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Abstract
Ternary LLMs offer significantly better perfor-
mance for their size (measured in bits) than
the models trained and deployed in FP16/BF16.
Given the widespread usage of quantization be-
fore deployment and advancements in Post Train-
ing Quantization of LLMs, a pivotal question
arises: do ternary LLMs indeed provide any
discernible benefits? To address this, we first
build an open family of pre-trained ternary Large
Language Models (TriLM). Additionally, we
include their counterparts pre-trained in FP16
(FloatLM) and quantized versions of FloatLM
(QuantLM) with parameters across almost two
orders of magnitude - from 99M to 3.9B pa-
rameters. We demonstrate that TriLMs with
3B+ parameters start to offer competitive per-
formance compared to FloatLMs with the same
parameter count, while providing significantly
better performance for their size. TriLMs also
outperform quantized models, with TriLM 3.9B
surpassing the larger QuantLM-3bit 3.9B. Fur-
thermore, across knowledge-based benchmarks,
TriLM maintains a superiority for its size. To ad-
vance research on Ternary LMs, we open source
over 500+ checkpoints across the model families
at https://github.com/NolanoOrg/SpectraSuite.

1. Introduction
LLMs are notoriously expensive and hard to deploy due to
their huge sizes exceeding the memory capacity of hardware
accelerators like GPUs, with the largest open source models
like Grok-1 314B 1 and LLaMa 3 70B (AI@Meta, 2024)
exceeding the DRAM size of data center GPUs (A100s,
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Figure 1. Commonsense & Reasoning score avg. across 6 bench-
marks for ternary TriLM, FP16 FloatLM and quantized QuantLM
models. At 3B+ scales, TriLMs offers significantly better perfor-
mance for its size (number of bits) than FloatLM and QuantLM.

H100s) and consumer-grade GPUs (RTX 4090s) respec-
tively, even after 4-bit quantization. Moreover, the auto-
regressive generation phase of LLM inference is usually
memory bound (Kim et al., 2024), making the number of
tokens generated per second directly proportional to the bits
(i.e. model size) that need to be transferred across the mem-
ory hierarchy. A reduction in model size (bits) can directly
improve generation speed, making deployment easier and
more economically feasible.

Recently, Ma et al. (2024) proposed BitNet b1.58 LLM
which represents each parameter in its weight matrices in
one of three ternary states -1, 0, 1 along with a single ad-
ditional floating point scale for the entire matrix. At 3B+
parameter scale, the performance gap between BitNets and
FP16 LLMs of similar parameter count narrows. BitNets,
with 1.58 bits per parameter can be upto 10x smaller than
FP16 LLMs of similar parameter count. However, with
the recent progress in Post Training Quantization (Dettmers
et al., 2022; Lin et al., 2024; Egiazarian et al., 2024) and fast
inference kernels for quantized LLMs (Frantar and Alistarh,
2024), deploying quantized FP16 LLMs have become a
prevalent practice. It is unclear how well ternary LLMs fare
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against their quantized FP16 counterparts. We study this
problem and observe that Ternary LLMs still offer better
performance for their size than quantized models.

We first build TriLM, a set of Ternary Language Models
based on a modified version of BitNet’s architecture. These
models range from 99M parameters to 3.9B parameters,
each trained for 300B tokens. We complement these models
by training an FP16 LLM with the same parameter counts
for roofline reference and comparison across the two fami-
lies of models. For each FloatLM, we build a corresponding
quantized LLM (QuantLM) using GPTQ (Frantar et al.,
2022), one of the most popular and state-of-the-art methods,
across bit-widths of 3, 4, 6, and 8. We leverage these models
for our analysis and also open source the model weights
to further the research. We establish its peculiar training
dynamics, characterized by a sudden drop at the halfway
point due to its learning schedule. To further research on
better optimization techniques for TriLMs and understand-
ing its training dynamics, we also release 500+ intermediate
checkpoints across the two families of models.

We rigorously evaluate TriLM, FloatLM and QuantLM mod-
els over 10 different benchmarks spanning from common-
sense and reasoning to the model’s knowledge capacity.
TriLMs offer the best performance across reasoning and
commonsense tasks for their size, with the largest model
in the family, TriLM 3.9B, surpassing even FloatLM 2.4B
and remaining competitive with FloatLM 3.9B, despite hav-
ing fewer bits than FloatLM 830M. Across tasks requiring
knowledge capacity, TriLMs still outperform QuantLMs of
comparable sizes, with TriLM 3.9B performing similarly to
a larger QuantLM 4-Bit 2.4B. However, when TriLMs lag
behind in parameter count, TriLM 3.9B offers 10-shot Ex-
act Match performance on TriviaQA only halfway between
FloatLM 1.5B and FloatLM 2.4B.

In this paper, we build an open suite of Ternary Language
Models - TriLM, across 9 sizes ranging from 99M to 3.9B
parameters along with their FloatLM FP16 counterparts and
QuantLM quantized models. We make over 500 checkpoints
of the model weights publicly available to advance research.
These are also the first open family of LLMs optimized
from scratch with effective precision of weights below FP16.
Additionally, We establish the training schedule and corre-
sponding loss curves for TriLMs, demonstrating that they
significantly outperform their same-sized (measured in bits)
FloatLM counterparts on validation loss. Furthermore, we
evaluate the families of models across commonsense and
reasoning benchmarks and establish that at 3B+ parame-
ter scale, TriLMs offers similar performance to QuantLM
4-bit of same parameter count despite being at half size. Fi-
nally, we establish that TriLMs still offer better performance
for its size on Knowledge based tasks than QuantLM (or
FloatLM), although the gains are much lesser as TriLMs do

not perform close to QuantLMs of same parameter count.

2. TriLM, FloatLM and QuantLM
In this section, we outline the preparation of three families
of LLMs for our analysis. We first discuss the architectural
choices and training setup, which are closely based on those
of Pythia (Biderman et al., 2023) and BitNet’s b1.58 (Ma
et al., 2024), to ensure a fair comparison and stable training.
This is followed by a detailed explanation of the optimiza-
tion schedule and training setup for TriLMs. Finally, we
discuss quantization of FloatLM to create QuantLM.

Architecture Both TriLM and FloatLM are LLaMa-
style (Touvron et al., 2023a) autoregressive transformers
(Vaswani et al., 2017) model with RMSNorm (Zhang and
Sennrich, 2019) instead of LayerNorm (Ba et al., 2016),
SwiGLU Gated MLP (Shazeer, 2020) instead of standard
transformer MLP, Rotary Position Embedding (RoPE) (Su
et al., 2021), Multi-Headed Attention and no bias terms. We
show these two architectures in Figure 2.

In FloatLM, the parameters in weight matrix of linear lay-
ers are represented as floating point (FP16/BF16) numbers.
Whereas, in TriLM, these parameters are represented in one
of three possible ternary states {−1, 0, 1} along with a sin-
gle additional floating point number - ‘scale’ for the entire
matrix. For better performance and stable training in FP16,
we follow GPT3’s Pre-Normalization (Brown et al., 2020)
rather than BitNet’s architecture that normalizes before each
linear layer. Thus, normalization is done twice in each trans-
former layer, at the inputs of the two sub-layers - attention
and Gated MLP. The embedding, language model head and
activations are not quantized.

Figure 2. Architecture of TriLM and FloatLM are both based on
the standard LLaMa architecture. All the linear layers in FloatLM
are represented by an FP16 matrix, whereas in TriLM these are
represented via a ternary matrix and a floating point scale.

During training of TriLM, the latent weights are maintained
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in floating point precision to allow accumulation of small up-
dates over multiple iterations. During forward pass, floating
point latent weight weights are ternarized on the fly by com-
puting the absolute mean of the latent weights as the scale
and rounding off to the nearest ternary state. During the
backward pass, a straight through estimator (Bengio et al.,
2013) is used to estimate backward pass on floating point
latent weights. We expand on formal description of these
forward pass, backward pass and inference time equations
in the Appendix (§A.1)
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Figure 3. Training Cross Entropy Loss across steps for the TriLM
family of models. At halfway point (150B tokens) when we lower
the peak learning rate and weight decay, we observe a sudden drop
in training loss.

Training Our optimization schedule for TriLM closely
follows the recommended settings from BitNet (Ma et al.,
2024). It is trained with a two staged linear decay schedul-
ing, where, at the halfway point, the weight decay is reduced
from 0.1 to 10−5 and the peak learning rate is also dropped.
The lower weight decay settings is commonly adopted in
quantization aware training (Liu et al., 2023a; Yuan et al.,
2024) and fully quantized training (Bethge et al., 2018; Le
and Li, 2023) as quantizing to low bit-width already signif-
icant regularization. We train FloatLM with cosine decay
scheduling and 0.1 weight decay, similar to popular LLMs
like Pythia, LLaMa (Touvron et al., 2023a;b) and LLM-360
(Liu et al., 2023b). We list architectural hyperparameters
and learning rates across families of models in the Appendix
(§A.4).

Figure 3 shows the Training loss curves for all the TriLMs
trained. We observe similar scaling as FloatLM models.
However, the training loss in TriLMs, has a sudden drop
at halfway point when the weight decay and peak learning
rate is lowered, beyond which the loss reduces linearly with
iterations, until the final few iterations, when the model
converges.

Quantization We create QuantLM across 3, 4, 6 and 8 bits
by applying the GPTQ (Frantar et al., 2022) Post Training
Quantization on FloatLM across all the weights in the trans-
former layers. We set group size to 128 for the 3 and 4 bits,
leading to 3.25 and 4.25 effective bit per parameter for these
quantization levels. Similar to TriLM, we do not quantize
the embedding, language model head and the activations.
We use symmetric quantization for a fairer comparison.

3. Evaluation
We evaluate the families of LLMs on three aspects - com-
monsense & reasoning tasks, knowledge based tasks and
validation cross entropy loss, all of which are crucial mea-
sures of their downstream performance.

Commonsense and Reasoning We consider 9 different
commonsense and reasoning benchmarks consisting of tasks
from logical reasoning and science question to grounded
and physical commonsense tasks: Arc Easy and Challenge
(Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSWAG
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2019), LAMBADA (Paperno et al., 2016),
SciQ (Welbl et al., 2017), LogiQA (Liu et al., 2021). Figure
1 shows the average performance of the LLMs on first 6 of
these benchmarks (same as those reported in BitNet). When
comparing among QuantLMs and FloatLMs, we observe
that 4-bit is the optimal size among within QuantLMs echo-
ing prior observation (Dettmers and Zettlemoyer, 2023).
However, TriLMs offers much better performance for its
size than even 4-bit QuantLM at billion+ parameter scale. In
fact, at 3.9B parameter scale the performance gap between
TriLM and FloatLM is significantly diminished, despite
former having only 1.58 bit per parameter instead of 16
bits. The trends remain consistent across the remaining
three benchmarks. Readers may refer to Tables 4 and 5 for
detailed benchmarking across all datasets.

Knowledge Several downstream practical uses of LLMs
requires these models to have knowledge about common
subjects and topics. We evaluate the performance of the
LLMs on the TriviaQA benchmark across 0-shot, 1-shot,
3-shot, 5-shot and 10-shot settings. Figure 4 shows the Ex-
act Match performance of the model families in a 10-shot
settings. Compared to commonsense & reasoning bench-
marks, models represented with less number of bits (like
TriLM and QuantLM 4-bit) show lower performance than
FP16 models of same parameter count. However, the perfor-
mance degradation observed in 4-bit quantization are less
that the 2x reduction factor from previous works (Allen-Zhu
and Li, 2024) in toy settings. From the observed scaling
laws, TriLMs still maintains a performance superiority for
its size as TriLM 3.9B reaches performance close to a larger
QuantLM 4-bit 2.4B. However, when measuring relative
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Figure 4. TriviaQA 10-shot performance. From scaling laws, we
observe little gains from TriLM over similar sized 4-bit QuantLMs.

performance for its parameter count, it only manages to rank
halfway between FloatLM 1.5B and 2.4B. This shows that
low-bitwidth LLMs have lesser knowledge capacity.

Our observations remain consistent across few shot set-
tings. At 0-shot settings, TriLMs performs much worse,
with TriLM 3.9B being outperformed by a model half its
size - QuantLM 4-bit 830M. Table 6 shows these results.
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Figure 5. Final validation cross entropy loss for TriLM and
FloatLM across size (in bits). TriLM offers significantly lower
validation loss than similarly size FloatLMs.

Validation Loss Though the task of next word predic-
tion is noisy, cross entropy loss is an good proxy for intel-
ligence as it measures compression which correlate with
intelligence (Huang et al., 2024). Figure 5 shows the final
validation cross entropy loss across TriLM and FloatLM
family of models. Here too, we observe similar character-

istics as knowledge based tasks - where TriLM offers best
performance for its size, but lags behind FloatLMs of same
parameter count. Specifically TriLM 3.9B has better loss
than FloatlM 1.5B with double its size, but slightly falls
behind than FloatLM 2.4B.

4. Related Work
The increasing size of Large Language Models (LLMs)
poses deployment challenges and raises environmental con-
cerns. One way to tackle this is through post-training quanti-
zation. These techniques are discussed in Xiao et al. (2024);
Chee et al. (2024); ?. They offer a solution by creating
low-bit models for inference, reducing both memory and
computational requirements. This led to the adoption of
4-bit variants over previously favored 16-bit models. How-
ever, recent research on 1-bit and 1.5-bit (ternary) model
architectures, exemplified by Wang et al. (2023); Ma et al.
(2024), presents a promising avenue for cost reduction in
LLMs while maintaining effectiveness.

In parallel, initiatives such as Pythia (Biderman et al., 2023)
and LLM360 (Liu et al., 2023b) have emerged within the
LLM development community, advocating for transparency
and collaborative research. Pythia provides a suite of meticu-
lously trained LLMs with a wide range of parameters, offer-
ing access to numerous checkpoints and data reconstruction
tools for comprehensive exploration of LLM dynamics. On
the other hand, LLM360 pushes AI research democratiza-
tion by openly sharing intermediate checkpoints, training
data, metrics, and source code.

5. Conclusion
We introduce TriLM, an open family of ternary LLMs along
with corresponding FP16 LLMs - FloatLM and quantized
QuantLM models, all pretrained for 300B tokens. We
demonstrate that, at 3.9B parameter scale, TriLMs offers
competitive performance across commonsense and reason-
ing tasks to QuantLM and FloatLM of same parameter
count, despite have less size (bits) than FloatLM 830M
model. We establish that TriLMs maintain superiority in
knowledge-capacity, even though the relative gains in per-
formance to same sized QuantLMs reduces. We open source
500+ checkpoints across these models, to enable research
on understanding and improving ternary LLMs.
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A. Architecture and Training Details
A.1. Forward Pass, Backward Pass and Inference

Equations

Table 1 show the equations across TriLM vs FloatLM for
forward pass, backward pass and inference.

Let input be X ∈ Rb×n for a linear layer with FP16 weight
matrix W ∈ Rm×n and Y ∈ Rb×m be the output. The
same matrix W is also used to denote latent weights in
TriLMs during training.

For ternarized layers in TriLMs, we also have a scalar scale
γ ∈ R, matrix with ternarized states Ŵ ∈ {−1, 0, 1}n×m

and ternarized matrix W̃ ∈ Rn×m. We set ϵ = 1e− 5.

A.2. Data and Tokenizer

Due to lack of availability of Pile 300B (Gao et al., 2020)
used in Pythia or BitNet’s data subset, we opted to use a
300B token sample of deduplicated Slim Pajama dataset2.
We sample from each subset with the probability propor-
tional to it’s size. We use the GPT-NeoX 20B (Black et al.,
2022) tokenizer following Pythia. For speeding up training,
we round embedding rounding of to nearest multiple of 128
times the model parallel size.

For creating QuantLM, we use a subset of the Slimpajama-
627B dataset, comprising 512 samples of sequence length
of 2048.

A.3. PreTraining Setup

We scale using 2D-parallelism with Megatron-style shard-
ing (Shoeybi et al., 2019) and use ZeRO stage 2 Deep-

2We also make this subset public.
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Type Forward Pass Backward Pass Inference

FloatLM Y = XWT
∂L
∂X = ∂L

∂Y W
∂L
∂W = ∂L

∂Y

T
X

Y = XWT

TriLM

γ = ϵ+ 1
nm

∑n
i=1

∑m
j=1 |Wij |

Ŵij = round(min(
max(Wij

γ ,−1), 1))

W̃ij = γŴij

Y = XW̃T

∂L
∂X = ∂L

∂Y W̃
∂L
∂W = ∂L

∂Y

T
X

Compute once and cache Ŵ and γ

W̃ij = γŴij

Y = XW̃T

Table 1. Equations of Linear Layer in TriLMs and FloatLMs.

Dataset Size (Tokens)
Arxiv 13B
Book 13B
C4 80B
Common Crawl 156B
GitHub 16B
Stack Exchange 10B
Wikipedia 12B
Total 300B

Table 2. 300B Subset of Slim Pajama

speed (Rasley et al., 2020) for ZeRO (Rajbhandari et al.,
2020). Our implementation was based on GPT NeoX Code-
base (Andonian et al., 2023). We use Adam (Kingma and
Ba, 2017) for optimization. We train on nodes with with
IBM Power9 PC CPUs and 6x16GB V100. Due to lack
of BFloat16 support in V100, we train both TriLM and
FloatLM in FP16 using Mixed Precision Training and Dy-
namic Loss Scaling. We extensively use Huggingface (Wolf
et al., 2020) and Wandb (Biewald, 2020) for handling the
checkpoints and experiment tracking.

A.4. Hyperparameters

Table 3 shows the hyperparameters for TriLM and
FloatLM’s transformer architecture and their learning rate.
We set Adam β are set to (0.9, 0.95) for both families of
models and all the reported runs are trained to 2048 se-
quence length. FloatLM and TriLM are respectively trained
with batch sizes of 2M and 1M tokens respectively.

Known Implementation Artifacts

• Because we train in FP16, we may expect some ar-
tifacts from training. However, we do not expect a
reasonable performance difference from mixed pre-
cision training with BF16 or even FP32 because the
lowest values of loss scales observed during any of the
runs were much higher than 1. Moreover, in BitNet
b1.58 (Section 3), they compared models to their repro-
duced FP16 LLaMA LLM. Thus, our setting closely
resemble theirs.

• Similar to BitNet (Wang et al., 2023), our models
have artifacts from model parallelism. Specifically,
computing the scale γ across all the entire weight ma-
trix - which has been sharded across multiple devices
requires a costly communication overhead from all-
reduce. In our implementation, we compute these
scales over the portion of weight matrix local to each
device. Thus, for inference over TriLM models, scales
should be independently computed over each model
parallel group. It should be noted that this negligible
change on effective on bits/parameter of < 10−5, even
at highest model parallelism of 6 for our largest model.

B. Benchmark Details
We consider standard benchmarks for testing the two fami-
lies of models across Knowledge, CommonSense and Rea-
soning. We leverage the LM Evaluation Harness (Gao et al.,
2023) to run our experiments for TriLMs, FloatLMs and
different levels of quantization of FloatLMs. We also add
Pythia suite of models (70M to 2.8B params) and BitNet
b.158 performance scores from their paper for compari-
son . For each task of the commonsense and reasoning
benchmark, we report the zero-shot accuracy (both length
normalized and unnormalized) or perplexity score wherever
applicable. The Pythia suite of models are based on the stan-
dard GPT2 architecture with rotary positional embedding
and GPT-NeoX 20B tokenizer. These were trained on 300B
tokens of non-deduplicated Pile dataset with a batch size of
2M. Pythia models. We use 70M, 160M, 410M, 1B, 1.4B,
and 2.8B Pythia models in our experiments in FP16 preci-
sion. We did not use Pythia v0 due to non-uniformity in
batch size and learning rate schedule across the models. For
a fair comparison with TriLM and FloatLM, we compare
the models with approximately same number of bits.

B.1. Commonsense and Reasoning

We report commonsense and reasoning benchmark scores
across 6 benchmarks previously considered by BitNet b.158
in Table 4 and rest in Table 5. Each is considered in a
zero shot setting. Following are the details of each of the
benchmark considered:
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Params Hidden GLU Heads Layers FloatLM LR TriLM LR
99.74M (99M) 512 1280 8 16 4.0 ∗ 10−4 2.4 ∗ 10−3 → 1.5 ∗ 10−3

190.0M (190M) 768 2048 12 16 4.0 ∗ 10−4 2.4 ∗ 10−3 → 1.5 ∗ 10−3

392.4M (390M) 1024 2560 16 24 3.0 ∗ 10−4 1.8 ∗ 10−3 → 1.2 ∗ 10−3

569.2M (560M) 1280 3072 20 24 2.8 ∗ 10−4 1.6 ∗ 10−3 → 1.1 ∗ 10−3

834.0M (830M) 1536 4096 24 24 2.5 ∗ 10−4 1.5 ∗ 10−3 → 1.0 ∗ 10−3

1.149B (1.1B) 1792 5120 28 24 2.2 ∗ 10−4 1.3 ∗ 10−3 → 9.0 ∗ 10−4

1.515B (1.5B) 2048 6144 32 24 2.0 ∗ 10−4 1.2 ∗ 10−3 → 8.0 ∗ 10−4

2.461B (2.4B) 2304 7680 36 30 2.0 ∗ 10−4 1.2 ∗ 10−3 → 8.0 ∗ 10−4

3.989B (3.9B) 3072 9216 24 30 1.5 ∗ 10−4 1.2 ∗ 10−3 → 8.0 ∗ 10−4

Table 3. Hyperparameters across model sizes for TriLM and FloatLM.

• ARC Challenge and Easy: (Clark et al., 2018) ARC
dataset comprises 7787 multiple-choice science ques-
tions divided into two sets: Challenge and Easy. We
calculate accuracy and normalised accuracy across
both of these sets.

• BoolQ: (Clark et al., 2019) BoolQ is a reading com-
prehension dataset consisting of naturally occurring
yes/no questions. We calculate the accuracy on this
tasks.

• HellaSwag: (Zellers et al., 2019) HellaSWAG is a
dataset multiple choice questions for testing grounded
commonsense. The incorrect options are generated
through Adversarial Filtering (AF) to fool machines
but not humans. We calculate the accuracy and nor-
malised accuracy on this task.

• WinoGrande: (Sakaguchi et al., 2021) WinoGrande
is a collection of 44k problems for testing common-
sense reasoning formulated as a fill-in-a-blank task
with binary options. We report the accuracy on this
task.

• PIQA: (Bisk et al., 2019) Physical Interaction: Ques-
tion Answering (PIQA) a physical commonsense rea-
soning benchmark dataset to test the physical knowl-
edge of language models. We calculate the accuracy
and normalised accuracy on this task.

• LAMBADA OpenAI: (Paperno et al., 2016) LAM-
BADA is a dataset to evaluate text understanding by
next word prediction. It is a collection of narrative
passages BooksCorpus To succeed on LAMBADA,
models must integrate broader discourse information,
not solely rely on local context. We calculate the per-
plexity and the accuracy of the model on this task.

• SciQ: (Welbl et al., 2017) The SciQ dataset contains
multiple-choice questions with 4 answer options from
crowd-sourced science exams. The questions range
from Physics, Chemistry and Biology and several other
fields. We calculate the accuracy and length normalised
accuracy on this task.

• LogiQA: (Liu et al., 2021) LogiQA is a dataset for
testing human logical reasoning. It contains questions
spanning multiple types of deductive reasoning. We
calculate the accuracy and normalised accuracy on this
task.

B.2. Knowledge

We report performance on TriviaQA across zero-shot, 1-
shot, 3-shot, 5-shot and 10-shot settings in report common-
sense and reasoning benchmark scores across 6 benchmarks
previously considered by BitNet b.158 in Table 4 and rest in
Table 5. Each is considered in a zero shot setting. Following
are the details of each of the benchmark considered:

For report commonsense and reasoning benchmark scores
across 6 benchmarks previously considered by BitNet b.158
in Table 4 and rest in Table 5. Following are the details of
each of the benchmark considered:

The knowledge-based evaluation included the following
tasks:

• TriviaQA: (Joshi et al., 2017) TriviaQA is a reading
comprehension dataset containing question-answer-
evidence triples. We calculate the exact match accuracy
on this task.
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Models Bits Bits/ Arc Easy Arc Challenge HellaSwag BoolQ PIQA WinoGrande
(∗109) Param Acc Norm. Acc Acc Norm. Acc Acc Norm. Acc Acc Acc Norm. Acc Acc

TriLM 99M 0.9 1.58 36.4± 1.0 40.3± 1.0 21.8± 1.2 18.2± 1.1 28.5± 0.5 27.6± 0.4 61.6± 0.9 60.6± 1.1 59.4± 1.1 51.5± 1.4
FloatLM 99M 0.98 3.25 34.8± 1.0 36.1± 1.0 23.2± 1.2 19.5± 1.2 29.2± 0.5 27.7± 0.4 48.4± 0.9 57.2± 1.2 58.2± 1.2 49.2± 1.4
FloatLM 99M 1.03 4.25 37.1± 1.0 41.7± 1.0 22.6± 1.2 18.0± 1.1 31.0± 0.5 28.9± 0.5 52.2± 0.9 62.2± 1.1 60.9± 1.1 50.4± 1.4
FloatLM 99M 1.11 6 38.8± 1.0 44.8± 1.0 23.2± 1.2 19.7± 1.2 31.7± 0.5 29.2± 0.5 58.9± 0.9 62.8± 1.1 63.1± 1.1 50.2± 1.4
Pythia 70M 1.13 16 24.8± 0.9 24.8± 0.9 22.0± 1.2 22.1± 1.2 25.1± 0.4 25.1± 0.4 38.5± 0.9 49.8± 1.2 49.9± 1.2 49.1± 1.4
FloatLM 99M 1.21 8 39.4± 1.0 45.3± 1.0 23.8± 1.2 19.6± 1.2 31.7± 0.5 29.0± 0.5 58.5± 0.9 62.6± 1.1 63.0± 1.1 50.0± 1.4
TriLM 190M 1.42 1.58 38.7± 1.0 43.0± 1.0 23.8± 1.2 19.7± 1.2 32.0± 0.5 28.8± 0.5 61.8± 0.8 61.8± 1.1 62.2± 1.1 52.0± 1.4
FloatLM 99M 1.6 16 39.1± 1.0 45.1± 1.0 23.8± 1.2 19.9± 1.2 31.6± 0.5 29.1± 0.5 58.2± 0.9 62.8± 1.1 63.2± 1.1 50.2± 1.4
FloatLM 190M 1.6 3.25 37.1± 1.0 39.7± 1.0 22.5± 1.2 19.4± 1.2 32.0± 0.5 28.8± 0.5 56.5± 0.9 58.1± 1.2 58.7± 1.1 50.1± 1.4
FloatLM 190M 1.72 4.25 26.5± 0.9 26.8± 0.9 25.2± 1.3 19.9± 1.2 26.0± 0.4 25.7± 0.4 40.9± 0.9 49.3± 1.2 51.7± 1.2 51.0± 1.4
FloatLM 190M 1.92 6 42.0± 1.0 48.0± 1.0 23.8± 1.2 20.0± 1.2 36.3± 0.5 31.5± 0.5 59.1± 0.9 65.6± 1.1 64.3± 1.1 51.9± 1.4
TriLM 390M 2.11 1.58 42.6± 1.0 47.6± 1.0 24.2± 1.3 22.3± 1.2 37.3± 0.5 32.1± 0.5 57.1± 0.9 65.3± 1.1 64.9± 1.1 53.4± 1.4
FloatLM 190M 2.14 8 43.0± 1.0 48.5± 1.0 24.4± 1.3 20.3± 1.2 36.5± 0.5 31.4± 0.5 59.3± 0.9 65.6± 1.1 64.8± 1.1 51.7± 1.4
FloatLM 390M 2.59 3.25 41.6± 1.0 43.6± 1.0 24.9± 1.3 21.5± 1.2 39.5± 0.5 32.9± 0.5 56.3± 0.9 63.8± 1.1 63.2± 1.1 53.0± 1.4
Pythia 160M 2.6 16 26.7± 0.9 26.6± 0.9 23.8± 1.2 23.1± 1.2 25.1± 0.4 25.0± 0.4 38.3± 0.9 53.1± 1.2 53.1± 1.2 47.3± 1.4
TriLM 560M 2.76 1.58 46.5± 1.0 51.9± 1.0 25.5± 1.3 22.5± 1.2 41.2± 0.5 33.5± 0.5 61.7± 0.9 67.5± 1.1 66.3± 1.1 53.1± 1.4
FloatLM 390M 2.88 4.25 45.2± 1.0 49.6± 1.0 25.1± 1.3 21.3± 1.2 43.4± 0.5 35.1± 0.5 50.8± 0.9 68.1± 1.1 68.3± 1.1 53.7± 1.4
FloatLM 190M 3.05 16 43.0± 1.0 48.4± 1.0 24.1± 1.3 20.5± 1.2 36.6± 0.5 31.4± 0.5 59.1± 0.9 65.6± 1.1 64.8± 1.1 51.9± 1.4
FloatLM 390M 3.38 6 46.8± 1.0 51.8± 1.0 24.8± 1.3 21.5± 1.2 44.2± 0.5 35.6± 0.5 55.3± 0.9 69.0± 1.1 68.4± 1.1 53.0± 1.4
FloatLM 560M 3.49 3.25 42.3± 1.0 45.8± 1.0 24.0± 1.2 21.2± 1.2 41.7± 0.5 33.4± 0.5 59.0± 0.9 63.5± 1.1 63.2± 1.1 49.7± 1.4
TriLM 830M 3.55 1.58 48.0± 1.0 53.6± 1.0 25.3± 1.3 21.4± 1.2 45.1± 0.5 36.3± 0.5 61.6± 0.9 68.8± 1.1 68.2± 1.1 53.8± 1.4
FloatLM 560M 3.93 4.25 46.3± 1.0 52.4± 1.0 25.9± 1.3 23.0± 1.2 46.7± 0.5 37.0± 0.5 58.8± 0.9 67.8± 1.1 67.1± 1.1 53.1± 1.4
FloatLM 390M 3.96 8 46.6± 1.0 51.0± 1.0 24.6± 1.3 21.2± 1.2 44.5± 0.5 35.7± 0.5 54.6± 0.9 68.8± 1.1 68.6± 1.1 52.6± 1.4
TriLM 1.1B 4.42 1.58 49.1± 1.0 55.5± 1.0 27.6± 1.3 25.7± 1.3 48.5± 0.5 38.2± 0.5 60.3± 0.9 70.0± 1.1 70.3± 1.1 56.9± 1.4
FloatLM 830M 4.68 3.25 46.8± 1.0 50.5± 1.0 27.1± 1.3 22.7± 1.2 45.5± 0.5 35.9± 0.5 56.3± 0.9 66.1± 1.1 66.6± 1.1 53.5± 1.4
FloatLM 560M 4.7 6 47.6± 1.0 54.2± 1.0 26.0± 1.3 23.5± 1.2 47.6± 0.5 37.7± 0.5 57.3± 0.9 68.7± 1.1 68.8± 1.1 53.5± 1.4
Pythia 410M 4.87 16 45.7± 1.0 51.6± 1.0 24.7± 1.3 21.2± 1.2 40.3± 0.5 33.8± 0.5 60.0± 0.9 67.2± 1.1 66.3± 1.1 53.5± 1.4
TriLM 1.5B 5.36 1.58 50.8± 1.0 57.3± 1.0 27.7± 1.3 24.9± 1.3 51.7± 0.5 40.1± 0.5 62.6± 0.8 70.5± 1.1 70.7± 1.1 56.0± 1.4
FloatLM 830M 5.36 4.25 50.5± 1.0 56.2± 1.0 27.6± 1.3 23.3± 1.2 50.2± 0.5 39.2± 0.5 58.1± 0.9 70.6± 1.1 71.1± 1.1 56.0± 1.4
FloatLM 560M 5.58 8 48.3± 1.0 54.1± 1.0 26.5± 1.3 23.6± 1.2 47.6± 0.5 37.7± 0.5 57.6± 0.9 68.9± 1.1 68.9± 1.1 53.8± 1.4
FloatLM 1.1B 6.03 3.25 48.9± 1.0 55.0± 1.0 29.2± 1.3 27.0± 1.3 51.3± 0.5 39.4± 0.5 62.1± 0.8 69.4± 1.1 68.4± 1.1 54.8± 1.4
FloatLM 390M 6.28 16 46.5± 1.0 51.0± 1.0 24.7± 1.3 21.3± 1.2 44.4± 0.5 35.7± 0.5 54.7± 0.9 68.7± 1.1 68.4± 1.1 51.8± 1.4
FloatLM 830M 6.55 6 51.6± 1.0 57.7± 1.0 27.6± 1.3 24.7± 1.3 51.5± 0.5 40.2± 0.5 61.3± 0.9 71.3± 1.1 71.8± 1.0 56.2± 1.4
FloatLM 1.1B 7.0 4.25 53.6± 1.0 59.0± 1.0 30.3± 1.3 26.0± 1.3 54.9± 0.5 42.0± 0.5 61.3± 0.9 71.6± 1.1 70.4± 1.1 54.8± 1.4
TriLM 2.4B 7.23 1.58 55.4± 1.0 62.5± 1.0 30.1± 1.3 27.4± 1.3 57.8± 0.5 44.0± 0.5 63.1± 0.8 72.1± 1.0 72.4± 1.0 58.5± 1.4
FloatLM 1.5B 7.55 3.25 49.7± 1.0 54.8± 1.0 27.8± 1.3 25.2± 1.3 53.7± 0.5 41.0± 0.5 53.7± 0.9 70.0± 1.1 69.4± 1.1 55.0± 1.4
FloatLM 830M 7.91 8 51.7± 1.0 57.3± 1.0 28.2± 1.3 25.1± 1.3 51.4± 0.5 40.1± 0.5 60.9± 0.9 71.2± 1.1 71.7± 1.1 55.9± 1.4
FloatLM 1.1B 8.7 6 54.3± 1.0 60.2± 1.0 29.8± 1.3 25.5± 1.3 54.9± 0.5 42.6± 0.5 62.9± 0.8 71.9± 1.0 71.2± 1.1 56.1± 1.4
FloatLM 1.5B 8.86 4.25 55.2± 1.0 60.4± 1.0 29.4± 1.3 26.9± 1.3 56.9± 0.5 43.2± 0.5 62.5± 0.8 72.7± 1.0 72.4± 1.0 57.1± 1.4
FloatLM 560M 9.11 16 48.4± 1.0 54.4± 1.0 26.5± 1.3 23.9± 1.2 47.6± 0.5 37.7± 0.5 57.9± 0.9 68.8± 1.1 69.0± 1.1 53.7± 1.4
FloatLM 1.1B 10.64 8 54.1± 1.0 60.2± 1.0 28.9± 1.3 26.1± 1.3 55.2± 0.5 42.6± 0.5 62.6± 0.8 72.1± 1.0 71.2± 1.1 56.2± 1.4
TriLM 3.9B 10.76 1.58 60.4± 1.0 66.1± 1.0 34.4± 1.4 30.6± 1.3 62.8± 0.5 46.8± 0.5 64.6± 0.8 74.3± 1.0 74.3± 1.0 63.6± 1.4
FloatLM 2.4B 10.95 3.25 54.2± 1.0 58.4± 1.0 29.7± 1.3 28.4± 1.3 58.6± 0.5 43.5± 0.5 55.7± 0.9 72.7± 1.0 70.8± 1.1 57.2± 1.4
FloatLM 1.5B 11.15 6 56.8± 1.0 62.2± 1.0 30.1± 1.3 26.0± 1.3 57.5± 0.5 44.2± 0.5 63.4± 0.8 74.0± 1.0 73.0± 1.0 59.7± 1.4
FloatLM 2.4B 13.18 4.25 59.6± 1.0 64.1± 1.0 33.3± 1.4 30.8± 1.3 62.2± 0.5 46.5± 0.5 59.0± 0.9 75.4± 1.0 74.5± 1.0 61.7± 1.4
FloatLM 830M 13.34 16 51.6± 1.0 57.3± 1.0 28.0± 1.3 24.5± 1.3 51.3± 0.5 40.1± 0.5 61.0± 0.9 71.4± 1.1 71.7± 1.1 56.4± 1.4
FloatLM 1.5B 13.77 8 56.6± 1.0 62.4± 1.0 29.8± 1.3 26.0± 1.3 57.8± 0.5 44.3± 0.5 63.3± 0.8 73.7± 1.0 73.1± 1.0 59.4± 1.4
Pythia 1B 16.18 16 49.0± 1.0 57.0± 1.0 27.0± 1.3 24.4± 1.3 47.2± 0.5 37.7± 0.5 60.8± 0.9 69.3± 1.1 70.8± 1.1 53.2± 1.4
FloatLM 3.9B 16.91 3.25 55.5± 1.0 62.1± 1.0 32.1± 1.4 29.3± 1.3 61.2± 0.5 45.9± 0.5 60.0± 0.9 72.6± 1.0 72.3± 1.0 59.3± 1.4
FloatLM 2.4B 17.09 6 60.4± 1.0 65.4± 1.0 32.7± 1.4 30.6± 1.3 62.9± 0.5 47.0± 0.5 62.0± 0.8 75.7± 1.0 74.7± 1.0 61.1± 1.4
FloatLM 1.1B 18.39 16 54.0± 1.0 60.4± 1.0 29.1± 1.3 26.1± 1.3 55.2± 0.5 42.6± 0.5 62.9± 0.8 72.2± 1.0 71.3± 1.1 56.3± 1.4
FloatLM 3.9B 20.59 4.25 61.2± 1.0 68.3± 1.0 34.7± 1.4 32.9± 1.4 65.0± 0.5 49.0± 0.5 65.4± 0.8 75.5± 1.0 75.6± 1.0 62.7± 1.4
FloatLM 2.4B 21.55 8 60.3± 1.0 65.7± 1.0 32.6± 1.4 30.0± 1.3 62.7± 0.5 47.1± 0.5 62.1± 0.8 75.4± 1.0 74.9± 1.0 61.4± 1.4
Pythia 1.4B 22.62 16 54.0± 1.0 60.4± 1.0 28.7± 1.3 26.0± 1.3 52.0± 0.5 40.4± 0.5 63.2± 0.8 70.8± 1.1 70.6± 1.1 57.1± 1.4
FloatLM 1.5B 24.23 16 56.4± 1.0 62.6± 1.0 29.7± 1.3 26.2± 1.3 57.8± 0.5 44.3± 0.5 63.2± 0.8 73.9± 1.0 73.1± 1.0 59.4± 1.4
FloatLM 3.9B 27.03 6 63.3± 1.0 68.0± 1.0 35.1± 1.4 32.1± 1.4 65.9± 0.5 49.7± 0.5 65.6± 0.8 75.5± 1.0 75.6± 1.0 62.2± 1.4
FloatLM 3.9B 34.39 8 63.0± 1.0 68.1± 1.0 34.6± 1.4 31.9± 1.4 66.0± 0.5 49.7± 0.5 65.4± 0.8 75.9± 1.0 75.5± 1.0 62.9± 1.4
FloatLM 2.4B 39.38 16 60.5± 1.0 65.5± 1.0 32.7± 1.4 30.1± 1.3 62.7± 0.5 47.1± 0.5 62.1± 0.8 75.2± 1.0 74.9± 1.0 61.8± 1.4
Pythia 2.8B 44.39 16 58.8± 1.0 64.3± 1.0 33.2± 1.4 29.2± 1.3 59.2± 0.5 45.3± 0.5 63.7± 0.8 73.8± 1.0 73.9± 1.0 58.9± 1.4
FloatLM 3.9B 63.83 16 63.0± 1.0 68.3± 1.0 34.6± 1.4 32.1± 1.4 66.1± 0.5 49.7± 0.5 65.9± 0.8 75.8± 1.0 75.4± 1.0 62.8± 1.4
BitNet 700M - 1.58 51.8 21.4 35.1 58.2 68.1 55.2
BitNet 1.3B - 1.58 54.9 24.2 37.7 56.7 68.8 55.8
BitNet 3B - 1.58 61.4 28.3 42.9 61.5 71.5 59.3
BitNet 3.9B - 1.58 64.2 28.7 44.2 63.5 73.2 60.5

Table 4. Common Sense Task Performance: Arc Easy, Arc Challenge, HellaSwag, BoolQ, PIQA, WinoGrande. BitNet b1.58’s scores are
taken from Ma et al. (2024)
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TriLM vs FloatLM

Models Bits (∗109) Bits/Param LAMBADA SciQ LogiQA
Perp. Acc Acc Norm. Acc Acc Norm. Acc

TriLM 99M 0.9 1.58 160.4± 8.2 20.8± 0.6 59.5± 1.6 68.0± 1.5 24.9± 1.7 20.0± 1.6
FloatLM 99M 0.98 3.25 4765.4± 413.0 4.5± 0.3 51.9± 1.6 57.0± 1.6 25.3± 1.7 19.8± 1.6
FloatLM 99M 1.03 4.25 211.6± 17.3 16.7± 0.5 61.2± 1.5 70.7± 1.4 24.9± 1.7 20.7± 1.6
FloatLM 99M 1.11 6 89.9± 7.4 26.1± 0.6 61.8± 1.5 73.9± 1.4 28.1± 1.8 20.3± 1.6
Pythia 70M 1.13 16 NaN 0.9± 0.1 0.9± 0.3 1.1± 0.3 20.3± 1.6 20.3± 1.6
FloatLM 99M 1.21 8 85.8± 7.0 26.6± 0.6 62.8± 1.5 73.7± 1.4 27.8± 1.8 21.0± 1.6
TriLM 190M 1.42 1.58 118.1± 6.2 26.3± 0.6 61.9± 1.5 73.5± 1.4 25.0± 1.7 20.3± 1.6
FloatLM 99M 1.6 16 85.0± 6.9 26.5± 0.6 62.9± 1.5 73.6± 1.4 27.6± 1.8 21.2± 1.6
FloatLM 190M 1.6 3.25 664.5± 41.1 12.4± 0.5 58.5± 1.6 66.4± 1.5 26.3± 1.7 21.0± 1.6
FloatLM 190M 1.72 4.25 72479077.3 0 25.6± 1.4 22.9± 1.3 23.3± 1.7 20.7± 1.6
FloatLM 190M 1.92 6 55.3± 3.0 30.0± 0.6 64.2± 1.5 77.0± 1.3 26.1± 1.7 22.4± 1.6
TriLM 390M 2.11 1.58 74.7± 3.5 28.1± 0.6 65.6± 1.5 76.9± 1.3 25.5± 1.7 20.7± 1.6
FloatLM 190M 2.14 8 48.7± 2.6 31.5± 0.6 65.5± 1.5 77.1± 1.3 27.0± 1.7 22.3± 1.6
FloatLM 390M 2.59 3.25 115.0± 5.6 23.0± 0.6 67.4± 1.5 76.7± 1.3 25.7± 1.7 21.8± 1.6
Pythia 160M 2.6 16 NaN 9.7± 0.4 1.5± 0.4 1.6± 0.4 20.3± 1.6 20.3± 1.6
TriLM 560M 2.76 1.58 47.1± 2.2 34.2± 0.7 73.8± 1.4 82.2± 1.2 26.0± 1.7 21.0± 1.6
FloatLM 390M 2.88 4.25 30.2± 1.3 39.1± 0.7 77.1± 1.3 84.1± 1.2 25.8± 1.7 23.3± 1.7
FloatLM 190M 3.05 16 50.3± 2.7 31.1± 0.6 65.1± 1.5 77.3± 1.3 27.2± 1.7 22.1± 1.6
FloatLM 390M 3.38 6 24.3± 1.0 40.6± 0.7 75.5± 1.4 83.7± 1.2 27.6± 1.8 23.2± 1.7
FloatLM 560M 3.49 3.25 146.3± 7.1 20.1± 0.6 71.1± 1.4 75.9± 1.4 25.0± 1.7 21.8± 1.6
TriLM 830M 3.55 1.58 25.9± 1.1 41.5± 0.7 75.6± 1.4 83.1± 1.2 25.5± 1.7 20.3± 1.6
FloatLM 560M 3.93 4.25 24.9± 1.1 40.8± 0.7 73.6± 1.4 82.0± 1.2 27.0± 1.7 21.7± 1.6
FloatLM 390M 3.96 8 21.7± 0.9 42.3± 0.7 75.7± 1.4 84.1± 1.2 28.3± 1.8 24.1± 1.7
TriLM 1.1B 4.42 1.58 21.5± 0.9 44.3± 0.7 72.5± 1.4 83.2± 1.2 26.7± 1.7 18.9± 1.5
FloatLM 830M 4.68 3.25 47.7± 2.0 30.5± 0.6 74.1± 1.4 80.1± 1.3 28.1± 1.8 21.2± 1.6
FloatLM 560M 4.7 6 21.7± 0.9 42.8± 0.7 74.4± 1.4 83.6± 1.2 25.8± 1.7 20.9± 1.6
Pythia 410M 4.87 16 11.9± 0.4 49.9± 0.7 70.8± 1.4 80.9± 1.2 28.7± 1.8 21.8± 1.6
TriLM 1.5B 5.36 1.58 17.3± 0.7 45.8± 0.7 79.6± 1.3 86.8± 1.1 28.3± 1.8 20.9± 1.6
FloatLM 830M 5.36 4.25 15.4± 0.6 47.3± 0.7 78.8± 1.3 85.1± 1.1 25.5± 1.7 21.2± 1.6
FloatLM 560M 5.58 8 20.9± 0.9 44.2± 0.7 74.7± 1.4 83.6± 1.2 27.3± 1.7 20.7± 1.6
FloatLM 1.1B 6.03 3.25 26.9± 1.1 39.1± 0.7 78.7± 1.3 85.0± 1.1 25.8± 1.7 20.7± 1.6
FloatLM 390M 6.28 16 21.9± 0.9 42.2± 0.7 75.6± 1.4 84.2± 1.2 28.1± 1.8 23.8± 1.7
FloatLM 830M 6.55 6 13.3± 0.5 49.1± 0.7 77.8± 1.3 85.4± 1.1 26.3± 1.7 20.1± 1.6
FloatLM 1.1B 7.0 4.25 13.9± 0.5 49.3± 0.7 81.2± 1.2 87.6± 1.0 28.4± 1.8 20.3± 1.6
TriLM 2.4B 7.23 1.58 8.9± 0.3 55.0± 0.7 79.7± 1.3 86.6± 1.1 27.8± 1.8 20.0± 1.6
FloatLM 1.5B 7.55 3.25 17.8± 0.7 45.3± 0.7 75.5± 1.4 82.1± 1.2 28.4± 1.8 22.7± 1.6
FloatLM 830M 7.91 8 13.5± 0.5 49.4± 0.7 78.5± 1.3 86.1± 1.1 26.6± 1.7 20.0± 1.6
FloatLM 1.1B 8.7 6 11.7± 0.4 51.0± 0.7 82.3± 1.2 88.1± 1.0 27.5± 1.8 21.5± 1.6
FloatLM 1.5B 8.86 4.25 10.4± 0.4 53.0± 0.7 81.1± 1.2 86.9± 1.1 25.7± 1.7 20.3± 1.6
FloatLM 560M 9.11 16 20.8± 0.9 44.1± 0.7 74.7± 1.4 83.5± 1.2 27.0± 1.7 20.7± 1.6
FloatLM 1.1B 10.64 8 11.7± 0.4 51.2± 0.7 82.1± 1.2 88.1± 1.0 27.8± 1.8 21.2± 1.6
TriLM 3.9B 10.76 1.58 6.6± 0.2 61.1± 0.7 85.8± 1.1 89.4± 1.0 27.6± 1.8 19.4± 1.5
FloatLM 2.4B 10.95 3.25 15.6± 0.6 45.0± 0.7 79.9± 1.3 86.7± 1.1 28.6± 1.8 21.4± 1.6
FloatLM 1.5B 11.15 6 9.5± 0.3 55.4± 0.7 81.4± 1.2 87.6± 1.0 25.7± 1.7 20.3± 1.6
FloatLM 2.4B 13.18 4.25 8.9± 0.3 56.1± 0.7 84.8± 1.1 89.7± 1.0 29.6± 1.8 20.9± 1.6
FloatLM 830M 13.34 16 13.3± 0.5 49.6± 0.7 78.4± 1.3 85.9± 1.1 26.3± 1.7 20.1± 1.6
FloatLM 1.5B 13.77 8 9.5± 0.3 55.5± 0.7 81.3± 1.2 87.5± 1.0 25.7± 1.7 20.6± 1.6
Pythia 1B 16.18 16 7.9± 0.2 56.1± 0.7 76.0± 1.4 83.8± 1.2 29.8± 1.8 22.1± 1.6
FloatLM 3.9B 16.91 3.25 14.0± 0.5 47.1± 0.7 83.1± 1.2 88.6± 1.0 27.0± 1.7 21.5± 1.6
FloatLM 2.4B 17.09 6 7.9± 0.3 58.9± 0.7 87.3± 1.1 90.9± 0.9 29.6± 1.8 20.9± 1.6
FloatLM 1.1B 18.39 16 11.7± 0.4 51.2± 0.7 82.2± 1.2 88.1± 1.0 27.3± 1.7 20.9± 1.6
FloatLM 3.9B 20.59 4.25 7.4± 0.2 58.5± 0.7 86.1± 1.1 90.8± 0.9 28.6± 1.8 20.1± 1.6
FloatLM 2.4B 21.55 8 7.7± 0.3 59.2± 0.7 87.1± 1.1 91.0± 0.9 29.5± 1.8 21.5± 1.6
Pythia 1.4B 22.62 16 6.1± 0.2 61.5± 0.7 79.1± 1.3 86.7± 1.1 27.8± 1.8 20.9± 1.6
FloatLM 1.5B 24.23 16 9.4± 0.3 55.5± 0.7 80.9± 1.2 87.4± 1.0 26.1± 1.7 20.9± 1.6
FloatLM 3.9B 27.03 6 6.8± 0.2 60.8± 0.7 86.6± 1.1 91.3± 0.9 25.8± 1.7 20.4± 1.6
FloatLM 3.9B 34.39 8 6.7± 0.2 61.1± 0.7 86.2± 1.1 91.0± 0.9 26.6± 1.7 20.6± 1.6
FloatLM 2.4B 39.38 16 7.7± 0.3 59.3± 0.7 87.2± 1.1 91.0± 0.9 29.5± 1.8 21.5± 1.6
Pythia 2.8B 44.39 16 5.1± 0.1 64.6± 0.7 83.6± 1.2 88.5± 1.0 28.3± 1.8 22.0± 1.6
FloatLM 3.9B 63.83 16 6.7± 0.2 61.1± 0.7 86.5± 1.1 90.9± 0.9 26.9± 1.7 20.9± 1.6

Table 5. Common Sense Task Performance (Contd.): LAMBADA OpenAI, SciQ, LogiQA
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TriLM vs FloatLM

Models Bits (∗109) Bits/Param TriviaQA Exact Match Score
0-shot 1-shot 3-shot 5-shot 10-shot

TriLM 99M 0.9 1.58 0.4± 0.0 0.8± 0.1 1.4± 0.1 1.5± 0.1 1.7± 0.1
FloatLM 99M 0.98 3.25 0.1± 0.0 0.1± 0.0 0.3± 0.0 0.4± 0.0 0.6± 0.1
FloatLM 99M 1.03 4.25 0.3± 0.0 1.6± 0.1 2.6± 0.1 2.7± 0.1 2.8± 0.1
FloatLM 99M 1.11 6 0.6± 0.1 2.8± 0.1 3.7± 0.1 3.9± 0.1 4.3± 0.2
Pythia 70M 1.13 16 0.1± 0.0 0.1± 0.0 0.2± 0.0 0.2± 0.0 0.2± 0.0
FloatLM 99M 1.21 8 0.6± 0.1 2.8± 0.1 4.0± 0.1 4.2± 0.2 4.6± 0.2
TriLM 190M 1.42 1.58 0.2± 0.0 2.5± 0.1 3.7± 0.1 3.6± 0.1 3.5± 0.1
FloatLM 99M 1.6 16 0.6± 0.1 2.9± 0.1 4.0± 0.1 4.3± 0.2 4.6± 0.2
FloatLM 190M 1.6 3.25 0.1± 0.0 0.5± 0.1 1.0± 0.1 0.9± 0.1 0.9± 0.1
FloatLM 190M 1.72 4.25 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
FloatLM 190M 1.92 6 0.7± 0.1 4.8± 0.2 6.6± 0.2 7.1± 0.2 7.3± 0.2
TriLM 390M 2.11 1.58 0.9± 0.1 4.5± 0.2 5.9± 0.2 6.0± 0.2 6.4± 0.2
FloatLM 190M 2.14 8 0.7± 0.1 5.1± 0.2 7.2± 0.2 7.7± 0.2 7.8± 0.2
FloatLM 390M 2.59 3.25 0.8± 0.1 1.6± 0.1 3.3± 0.1 3.6± 0.1 3.8± 0.1
Pythia 160M 2.6 16 0.5± 0.1 1.1± 0.1 1.4± 0.1 1.7± 0.1 1.7± 0.1
TriLM 560M 2.76 1.58 2.4± 0.1 6.3± 0.2 8.6± 0.2 9.0± 0.2 9.4± 0.2
FloatLM 390M 2.88 4.25 1.3± 0.1 8.0± 0.2 10.5± 0.2 11.2± 0.2 11.2± 0.2
FloatLM 190M 3.05 16 0.6± 0.1 5.2± 0.2 7.1± 0.2 7.6± 0.2 7.8± 0.2
FloatLM 390M 3.38 6 2.4± 0.1 9.5± 0.2 12.7± 0.2 13.4± 0.3 13.8± 0.3
FloatLM 560M 3.49 3.25 1.5± 0.1 2.5± 0.1 3.7± 0.1 4.6± 0.2 5.1± 0.2
TriLM 830M 3.55 1.58 2.7± 0.1 10.2± 0.2 11.6± 0.2 12.0± 0.2 12.5± 0.2
FloatLM 560M 3.93 4.25 2.1± 0.1 10.4± 0.2 12.8± 0.2 13.5± 0.3 13.9± 0.3
FloatLM 390M 3.96 8 2.9± 0.1 9.7± 0.2 13.1± 0.3 13.7± 0.3 14.2± 0.3
TriLM 1.1B 4.42 1.58 1.0± 0.1 10.1± 0.2 13.3± 0.3 14.2± 0.3 15.1± 0.3
FloatLM 830M 4.68 3.25 3.1± 0.1 6.3± 0.2 8.4± 0.2 8.9± 0.2 9.0± 0.2
FloatLM 560M 4.7 6 3.5± 0.1 12.5± 0.2 15.5± 0.3 16.4± 0.3 17.5± 0.3
Pythia 410M 4.87 16 1.7± 0.1 6.8± 0.2 8.7± 0.2 9.1± 0.2 9.5± 0.2
TriLM 1.5B 5.36 1.58 2.1± 0.1 15.8± 0.3 18.2± 0.3 18.7± 0.3 19.1± 0.3
FloatLM 830M 5.36 4.25 10.6± 0.2 17.7± 0.3 19.7± 0.3 20.6± 0.3 20.8± 0.3
FloatLM 560M 5.58 8 4.7± 0.2 13.0± 0.3 16.0± 0.3 16.8± 0.3 18.0± 0.3
FloatLM 1.1B 6.03 3.25 6.8± 0.2 10.5± 0.2 11.7± 0.2 12.2± 0.2 12.7± 0.2
FloatLM 390M 6.28 16 2.8± 0.1 9.6± 0.2 13.0± 0.3 13.7± 0.3 14.1± 0.3
FloatLM 830M 6.55 6 8.5± 0.2 19.3± 0.3 21.8± 0.3 22.6± 0.3 23.3± 0.3
FloatLM 1.1B 7.0 4.25 9.3± 0.2 21.0± 0.3 23.3± 0.3 24.7± 0.3 25.1± 0.3
TriLM 2.4B 7.23 1.58 3.1± 0.1 23.5± 0.3 26.0± 0.3 26.8± 0.3 27.0± 0.3
FloatLM 1.5B 7.55 3.25 4.2± 0.1 12.0± 0.2 15.0± 0.3 15.5± 0.3 16.4± 0.3
FloatLM 830M 7.91 8 8.5± 0.2 19.7± 0.3 22.2± 0.3 23.0± 0.3 23.8± 0.3
FloatLM 1.1B 8.7 6 12.4± 0.2 24.0± 0.3 26.1± 0.3 26.9± 0.3 27.5± 0.3
FloatLM 1.5B 8.86 4.25 9.0± 0.2 24.3± 0.3 27.0± 0.3 27.9± 0.3 29.0± 0.3
FloatLM 560M 9.11 16 4.6± 0.2 13.1± 0.3 16.0± 0.3 16.8± 0.3 18.1± 0.3
FloatLM 1.1B 10.64 8 12.7± 0.2 24.4± 0.3 26.0± 0.3 27.2± 0.3 27.6± 0.3
TriLM 3.9B 10.76 1.58 9.4± 0.2 29.6± 0.3 33.7± 0.4 34.6± 0.4 35.7± 0.4
FloatLM 2.4B 10.95 3.25 10.9± 0.2 18.2± 0.3 21.8± 0.3 23.0± 0.3 23.4± 0.3
FloatLM 1.5B 11.15 6 11.3± 0.2 26.8± 0.3 29.6± 0.3 30.5± 0.3 31.5± 0.3
FloatLM 2.4B 13.18 4.25 21.1± 0.3 32.7± 0.4 35.3± 0.4 36.4± 0.4 36.6± 0.4
FloatLM 830M 13.34 16 8.5± 0.2 19.6± 0.3 22.1± 0.3 23.0± 0.3 23.6± 0.3
FloatLM 1.5B 13.77 8 12.5± 0.2 27.3± 0.3 30.0± 0.3 30.9± 0.3 31.6± 0.3
Pythia 1B 16.18 16 4.2± 0.1 10.5± 0.2 12.8± 0.2 13.5± 0.3 14.0± 0.3
FloatLM 3.9B 16.91 3.25 8.2± 0.2 24.5± 0.3 28.7± 0.3 29.8± 0.3 30.7± 0.3
FloatLM 2.4B 17.09 6 20.4± 0.3 35.7± 0.4 38.4± 0.4 39.3± 0.4 39.7± 0.4
FloatLM 1.1B 18.39 16 12.9± 0.3 24.3± 0.3 26.1± 0.3 27.3± 0.3 27.8± 0.3
FloatLM 3.9B 20.59 4.25 17.9± 0.3 37.5± 0.4 41.9± 0.4 42.8± 0.4 43.6± 0.4
FloatLM 2.4B 21.55 8 20.7± 0.3 35.8± 0.4 38.6± 0.4 39.7± 0.4 39.9± 0.4
Pythia 1.4B 22.62 16 5.6± 0.2 13.7± 0.3 16.9± 0.3 18.1± 0.3 19.2± 0.3
FloatLM 1.5B 24.23 16 12.2± 0.2 27.3± 0.3 30.1± 0.3 31.0± 0.3 31.6± 0.3
FloatLM 3.9B 27.03 6 21.0± 0.3 39.7± 0.4 44.1± 0.4 44.9± 0.4 45.6± 0.4
FloatLM 3.9B 34.39 8 21.7± 0.3 39.8± 0.4 44.5± 0.4 45.0± 0.4 45.7± 0.4
FloatLM 2.4B 39.38 16 20.7± 0.3 36.0± 0.4 38.6± 0.4 39.6± 0.4 39.9± 0.4
Pythia 2.8B 44.39 16 9.9± 0.2 21.8± 0.3 25.7± 0.3 27.2± 0.3 28.3± 0.3
FloatLM 3.9B 63.83 16 21.5± 0.3 39.9± 0.4 44.6± 0.4 45.2± 0.4 45.8± 0.4

Table 6. Knowledge Based Benchmark (TriviaQA) Performance
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