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Cognitive maps from predictive vision

Margaret C. von Ebers & Xue-Xin Wei

Constructing spatial maps from sensory 
inputs is challenging in both neuroscience 
and artificial intelligence. A recent study 
demonstrates that a self-attention neural 
network using predictive coding can generate 
an environmental map in its latent space as an 
agent that navigates the environment.

A map of the environment helps us localize, plan and navigate in space. 
For decades, how to acquire spatial maps has been crucial for under-
standing the navigation system of the brain and for building efficient 
robotic systems. Neuroscience research has discovered functional 

cell types, including place cells1 and grid cells2, that are thought to 
support the cognitive map3 — an internal representation of space in the 
brain. However, the formation of these representations is still debated.  
A study by Gornet and Thomson4 in Nature Machine Intelligence reveals 
that learning to predict the flow of visual inputs may enable an agent 
to construct a spatial map.

In principle, inputs from multiple modalities (for example, visual, 
olfactory and vestibular) may be used to construct spatial maps. Prior 
research showed that spatial maps in the brain could be constructed by 
integrating the agent’s movements from vestibular inputs, known as 
path integration5. This computation can be implemented in continuous 
attractor networks6–8. Recent work using deep learning showed that 
response patterns similar to grid cells emerged in recurrent neural 
networks optimized for path integration tasks9–11. While visual inputs 
have been recognized to play an important part in the anchoring and 
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Fig. 1 | Visual input for a virtual agent and model architecture. a, A virtual 
agent navigates in an environment and collects sequences of visual input. 
These image sequences are used to train the model. b, Overview of the model 

architecture. The neural network was trained to predict future visual input on the 
basis of current visual input. A representation of space emerged from the self-
attention module after training the network to solve the visual prediction task.
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develop spatial representations, without relying on inputs encoding 
body movements.

Questions and challenges remain for future research. First, while 
the model predicts visual inputs in raw pixel space, it is perhaps unlikely 
that the navigation systems of the brain are optimized to operate at 
such a fine-grained level, as some details in a visual scene may not be 
important. Learning objectives based on higher-level visual features, 
for example, reconstruction of the landmarks and objects in the envi-
ronment, may be more ethologically relevant. Second, the results 
are influenced by the agent’s movement statistics. Intuitively, if the 
movement trajectories are highly variable, it may be difficult to predict 
the state for the next frame. Indeed, preliminary results reported in 
the paper show that increased variability of movement trajectories 
degrades the quality of the map learned in the model. Third, in the 
current model, it would be challenging to learn spatial maps under 
situations with weak or deprived visual inputs, such as darkness. Finally, 
different species show distinct behavioural strategies to sample the 
environment with movement and head turns. These differences may 
underlie variations in cognitive maps observed between rodents and 
non-human primates14. Training models such as this one with realistic 
movement trajectories and visual inputs specific to different species 
could reveal insights into cognitive map similarities and differences. 
A deeper understanding of the computational principles underlying 
cognitive map construction in the brain may enhance future embodied 
artificial intelligence systems.
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recalibration of the map, path integration is generally hypothesized 
to be a crucial component for map construction.

Inspired by predictive coding in computational neuroscience, 
Gornet and Thomson4 explore a different hypothesis: learning spatial 
maps by predicting the future visual scene alone. Predictive coding  
proposes that the brain encodes a predictive representation by lever-
aging the spatial-temporal regularity of sensory inputs. Initially 
developed to explain inhibitory neural responses in the retina12, semi-
nal work by Rao and Ballard13 extended this framework to explain  
puzzling response properties of neurons in the primary visual cortex. 
Gornet and Thomson4 now apply this framework to spatial navigation.

To formalize their hypothesis, the authors developed a mathe-
matical theory predicting that, to accurately predict future visual 
inputs, a navigational agent should (1) encode its spatial location and 
direction in the environment, and (2) learn the transition statistics of 
its movements. To test the theory, they trained a deep network model 
to predict future visual inputs for a simulated navigation agent. Their 
model is composed of several components (Fig. 1). First, an encoder 
converts each image in a sequence of temporally related observations 
into a latent vector. Second, a self-attention module analyses these 
latent vectors to generate a predicted latent vector for each time step. 
Third, a decoder, functioning as the inverse of the encoder, generates 
a prediction for the next frame’s image. To generate training data, they 
collected sequences of observations from a Minecraft agent walking 
between random start and destination locations in an environment 
featuring trees, a cave landmark and a pond with a bridge. After training 
the agent to solve the visual prediction task, the authors investigated 
the latent representation in the output of the self-attention module.

They report that deep networks trained on this visual task can 
track the agent’s location in the environment, decodable from network 
activity with considerable accuracy. Furthermore, individual model 
units developed spatial selectivity. This activity in the latent layer of the 
model captured the proximity structure of physical locations, aligning 
with the concept of a spatial map. This was supported by an analysis 
showing that distances in the latent neural activity space corresponded 
to physical distances (albeit with substantial variability), allowing for 
an approximate readout of the distances between various locations in 
the environment. The emergence of these spatial representations in 
the latent layers, based on a purely visual prediction task, corroborates 
their mathematical theory.

A question that arises is whether prediction is truly impor-
tant for forming spatial maps. Simply reconstructing visual input 
frame-by-frame might be sufficient. To demonstrate the benefit of 
prediction, Gornet and Thomson4 compared their model with a baseline 
model that reconstructs individual images without prediction. This 
baseline model should capture image similarity, which may or may not 
reflect the spatial relationship. The authors found that the predictive 
coding network developed a more accurate spatial map than the baseline 
model. They explored this question further by creating another environ-
ment, where the agent may encounter visually identical observations 
at different points in a circular hallway. Decoding the location of these 
aliased observations using the baseline model resulted in large predic-
tion errors, while the predictive coder could correctly distinguish them.

Together, these results raise the intriguing possibility that  
agents solving prediction-based visual tasks may be sufficient to 
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