
used to guarantee uni-directional self-attention. The second is that we introduce the concept of
location query into the decoder structure. It has the exact physical meaning and makes the decoding
process easier to interpret while also performing better.

Query Composition. Inspired by the recent advance in object detection, we follow DAB-DETRLiu
et al. (2022) to introduce the positional query(embedding) into the decoding process. For clarity, we
refer to the original query embedding in conventional decoder as content embedding, denoted as cq .
In self-attention(Shown in Figure-2), the query, key, and value embeddings are obtained by

query, key := cq + pq + sq, pq = PE(x, y) value := cq (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑦 !𝑥 !

K Q

Q

V
Encoder output

Self-Attention

V K

𝑦 "𝑥 "

Cross Attention

+∆𝑦∆𝑥

𝑦#𝑥#

Encoder position

+ ++

× N

Figure 2: Decoder structure of NAText.

where cq and sq denote the content embedding and the sequential positional encoding used in con-
ventional decoders respectively. pq denotes the newly introduced positional embedding. (x, y)
denotes character’s center coordinate. PE is the positional encoding function. Following previous
work, we use the sinusoidal function to generate the positional encoding.

Note that in conventional decoder, the query and key for self-attention are calculated by cq + sq .

3.2 DECOUPLED NON-AUTOREGRESSIVE DECODER

The detailed structure of the decoder is shown in Figure-2. In cross attention, the query, key, and
value embeddings are defined by

query := CAT(cq, pq) key := CAT(X,Xp) value := X (2)

where CAT is the concatenation operation. X denotes the encoded image features. Xp denotes the
per-pixel positional encoding of X . The encoding function of pq and Xp is the same.

Note that in conventional decoder, the query for cross attention contains only cq . The key is obtained
by X +Xp.

Based on the query design, the cross attention is decomposed into content attention and spatial
attention. Given the query q, k, v, the cross attention of decoder can be formulated as:

Attention(q, k, v) = softmax(
qkT√
dk

v), (3)

where the dk is the channel dimension, and the attention part of qkT can be decomposed into the two
dot-products of content embeddings and positional embeddings respectively cTq X + pTq Xp. Thus,
the cross attention can be viewed as the feature aggregation process influenced by both the content
information and spatial information.

Coordinate Regression. Unlike the traditional text recognition model, we design the decoder output
to include both character categorization and coordinate regression. The character’s coordinate is
regressed via an iterative style. Given the coordinate prediction from previous decoder layer (x′, y′),
the current coordinate prediction is calculated by

(x, y) = σ(FFN(f) + σ−1(x′, y′)), (4)

where σ is the sigmoid function used to normalize the coordinates to range (0,1) and σ−1 is the
reverse sigmoid function. FFN aims to regress the relative offset from the decoder embedding f .

3.3 PROGRESSIVE SAMPLED LEARNING

In this part, we start by comparing the different probability models between autoregressive and non-
autoregressive methods. It partially explains the reason for the non-autoregressive model’s inferior
performance. Then, we introduce the progressive learning strategy for non-autoregressive models.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumptions behind autoregressive and Non-autoregressive models. The text recognition can be
formally defined as a sequence generation problem: given the source features X extracted from the
image, to generate the target character sequence Y = {y1, y2, ..., yT } according to the conditional
probability P (Y |X; θ), where θ is the parameter set of the model. For autoregressive models, the
conditional probability is factorized to maximize the following likelihood:

Lrec = logP (Y |X; θ) =

T∑
t=1

log p(yt|y < t,X; θ), (5)

where y < t is the short for {y1, ..., yt−1}. The autoregressive factorization adopts the assumption
of an uni-directional inter-dependency between characters where each token is conditioned by the
previous token sequence.

For non-autoregressive models, each character is assumed to be independent for parallel decoding.
The independent factorization is written as

Lnrec =

T∑
t=1

logP (yt|X; θ). (6)

The autoregressive factorization in Eq-5 and non-autoregressive factorization in Eq-6 both serve as
the approximation to the conditional probability P (Y |X; θ). As the independent assumption does
not hold in general, the corresponding factorization deviates further from the real conditional prob-
ability P (Y |X; θ). So non-autoregressive models trained under such biased objective gets inferior
performance.

Rectified Learning Objective. Based on the above analysis of the two factorizations Eq-5, Eq-6, we
argue that the independent assumption should be abandoned and more suitable factorization needs to
be designed to better fit the real optimization objective. In our design, the character-wise dependency
is also encouraged. Different from the autoregressive factorization, we encourage the model to learn
dependency from any other characters in the sequence, not just the previous characters. Specifically,
we design the following factorization:

LPM =
∑

yt /∈PS(Y,Ŷ ),

log p(yt|PS(Y, Ŷ ), X; θ), (7)

where Y is the ground truth sequence and Ŷ is the predicted sequence. PS(Y, Ŷ ) denotes the
sampling operation based on the ground truth and predicted sequence. The sampled result is a subset
of tokens of Y that will be directly replaced with the corresponding character embedding, serving
as the prior knowledge input to the decoding process. For example, given Y = {y1, y2, y3, y4, y5}
and PS(Y ) = {y2, y3}, the input queries corresponding to {y2, y3} will be replaced by their target
character embeddings, which are obtained from the softmax embedding matrix. The sampled tokens
will not be considered during the loss calculation. Only the remaining {y1, y4, y5} will contribute
to the final loss. In this way, the learning objective is to learn a refinement model θ that can predict
the remaining tokens given the ground truth of the sampled tokens and source image features X .

Progressive sampling. Following the designed factorization in Eq-7, we find that the naive random
sampling even leads to worse performance. The reason is twofold. First, as most characters are
easy samples, the training hardly focuses on the informative samples. Such scheme is inefficient
and leads to low performance. Second, the model is trained and tested under different conditions.
During training, the model is always encouraged to predict with the help of extra knowledge while
during testing, there is not. In other words, the model is tested in a more difficult condition than
training. Therefore, we design progressive sampling scheme in which the characters are sampled
based on their predicted confidence. Specifically, given the predicted sequence Ŷ , the ground truth
sequence Y and the confidence C = {c1, c2, ..., cT } corresponding to Ŷ , we first determine the
sampling number by N = λ ·

∑T
t=1(ct < τ), where τ is the confidence threshold and λ is the

hyper-parameter controlling the sampling ratio. Then the top-N confident characters are sampled as
the prior knowledge, forcing the network to learn the remaining hard samples.

The designed progressive sampling can well solve the above problems. First, the remaining char-
acters are unconfident or even incorrect predictions. They are more informative for the training

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

process. Second, during training, as the overall predictions become more and more confident, the
sampling number will gradually reduce. At the beginning phase of training, the model is encour-
aged to learn under extra knowledge. While at the end phase, the model is forced to learn to predict
in parallel. This is in accord with our expectations for progressive learning, by which the learning
difficulty gradually increases.

3.4 OPTIMIZATION OBJECTIVE

We further design a two-stage decoding scheme to simplify the progressive sampled learning. The
extra bonus is that the first stage decoding will also bring performance improvement.

To get the characters’ predicted confidence for progressive sampling, the direct thought is a two-pass
decoding manner. In the first pass, the confidence is generated. In the second pass, the progressive
sampling is applied. We argue that this way is tedious and unnecessary. In our two-stage decoding
scheme, we directly use the encoder network to make a coarse sequence prediction, which serves as
the predicted confidence for the progressive sampling. The coarse prediction can also serve as the
prior knowledge of the decoding process. The pipeline of the two-stage proceeds as follows, given
the image, features output from the encoder X , and the target sequence Y , we first use a prediction
head FFN to get the per-pixel classification S = FFN(X). Then we apply the connectionist temporal
classification(CTC) loss as the supervision between the predicted logits S and target Y .

Lenc = CTCLoss(S, Y ). (8)
The predicted sequence is obtained via evaluating the result of argmax(S). In this way, the encoder
output is capable of making coarse predictions. After we get the coarse sequence prediction Ŷ ′, we
take the corresponding character embedding {h1, h2, ..., hT ′} from the decoder softmax matrix to
substitute the content part of the initial query. Here, T ′ denotes the prediction length of the coarse
sequence.

Using the per-pixel classification S, we can also get the coarse normalized character coordinate for
each predicted token. The coordinate is used to generate the initial positional embedding of the
query. Finally, using Eq-2, we combine the two parts to get the initial query proposals. Considering
that the coarse-predicted sequence length T ′ may be incorrect, the number of queries of the decoder
remains unchanged. We only use the proposals to replace the first T ′ queries.

The training objective includes the CTC loss applied to the encoder output and the character classifi-
cation and regression loss applied to decoder output. We use the cross entropy loss for classification
and the L1 loss for regression. For decoder, the loss is formulated as

Ldec =
1

L

L∑
l=1

T∑
t=1

(log p̂l(yt) + 1(yt ̸= [EOS])Lreg (ĉlt, ct)) , (9)

where p̂l(yt) denotes the predicted probability corresponding to ground truth token yt by the l-
th decoder layer. ĉlt and ct represents the l-th predicted and ground truth character coordinates,
respectively. They are both normalized by the image scale. We note that the character coordinate is
not always annotated. Usually, the synthetic datasets contain this annotation, while the real dataset
does not. Thus, the regression loss is only applied when the annotation is available. The final loss is
the weighted sum of the Eq-8 and Eq-9.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Structure We follow SATRNLee et al. (2020b) to build the basic model structure. Specifically, the
number of hidden units for self-attention layers is 512. The numbers of self-attention layers in the
encoder and decoder are Ne = 12 and Nd = 6 respectively. We set the number of classes to 91,
including 10 digits, 52 case-sensitive letters, 28 punctuation characters, and an < EOS > token.
Specially, similar to a left-to-right autoregressive decoder, < EOS > token is viewed as the end of
the sequence, so there is no need to predict the sequence length in advance.

Optimization. All experiments are conducted on servers with 8 NVIDIA Tesla A100 GPUs. For
fair comparison, all models are trained from scratch using Adam optimizer. The whole training

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Accuracy comparison with other methods. Note that ABINet-LV-NL refers to ABINet-LV
without language model.

Decoder Type Method Regular Text Irregular Text
III5K SVT IC13 IC15 SVTP CT80 Avg

AR

SPDNChen et al. (2022) 94.1 89.9 91.7 77.9 79.8 81.6 85.8
DANWang et al. (2020) 94.3 89.2 93.9 74.5 80.0 84.4 86.1

RobustScannerYue et al. (2020) 95.3 88.1 94.8 79.5 77.1 90.3 88.6
SGBANetZhong et al. (2022) 95.4 89.1 95.1 78.4 83.1 83.1 88.7

SARLi et al. (2019) 95.0 91.2 94.0 78.8 86.4 89.6 89.2
TREFEZhang et al. (2022) 94.8 91.3 95.4 84.0 84.5 - -

SATRN(Reproduced)Lee et al. (2020a) 95.9 93.4 96.4 83.1 88.6 89.2 91.4
PARSeqABautista & Atienza (2022) 97.0 93.6 96.2 82.9 88.9 92.2 91.9

NAR+LM ABINet-LV(Reproduced)Fang et al. (2021b) 95.3 93.4 95.0 79.1 87.1 89.7 89.8
SRNYu et al. (2020b) 94.8 91.5 95.5 82.7 85.1 87.8 90.2

NAR

CRNNShi et al. (2016) 78.2 80.8 86.7 - - - -
ViTSTRAtienza (2021) 88.4 87.7 92.4 72.6 81.8 81.3 83.8

SRN w/o GSTMYu et al. (2020b) 92.3 88.1 93.2 77.5 79.4 84.7 86.7
SATRN-NAR 93.8 90.0 95.4 78.8 86.1 84.5 88.6

ABINet-LV-NLFang et al. (2021b) 94.6 90.4 94.9 81.7 84.2 86.5 89.6
PARSeqNBautista & Atienza (2022) 95.7 92.6 95.5 81.4 87.9 91.4 90.7

NAText W/O PO 95.6 93.0 96.1 82.1 86.5 91.3 90.9
NAText 95.8 93.4 96.3 82.4 86.7 90.3 91.1

process contains 6 epochs, and the initial learning rate is 3 × 10−4 while decreases to 3 × 10−5 at
the 3rd epoch and 3× 10−6 at the 5rd epoch. The batch size is set to 256.

4.2 DATASETS

We use two publicly available synthetic datasets, i.e., Mjsynth(MJ)Jaderberg et al. (2014), and Syn-
thText(ST)Gupta et al. (2016) as training datasets and test on six standard benchmarks: IIIT 5k-word
(IIIT5K) Mishra et al. (2012), CUTE80 (CUTE) Risnumawan et al. (2014), Street View Text (SVT)
Wang et al. (2011), SVT-Perspective (SVTP)Phan et al. (2013), ICDAR 2013 (IC13) Karatzas et al.
(2013), and ICDAR 2015 (IC15) Karatzas et al. (2015).

IIIT5K is a large natural scene dataset collected from Google, containing 5000. CUTE contains
288 cropped high-resolution images, many of which are curved or irregular text images. SVT is
a Google Street View dataset, which consists of 647 patches for testing. SVTP consists of 639
patches, cropped from side view snapshots in Google Street View. In SVTP, many patches encounter
severe perspective distortions. IC13 contains 848 patches for training and 1095 for evaluation. IC15
consists of incidental scene text images under arbitrary angles. Therefore, most word patches in this
dataset are irregular (oriented, perspective, or even curved).

4.3 PERFORMANCE COMPARISON

Comparison to State of the Art. We compare NAText to three types of methods including the
autoregressive models(AR), the pure non-autoregressive models(NAR) and the language model en-
hanced non-autoregressive models(NAR+LM). The results are shown in Table-1. For the data pro-
cessing, we strictly follow the setup of PARSeqABautista & Atienza (2022). Specifically, images are
resized to 32× 128 with data augmentation such as geometric transformation, image quality deteri-
oration and color jitter, etc. We reproduce SATRN and its non-autoregressive version to serve as the
baseline methods. It is seen that the NAR version of SATRN performs 2.8% lower than its AR ver-
sion. For fair comparison, we also report the result of NAText without positional supervision(NAText
W/O PO) in Table-1. The proposed NAText performs best among all the current non-autoregressive
models. The comparison to autoregressive models and language model enhanced non-autoregressive
based models is also challenging. Specifically, compared with its baseline method, NAText increases
the overall performance by 2.5%. Besides, it also outperforms some language model based methods.
These comparison results validate the effectiveness of NAText.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Speed Comparison. For fair speed and accuracy comparison, we re-implement the SATRN and
its non-autoregressive version . The speed and accuracy comparison is shown in Table-6. NAText
almost shares a similar structure with the naive non-autoregressive version. They are almost three
times faster than the autoregressive model on average. But the SATRN-NAR suffers a significant
performance drop on both regular and irregular text. NAText nearly matches the SATRN with litter
speed decrease compared with SATRN-NAR.

Contribution of Each Part. We experiment to figure out the contribution of each part, namely, PO
for positional query design, PS for progressive sampling, and TS for the two-stage scheme. Note that
for the setting of PS, as we can not get the confidence from the first stage predictor, the confidence
is generated via the decoder. The decoder runs twice during training. The results are shown in
Table-3. We can see that each part will effectively improve the baseline performance. While when
all modules are applied, the whole performance will further be increased. Specifically, NAText will
improve by 1.6% in the regular text and 2.8% in the irregular text.

Comparison under Different Text Length. In Figure-3a, we compare NAText with the autore-
gressive and non-autoregressive baseline under different text length. We can see that the SATRN-
NAR performs especially poorly for the long text. It is lower by 3% than its AR version when
the text length is greater than 10. Our NAText performs better than SATRN for the short text and
medium-length text. Although the performance for long text is still inferior to the autoregressive
model(-1.3%), the performance gap under such setting has been improved by 1.7%.

Table 2: Comparison between fixed-
ratio sampling and progressive sam-
pling.

ratio Accuracy
Regular Iregular

Fix
ratio

0.00 93.3 80.5
0.25 93.9 80.4
0.50 93.6 80.4
0.75 93.5 80.3
1.00 93.3 79.9

Progressive - 94.0 81.3

Table 3: Ablation on the effect of each module.
PO is for positional query design. PS is for pro-
gressive sampling. TS is for two-stage training
and testing.

Module Accuracy
PO PS TS Regular Irregular

93.3 80.5
✓ 93.8 81.3

✓ 94.0 81.3
✓ 93.9 81.8

✓ ✓ ✓ 94.9 83.3

4.4 ABLATION STUDY

For fair comparison, no augmentation is used for experiments in this part.

Query Design. We experiment with different designs of queries to demonstrate the effectiveness of
NAText. The query design mainly influences the cross attention in the decoding process. NAText
uses the concatenation of content embedding and positional embedding to form the query embed-
ding. We denote it as CAT(cq, pq). Note that the positional embedding for NAText has a clear
physical explanation. It is the encoding of the characters’ 2D coordinate. Such positional embed-
ding has never been adopted in the conventional recognizer. We choose several types of designs
for comparison. (1) cq:The query contains only the content part. The cross attention is obtained
by computing the dot product of the projection of query content embedding cq and image features
X . (2) pq: the query contains only the positional part. The cross attention is obtained by com-
puting the dot product of query positional embedding pq and image positional embedding Xp. (3)
ADD(cq, pq): The query is the summation of the content embedding and the positional embedding.
The conventional recognizer usually uses the cq-only for the query. It does not mean that they di-
rectly drop the positional information. Rather, the content query will still be added by a sinusoidal
encoding that represents the sequential order. The results are shown in Table-4. We can see that
only using the positional embedding performs the worst, both in the regular and irregular text. The
conventional style cq-only will be further improved when the positional information is introduced.
And we find that the concatenation performs better than the add operation. It is consistent with the
conclusion in previous workLiu et al. (2022).

To further understand the influence of content embedding and positional embedding, we conduct
a quality experiment by visualizing the attention plot of each component. It is shown in Figure-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

90.7 
89.6 

86.7 

89.6 

88.1 

83.7 

91.0 
90.3 

85.4 

82.0

84.0

86.0

88.0

90.0

92.0

[1, 5) [5, 10) [10, 25)

A
cc

Text Length

OursSATRN SATRN-NAR

(a)

92.0

92.5

93.0

93.5

94.0

0.00 0.25 0.50 0.75 1.00 

train test baseline

R
eg

ul
ar

 A
cc

Conf

Ir
eg

ul
ar

 A
cc

80.0

80.5

81.0

81.5

82.0

0.00 0.25 0.50 0.75 1.00 

train test baseline

Conf

(b)

Figure 3: (a)Accuracy of different lengths on test set.(b)Ablation on the two-stage confidence thresh-
old on regular and irregular text. Conf is short for confidence threshold. The influence on both train
and test phase are reported.

position content combine content

A

R

A

S

H

V

I

N

A

R

H

S

S

V

I

A

A

Figure 4: Quality visualization of attention plot. For our query design, the final attention(3-rd
coloum) is the composition of the position part(1-st coloum) and content part(2-nd coloum). For
conventional query design. the attention(4-th coloum) only contains the content part.

4. We find the effect of the two parts has much difference. The content embedding will attend to
many of the neighboring characters while the positional embedding will strictly focus on the current
character. Thus, with the help of the positional part, the final attention of NAText is more accurate
than the naive non-autoregressive model.

Influence of the Positional Supervision. We have validated the effectiveness of the query design.
While we have no idea whether the contribution comes from the query design or the positional
supervision. So in this experiment, we explore the influence of positional supervision on different
query compositions. The results are shown in Table-5. We can see that the positional supervision
can always improve the performance no matter the query composition. However, for conventional
query design that only contains the content part. The improvement is very small. While adding
the positional part will further improve the performance by a large margin, +0.4% in regular text
and +0.5% in irregular text. We also find that even when no positional supervision is applied, our
query design also beat the baseline method. It even surpasses the conventional query design with
positional supervision.

Sampling matters We explore other alternative sampling strategies for progressive learning(Shown
in Table-7. Including the default sampling strategy, we compare five sampling strategies. (1) ct:
Each character is sampled under the probability proportional to its predicted confidence ct. (2) 1−
ct: Each character is sampled under the probability proportional to its inverted predicted confidence
1− ct. (3) T-N: Top-N confidently predicted characters are sampled for replacement. (4) B-N: Top-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation on the query design: cq for
content embedding only. It is the way that con-
ventional decoder uses. pq for the positional em-
bedding only. ADD(cq, pq) for adding two parts.
CAT(cq, pq) for concatenating two parts.

Design Accuracy
Regular Irregular

cq 93.3 80.5
pq 93.3 80.5

ADD(cq, pq) 93.5 81.3
CAT(cq, pq) 93.8 81.3

Table 5: Influence of the positional su-
pervision

content position position
supervison

Accuracy
Regular Irregular

✓ 93.3 80.5
✓ ✓ 93.4 80.8
✓ ✓ 93.6 81.0
✓ ✓ ✓ 93.8 81.3

Table 6: Speed Comparision

Method Accuracy FPSRegular Irregular
SATRN 95.0 83.9 188

SATRN-NAR 93.3 80.5 551
NAText 94.9 83.3 543

Table 7: Different sampling strategies.

SATRN
-NAR

rand
(GLM) ct 1 - ct

T-N
(ours) B-N

Regular 93.3 94.0 93.6 93.7 94.0 93.4

Irregular 80.5 80.1 81.0 80.4 81.3 79.9

N un-confident predicted characters are sampled for replacement. (5) Rand: N random characters
are sampled for replacement. It is the way that GLMQian et al. (2021) adopts. Intuitively, the ct
and T-N encourage the well-learned characters to be replaced, making the training concentrate more
on the hard cases. While the 1 − ct and B-N are the opposite. It is seen that for regular text, all
sampling methods can improve performance. While for irregular, only ct and T-N that follow the
idea of hard sample mining can improve the performance. The others all perform even worse than
the baseline. In Table-2, we further compare the fixed-ratio sampling strategy and the progressive
sampling strategy. The fixed-ratio strategy means the sampling number is always proportional to the
text length. We can see that without progressive strategy, the performance is damaged, especially
for irregular text.

Why Two Stage Helps. As shown in Table-3, the two-stage training and testing scheme can effec-
tively improve the baseline by 0.6% in regular text and 1.3% in two-stage text. While the reason
behind the improvement is not fully understood. We experiment with different confidence thresholds
for the two-stage scheme. The results are shown in Figure-3b. For results of train, it is obtained by
varying the thresh and training the network from scratch. For results of test, we use the best trained
network to evaluate various thresholds. It is seen that the confidence has different influence on the
train and test phase. For training, the low threshold will lead to better performance. Practically,
we set threshold to zero. It means that all predictions from the first stage are used to initialize the
query no matter the value of confidence. For testing, although the trend is similar, the influence is
relatively small. Even when setting the threshold to 1.0, by which the first stage will never generate
proposals, the performance is still better than the baseline. Based on the comparison between train
and test, we conclude that the two-stage works in two aspects. First, the extra supervision on the first
stage encoder benefits the recognizer, especially for irregular text. Second, the query initialization
also helps the decoder to perform better.

5 CONCLUSION

In this paper, we propose a simple and powerful non-autoregressive text recognizer NAText. It
elegantly solves the problem that non-autoregressive model often performs inferior to its counterpart.
Specifically, We rectify the basic assumption and design a progressive sampled learning to help non-
autoregressive model to perform better. We also introduce positional encoding that has clear physical
meaning for better visual perception. Experiments on various datasets verify the effectiveness of our
method.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rowel Atienza. Vision transformer for fast and efficient scene text recognition. In Document
Analysis and Recognition–ICDAR 2021: 16th International Conference, Lausanne, Switzerland,
September 5–10, 2021, Proceedings, Part I, pp. 319–334, 2021.

Darwin Bautista and Rowel Atienza. Scene text recognition with permuted autoregressive sequence
models. In European Conference on Computer Vision, pp. 178–196. Springer, 2022.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep Jaitly. Im-
puter: Sequence modelling via imputation and dynamic programming. In International Confer-
ence on Machine Learning, pp. 1403–1413. PMLR, 2020.

Lei Chen, Haibo Qin, Shi-Xue Zhang, Chun Yang, and Xucheng Yin. Scene text recognition with
single-point decoding network. arXiv preprint arXiv:2209.01914, 2022.

Zhanzhan Cheng, Fan Bai, Yunlu Xu, Gang Zheng, Shiliang Pu, and Shuigeng Zhou. Focusing
attention: Towards accurate text recognition in natural images. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 5076–5084, 2017.

Ethan A Chi, Julian Salazar, and Katrin Kirchhoff. Align-refine: Non-autoregressive speech recog-
nition via iterative realignment. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1920–1927, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shancheng Fang, Hongtao Xie, Zheng-Jun Zha, Nannan Sun, Jianlong Tan, and Yongdong Zhang.
Attention and language ensemble for scene text recognition with convolutional sequence mod-
eling. In Proceedings of the 26th ACM international conference on Multimedia, pp. 248–256,
2018.

Shancheng Fang, Hongtao Xie, Yuxin Wang, Zhendong Mao, and Yongdong Zhang. Read like
humans: Autonomous, bidirectional and iterative language modeling for scene text recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7098–7107, 2021a.

Shancheng Fang, Hongtao Xie, Yuxin Wang, Zhendong Mao, and Yongdong Zhang. Read like
humans: Autonomous, bidirectional and iterative language modeling for scene text recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7098–7107, 2021b.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. In International Conference on Learning Representations, 2018.

Longteng Guo, Jing Liu, Xinxin Zhu, Xingjian He, Jie Jiang, and Hanqing Lu. Non-autoregressive
image captioning with counterfactuals-critical multi-agent learning. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp.
767–773, 2021.

Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for text localisation in nat-
ural images. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2315–2324, 2016.

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Synthetic data and
artificial neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227,
2014.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Span-
bert: Improving pre-training by representing and predicting spans. Transactions of the Association
for Computational Linguistics, 8:64–77, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura, Lluis Gomez i Bigorda,
Sergi Robles Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Almazan, and Lluis Pere
De Las Heras. Icdar 2013 robust reading competition. In 2013 12th international conference on
document analysis and recognition, pp. 1484–1493. IEEE, 2013.

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman Ghosh, Andrew Bag-
danov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shi-
jian Lu, et al. Icdar 2015 competition on robust reading. In 2015 13th international conference
on document analysis and recognition (ICDAR), pp. 1156–1160. IEEE, 2015.

Chen-Yu Lee and Simon Osindero. Recursive recurrent nets with attention modeling for ocr in the
wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2231–2239, 2016.

Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, and Hwalsuk Lee.
On recognizing texts of arbitrary shapes with 2d self-attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 546–547, 2020a.

Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim, and Hwalsuk Lee.
On recognizing texts of arbitrary shapes with 2d self-attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 546–547, 2020b.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Hui Li, Peng Wang, Chunhua Shen, and Guyu Zhang. Show, attend and read: A simple and strong
baseline for irregular text recognition. In Proceedings of the AAAI conference on artificial intel-
ligence, volume 33, pp. 8610–8617, 2019.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329,
2022.

A. Mishra, K. Alahari, and C. V. Jawahar. Scene text recognition using higher order language priors.
In BMVC, 2012.

Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan Tian, and Chew Lim Tan. Recogniz-
ing text with perspective distortion in natural scenes. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 569–576, 2013.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li.
Glancing transformer for non-autoregressive neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1993–2003,
2021.

Zhi Qiao, Yu Zhou, Jin Wei, Wei Wang, Yuan Zhang, Ning Jiang, Hongbin Wang, and Weiping
Wang. Pimnet: a parallel, iterative and mimicking network for scene text recognition. In Pro-
ceedings of the 29th ACM International Conference on Multimedia, pp. 2046–2055, 2021.

Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng Chan, and Chew Lim Tan. A robust
arbitrary text detection system for natural scene images. Expert Systems with Applications, 41
(18):8027–8048, 2014.

Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transactions on pattern
analysis and machine intelligence, 39(11):2298–2304, 2016.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint arXiv:1905.02450, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. Advances in Neural Information Processing Systems, 33:
16857–16867, 2020.

Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Ye Bai, Shuai Zhang, and Zhengqi Wen. Spike-
triggered non-autoregressive transformer for end-to-end speech recognition. arXiv preprint
arXiv:2005.07903, 2020.

Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In 2011 Inter-
national conference on computer vision, pp. 1457–1464. IEEE, 2011.

Tianwei Wang, Yuanzhi Zhu, Lianwen Jin, Canjie Luo, Xiaoxue Chen, Yaqiang Wu, Qianying
Wang, and Mingxiang Cai. Decoupled attention network for text recognition. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pp. 12216–12224, 2020.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5377–5384, 2019.

Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, and Errui Ding. Towards ac-
curate scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12113–12122, 2020a.

Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, and Errui Ding. Towards ac-
curate scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12113–12122, 2020b.

Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, and Wayne Zhang. Robustscanner:
Dynamically enhancing positional clues for robust text recognition. In European Conference on
Computer Vision, pp. 135–151. Springer, 2020.

Hui Zhang, Quanming Yao, James T Kwok, and Xiang Bai. Searching a high performance fea-
ture extractor for text recognition network. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

Dajian Zhong, Shujing Lyu, Palaiahnakote Shivakumara, Bing Yin, Jiajia Wu, Umapada Pal, and
Yue Lu. Sgbanet: Semantic gan and balanced attention network for arbitrarily oriented scene text
recognition. In European Conference on Computer Vision, pp. 464–480. Springer, 2022.

A APPENDIX

A.1 TRADE-OFF BETWEEN EFFICIENCY AND ACCURACY

In this part, we present the speed and accuracy of NAText under different encoder and decoder
layers. The results are shown in Table-8.
Table 8: Results for accuracy and speed under different number of layers. Enc and Dec denotes the
number of encoder layers and decoder layers, respectively. The accuracy is the weighted average of
the 6 scene text recognition benchmarks.

Enc Dec Acc Time(ms)
12 1 90.6 17
12 2 90.6 18
12 3 90.9 19
12 4 90.9 21
12 5 91.0 22
12 6 91.1 23
10 6 91.0 21
8 6 90.8 19
6 6 90.7 17
4 6 89.4 15
2 6 88.4 13

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 FURTHER COMPARISON WITH PEER METHODS

To further validate the effectiveness of NAText, we design VIT-NAText as a light weight fully
transformer-based recognizer. It uses a 12-layer VIT as the encoder. The speed and accuracy com-
parison is presented in Table-9. Note that for fair comparison, we reproduce ParseqN using the
identical experimental conditions with NAText. It gets 90.0, lower than its published result. We
suspect that it may have something to do with the hardware conditions. We also find that the author
of ParseqN has explained the phenomenon of performance fluctuation in their GitHub issues.

Table 9: Further comparison on speed and accuracy. The accuracy is the weighted average of the 6
scene text recognition benchmarks.

Method Acc Time(ms)
ParseqA 91.9 37
SATRN 90.6 126
ParseqN 90.7 11

ParseqN(Reproduced) 90.0 11
ABINet 89.8 27
NAText 91.1 23

VIT-NAText 90.8 13

A.3 THRESHOLD FOR PROGRESSIVE LEARNING

In Table-10, we explore the influence of the confidence threshold for progressive learning. The
threshold affects the number of samples to be replaced. The larger threshold means more sampling
number. When setting threshold to 0, no token is sampled (no character will has lower confidence
than 0), which is the baseline method. When setting threshold to 1, it means the number of sampling
tokens is always equal to the character length. We can see that the two extremes both get poor
performance. In default, we set the confidence threshold to 0.5.

Table 10: Threshold for Progressive Learning

Conf 0.0 0.1 0.3 0.5 0.7 0.9 1.0
Acc 88.2 88.9 88.5 89.0 88.5 88.8 88.2

A.4 COORDINATE REGRESSION

Incorrect predictions

Correct predictions

Figure 5: Qualitative results for characters’ coor-
dinates regression.

Most of the regressed coordinates are fairly ac-
curate, though the training of coordinate regres-
sion is applied on part of the training dataset.
For the qualitative analysis, some samples are
selected to visualize the coordinate regression,
including both correct and incorrect samples. It
is shown in Figure-5. We find that the incor-
rect predictions are more likely to appear in sit-
uations like dense located texts, artistic-styled
texts and those with complicated background.
We take some representative examples for vi-
sualization. They are also challenging cases for
scene text recognition.

A.5 ABLATION
OF SUPERVISION ON FIRST STAGE

In this part, we further explore into the influ-
ence of the supervision applied to the encoder
output. In default, we use CTCLoss as the first
stage supervision. We change the CTCLoss to cross entropy loss and report the results in Table-
11. The CTCLoss will implicitly locate each character in the feature map. While the cross entropy
loss simply takes the first K tokens for supervision, where K equals to the word length. We find
that the performance is still improved even with cross entropy loss as the supervision. We further

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

compare the attention map of the encoder output for each character. The quality result is shown in
Figure-6. We can see that the attention map with CTCLoss is more accurate and concentrate than
the other two. The phenomenon suggests the improvement of the first stage supervision comes from
two folds. The first is that the supervision helps the representation of different characters to be more
discriminative. The second is that the features of each token in the encoded feature map become
more concentrated.

Table 11: Ablation on the supervision for the first stage. CTC is for CTCLoss. CE is for cross
entropy loss.

Accuracy
Regular Irregular

CTC 0.942 0.816
CE 0.937 0.815

Baseline 0.933 0.805

Figure 6: Quality plot of the attention map from the encoder output. Each row represents the at-
tention of each character. 1-st column shows the attention from CTCLoss. 2-nd column shows the
attention for the cross entropy loss. 3-rd column shows the attention for the baseline method.

15


	Introduction
	Related Work
	Proposed Method
	Overall Architecture
	Decoupled Non-Autoregressive Decoder
	Progressive Sampled Learning
	Optimization Objective

	Experiments
	Implementation Details
	Datasets
	Performance Comparison
	Ablation Study

	Conclusion
	Appendix
	Trade-off between Efficiency and Accuracy
	Further Comparison with Peer Methods
	Threshold for Progressive Learning
	Coordinate regression
	Ablation of Supervision on First Stage


