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Abstract

We consider the problem of online learning in an episodic Markov decision process,
where the reward function is allowed to change between episodes in an adversarial
manner and the learner only observes the rewards associated with its actions.
We assume that rewards and the transition function can be represented as linear
functions in terms of a known low-dimensional feature map, which allows us to
consider the setting where the state space is arbitrarily large. We also assume that
the learner has a perfect knowledge of the MDP dynamics. Our main contribution
is developing an algorithm whose expected regret after T episodes is bounded
by Õ

(√
dHT

)
, where H is the number of steps in each episode and d is the

dimensionality of the feature map.

1 Introduction

We study the problem of online learning in episodic Markov Decision Processes (MDP), modelling
a sequential decision making problem where the interaction between a learner and its environment
is divided into T episodes of fixed length H . At each time step of the episode, the learner observes
the current state of the environment, chooses one of the K available actions, and earns a reward.
Consequently, the state of the environment changes according to the transition function of the
underlying MDP, as a function of the previous state and the action taken by the learner. A key
distinguishing feature of our setting is that we assume that the reward function can change arbitrarily
between episodes, and the learner only has access to bandit feedback: instead of being able to observe
the reward function at the end of the episode, the learner only gets to observe the rewards that it
actually received. As traditional in this line of work, we aim to design algorithms for the learner with
theoretical guarantees on her regret, which is the difference between the total reward accumulated by
the learner and the total reward of the best stationary policy fixed in hindsight.

Unlike most previous work on this problem, we allow the state space to be very large and aim to
prove performance guarantees that do not depend on the size of the state space, bringing theory one
step closer to practical scenarios where assuming finite state spaces is unrealistic. To address the
challenge of learning in large state spaces, we adopt the classic RL technique of using linear function
approximation and suppose that we have access to a relatively low-dimensional feature map that can
be used to represent policies and value functions. We will assume that the feature map is expressive
enough so that all action-value functions can be expressed as linear functions of the features, and that
the learner has full knowledge of the transition function of the MDP.

Our main contribution is designing a computationally efficient algorithm called ONLINE Q-REPS,
and prove that in the setting described above, its regret is at most O

(√
dHTD (µ∗‖µ0)

)
, where d is

the dimensionality of the feature map and D (µ∗‖µ0) is the relative entropy between the state-action
distribution µ∗ induced by the optimal policy and an initial distribution µ0 given as input to the
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algorithm. Notably, our results do not require the likelihood ratio between these distributions to be
uniformly bounded, and the bound shows no dependence on the eigenvalues of the feature covariance
matrices. Our algorithm itself requires solving a d2-dimensional convex optimization problem at the
beginning of each episode, which can be solved to arbitrary precision ε in time polynomial in d and
1/ε, independently of the size of the state-action space.

Our work fits into a long line of research considering online learning in Markov decision processes.
The problem of regret minimization in stationary MDPs with a fixed reward function has been studied
extensively since the work of Burnetas and Katehakis [6], Auer and Ortner [2], Tewari and Bartlett
[31], Jaksch et al. [14], with several important advances made in the past decade [9, 10, 4, 13, 15].
While most of these works considered small finite state spaces, the same techniques have been very
recently extended to accommodate infinite state spaces under the assumption of realizable function
approximation by Jin et al. [17] and Yang and Wang [33]. In particular, the notion of linear MDPs
introduced by Jin et al. [17] has become a standard model for linear function approximation and has
been used in several recent works (e.g., 22, 32, 1).

Even more relevant is the line of work considering adversarial rewards, initiated by Even-Dar et al.
[12], who consider online learning in continuing MDPs with full feedback about the rewards. They
proposed a MDP-E algorithm, that achieves O(τ2

√
T logK) regret, where τ is an upper bound

on the mixing time of the MDP. Later, Neu et al. [25] proposed an algorithm which guarantees
Õ
(√

τ3KT/α
)

regret with bandit feedback, essentially assuming that all states are reachable with
probability α > 0 under all policies. In our work, we focus on episodic MDPs with a fixed
episode length H . The setting was first considered in the bandit setting by Neu et al. [23], who
proposed an algorithm with a regret bound of O(H2

√
TK/α). Although the number of states

does not appear explicitly in the bound, the regret scales at least linearly with the size of the state
space X , since |X | ≤ H/α. Later work by Zimin and Neu [35], Dick et al. [11] eliminated the
dependence on α and proposed an algorithm achieving Õ(

√
TH|X |K) regret. Regret bounds

for the full-information case without prior knowledge of the MDP were achieved by Neu et al.
[24] and Rosenberg and Mansour [30], of order Õ(H|X |K

√
T ) and Õ(H|X |

√
KT ), respectively.

These results were recently extended to handle bandit feedback about the rewards by Jin et al. [16],
ultimately resulting in a regret bound of Õ(H|X |

√
KT ).

As apparent from the above discussion, all work on online learning in MDPs with adversarial rewards
considers finite state spaces. The only exception we are aware of is the recent work of Cai et al.
[7], whose algorithm OPPO is guaranteed to achieve Õ

(√
d3H3T

)
, assuming that the learner has

access to d-dimensional features that can perfectly represent all action-value functions. While Cai,
Yang, Jin, and Wang [7] remarkably assumed no prior knowledge of the MDP parameters, their
guarantees are only achieved in the full-information case. This is to be contrasted with our results
that are achieved for the much more restrictive bandit setting, albeit with the stronger assumption of
having full knowledge of the underlying MDP, as required by virtually all prior work in the bandit
setting, with the exception of Jin et al. [16].

Our results are made possible by a careful combination of recently proposed techniques for contextual
bandit problems and optimal control in Markov decision processes. In particular, a core component
of our algorithm is a regularized linear programming formulation of optimal control in MDPs due
to Bas-Serrano et al. [5], which allows us to reduce the task of computing near-optimal policies
in linear MDPs to a low-dimensional convex optimization problem. A similar algorithm design
has been previously used for tabular MDPs by Zimin and Neu [35], Dick et al. [11], with the
purpose of removing factors of 1/α from the previous state-of-the-art bounds of Neu et al. [23].
Analogously to this improvement, our methodology enables us to make strong assumptions on
problem-dependent constants like likelihood ratios between µ∗ and µ0 or eigenvalues of the feature
covariance matrices. Another important building block of our method is a version of the recently
proposed Matrix Geometric Resampling procedure of Neu and Olkhovskaya [21] that enables us to
efficiently estimate the reward functions. Incorporating these estimators in the algorithmic template
of Bas-Serrano et al. [5] is far from straightforward and requires several subtle adjustments.

Notation. We use 〈·, ·〉 to denote inner products in Euclidean space and by ‖·‖ we denote the
Euclidean norm for vectors and the operator norm for matrices. For a symmetric positive definite
matrix A, we use λmin(A) to denote its smallest eigenvalue. We write tr (A) for the trace of a matrix
A and use A < 0 to denote that an operator A is positive semi-definite, and we use A < B to denote
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A−B < 0. For a d-dimensional vector v, we denote the corresponding d× d diagonal matrix by
diag(v). For a positive integer N , we use [N ] to denote the set of positive integers {1, 2, . . . , N}.
Finally, we will denote the set of all probability distributions over any set X by ∆X .

2 Preliminaries

An episodic Markovian Decision Process (MDP), denoted by M = (X ,A, H, P, r) is defined by a
state space X , action space A, episode length H ∈ Z+, transition function P : X ×A → ∆X and a
reward function r : X ×A → [0, 1]. For convenience, we will assume that both X and A are finite
sets, although we allow the state space X to be arbitrarily large. Without significant loss of generality,
we will assume that the set of available actions is the same A in each state, with cardinality |A| = K.
Furthermore, without any loss of generality, we will assume that the MDP has a layered structure,
satisfying the following conditions:

• The state set X can be decomposed into H disjoint sets: X = ∪Hh=1Xh,

• X1 = {x1} and XH = {xH} are singletons,

• transitions are only possible between consecutive layers, that is, for any xh ∈ Xh, the
distribution P (·|x, a) is supported on Xh+1 for all a and h ∈ [H − 1].

These assumptions are common in the related literature (e.g., 23, 35, 30) and are not essential to our
analysis; their primary role is simplifying our notation.

In the present paper, we consider an online learning problem where the learner interacts with its envi-
ronment in a sequence of episodes t = 1, 2, . . . , T , facing a different reward functions rt,1, . . . rt,H+1

selected by a (possibly adaptive) adversary at the beginning of each episode t. Oblivious to the reward
function chosen by the adversary, the learner starts interacting with the MDP in each episode from the
initial state Xt,1 = x1. At each consecutive step h ∈ [H − 1] within the episode, the learner observes
the state Xt,h, picks an action At,h and observes the reward rt,h(Xt,h, At,h). Then, unless h = H ,
the learner moves to the next state Xt,h+1, which is generated from the distribution P (·|Xt,h, At,h).
At the end of step H , the episode terminates and a new one begins. The aim of the learner is to select
its actions so that the cumulative sum of rewards is as large as possible.

Our algorithm and analysis will make use of the concept of (stationary stochastic) policies π : X →
∆A. A policy π prescribes a behaviour rule to the learner by assigning probability π(a|x) to taking
action a at state x. Let τπ = ((X1, A1), (X2, A2), . . . , (XH , AH)) be a trajectory generated by
following the policy π through the MDP. Then, for any xh ∈ Xh, ah ∈ A we define the occupancy
measure µπh(x, a) = Pπ [(x, a) ∈ τπ]. We will refer to the collection of these distributions across all
layers h as the occupancy measure induced by π and denote it as µπ = (µπ1 , µ

π
2 , . . . , µ

π
H). We will

denote the set of all valid occupancy measures by U and note that this is a convex set, such that for
every element µ ∈ U the following set of linear constraints is satisfied:∑

a∈A
µh+1(x, a) =

∑
x′,a′∈Xh×A

P (x|x′, a′)µh(x′, a′), ∀x ∈ Xh+1, h ∈ [H − 1], (1)

as well as
∑
a µ1(x1, a) = 1. From every valid occupancy measure µ, a stationary stochastic

policy π = π1, . . . , πH−1 can be derived as πµ,h(a|x) = µh(x, a)/
∑
a′ µh(x, a′). For each h,

introducing the linear operators E and P through their action on a set state-action distribution uh as
(ETuh)(x) =

∑
a∈A uh(x, a) and (P T

huh)(x) =
∑
x′,a′∈Xh,A P (x|x′, a′)uh(x′, a′), the constraints

can be simply written as ETµh+1 = P T

hµh for each h. We will use the inner product notation for
the sum over the set of states and actions: 〈µh, rh〉 =

∑
(x,a)∈(Xh×A) µh(x, a)rt,h(x, a). Using this

notation, we formulate our objective as selecting a sequence of policies πt for each episode t in a
way that it minimizes the total expected regret defined as

RT = sup
π∗

T∑
t=1

H∑
h=1

(Eπ∗ [rt,h(X∗h, A
∗
h)]− Eπt

[rt(Xt,h, At,h)]) = sup
µ∗∈U

T∑
t=1

H∑
h=1

〈µ∗h − µ
πt

h , rt,h〉 ,

where the notations Eπ∗ [·] and Eπt [·] emphasize that the state-action trajectories are generated by
following policies π∗ and πt, respectively. As the above expression suggests, we can reformulate
our online learning problem as an instance of online linear optimization where in each episode t, the
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learner selects an occupancy measure µt ∈ U (with µt = µπt) and gains reward
∑H
h=1〈µt,h, rt,h〉.

Intuitively, the regret measures the gap between the total reward gained by the learner and that of the
best stationary policy fixed in hindsight, with full knowledge of the sequence of rewards chosen by
the adversary. This performance measure is standard in the related literature on online learning in
MDPs, see, for example Neu et al. [23], Zimin and Neu [35], Neu et al. [24], Rosenberg and Mansour
[30], Cai et al. [7].

In this paper, we focus on MDPs with potentially enormous state spaces, which makes it difficult
to design computationally tractable algorithms with nontrivial guarantees, unless we make some as-
sumptions. We particularly focus on the classic technique of relying on linear function approximation
and assuming that the reward functions occurring during the learning process can be written as a
linear function of a low-dimensional feature map. We specify the form of function approximation
and the conditions our analysis requires as follows:
Assumption 1 (Linear MDP with adversarial rewards). There exists a feature map ϕ : X ×A → Rd
and a collection of d signed measures m = (m1, . . . ,md) on X , such that for any (x, a) ∈ X ×A
the transition function can be written as

P (·|x, a) = 〈m(·), ϕ(x, a)〉 .
Furthermore, the reward function chosen by the adversary in each episode t can be written as

rt,h(x, a) = 〈θt,h, ϕ(x, a)〉
for some θt,h ∈ Rd. We assume that the features and the parameter vectors satisfy ‖ϕ(x, a)‖ ≤ σ
and that the first coordinate ϕ1(x, a) = 1 for all (x, a) ∈ X ×A. Also we assume that ‖θt,h‖ ≤ R.

Online learning under this assumption, but with a fixed reward function, has received substantial
attention in the recent literature, particularly since the work of Jin et al. [17] who popularized the
term “Linear MDP” to refer to this class of MDPs. This has quickly become a common assumption
for studying reinforcement learning algorithms (Cai et al. [7], Jin et al. [17], Neu and Pike-Burke
[22], Agarwal et al. [1]). This is also a special case of factored linear models (Yao et al. [34], Pires
and Szepesvári [29]).

Linear MDPs come with several attractive properties that allow efficient optimization and learning.
In this work, we will exploit the useful property shown by Neu and Pike-Burke [22] and Bas-Serrano
et al. [5] that all occupancy measures in a linear MDP can be seen to satisfy a relaxed version of the
constraints in Equation (1). Specifically, for all h, defining the feature matrix Φh ∈ R(Xh×A)×d with
its action on the distribution u as ΦT

hu =
∑
x,a∈Xh,A uh(x, a)ϕ(x, a), we define UΦ as the set of

state-action distributions (µ, u) = ((µ1, . . . , µH), (u1, . . . , uH)) satisfying the following constraints:

ETuh+1 = P T

hµh (∀h), ΦT

huh = ΦT

hµh (∀h), ETu1 = 1. (2)
It is easy to see that for all feasible (µ, u) pairs, u satisfies the original constraints (1) if the MDP
satisfies Assumption 1: since the transition operator can be written as Ph = ΦhMh for some matrix
Mh. In this case, we clearly have

ETuh+1 = P T

hµh = M T

hΦT

hµh = M T

hΦT

huh = P T

huh, (3)
showing that any feasible u is indeed a valid occupancy measure. Furthermore, due to linearity
of the rewards in Φ, we also have 〈uh, rt,h〉 = 〈µh, rt,h〉 for all feasible (µ, u) ∈ UΦ. While the
number of variables and constraints in Equation (2) is still very large, it has been recently shown that
approximate linear optimization over this set can be performed tractably [22, 5]. Our own algorithm
design described in the next section will heavily build on these recent results.

3 Algorithm and main results

This section presents our main contributions: a new efficient algorithm for the setting described above,
along with its performance guarantees. Our algorithm design is based on a reduction to online linear
optimization, exploiting the structural results established in the previous section. In particular, we will
heavily rely on the algorithmic ideas established by Bas-Serrano et al. [5], who proposed an efficient
reduction of approximate linear optimization over the high-dimensional set UΦ to a low-dimensional
convex optimization problem. Another key component of our algorithm is an efficient estimator of
the reward vectors θt,h based on the work of Neu and Olkhovskaya [21]. For reasons that we will
clarify in Section 4, accommodating these reward estimators into the framework of Bas-Serrano et al.
[5] is not straightforward and necessitates some subtle changes.
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3.1 The policy update rule

Our algorithm is an instantiation of the well-known “Follow the Regularized Leader” (FTRL) template
commonly used in the design of modern online learning methods (see, e.g., 26). We will make the
following design choices:

• The decision variables will be the vector (µ, u) ∈ R2(X×A), with the feasible set U2
Φ defined

through the constraints

ETuh = P T

hµh (∀h), ΦT

hdiag(uh)Φh = ΦT

hdiag(µh)Φh (∀h). (4)

These latter constraints ensure that the feature covariance matrices under u and µ will be
identical, which is necessary for technical reasons that will be clarified in Section 4. Notice
that, due to our assumption that ϕ1(x, a) = 1, we have U2

Φ ⊆ UΦ, so all feasible u’s continue
to be feasible for the original constraints (1).

• The regularization function will be chosen as 1
ηD(µ‖µ0) + 1

αDC(u‖µ0) for some positive
regularization parameters η and α, where µ0 is the occupancy measure induced by the
uniform π0 with π0(a|x) = 1

K for all x, a, and D and DC are the marginal and conditional
relative entropy functions respectively defined as D(µ‖µ0) =

∑H
h=1D(µh‖µ0,h) and

DC(µ‖µ0) =
∑H
h=1DC(µh‖µ0,h) with

D(µh‖µ0,h) =
∑

(x,a)∈(Xh×A)

µh(x, a) log
µh(x, a)

µ0,h(x, a)
, and

DC(µh‖µ0,h) =
∑

(x,a)∈(Xh×A)

µh(x, a) log
πµ,h(a|x)

π0,h(a|x)
.

With these choices, the updates of our algorithm in each episode will be given by

(µt, ut) = arg max
(µ,u)∈U2

Φ

{ t−1∑
s=1

H−1∑
h=1

〈µh, r̂s,h〉 −
1

η
D(µ‖µ0)− 1

α
DC(u‖µ0)

}
(5)

where r̂t,h ∈ RX×A is an estimator of the reward function rt,h that will be defined shortly.

As written above, it is far from obvious if these updates can be calculated efficiently. The following
result shows that, despite the apparent intractability of the maximization problem, it is possible to
reduce the above problem into a d2-dimensional unconstrained convex optimization problem:

Proposition 1. Define for each h ∈ [H − 1], a matrix Zh ∈ Rd×d and let matrix Z ∈ Rd×d(H−1)

be defined as Z = (Z1, . . . , ZH−1). We will write h(x) = h, if x ∈ Xh. Define the Q-function taking
values QZ(x, a) = ϕ(x, a)TZh(x)ϕ(x, a) and define the value function

VZ(x) =
1

α
log

 ∑
a∈A(x)

π0(a|x)eαQZ(x,a)


For any h ∈ [H−1] and for any x ∈ Xh, a ∈ A(x), denotePx,aVZ =

∑
x′∈Xh(x)+1

P (x′|x, a)VZ(x′)

and ∆t,Z(x, a) =
∑t−1
s=1 r̂s,h(x)(x, a) + Px,aVZ − QZ(x, a). Then, the optimal solution of the

optimization problem (5) is given as

π̂t,h(a|x) = π0(a|x)e
α
(
QZ∗t

(x,a)−VZ∗t
(x)
)
,

µ̂t,h(x, a) ∝ µ0(x, a)e
η∆t,Z∗t

(x,a)
,

where Z∗t = (Z∗t,1, . . . , Z
∗
t,H−1) is the minimizer of the convex function

Gt(Z) =
1

η

H−1∑
h=1

log

 ∑
x∈Xh,a∈A(x)

µ0(x, a)eη∆t,Z(x,a)

+ VZ(x1). (6)
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A particular merit of this result is that it gives an explicit formula for the policy πt that induces the
optimal occupancy measure ut, and that πt(a|x) can be evaluated straightforwardly as a function of
the features ϕ(x, a) and the parameters Z∗t . The proof of the result is based on Lagrangian duality,
and mainly follows the proof of Proposition 1 in Bas-Serrano et al. [5], with some subtle differences
due to the episodic setting we consider and the appearance of the constraints ΦT

hdiag(uh)Φh =
ΦT

hdiag(µh)Φh. The proof is presented in Appendix A.1.

The proposition above inspires a very straightforward implementation that is presented as Algorithm 1.
Due to the direct relation with the algorithm of Bas-Serrano et al. [5], we refer to this method as
ONLINE Q-REPS, where Q-REPS stands for “Relative Entropy Policy Search with Q-functions”.
ONLINE Q-REPS adapts the general idea of Q-REPS to the online setting in a similar way as the
O-REPS algorithm of Zimin and Neu [35] adapted the Relative Entropy Policy Search method of
Peters et al. [28] to regret minimization in tabular MDPs with adversarial rewards. While O-REPS
would in principle be still applicable to the large-scale setting we study in this paper and would
plausibly achieve similar regret guarantees, its implementation would be nearly impossible due to the
lack of the structural properties enjoyed by ONLINE Q-REPS, as established in Proposition 1.

Algorithm 1 ONLINE Q-REPS
Parameters: η, α > 0, exploration parameter γ ∈ (0, 1),
Initialization: Set θ̂1,h = 0 for all h, compute Z1.
For t = 1, . . . , T , repeat:

• Draw Yt ∼ Ber(γ),
• For h = 1, . . . ,H , do:

– Observe Xt,h and, for all a ∈ A(Xt,h), set

πt,h(a|Xt,h) = π0,h(a|Xt,h)eα(QZt (Xt,h,a)−VZt (Xt,h)),

– if Y = 0, draw At,h ∼ πt,h(·|Xt,h), otherwise draw At,h ∼ π0,h(·|Xt,h),
– observe the reward rt,h(Xt,h, At,h).

• Compute θ̂t,1, . . . , θ̂t,H−1, Zt+1.

3.2 The reward estimator

We now turn to describing the reward estimators r̂t,h, which will require several further definitions.
Specifically, a concept of key importance will be the following feature covariance matrix:

Σt,h = Eπt
[ϕ(Xt,h, At,h)ϕ(Xt,h, At,h)T] .

Making sure that Σt,h is invertible, we can define the estimator

θ̃t,h = Σ−1
t,hϕ(Xt,h, At,h)rt,h(Xt,h, At,h). (7)

This estimate shares many similarities with the estimates that are broadly used in the literature on
adversarial linear bandits [18, 3, 8]. It is easy to see that θ̃t,h is an unbiased estimate of θt,h:

Et
[
θ̃t,h

]
= Et

[
Σ−1
t,hϕ(Xt,h, At,h)ϕ(Xt,h, , At,h)Tθt,h

]
= Σ−1

t,hΣt,hθt,h = θt,h.

Unfortunately, exact computation of Σt,h is intractable. To address this issue, we propose a method
to directly estimate the inverse of the covariance matrix Σt,h by adapting the Matrix Geometric
Resampling method of Neu and Olkhovskaya [21] (which itself is originally inspired by the Geometric
Resampling method of 19, 20). Our adaptation has two parameters β > 0 andM ∈ Z+, and generates
an estimate of the inverse covariance matrix through the following procedure1:

1The version we present here is a naïve implementation, optimized for readability. We present a more
practical variant in Appendix B
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Matrix Geometric Resampling
Input: simulator of P , policy π̃t = (π̃t,1, . . . , π̃t,H−1).
For i = 1, . . . ,M , repeat:

1. Simulate a trajectory
τ(i) = {(X1(i), A1(i)), . . . , (XH−1(i), AH−1(i))}, following the
policy π̃t in P ,

2. For h = 1, . . . ,H − 1, repeat:
Compute
(a) Bi,h = ϕ(Xh(i), Ah(i))ϕ(Xh(i), Ah(i))T,

(b) Ci,h =
∏i
j=1(I − βBj,h).

Return Σ̂+
t,h = βI + β

∑M
i=1 Ci,h for all h ∈ [H − 1].

Based on the above procedure, we finally define our estimator as

θ̂t,h = Σ̂+
t,hϕ(Xt,h, At,h)rt,h(Xt,h, At,h).

The idea of the estimate is based on the truncation of the Neumann-series expansion of the matrix
Σ−1
t,h at the M th order term. Then, for large enough M , the matrix Σ+

t,h is a good estimator of the
inverse covariance matrix, which will be quantified formally in the analysis. For more intuition on
the estimate, see section 3.2. in Neu and Olkhovskaya [21]. With a careful implementation explained
in Appendix B, θ̂t,h can be computed in O(MHKd) time, using M calls to the simulator.

3.3 The regret bound

We are now ready to state our main result: a bound on the expected regret of ONLINE Q-REPS.
During the analysis, we will suppose that all the optimization problems solved by the algorithm are
solved up to an additive error of ε ≥ 0. Furthermore, we will denote the covariance matrix generated
by the uniform policy at layer h as Σ0,h, and make the following assumption:
Assumption 2. The eigenvalues of Σ0,h for all h are lower bounded by λmin > 0.

Our main result is the following guarantee regarding the performance of ONLINE Q-REPS:
Theorem 1. Suppose that the MDP satisfies Assumptions 1 and 2 and λmin > 0. Furthermore,
suppose that, for all t, Zt satisfies Gt(Zt) ≤ minZ Gt(Z) + ε for some ε ≥ 0. Then, for γ ∈ (0, 1),
M ≥ 0, positive η ≤ 1

σ2β(M+1)H and any positive β ≤ 1

2σ2
√
d(M+1)

, the expected regret of ONLINE

Q-REPS over T episodes satisfies

RT ≤2TσRH · exp (−γβλminM) + γHT + ηTH(3 + 5d) +
1

η
D(µ∗‖µ0)

+
1

α
DC(u∗‖µ0) +

√
αεTH(1 + η(M + 1)2).

Furthermore, letting β = 1

2σ2
√
d(M+1)

, M =
⌈
σ4d log2(

√
THσR)

γ2λ2
min

⌉
, η = 1√

TdH
, α = 1√

TdH
and

γ = 1√
TH

and supposing that T is large enough so that the above constraints on M,γ, η and β are
satisfied, we also have

RT =Õ
(√

dHT (1 +D(µ∗‖µ0) +DC(u∗‖µ0)) +
√
ε(TH)9/4d5/4 1

λ4
min

)
.

Thus, when all optimization problems are solved up to precision ε = (TH)−7/2d−3/2λ8
min, the

regret of ONLINE Q-REPS is guaranteed to be of O
(√

dHTD(µ∗‖µ0)
)
.

3.4 Implementation

While Proposition 1 establishes the form of the ideal policy updates πt through the solution of an
unconstrained convex optimization problem, it is not obvious that this optimization problem can be
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solved efficiently. Indeed, one immediate challenge in optimizing Gt is that its gradient takes the form

∇Gt(Z) =
∑
x,a

µ̃Z(x, a)

ϕ(x, a)ϕ(x, a)T −
∑
x′,a′

P (x′|x, a)πZ(a′|x′)ϕ(x′, a′)ϕ(x′, a′)T

 ,

where µ̃Z(x, a) = µ0(x,a) exp(η∆Z(x,a))∑
x′,a′ µ0(x′,a′) exp(η∆Z(x′,a′)) . Sampling from this latter distribution (and thus ob-

taining unbiased estimators of∇Gt(Z)) is problematic due to the intractable normalization constant.

This challenge can be addressed in a variety of ways. First, one can estimate the gradients via weighted
importance sampling from the distribution µ̃Z and using these in a stochastic optimization procedure.
This approach has been recently proposed and analyzed for an approximate implementation of REPS
by Pacchiano et al. [27], who showed that it results in ε-optimal policy updates given polynomially
many samples in 1/ε. Alternatively, one can consider an empirical counterpart of the loss function
replacing the expectation with respect to µ0 with an empirical average over a number of i.i.d. samples
drawn from the same distribution. The resulting loss function can then be optimized via standard
stochastic optimization methods. This approach has been proposed and analyzed by Bas-Serrano
et al. [5]. We describe the specifics of this latter approach in Appendix C.

4 Analysis

This section gives the proof of Theorem 1 by stating the main technical results as lemmas and putting
them together to obtain the final bound. In the first part of the proof, we show the upper bound on the
auxiliary regret minimization game with general reward inputs and ideal updates. Then, we relate
this quantity to the true expected regret by taking into account the properties of our reward estimates
and the optimization errors incurred when calculating the updates. The proofs of all the lemmas are
deferred to Appendix A.

We start by defining the idealized updates (µ̂t, ût) obtained by solving the update steps in Equation (5)
exactly, and we let ut be the occupancy measure induced by policy πt that is based on the near-optimal
parameters Zt satisfying Gt(Zt) ≤ minZ Gt(Z) + ε. We will also let µt be the occupancy measure
resulting from mixing ut with the exploratory distribution µ0 and note that µt,h = (1−γ)ut,h+γµt,h.
Using this notation, we will consider an auxiliary online learning problem with the sequence of
reward functions given as r̂t,h(x, a) = 〈ϕ(x, a), θ̂t,h〉, and study the performance of the idealized
sequence (µ̂t, ût) therein:

R̂T =

T∑
t=1

H−1∑
h=1

〈µ∗h − ût,h, r̂t,h〉.

Our first lemma bounds the above quantity:

Lemma 1. Suppose that θ̂t,h is such that
∣∣η · 〈ϕ(x, a), θ̂t,h〉

∣∣ < 1 holds for all x, a. Then, the
auxiliary regret satisfies

R̂T ≤ η
T∑
t=1

H−1∑
h=1

〈µ̂t,h, r̂2
t,h〉+

1

η
D(µ∗‖µ0) +

1

α
DC(u∗‖µ0).

While the proof makes use of a general potential-based argument commonly used for analyzing FTRL-
style algorithms, it involves several nontrivial elements exploiting the structural results concerning
ONLINE Q-REPS proved in Proposition 1. In particular, these properties enable us to upper bound
the potential differences in a particularly simple way. The main term on contributing to the regret R̂T

can be bounded as follows:
Lemma 2. Suppose that ϕ(Xt,h, a) is satisfying ‖ϕ(Xt,h, a)‖2 ≤ σ for any a, 0 < β ≤

1

2σ2
√
d(M+1)

and M > 0. Then for each t and h,

Et
[
〈µ̂t,h, r̂2

t,h〉
]
≤ 3 + 5d+ (M + 1)2 ‖ût,h − ut,h‖1 .

The proof of this claim makes heavy use of the fact that 〈µ̂t,h, r̂2
t,h〉 = 〈ût,h, r̂2

t,h〉, which is ensured
by the construction of the reward estimator r̂t,h and the constraints on the feature covariance matrices
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in Equation (4). This property is not guaranteed to hold under the first-order constraints (2) used in
the previous works of Neu and Pike-Burke [22] and Bas-Serrano et al. [5], which eventually justifies
the higher complexity of our algorithm.

It remains to relate the auxiliary regret to the actual regret. The main challenge is accounting for the
mismatch between µt and ut, and the bias of r̂t, denoted as bt,h(x, a) = Et [r̂t,h(x, a)]− rt,h(x, a).
To address these issues, we observe that for any t, h, we have

〈µt,h, rt,h〉 = 〈(1− γ)ut,h + γµ0,h, rt,h〉 = 〈(1− γ)ût,h + γµ0,h, rt,h〉+ (1− γ) 〈ut,h − ût,h, rt,h〉
≥ Et [〈(1− γ)ût,h + γµ0,h, r̂t,h〉] + ‖bt,h‖∞ + (1− γ) ‖ut,h − ût,h‖1 ,

where in the last step we used the fact that ‖rt,h‖∞ ≤ 1. After straightforward algebraic manipula-
tions, this implies that the regret can be bounded as

RT ≤ (1− γ)E
[
R̂T

]
+

T∑
t=1

H∑
h=1

E
[
γ 〈µ0,h − µ∗h, rt,h〉+ ‖ût,h − ut,h‖1 + ‖bt,h‖∞

]
. (8)

In order to proceed, we need to verify the condition
∣∣η · 〈ϕ(x, a), θ̂t,h〉

∣∣ < 1 so that we can apply
Lemma 1 to bound R̂T . This is done in the following lemma:
Lemma 3. Suppose that η ≤ 1

σ2β(M+1)H . Then, for all, t, h, the reward estimates satisfy
η ‖r̂t,h‖∞ < 1.

Proceeding under the condition η(M + 1), we can apply Lemma 1 to bound the first term on the
right-hand side of Equation (8), giving

RT ≤
D(µ∗‖µ0)

η
+
DC(u∗‖µ0)

α
+ (3 + 5d)ηHT + γHT

+
∑
t,h

E
[
(η(M + 1)2 + 1) ‖ût,h − ut,h‖1 + ‖bt,h‖∞

]
.

It remains to bound the bias of the reward estimators and the effect of the optimization errors that
result in the mismatch between ut and ût. The following lemma shows that this mismatch can be
directly controlled as a function of the optimization error:

Lemma 4. The following bound is satisfied for all t and h: ‖ût,h − ut,h‖1 ≤
√

2αε.

The final element in the proof is the following lemma that bounds the bias of the estimator:
Lemma 5. For M ≥ 0, β = 1

σ2β(M+1)H , we have ‖bt,h‖∞ ≤ σR exp (−γβλminM).

Putting these bounds together with the above derivations concludes the proof of Theorem 1.

5 Discussion

This paper studies the problem of online learning in MDPs, merging two important lines of work
on this problem concerned with linear function approximation [17, 7] and bandit feedback with
adversarial rewards [23, 25, 35]. Our results are the first in this setting and not directly comparable
with any previous work, although some favorable comparisons can be made with previous results in
related settings. In the tabular setting where d = |X ||A|, our bounds exactly recover the minimax
optimal guarantees first achieved by the O-REPS algorithm of Zimin and Neu [35]. For realizable
linear function approximation, the work closest to ours is that of Cai et al. [7], who prove bounds of
order

√
d2H3T , which is worse by a factor of

√
dH than our result. Their setting, however, is not

exactly comparable to ours due to the different assumptions about the feedback about the rewards
and the knowledge of the transition function.

One particular strength of our work is providing a complete analysis of the propagation of optimization
errors incurred while performing the updates. This is indeed a unique contribution in the related
literature, where the effect of such errors typically go unaddressed. Specifically, the algorithms of
Zimin and Neu [35], Rosenberg and Mansour [30], and Jin et al. [16] are all based on solving convex
optimization problems similar to ours, the effect of optimization errors or potential methods for
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solving the optimization problems are not discussed at all. That said, we believe that the methods
for calculating the updates discussed in Section 3.4 are far from perfect, and more research will be
necessary to find truly practical optimization methods to solve this problem.

The most important open question we leave behind concerns the requirement to have full prior
knowledge of P . In the tabular case, this challenge has been successfully addressed in the adversarial
MDP problem recently by Jin et al. [16], whose technique is based on adjusting the constraints (1)
with a confidence set over the transition functions, to account for the uncertainty about the dynamics.
We find it plausible that a similar extension of ONLINE Q-REPS is possible by incorporating a
confidence set for linear MDPs, as has been done in the case of i.i.d. rewards by Neu and Pike-Burke
[22]. Nevertheless, the details of such an extension remain highly non-trivial, and we leave the
challenge of working them out open for future work.
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