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ABSTRACT

Autoregressive-based attention methods have made a significant advance in scene
text recognition. However, the inference speed of these methods is limited due
to their iterative decoding scheme. In contrast, the non-autoregressive methods
adopt the parallel decoding paradigm, making them much faster than the autore-
gressive decoder. The dilemma is that, though the speed is increased, the non-
autoregressive methods are based on the character-wise independent assumption,
making them perform much worse than the autoregressive methods. In this paper,
we propose a simple non-autoregressive transformer-based text recognizer named
NAText , by proposing a progressive learning approach to force the network to
focus on hard samples and learn the relationship between characters. Further-
more, we redesign the query composition by introducing positional encoding of
the character center. And it has more clear physical meanings than the conven-
tional one. Experiments show that our NAText helps to better utilize the positional
information for 2D feature aggregation. With all these techniques, the NAText has
achieved competitive performance to the state-of-the-art methods. The code will
be released.

1 INTRODUCTION

Reading and processing text from natural scenes has a lot of applications in reality, such as read-
ing road signs, billboards, product labels, logos, etc. Due to its high-demanding characteristics,
scene text recognition has attracted a lot of researchers and has been studied for years. Recently,
autoregressive methods have achieved great success in scene text recognitionYue et al. (2020)Li
et al. (2019)Zhong et al. (2022)Lee et al. (2020b). Structurally, they usually consist of an encoder
to extract image features and an autoregressive decoder to transcribe the encoded features into text
sequence. By the attention mechanism and autoregressive decoding style, the autoregressive models
can extract robust and discriminative features for scene text.

Although the autoregressive models have many advantages in recognition accuracy, the employment
of the iterative decoding style results in extremely low efficiency, especially for long text. In contrast,
the non-autoregressive models adopt a parallel decoding paradigm. They share similar decoder
structure with their autoregressive counterparts but run much faster. As there is no free lunch, while
increasing the speed, the performance suffers greatly. For example, in machine translation, the naive
non-autoregressive model performs 4% lower than autoregressive modelsGu et al. (2018). In scene
text recognition, we notice that in some recent workQiao et al. (2021)Bautista & Atienza (2022)
the non-autoregressive recognizers perform about 2% lower than autoregressive models. This is
consistent with our experimental findings that the non-autoregressive model performs 1.7% lower in
regular text and 3.4% lower in irregular text. For scene text recognition, such performance drop is
considerable. Despite the non-satisfactory performance, the huge advantage in decoding speed is too
attracting that some of the most recent workYu et al. (2020a)Fang et al. (2021a)Qiao et al. (2021)
on scene text recognition still attempts to adopt such parallel decoding scheme. To remedy the
performance degeneration, they either introduce large language modelsFang et al. (2021a) to correct
the error prediction in a post-process manner or design a heavy predictionQiao et al. (2021) pipeline.
These methods are all designed to be very complex and require considerable computational burden.
In a sense, they do not fundamentally solve the problem of why non-autoregressive models get
inferior performance. Therefore, in this case, we try to answer the question: Is it possible to design
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Figure 1: Schematic overview of two stage structure of NAText. Note that the progressive sampling
is only applied during training.

a non-autoregressive scene text recognizer to match its autoregressive counterpart in performance
without resorting to other language models or any complex decoding pipeline?

In this paper, we propose NAText as a solution to the above question. NAText is short for Non-
Autoregressive scene Text recognizer. It uses a simple encoder-decoder structure without extra
modules and extra post-process. We start by digging into the inferior performance and find that
the harder situations usually suffer more significant drop, e.g., the irregular text(Table-6 and the
longer text(Figure-3a. To better resist the performance drop in these harder situations, we propose
three techniques. First, we argue that the independent assumption adopted by the non-autoregressive
model is the main reason to blame. For hard cases, the character-wise inter-dependency provides
rich information for prediction. We drop the independent assumption entirely and design incremen-
tal learning to enforce mutual constraints on character predictions. Specifically, during training, we
sample some characters and replace them with their ground truth token embeddings, and force the
remaining characters to be learned under this condition. In this way, the network will gradually
capture the character-wise relationships. Second, we design progressive sampling to force the train-
ing to focus on hard characters. During sampling, the confident predictions are more likely to be
replaced, leaving the hard characters to be learned. Together with the first technique, we name this
learning scheme the progressive sampled learning. Third, to better capture each character’s visual
information, we follow the recently proposed DAB-DETRLiu et al. (2022) to adopt a re-designed
decoder structure in which the character center explicitly models the positional information. It uni-
fies the physical meaning of the positional encoding from the image features and query embeddings.
This is in contrast to the inconsistency of the positional encoding of query and encoded features of
traditional decoders.

We experiment on six popular scene text recognition benchmarks to verify the effectiveness of NA-
Text. Detailed exploration into each part is also conducted. In summary, this paper’s contributions
mainly include: 1) We propose NAText as a simple and powerful non-autoregressive scene text rec-
ognizer. It is both fast and strong compared to most recent work. 2) We research deep into the reason
behind the inferior performance of non-autoregressive decoding and propose progressive sampled
learning to overcome it. 3) We re-design the decoder structure to utilize the positional information
that leads to better visual perception.

2 RELATED WORK

Based on the topic of our method, we roughly divide the current methods into autoregressive and
non-autoregressive methods.

Autoregressive Text Recognition. Autoregressive methods can be grouped into 1D-attention based
and 2D-attention based. Earlier methods usually encode the image features to 1D feature sequence
and use 1D attention in the decoding period. For example, the R2AMLee & Osindero (2016) design
an autoregressive CNN that can capture broader features as the feature extractor and a 1D-attention-
based decoder to transcribe the sequence. FANCheng et al. (2017) employs a focusing attention
mechanism to automatically draw back the attention drift. Fang et al. (2018) proposes a fully CNN-
based network to extract visual and language features separately. However, these methods usually
lack the ability to process irregular text(e.g., curved, rotated). To this end, recent methodsLee et al.
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(2020b)Fang et al. (2021a)Bautista & Atienza (2022)Qiao et al. (2021) of scene text recognition
usually encode the image into 2D features and adopt the 2D attention in the decoder. With the help
of 2D attention, they consistently show strong performance on irregular text recognition. In this
paper, we also choose the 2D attention-based transformer to build our baseline method. We mainly
focus on the design of the decoder query and show that by re-designing the query, the simple and
concise structure can also lead to powerful performance.

Non-Autoregressive Text Recognition. Non-autoregressive methods predict the target sequence
at a single iteration or constant time independent of the sequence length. They can be categorized
into three groups: the CTC-Based methods, the segmentation-based methods, and the attention-
based. The attention-based non-autoregressive methods have been widely applied in machine trans-
lationGhazvininejad et al. (2019)Gu et al. (2018)Wang et al. (2019)Qian et al. (2021), auto speech
recognitionTian et al. (2020)Chi et al. (2021)Chan et al. (2020) and capture generationGuo et al.
(2021). In comparison, there is less workQiao et al. (2021)Fang et al. (2021a)Yu et al. (2020a)
for the research of non-autoregressive model on scene text recognition. Recent methodsFang et al.
(2021a)Yu et al. (2020a) on scene text recognition that is relative to the non-autoregressive model
mainly pay attention to the employment of language models to assist the text recognition. They
usually design a complex multi-model system to get a high-performance text recognizer, but the
efficiency of the model is often overlooked. In contrast, our work is focused on the nature of the
non-autoregressive model itself. This work aims to explore how we can design a simple and power-
ful non-autoregressive model that keeps the merit of high efficiency and high performance.

Masking Technique. The masking technique has been widely applied to the pre-training of trans-
formersDevlin et al. (2018)Joshi et al. (2020)Song et al. (2019)Lewis et al. (2019)Song et al. (2020).
Different from these works, the masked tokens in NAText are replaced with their ground truth em-
beddings. They are ignored in loss calculation. For the masking technique, the most relevant works
are Mask-PredictGhazvininejad et al. (2019) and GLMQian et al. (2021) proposed for machine
translation. They both randomly mask tokens to replace and the remaining tokens are predicted
under such condition. However, the random sampling that is suitable for machine translation has
little effect on scene text recognition. The reason is that the task of scene text recognition has to
deal with lots of noised inputs, e.g., blurry, occluded, and incomplete while the inputs of machine
translation are clean. Based on the task characteristics, we follow the idea of hard sample mining
and propose progressive sampling to feed more informative samples for training, which is proved
crucial for scene text recognition. Besides, they need multiple decoding times, either for training
or testing. While we design a two-stage decoding scheme to avoid repetitive decoding. In all, the
masking technique in NAText is specially designed for scene text recognition. It is both concise and
effective.

3 PROPOSED METHOD

3.1 OVERALL ARCHITECTURE

The structure of NAText is depicted in Figure 1. The NAText adopts the transformer based encoder-
decoder structure. Given an input image, the encoder will extract the image features and generates
the coarse sequence prediction. Then the predicted sequence is fed to the decoder to generate the
final refined result. Along with the sequence output, the character coordinate will be predicted by
the regression head.

NAText mainly optimizes the decoder structure. Compared to conventional text recognizers, we
highlight two differences in structure. The first is the parallel decoding style. Parallel decoding does
not need much modification to the decoder structure. It only needs to discard the masking operation
used to guarantee uni-directional self-attention. The second is that we introduce the concept of
location query into the decoder structure. It has the exact physical meaning and makes the decoding
process easier to interpret while also performing better.

Query Composition. Inspired by the recent advance in object detection, we follow DAB-DETRLiu
et al. (2022) to introduce the positional query(embedding) into the decoding process. For clarity, we
refer to the original query embedding in conventional decoder as content embedding, denoted as cq .
In self-attention(Shown in Figure-2), the query, key, and value embeddings are obtained by

query, key := cq + pq + sq, pq = PE(x, y) value := cq (1)

3
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Figure 2: Decoder structure of NAText.

where cq and sq denote the content embedding and the sequential positional encoding used in con-
ventional decoders respectively. pq denotes the newly introduced positional embedding. (x, y)
denotes character’s center coordinate. PE is the positional encoding function. Following previous
work, we use the sinusoidal function to generate the positional encoding.

Note that in conventional decoder, the query and key for self-attention are calculated by cq + sq .

3.2 DECOUPLED NON-AUTOREGRESSIVE DECODER

The detailed structure of the decoder is shown in Figure-2. In cross attention, the query, key, and
value embeddings are defined by

query := CAT(cq, pq) key := CAT(X,Xp) value := X (2)

where CAT is the concatenation operation. X denotes the encoded image features. Xp denotes the
per-pixel positional encoding of X . The encoding function of pq and Xp is the same.

Note that in conventional decoder, the query for cross attention contains only cq . The key is obtained
by X +Xp.

Based on the query design, the cross attention is decomposed into content attention and spatial
attention. Given the query q, k, v, the cross attention of decoder can be formulated as:

Attention(q, k, v) = softmax(
qkT√
dk

v), (3)

where the dk is the channel dimension, and the attention part of qkT can be decomposed into the two
dot-products of content embeddings and positional embeddings respectively cTq X + pTq Xp. Thus,
the cross attention can be viewed as the feature aggregation process influenced by both the content
information and spatial information.

Coordinate Regression. Unlike the traditional text recognition model, we design the decoder output
to include both character categorization and coordinate regression. The character’s coordinate is
regressed via an iterative style. Given the coordinate prediction from previous decoder layer (x′, y′),
the current coordinate prediction is calculated by

(x, y) = σ(FFN(f) + σ−1(x′, y′)), (4)

where σ is the sigmoid function used to normalize the coordinates to range (0,1) and σ−1 is the
reverse sigmoid function. FFN aims to regress the relative offset from the decoder embedding f .

3.3 PROGRESSIVE SAMPLED LEARNING

In this part, we start by comparing the different probability models between autoregressive and non-
autoregressive methods. It partially explains the reason for the non-autoregressive model’s inferior
performance. Then, we introduce the progressive learning strategy for non-autoregressive models.
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Assumptions behind autoregressive and Non-autoregressive models. The text recognition can be
formally defined as a sequence generation problem: given the source features X extracted from the
image, to generate the target character sequence Y = {y1, y2, ..., yT } according to the conditional
probability P (Y |X; θ), where θ is the parameter set of the model. For autoregressive models, the
conditional probability is factorized to maximize the following likelihood:

Lrec = logP (Y |X; θ) =

T∑
t=1

log p(yt|y < t,X; θ), (5)

where y < t is the short for {y1, ..., yt−1}. The autoregressive factorization adopts the assumption
of an uni-directional inter-dependency between characters where each token is conditioned by the
previous token sequence.

For non-autoregressive models, each character is assumed to be independent for parallel decoding.
The independent factorization is written as

Lnrec =

T∑
t=1

logP (yt|X; θ). (6)

The autoregressive factorization in Eq-5 and non-autoregressive factorization in Eq-6 both serve as
the approximation to the conditional probability P (Y |X; θ). As the independent assumption does
not hold in general, the corresponding factorization deviates further from the real conditional prob-
ability P (Y |X; θ). So non-autoregressive models trained under such biased objective gets inferior
performance.

Rectified Learning Objective. Based on the above analysis of the two factorizations Eq-5, Eq-6, we
argue that the independent assumption should be abandoned and more suitable factorization needs to
be designed to better fit the real optimization objective. In our design, the character-wise dependency
is also encouraged. Different from the autoregressive factorization, we encourage the model to learn
dependency from any other characters in the sequence, not just the previous characters. Specifically,
we design the following factorization:

LPM =
∑

yt /∈PS(Y,Ŷ ),

log p(yt|PS(Y, Ŷ ), X; θ), (7)

where Y is the ground truth sequence and Ŷ is the predicted sequence. PS(Y, Ŷ ) denotes the
sampling operation based on the ground truth and predicted sequence. The sampled result is a subset
of tokens of Y that will be directly replaced with the corresponding character embedding, serving
as the prior knowledge input to the decoding process. For example, given Y = {y1, y2, y3, y4, y5}
and PS(Y ) = {y2, y3}, the input queries corresponding to {y2, y3} will be replaced by their target
character embeddings, which are obtained from the softmax embedding matrix. The sampled tokens
will not be considered during the loss calculation. Only the remaining {y1, y4, y5} will contribute
to the final loss. In this way, the learning objective is to learn a refinement model θ that can predict
the remaining tokens given the ground truth of the sampled tokens and source image features X .

Progressive sampling. Following the designed factorization in Eq-7, we find that the naive random
sampling even leads to worse performance. The reason is twofold. First, as most characters are
easy samples, the training hardly focuses on the informative samples. Such scheme is inefficient
and leads to low performance. Second, the model is trained and tested under different conditions.
During training, the model is always encouraged to predict with the help of extra knowledge while
during testing, there is not. In other words, the model is tested in a more difficult condition than
training. Therefore, we design progressive sampling scheme in which the characters are sampled
based on their predicted confidence. Specifically, given the predicted sequence Ŷ , the ground truth
sequence Y and the confidence C = {c1, c2, ..., cT } corresponding to Ŷ , we first determine the
sampling number by N = λ ·

∑T
t=1(ct < τ), where τ is the confidence threshold and λ is the

hyper-parameter controlling the sampling ratio. Then the top-N confident characters are sampled as
the prior knowledge, forcing the network to learn the remaining hard samples.

The designed progressive sampling can well solve the above problems. First, the remaining char-
acters are unconfident or even incorrect predictions. They are more informative for the training
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process. Second, during training, as the overall predictions become more and more confident, the
sampling number will gradually reduce. At the beginning phase of training, the model is encour-
aged to learn under extra knowledge. While at the end phase, the model is forced to learn to predict
in parallel. This is in accord with our expectations for progressive learning, by which the learning
difficulty gradually increases.

3.4 OPTIMIZATION OBJECTIVE

We further design a two-stage decoding scheme to simplify the progressive sampled learning. The
extra bonus is that the first stage decoding will also bring performance improvement.

To get the characters’ predicted confidence for progressive sampling, the direct thought is a two-pass
decoding manner. In the first pass, the confidence is generated. In the second pass, the progressive
sampling is applied. We argue that this way is tedious and unnecessary. In our two-stage decoding
scheme, we directly use the encoder network to make a coarse sequence prediction, which serves as
the predicted confidence for the progressive sampling. The coarse prediction can also serve as the
prior knowledge of the decoding process. The pipeline of the two-stage proceeds as follows, given
the image, features output from the encoder X , and the target sequence Y , we first use a prediction
head FFN to get the per-pixel classification S = FFN(X). Then we apply the connectionist temporal
classification(CTC) loss as the supervision between the predicted logits S and target Y .

Lenc = CTCLoss(S, Y ). (8)
The predicted sequence is obtained via evaluating the result of argmax(S). In this way, the encoder
output is capable of making coarse predictions. After we get the coarse sequence prediction Ŷ ′, we
take the corresponding character embedding {h1, h2, ..., hT ′} from the decoder softmax matrix to
substitute the content part of the initial query. Here, T ′ denotes the prediction length of the coarse
sequence.

Using the per-pixel classification S, we can also get the coarse normalized character coordinate for
each predicted token. The coordinate is used to generate the initial positional embedding of the
query. Finally, using Eq-2, we combine the two parts to get the initial query proposals. Considering
that the coarse-predicted sequence length T ′ may be incorrect, the number of queries of the decoder
remains unchanged. We only use the proposals to replace the first T ′ queries.

The training objective includes the CTC loss applied to the encoder output and the character classifi-
cation and regression loss applied to decoder output. We use the cross entropy loss for classification
and the L1 loss for regression. For decoder, the loss is formulated as

Ldec =
1

L

L∑
l=1

T∑
t=1

(log p̂l(yt) + 1(yt ̸= [EOS])Lreg (ĉlt, ct)) , (9)

where p̂l(yt) denotes the predicted probability corresponding to ground truth token yt by the l-
th decoder layer. ĉlt and ct represents the l-th predicted and ground truth character coordinates,
respectively. They are both normalized by the image scale. We note that the character coordinate is
not always annotated. Usually, the synthetic datasets contain this annotation, while the real dataset
does not. Thus, the regression loss is only applied when the annotation is available. The final loss is
the weighted sum of the Eq-8 and Eq-9.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Structure We follow SATRNLee et al. (2020b) to build the basic model structure. Specifically, the
number of hidden units for self-attention layers is 512. The numbers of self-attention layers in the
encoder and decoder are Ne = 12 and Nd = 6 respectively. We set the number of classes to 91,
including 10 digits, 52 case-sensitive letters, 28 punctuation characters, and an < EOS > token.
Specially, similar to a left-to-right autoregressive decoder, < EOS > token is viewed as the end of
the sequence, so there is no need to predict the sequence length in advance.

Optimization. All experiments are conducted on servers with 8 NVIDIA Tesla A100 GPUs. For
fair comparison, all models are trained from scratch using Adam optimizer. The whole training
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Table 1: Accuracy comparison with other methods. Note that ABINet-LV-NL refers to ABINet-LV
without language model.

Decoder Type Method Regular Text Irregular Text
III5K SVT IC13 IC15 SVTP CT80 Avg

AR

SPDNChen et al. (2022) 94.1 89.9 91.7 77.9 79.8 81.6 85.8
DANWang et al. (2020) 94.3 89.2 93.9 74.5 80.0 84.4 86.1

RobustScannerYue et al. (2020) 95.3 88.1 94.8 79.5 77.1 90.3 88.6
SGBANetZhong et al. (2022) 95.4 89.1 95.1 78.4 83.1 83.1 88.7

SARLi et al. (2019) 95.0 91.2 94.0 78.8 86.4 89.6 89.2
TREFEZhang et al. (2022) 94.8 91.3 95.4 84.0 84.5 - -

SATRN(Reproduced)Lee et al. (2020a) 95.9 93.4 96.4 83.1 88.6 89.2 91.4
PARSeqABautista & Atienza (2022) 97.0 93.6 96.2 82.9 88.9 92.2 91.9

NAR+LM ABINet-LV(Reproduced)Fang et al. (2021b) 95.3 93.4 95.0 79.1 87.1 89.7 89.8
SRNYu et al. (2020b) 94.8 91.5 95.5 82.7 85.1 87.8 90.2

NAR

CRNNShi et al. (2016) 78.2 80.8 86.7 - - - -
ViTSTRAtienza (2021) 88.4 87.7 92.4 72.6 81.8 81.3 83.8

SRN w/o GSTMYu et al. (2020b) 92.3 88.1 93.2 77.5 79.4 84.7 86.7
SATRN-NAR 93.8 90.0 95.4 78.8 86.1 84.5 88.6

ABINet-LV-NLFang et al. (2021b) 94.6 90.4 94.9 81.7 84.2 86.5 89.6
PARSeqNBautista & Atienza (2022) 95.7 92.6 95.5 81.4 87.9 91.4 90.7

NAText W/O PO 95.6 93.0 96.1 82.1 86.5 91.3 90.9
NAText 95.8 93.4 96.3 82.4 86.7 90.3 91.1

process contains 6 epochs, and the initial learning rate is 3 × 10−4 while decreases to 3 × 10−5 at
the 3rd epoch and 3× 10−6 at the 5rd epoch. The batch size is set to 256.

4.2 DATASETS

We use two publicly available synthetic datasets, i.e., Mjsynth(MJ)Jaderberg et al. (2014), and Syn-
thText(ST)Gupta et al. (2016) as training datasets and test on six standard benchmarks: IIIT 5k-word
(IIIT5K) Mishra et al. (2012), CUTE80 (CUTE) Risnumawan et al. (2014), Street View Text (SVT)
Wang et al. (2011), SVT-Perspective (SVTP)Phan et al. (2013), ICDAR 2013 (IC13) Karatzas et al.
(2013), and ICDAR 2015 (IC15) Karatzas et al. (2015).

IIIT5K is a large natural scene dataset collected from Google, containing 5000. CUTE contains
288 cropped high-resolution images, many of which are curved or irregular text images. SVT is
a Google Street View dataset, which consists of 647 patches for testing. SVTP consists of 639
patches, cropped from side view snapshots in Google Street View. In SVTP, many patches encounter
severe perspective distortions. IC13 contains 848 patches for training and 1095 for evaluation. IC15
consists of incidental scene text images under arbitrary angles. Therefore, most word patches in this
dataset are irregular (oriented, perspective, or even curved).

4.3 PERFORMANCE COMPARISON

Comparison to State of the Art. We compare NAText to three types of methods including the
autoregressive models(AR), the pure non-autoregressive models(NAR) and the language model en-
hanced non-autoregressive models(NAR+LM). The results are shown in Table-1. For the data pro-
cessing, we strictly follow the setup of PARSeqABautista & Atienza (2022). Specifically, images are
resized to 32× 128 with data augmentation such as geometric transformation, image quality deteri-
oration and color jitter, etc. We reproduce SATRN and its non-autoregressive version to serve as the
baseline methods. It is seen that the NAR version of SATRN performs 2.8% lower than its AR ver-
sion. For fair comparison, we also report the result of NAText without positional supervision(NAText
W/O PO) in Table-1. The proposed NAText performs best among all the current non-autoregressive
models. The comparison to autoregressive models and language model enhanced non-autoregressive
based models is also challenging. Specifically, compared with its baseline method, NAText increases
the overall performance by 2.5%. Besides, it also outperforms some language model based methods.
These comparison results validate the effectiveness of NAText.
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Speed Comparison. For fair speed and accuracy comparison, we re-implement the SATRN and
its non-autoregressive version . The speed and accuracy comparison is shown in Table-6. NAText
almost shares a similar structure with the naive non-autoregressive version. They are almost three
times faster than the autoregressive model on average. But the SATRN-NAR suffers a significant
performance drop on both regular and irregular text. NAText nearly matches the SATRN with litter
speed decrease compared with SATRN-NAR.

Contribution of Each Part. We experiment to figure out the contribution of each part, namely, PO
for positional query design, PS for progressive sampling, and TS for the two-stage scheme. Note that
for the setting of PS, as we can not get the confidence from the first stage predictor, the confidence
is generated via the decoder. The decoder runs twice during training. The results are shown in
Table-3. We can see that each part will effectively improve the baseline performance. While when
all modules are applied, the whole performance will further be increased. Specifically, NAText will
improve by 1.6% in the regular text and 2.8% in the irregular text.

Comparison under Different Text Length. In Figure-3a, we compare NAText with the autore-
gressive and non-autoregressive baseline under different text length. We can see that the SATRN-
NAR performs especially poorly for the long text. It is lower by 3% than its AR version when
the text length is greater than 10. Our NAText performs better than SATRN for the short text and
medium-length text. Although the performance for long text is still inferior to the autoregressive
model(-1.3%), the performance gap under such setting has been improved by 1.7%.

Table 2: Comparison between fixed-
ratio sampling and progressive sam-
pling.

ratio Accuracy
Regular Iregular

Fix
ratio

0.00 93.3 80.5
0.25 93.9 80.4
0.50 93.6 80.4
0.75 93.5 80.3
1.00 93.3 79.9

Progressive - 94.0 81.3

Table 3: Ablation on the effect of each module.
PO is for positional query design. PS is for pro-
gressive sampling. TS is for two-stage training
and testing.

Module Accuracy
PO PS TS Regular Irregular

93.3 80.5
✓ 93.8 81.3

✓ 94.0 81.3
✓ 93.9 81.8

✓ ✓ ✓ 94.9 83.3

4.4 ABLATION STUDY

For fair comparison, no augmentation is used for experiments in this part.

Query Design. We experiment with different designs of queries to demonstrate the effectiveness of
NAText. The query design mainly influences the cross attention in the decoding process. NAText
uses the concatenation of content embedding and positional embedding to form the query embed-
ding. We denote it as CAT(cq, pq). Note that the positional embedding for NAText has a clear
physical explanation. It is the encoding of the characters’ 2D coordinate. Such positional embed-
ding has never been adopted in the conventional recognizer. We choose several types of designs
for comparison. (1) cq:The query contains only the content part. The cross attention is obtained
by computing the dot product of the projection of query content embedding cq and image features
X . (2) pq: the query contains only the positional part. The cross attention is obtained by com-
puting the dot product of query positional embedding pq and image positional embedding Xp. (3)
ADD(cq, pq): The query is the summation of the content embedding and the positional embedding.
The conventional recognizer usually uses the cq-only for the query. It does not mean that they di-
rectly drop the positional information. Rather, the content query will still be added by a sinusoidal
encoding that represents the sequential order. The results are shown in Table-4. We can see that
only using the positional embedding performs the worst, both in the regular and irregular text. The
conventional style cq-only will be further improved when the positional information is introduced.
And we find that the concatenation performs better than the add operation. It is consistent with the
conclusion in previous workLiu et al. (2022).

To further understand the influence of content embedding and positional embedding, we conduct
a quality experiment by visualizing the attention plot of each component. It is shown in Figure-
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Figure 3: (a)Accuracy of different lengths on test set.(b)Ablation on the two-stage confidence thresh-
old on regular and irregular text. Conf is short for confidence threshold. The influence on both train
and test phase are reported.
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Figure 4: Quality visualization of attention plot. For our query design, the final attention(3-rd
coloum) is the composition of the position part(1-st coloum) and content part(2-nd coloum). For
conventional query design. the attention(4-th coloum) only contains the content part.

4. We find the effect of the two parts has much difference. The content embedding will attend to
many of the neighboring characters while the positional embedding will strictly focus on the current
character. Thus, with the help of the positional part, the final attention of NAText is more accurate
than the naive non-autoregressive model.

Influence of the Positional Supervision. We have validated the effectiveness of the query design.
While we have no idea whether the contribution comes from the query design or the positional
supervision. So in this experiment, we explore the influence of positional supervision on different
query compositions. The results are shown in Table-5. We can see that the positional supervision
can always improve the performance no matter the query composition. However, for conventional
query design that only contains the content part. The improvement is very small. While adding
the positional part will further improve the performance by a large margin, +0.4% in regular text
and +0.5% in irregular text. We also find that even when no positional supervision is applied, our
query design also beat the baseline method. It even surpasses the conventional query design with
positional supervision.

Sampling matters We explore other alternative sampling strategies for progressive learning(Shown
in Table-7. Including the default sampling strategy, we compare five sampling strategies. (1) ct:
Each character is sampled under the probability proportional to its predicted confidence ct. (2) 1−
ct: Each character is sampled under the probability proportional to its inverted predicted confidence
1− ct. (3) T-N: Top-N confidently predicted characters are sampled for replacement. (4) B-N: Top-
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Table 4: Ablation on the query design: cq for
content embedding only. It is the way that con-
ventional decoder uses. pq for the positional em-
bedding only. ADD(cq, pq) for adding two parts.
CAT(cq, pq) for concatenating two parts.

Design Accuracy
Regular Irregular

cq 93.3 80.5
pq 93.3 80.5

ADD(cq, pq) 93.5 81.3
CAT(cq, pq) 93.8 81.3

Table 5: Influence of the positional su-
pervision

content position position
supervison

Accuracy
Regular Irregular

✓ 93.3 80.5
✓ ✓ 93.4 80.8
✓ ✓ 93.6 81.0
✓ ✓ ✓ 93.8 81.3

Table 6: Speed Comparision

Method Accuracy FPSRegular Irregular
SATRN 95.0 83.9 188

SATRN-NAR 93.3 80.5 551
NAText 94.9 83.3 543

Table 7: Different sampling strategies.

SATRN
-NAR

rand
(GLM) ct 1 - ct

T-N
(ours) B-N

Regular 93.3 94.0 93.6 93.7 94.0 93.4

Irregular 80.5 80.1 81.0 80.4 81.3 79.9

N un-confident predicted characters are sampled for replacement. (5) Rand: N random characters
are sampled for replacement. It is the way that GLMQian et al. (2021) adopts. Intuitively, the ct
and T-N encourage the well-learned characters to be replaced, making the training concentrate more
on the hard cases. While the 1 − ct and B-N are the opposite. It is seen that for regular text, all
sampling methods can improve performance. While for irregular, only ct and T-N that follow the
idea of hard sample mining can improve the performance. The others all perform even worse than
the baseline. In Table-2, we further compare the fixed-ratio sampling strategy and the progressive
sampling strategy. The fixed-ratio strategy means the sampling number is always proportional to the
text length. We can see that without progressive strategy, the performance is damaged, especially
for irregular text.

Why Two Stage Helps. As shown in Table-3, the two-stage training and testing scheme can effec-
tively improve the baseline by 0.6% in regular text and 1.3% in two-stage text. While the reason
behind the improvement is not fully understood. We experiment with different confidence thresholds
for the two-stage scheme. The results are shown in Figure-3b. For results of train, it is obtained by
varying the thresh and training the network from scratch. For results of test, we use the best trained
network to evaluate various thresholds. It is seen that the confidence has different influence on the
train and test phase. For training, the low threshold will lead to better performance. Practically,
we set threshold to zero. It means that all predictions from the first stage are used to initialize the
query no matter the value of confidence. For testing, although the trend is similar, the influence is
relatively small. Even when setting the threshold to 1.0, by which the first stage will never generate
proposals, the performance is still better than the baseline. Based on the comparison between train
and test, we conclude that the two-stage works in two aspects. First, the extra supervision on the first
stage encoder benefits the recognizer, especially for irregular text. Second, the query initialization
also helps the decoder to perform better.

5 CONCLUSION

In this paper, we propose a simple and powerful non-autoregressive text recognizer NAText. It
elegantly solves the problem that non-autoregressive model often performs inferior to its counterpart.
Specifically, We rectify the basic assumption and design a progressive sampled learning to help non-
autoregressive model to perform better. We also introduce positional encoding that has clear physical
meaning for better visual perception. Experiments on various datasets verify the effectiveness of our
method.
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A APPENDIX

A.1 TRADE-OFF BETWEEN EFFICIENCY AND ACCURACY

In this part, we present the speed and accuracy of NAText under different encoder and decoder
layers. The results are shown in Table-8.
Table 8: Results for accuracy and speed under different number of layers. Enc and Dec denotes the
number of encoder layers and decoder layers, respectively. The accuracy is the weighted average of
the 6 scene text recognition benchmarks.

Enc Dec Acc Time(ms)
12 1 90.6 17
12 2 90.6 18
12 3 90.9 19
12 4 90.9 21
12 5 91.0 22
12 6 91.1 23
10 6 91.0 21
8 6 90.8 19
6 6 90.7 17
4 6 89.4 15
2 6 88.4 13
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A.2 FURTHER COMPARISON WITH PEER METHODS

To further validate the effectiveness of NAText, we design VIT-NAText as a light weight fully
transformer-based recognizer. It uses a 12-layer VIT as the encoder. The speed and accuracy com-
parison is presented in Table-9. Note that for fair comparison, we reproduce ParseqN using the
identical experimental conditions with NAText. It gets 90.0, lower than its published result. We
suspect that it may have something to do with the hardware conditions. We also find that the author
of ParseqN has explained the phenomenon of performance fluctuation in their GitHub issues.

Table 9: Further comparison on speed and accuracy. The accuracy is the weighted average of the 6
scene text recognition benchmarks.

Method Acc Time(ms)
ParseqA 91.9 37
SATRN 90.6 126
ParseqN 90.7 11

ParseqN(Reproduced) 90.0 11
ABINet 89.8 27
NAText 91.1 23

VIT-NAText 90.8 13

A.3 THRESHOLD FOR PROGRESSIVE LEARNING

In Table-10, we explore the influence of the confidence threshold for progressive learning. The
threshold affects the number of samples to be replaced. The larger threshold means more sampling
number. When setting threshold to 0, no token is sampled (no character will has lower confidence
than 0), which is the baseline method. When setting threshold to 1, it means the number of sampling
tokens is always equal to the character length. We can see that the two extremes both get poor
performance. In default, we set the confidence threshold to 0.5.

Table 10: Threshold for Progressive Learning

Conf 0.0 0.1 0.3 0.5 0.7 0.9 1.0
Acc 88.2 88.9 88.5 89.0 88.5 88.8 88.2

A.4 COORDINATE REGRESSION

Incorrect predictions

Correct predictions

Figure 5: Qualitative results for characters’ coor-
dinates regression.

Most of the regressed coordinates are fairly ac-
curate, though the training of coordinate regres-
sion is applied on part of the training dataset.
For the qualitative analysis, some samples are
selected to visualize the coordinate regression,
including both correct and incorrect samples. It
is shown in Figure-5. We find that the incor-
rect predictions are more likely to appear in sit-
uations like dense located texts, artistic-styled
texts and those with complicated background.
We take some representative examples for vi-
sualization. They are also challenging cases for
scene text recognition.

A.5 ABLATION
OF SUPERVISION ON FIRST STAGE

In this part, we further explore into the influ-
ence of the supervision applied to the encoder
output. In default, we use CTCLoss as the first
stage supervision. We change the CTCLoss to cross entropy loss and report the results in Table-
11. The CTCLoss will implicitly locate each character in the feature map. While the cross entropy
loss simply takes the first K tokens for supervision, where K equals to the word length. We find
that the performance is still improved even with cross entropy loss as the supervision. We further
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compare the attention map of the encoder output for each character. The quality result is shown in
Figure-6. We can see that the attention map with CTCLoss is more accurate and concentrate than
the other two. The phenomenon suggests the improvement of the first stage supervision comes from
two folds. The first is that the supervision helps the representation of different characters to be more
discriminative. The second is that the features of each token in the encoded feature map become
more concentrated.

Table 11: Ablation on the supervision for the first stage. CTC is for CTCLoss. CE is for cross
entropy loss.

Accuracy
Regular Irregular

CTC 0.942 0.816
CE 0.937 0.815

Baseline 0.933 0.805

Figure 6: Quality plot of the attention map from the encoder output. Each row represents the at-
tention of each character. 1-st column shows the attention from CTCLoss. 2-nd column shows the
attention for the cross entropy loss. 3-rd column shows the attention for the baseline method.
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