
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LYAPUNOV STABILITY LEARNING WITH
NONLINEAR CONTROL VIA INDUCTIVE BIASES

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding a control Lyapunov function (CLF) in a dynamical system with a controller
is an effective way to guarantee stability, which is a crucial issue in safety-concerned
applications. Recently, deep learning models representing CLFs have been applied
into a learner-verifier framework to identify satisfiable candidates. However, the
learner treats Lyapunov conditions as complex constraints for optimisation, which
is hard to achieve global convergence. It is also too complicated to implement
these Lyapunov conditions for verification. To improve this framework, we treat
Lyapunov conditions as inductive biases and design a neural CLF and a CLF-based
controller guided by this knowledge. This design enables a stable optimisation
process with limited constraints, and allows end-to-end learning of both the CLF
and the controller. Our approach achieves higher convergence rate and larger
region of attraction (ROA) in learning the CLF compared to existing methods
among abundant experiment cases. We also thoroughly reveal why the success rate
decreases with previous methods during learning.

1 INTRODUCTION

In recent years, deep learning models have demonstrated significant potential in controlling nonlinear
dynamical systems with high performance results within various applications such as car naviga-
tion (Han et al., 2022), robot scooping (Niu et al., 2023), and quadrotor flying (O’Connell et al.,
2022). However, as deep learning methods led to black-box models, when safety concerns cannot be
overlooked, the real-life implementation requires theoretical analysis of the stability performance,
creating an open question (Amodei et al., 2016).

For a dynamical system with a controller, the theory of Lyapunov stability is an important approach
in stability analysis, which determines a control Lyapunov function (CLF) and a region of attraction
(ROA) (Giesl & Hafstein, 2015). Within the ROA, the system is proven to be asymptotically stable
around the equilibrium. Nonetheless, this theory does not provide a way to systematically discover a
CLF. Designing a feasible framework to achieve this goal becomes a necessary research topic.

Previous works focus on finding CLFs for polynomial dynamical systems (Khodadadi et al., 2014;
Majumdar et al., 2013). For nonlinear dynamics, a learner-verifier framework is proposed with
polynomial CLF candidates to guarantee stability (Ravanbakhsh & Sankaranarayanan, 2019), which
is extended to learn neural CLFs with a linear-quadratic regulator (LQR) controller (Chang et al.,
2019). Additionally, a mathematical analysis is provided (Zhou et al., 2022) and learning piecewise
models as CLFs and dynamics is studied for simplicity (Dai et al., 2020).

However, three shortcomings exist within this learner-verifier framework. First, three Lyapunov
conditions are converted to soft constraints in the trainer (Chang et al., 2019; Dai et al., 2020; Zhou
et al., 2022), but the complex combination of loss weights makes it hard to optimise the neural CLF
candidate to satisfy all these conditions at the same time.

Second, to release this difficulty in learning, the overlooked region around the equilibrium is intro-
duced (Chang et al., 2019; Zhou et al., 2022; Zinage & Bakolas, 2023). The verifier will not check
the satisfaction of Lyapunov conditions within this region:

Ω0 = {s | ‖s− s∗‖ < r0}, (1)
where s∗ is the equilibrium state and r0 ∈ R+ is a radius. But the existence of this region will lead to
rough or even fake results deceiving the verifier, along with a controller failing to stabilise the system.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Framework structures comparison of different methods
METHODS MODELS EFFECTS FOR THE TRAINER AND THE VERIFIER IMPLEMENTATION RESULTS
ULC (Zhou et al., 2022)
NLC (Chang et al., 2019) Vanilla neural networks Multiple Lyapunov risk losses Independent library, with overlooked region Simple and fast Inaccurate

Ours Lyapunov inductive networks Only one Lyapunov risk loss Verified within trainer, no overlooked region l l
LSNNC (Dai et al., 2021) Piecewise linear networks Multiple Lyapunov risk losses Nonlinear solver using CPU only Complex and slow Accurate

Third, the verifier consists of a non-convex solver to check the Lyapunov conditions, which is
independent from the deep learning library and usually runs on CPU only. To express Lyapunov
conditions in the verifier, users have to extract weights from the neural CLF candidate and then
hard-code this deep learning model, its derivative, the dynamics and controller models with only basic
mathematical operations. The implementation will be impractical when models become complex.

To address these issues mentioned above, we propose an end-to-end pipeline for learning the neural
CLF and controller for the nonlinear dynamical system. Apart from optimising constraints to meet the
Lyapunov conditions, we first treat Lyapunov conditions as inductive biases. As compared in Table 1,
by incorporating this knowledge into the neural CLF and the controller, we can satisfy mostly the
Lyapunov conditions before learning, reducing the optimisation burden and improving the possibility
of convergence. Additionally, we can perform the verification step using only the deep learning
library, simplifying the framework for the easy implementation.

Contribution. First, we design the neural CLF and the nonlinear controller with one neural network
instructed by Lyapunov conditions as prior inductive biases, which enables us to train them in a
synthesis way. Second, we incorporate the verifier into trainer and propose an end-to-end framework
to find satisfiable CLFs for nonlinear dynamical systems. Third, we provide a thorough investigation
with regard to the robustness of different methods, the reasons of their differences in performance, and
the effects of the other heuristic learning factor called the geometric shaping loss. We demonstrate
robust convergence and superior performance in finding CLFs with larger ROAs compared to
counterparts.

2 RELATED WORKS

Lyapunov theory with classical methods. The application of the Lyapunov theory ranges from
simple to complex cases. For linear dynamical systems, the linear-quadratic (LQR) controller is able to
achieve the Lyapunov stability with a quadratic Lyapunov function (Khalil, 2015). The control-affine
polynomial dynamics is also proven to be stable with a polynomial controllers and a sum-of-square
(SOS) polynomial Lyapunov function using semidefinite programming (SDP) (Majumdar et al., 2013;
Khodadadi et al., 2014; Jarvis-Wloszek et al., 2003; Henrion & Garulli, 2005). Besides, the SDP
optimisation is widely expanded in a rich group of work (Parrilo, 2000; Papachristodoulou & Prajna,
2005). However, the scale of the SDP grows exponentially related to the dimension of dynamics with
a SOS low-degree polynomial Lyapunov function (Parrilo, 2000).

Lyapunov theory for stability estimation and analysis. For nonlinear systems without controller,
the research purpose is to prove the feature of stability. Researchers firstly turn to deep learning
to directly approximate known regions of attractions (ROAs) (Berkenkamp et al., 2016a; Richards
et al., 2018). To find a Lyapunov function to prove asymptotic stability, the learner-verifier frame-
work proposed in (Ravanbakhsh & Sankaranarayanan, 2019) has been further extended with deep
learning (Grüne, 2020; Abate et al., 2020; Dai et al., 2020; Grüne, 2021; Gaby et al., 2022). To
approximate the Lyapunov function and verify satisfaction of the Lyapunov conditions, deep learning
models have been applied with a SMT solver (Grüne, 2020; Abate et al., 2020). Piecewise linear
systems have also been addressed using ReLU-activated networks with the MIP solver (Dai et al.,
2020). Convergence has been analytically studied and networks have been designed to accelerate
convergence (Grüne, 2021; Gaby et al., 2022). Despite the increased expression ability in deep
learning for approximating the Lyapunov function, verifying the Lyapunov conditions among the
whole defined region within non-convex solvers is difficult to implement. The framework is also
unstable with complex optimisation targets. Moreover, the MIP solver requires piecewise linear
functions, which limits its usage when other known or learnt nonlinear dynamics models are available.

Lyapunov theory for control with stability guarantee. Gaussian process models are firstly applied
to improve the accuracy of dynamical models for more reliable control (Berkenkamp & Schoellig,
2015; Sui et al., 2015; Berkenkamp et al., 2016b; Koller et al., 2018), as well as for learning safe

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

regions for control policy (Schreiter et al., 2015; Turchetta et al., 2019). Recent, several works focus
on introducing a controller that can be proven stable with respect to Lyapunov theory (Chang et al.,
2019; Dai et al., 2021; Zhou et al., 2022; Zinage & Bakolas, 2023). In (Chang et al., 2019), the
learner-verifier framework is first used to find a CLF candidate for nonlinear dynamical systems
using the LQR controller, and this methodology is later extended to nonlinear controllers (Dai et al.,
2021; Zhou et al., 2022). This framework is combined with Koopman operator theory to learn the
dynamical system at the same time (Zinage & Bakolas, 2023). Additionally, a method is proposed for
decomposing the dynamical system into a continuous branch of Lyapunov functions and controllers
for subsystems for generalisation (Zhang et al., 2023). However, as noted earlier, challenges exist
in synthetically learning controllers and the corresponding CLF with a complex optimisation target,
where careful tuning weights of the loss for convergence is required.

3 PRELIMINARIES

We consider the nonlinear control-affine Lipschitz continuous dynamical systems subject to bounded
control inputs:

ṡ = f(s) + g(s)u(s), (2)
where Ω is a closed state domain, s ∈ Ω ⊆ Rn, f : Ω → Rn, g : Ω → Rn×m and u : Ω →
[umin,umax] ⊆ Rm. The bounded controller corresponds to real-world situations, following previous
works (Zhou et al., 2022; Dai et al., 2021)

Lyapunov conditions. Given a goal equilibrium state s∗ with control u∗ = u(s∗), the control
Lyapunov function (CLF) V (s) satisfies the following conditions (Giesl & Hafstein, 2015):

V̇ (s) < 0 ∀s ∈ Ω, s 6= s∗, (3a)
V (s) > 0 ∀s ∈ Ω, s 6= s∗, (3b)

V (s∗) = 0 , V̇ (s∗) = 0, (3c)

where V̇ (s) = ∇V (s)Tṡ = ∇V (s)T(f + gu) is the time derivative, and ∇V (s) = ∂V (s)
∂s is the

partial derivative with respect to s.

Region of Attraction (ROA). We consider the compact region defined by Dρ = {s | V (s) ≤ ρ, ρ ∈
R+} ⊆ Ω, where all Lyapunov conditions in Equation (3) are met. The largest level set is defined
by D = maxρDρ as the ROA. Here, the CLF proves the asymptotic stability of the system within
ROA around the equilibrium. As depicted in Figure 1, as long as the initial state s0 is within the
corresponding ROA, because V̇ (s) < 0, the CLF value strictly decreases to 0 with time according to
the Lyapunov conditions, which implies that the state will converge to s∗:

∀s(0) = s0 ∈ D : lim
t→∞

V (s(t))→ 0⇒ lim
t→∞

s(t)→ s∗.

Figure 1: An illustration of a CLF candidate satisfying Lyapunov conditions within the closed state
region Ω. It displays the maximum level setD that can be found. The CLF value is strictly decreasing
with respect to time in D because it is a closed region.

To the best of our knowledge, there is no way to design a general form for the CLF and the bounded
controller to completely satisfy all Lyapunov conditions. Utilising deep learning models to represent
the CLF is a feasible way to find a suitable CLF. However, training vanilla neural networks with
excessive constraints shown in Equation (3) is difficult because the searching space of weights to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

balance constraints is too broad. If we consider the knowledge as inductive biases and design the
neural CLF candidate and controller instructed by them, we can simplify the learning framework,
release the training burden, and still retain theoretical guarantees presented in Zhou et al. (2022).

4 METHOD

In this section, we update the learner-verifier framework with an end-to-end learning pipeline
illustrated in Algorithm 1 to find the CLF and nonlinear controller for the dynamical system, which
comprises two parts: pretraining the dynamics and training the entire neural CLF control system.

4.1 DYNAMICAL SYSTEM PRETRAINING

When dynamics is unknown or simplified dynamics is needed, it can be approximated simply using
regression before learning the neural CLF. Two multilayer perceptrons (MLPs) fφ1 and gφ2 can be
used to model f and g, respectively, with φ1 and φ2 being the parameters. Given samples (s,u, ṡ),
the L2 norm is used for the optimisation: Ldyn(s) = ‖ṡ − ˙̂s‖2, where ˙̂s = fφ1

(s) + gφ2
(s)u and ṡ

represent the time derivative of the state obtained from the network and the ground truth, respectively.

Following the proof presented in (Zhou et al., 2022), the effect of the difference of the learned
dynamics and the ground truth can be eliminated by introducing a positive number b in condition (3a)
for training: V̇ (s) < −b. Here b ≥M(Kdynδ+ ε+Kφδ) > 0 is related to the norm of the derivative
of the Lyapunov function M = ‖∂V∂s ‖, the learnt error ε, the sample interval δ, the Lipschitz constants
of the dynamics Kdyn and the learnt dynamics Kφ. Still, the determination of b requires some prior
knowledge. For simplicity, we utilise f and g to refer the dynamics afterwards.

4.2 SELF-SUPERVISED TRAINING

The self-supervised learning pipeline is shown in Figure 2. To reduce the complexity of the optimisa-
tion target, we carefully design the neural CLF candidate and the controller to satisfy most of the
constraints of Equation (3). Next, we introduce the optimisation process.

 CLF-based controller

Nonlinear dynamics

Neural CLF with
inductive biases

States Valid CLFLoss

Figure 2: The self-supervised framework to synthetically learn the neural CLF and the CLF-based
controller for nonlinear dynamics. Solid black arrows represent forward flows: Given the state s, the
values of dynamics f ,g and Lyapunov function V,∇V are obtained and then fed into the CLF-based
control policy for control u. Then the loss is calculated for optimisation. Red dash-dot arrows
represent backpropagation flows for different loss terms.

Control Lyapunov Function Candidate. With proper design of the architecture of the CLF
candidate, we can meet the semi-definite positive Lyapunov condition around the equilibrium s∗. The
sum-of-squares (SOS) structure is utilised for polynomial Lyapunov functions (Papachristodoulou &
Prajna, 2005) and SOS neural Lyapunov functions are only applied to approximate known ROAs for
classification (Berkenkamp et al., 2016a). Here, we build the sum-of-squares neural CLF candidate
Vθ with network φθ : Rn → Rl as:

Vθ(s) = V1(s) + V2(s) = ‖φθ(s)− φθ(s∗)‖22 + k log(1 +
(n∑

i

(si − s∗i)
)2

), (4)

where ‖ · ‖p denotes the Lp norm, k > 0 is a hyperparameter, l is the hidden dimension, and
θ is the network parameter. It can be easily verified that this candidate satisfies Vθ(s∗) = 0,
Vθ(s) > 0, s 6= s∗, and V̇θ(s∗) = ∇Vθ(s∗)Tṡ∗ = ∇Vθ(s∗)T0 = 0. Therefore, conditions (3b) and
(3c) are satisfied.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The introduction of the second loss term V2 can serve as a valuable augmentation for Vθ because
it guarantees that Vθ equals 0 only when the state is at the equilibrium point s∗. Its gradient is
∇V2(s) =

2
∑n

i (si−s
∗
i)

1+(
∑n

i (si−s∗i))2
, whereby lim‖s−s∗‖2→0∇V2(s) = 0 and lim‖s−s∗‖2→∞∇V2(s) = 0.

This indicates that V2(s) increases gradually and smoothly when close or far from the equilibrium
point and does not overpower the expression of the neural network part. So we can highlight the
effect of V1(s) during training.

CLF-Based Controller. Given a CLF, the Sontag's feedback control (Sontag, 1989; Freeman &
Primbs, 1996) can ensure the condition (3a) is met. However, the controlling output can be excessively
large, which is unrealistic in the real world. Under the constraint of the bounded control output, we
build the controller model as follows:

u(s) = ū1(s) + u2(s) = clip(u1(s),u1,min,u1,max) + u2(s), (5a)

u1(s) = −∇V (s)TfgT∇V (s)

∇V (s)TggT∇V (s)
, u2(s) = −q1 · tanh(q2 · gT∇V (s)), (5b)

where q1,q2 ∈ Rm+ are vectors with positive elements and · denotes the dot product for vectors. u1

aims to counterbalance the effect of the dynamical function f . The function clip(x,xmin,xmax) =
max(min(x,xmax),xmin) constrains the values outside the range [xmin,xmax] to the range edges,
u1,min = umin + q1 and u1,max = umax − q1 are the control range for u1. u2 is already bounded
by the tanh function and can drive the system to equilibrium, where q1 defines the amplitude of u2

and q2 controls how fast u2 reaches the maximum output.

Here we design a controller integrated with the CLF to approach condition (3a) without introducing a
new neural network. For a rough estimation of the time derivative of CLF, given Equation (2) and
(5b), when u1(s) = ū1(s), we have

V̇ (s) =∇V Tṡ = ∇V T(f + gu1 + gu2)) use Eq.(2)

=∇V Tf − ∇V
Tg∇V TfgT∇V
∇V TggT∇V

− (gT∇V)T(q1 · tanh(q2 · gT∇V)) use Eq.(5b)

=− (gT∇V)T(q1 · tanh(q2 · gT∇V)).

(6)

Since the signs of the corresponding elements between gT∇V and tanh(gT∇V) are always the same
and (q1,q2) are positive vectors, (gT∇V)T(q1 · tanh(q2 · gT∇V)) is positive, i.e., V̇ (s) ≤ 0.

As discussed in section 3, the whole satisfaction within region u1(s) 6= ū1(s) can be approached by
optimisation, with only one Lyapunov risk loss term shown in Equation (7b).

Optimisation. The training of the neural CLF and the CLF-based controller in Equation (4) and (5)
relies on self-supervised learning. We define the loss function as:

L(s) = Llya(s) + Lelse(s), (7a)

Llya(s) =
1

N

N∑
i=1

λ1w(si)(max(V̇θ(si) + b, 0))2 (7b)

Lelse(s) =
1

N

N∑
i=1

λ2w(si) ‖u1(si)− ū1(si)‖2 , (7c)

where V̇θ(si) = ∇Vθ(f + gū)(si), Llya(s) represents the Lyapunov risk for condition (3a), Lelse(s)
enforces a soft constraint to prevent the controller output from exceeding the constraint range, N is
the number of samples, w(si) is the weight of different sample, and (λ1, λ2, b) are hyperparameters
with λ1 > 0, λ2 > 0, b ≥ 0. w(si) can prioritise training on some target regions and is set as 1 for
simplicity in our work. As Llya(s) decreases, a neural CLF and a controller meeting the satisfaction
could be found during the self-supervised learning.

As for implementation and optimisation, four things are worth pointing out. First, the Lyapunov risk
loss Llya(s) is simplified because we only need to satisfy condition (3a). In previous works, all three
Lyapunov conditions in Equation (3) are converted to soft constraints as Lyapunov risks within the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Lyapunov-Stable Control
Function TrainLyapunovSystem(Ω, fφ1

(s),gφ2
(s))

Set CLF Vθ(s), optimiser optim, total iteration steps max_step;
S← GenerateGridSamples(Ω); /* Capital letter: batch. */
for i = 1 to max_step do
∇Vθ(S)← autograd(Vθ(S));
U1, Ū1, Ū← Equation (5a) and (5b);
˙̂
S← fφ1

(S) + gφ2
(S)Ū;

L = 1
|S|

(
λ1(max(∇Vθ

˙̂S,0))2 + λ2‖U1 − Ū1‖2
)

;
L.backward();
optim.step();
satisfiable, counterexamples← CheckSatisfiability();
S← (S \ old counterexamples) ∪ counterexamples;
if Llya, verify → 0 then break;

return Vθ(s)
Function Main()

Input: verified region Ω, controller parameters u1,min,u1,max,q1,q2;
fφ1(s),gφ2(s)← PretrainDynamicsModel(Ω);
Vθ(s)← TrainLyapunovSystem(Ω, fφ1

(s),gφ2
(s));

ROA← FindROA(Ω,Vθ(s));

loss function (Chang et al., 2019; Dai et al., 2020; Zhou et al., 2022; Zinage & Bakolas, 2023):

L̄lya =
1

N

N∑
i=1

(
C1 max(V̇θ(si), b1) + C2 max(−Vθ(si), b2)

)
+ C3V

2
θ (0) + C4

∥∥∥∥∂Vθ∂s (0)

∥∥∥∥ , (8)

where C1, C2, C3, C4, b1, b2 are weights. Concerning the high complexity of the combination of
their loss weights, it is very difficult to tune these weights to achieve ideal results. Delicately tuned
learning settings can also be unstable when dynamical systems change.

Second, the verification of condition (3a) can be simply accomplished using deep learning packages.
Other non-convex solvers is not needed over the verification region to examine the satisfaction of
multiple constraints. So the whole training process is end-to-end for easy implementation without
hard-coding neural networks and related derivatives.

Third, there is no overlooked region around the equilibrium mentioned in Equation (1) to pass the
verification process. The whole region will be utilised for exploration and verification, which will
make sure the satisfaction region starts from the equilibrium. This is important for the robustness of
the learning results.

Fourth, the loss in Equation (7) is only for successfully finding a satisfactory neural CLF. To encourage
exploration for a larger ROA, other tuning terms such as the geometric shaping term can be useful:

Lshape =
1

N

N∑
i=1

η1
(
‖Hsi‖22 − η2V (si)

)2
, (9)

where H is an orthogonal transformation matrix and η1, η2 ∈ R+ are two hyperparameters (Chang
et al., 2019; Zhou et al., 2022). Equation (9) can help prevent the neural CLF from being flat and
shape it to match the verified region Ω. How this term works is also investigated in experiments.

5 EXPERIMENTS

5.1 ROBUSTNESS AND PERFORMANCE EVALUATION

The targets of this experiment are twofold. First, to compare the robustness of different methods, we
examine their performance in finding neural CLF with related to a large amount of cases. Second, to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

reveal the ability in finding large stability regions, we collect the areas of ROAs among those success
cases for comparison.

Experiment Setup. Two nonlinear dynamical systems, unicycle path following and inverted pen-
dulum, are used because their official implementations are available within previous works (Chang
et al., 2019; Zhou et al., 2022; Dai et al., 2021; Zinage & Bakolas, 2023) and can be viewed as
representative cases. We believe these two systems can serve as reliable indicators for evaluation.

The inverted pendulum with an unstable equilibrium s∗ = (θ∗, ω∗) = (0, 0) is defined by:

θ̇ = ω, ω̇ = (mgl sin θ −Dω + u)/ml2,

where the gravity and damping are g = 9.81 and D = 0.1, respectively. The learning region is
defined as Ω = {[θ, ω]| − 4 ≤ θ ≤ 4,−4 ≤ ω ≤ 4} with control limits −uamp ≤ u ≤ uamp,
uamp = 20.

The wheeled vehicle path following problem is to control distance error de and angle error θe. The
equilibrium is s∗ = (d∗e, θ

∗
e) = (0, 0) and the dynamical equation is:

ḋe = v sin (θe) , θ̇e = −(v cos (θe))/(1− deκ) + u,

where κ is the target path. The learning region is defined as Ω = {[de, θe]|−0.8 ≤ de ≤ 0.8,−0.8 ≤
θe ≤ 0.8}, with control limits −uamp ≤ u ≤ uamp, uamp = 5.

For the first robustness target, we vary parameters of these dynamical systems to create sufficient
cases shown in Table 2. This means that the learning procedure will repeat 150 and 90 times for each
method to collect the success rate. In contrast, these systems were presented with only a set of fixed
parameters before (Chang et al., 2019; Zhou et al., 2022; Dai et al., 2021; Zinage & Bakolas, 2023).

Table 2: Parameter settings for nonlinear dynamical systems
EXPERIMENTS PARAM1 PARAM2 SEEDS TOTAL
INVERTED PENDULUM m : (0, 5, 0.8, 1.0, 1.2, 1.5) l : (0.8, 1.0, 1.2) 11− 20 10× 5× 3 = 150 cases
PATH FOLLOWING κ : (0.8, 1.0, 1.2) v : (1.0, 1.5, 2.0) 11− 20 10× 3× 3 = 90 cases

For the second performance target, in each case where the learning process succeeds with a neural
CLF candidate, we enumerate and find the closed contour D covering the maximum region as the
ROA, within which the Lyapunov conditions are verified. Then we calculate the area AD within the
contour using the Green's theorem: AD =

∫∫
D dx dy =

∮
D 0.5 · (x dy−y dx).

Because the geometric shaping term presented in Equation (9) is utilised within previous works to
improve performance (Chang et al., 2019; Zhou et al., 2022), we also evaluate its effects within the
experiment. Here H = I is the diagonal matrix because the learning region is square. We tune η2 for
each method, change η1 from 0.1 to at most 9.0, and repeat the above whole testing procedure.

Model Setup. To benchmark our method, we employ three representative methods, the unknown
Lyapunov control (ULC, Zhou et al. (2022)), neural Lyapunov control (NLC, Chang et al. (2019))
and the Lyapunov-stable neural network control (LSNNC, Dai et al. (2021)). NLC utilises a LQR
controller and ULC utilises a LQR controller with a tanh function scaling the output range:

u = K(s− s∗) + u∗,

u = uamp · tanh(K(s− s∗)) + u∗.
(10)

LSNNC utilises a neural network control u = clip(uφ(s) − uφ(s∗) + u∗,umin,umax) and is
considered as a more powerful method than NLC and ULC.

The sum-of-square (SOS) polynomial with the LQR controller serves as our baseline following
previous works. For LQR, we first linearise the dynamical function at the equilibrium s∗. If we
can solve the related Riccati equation (Khalil, 2015) to obtain a positive semidefinite matrix P, the
quadratic form V (s) = sTPs will be a Lyapunov function in the neighbourhood of the target point.

For NLC and ULC, the overlooked region Ω0 = {s | ‖s− s∗‖ < r0} exists during the verification
process, where r0 = 0.2 and 0.1 for the inverted pendulum and path following dynamics, respectively.
Even though one result can pass the verification, it only proves that the controller can stabilise the
system to the overlooked region, not to the equilibrium.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Model and training settings of our method for two dynamical systems

PARAMETERS δlearn δverify k q1 q2 λ1 λ2 b η1 η2 lr 4T
INVERTED PENDULUM 2× 10−2 2× 10−3 6 2 103 1 1 0.1 1 1 0.01 1
PATH FOLLOWING 5× 10−3 10−3 6 2 103 1 1 0.1 2 0.2 0.01 2

For our model, we also test our neural Lyapunov function with the LQR controller (called ours-l)
and the tanh-LQR controller (called ours-t) shown in Equation (10). Considering the data efficiency,
we optimise using relatively sparse grid samples (with interval δlearn) during training. For every4T
epochs, we conduct the verification using dense grid samples (with interval δverify), which returns
counterexamples that violate the Lyapunov condition (3a) for training. The settings of our model are
shown in Table 3.

Results. The learning results are compared in Table 4, where results with overlooked regions are
underlined for distinction. Overall, our method outperforms counterparts with higher success rate
and larger ROAs over successful learning cases.

For our framework, the high success rates imply that our method is more stable among different
learning cases. This result supports our idea that designing the neural networks models instructed by
Lyapunov conditions is better than only optimising them with constraints. After reducing the learning
difficulties, we can retain a stable performance in success rate and then introduce more features to
search for better results. Figure 3(a) presents two neural CLFs founded by our method.

The shaping term is beneficial for the optimisation, increasing the success rate and the area of ROA.
This is because losses in Equation (7) are only for the success of learning, and the learner will
concentrate on one success result each time. As revealed in Figure 3(b), the ROA can be small
because of the shape of neural CLF. The introduce of this shaping term can help the optimisation
path escape from local minima and encourage the learning process to search for a better solution.

Utilising different controllers also affects the learning results. The areas of ROA increase using our
controller compared with the LQR-like controllers. This supports utilising an expressive controller
which can better adjust for the satisfaction of the Lyapunov conditions. These LQR-like controllers
cannot totally stabilise the path following system, so the overlooked region around the equilibrium is
also needed for ours-t and ours-l.

For LSNNC, their performance is also comparative, achieving large area of ROA in the inverted
pendulum system. But the success rate implies that the performance is not stable and the learning
speed for complicated models with only CPU (8 hours at most for one case) is 20-100 times slower
than other methods. Therefore, the learning test with the geometric shaping term is not considered,
which can take several months to tune hyperparameters and examine thousands of cases. Concerning
that the time consumption will increase greatly when systems become complex, we believe that
designing an end-to-end pipeline for the acceleration on GPU is important.

(a) Lyapunov functions and the time derivatitves (b) ROAs obtained without/with the geometric shaping term

Figure 3: The training results of our method. (a) shows the learned neural CLF candidates (colormaps)
and the derivatives (blue wireframes) for inverted pendulum dynamics (left) and path following
(right) in 3D space. The contour of the CLF is also projected on the plane V = 0. (b) presents
ROAs (black contours) of the CLFs. The area of ROA grows extensively larger with the geometric
shaping term (right) than that without the term (left) because of a flatter shape. Colourful dash lines
represent simulated trajectories, where black stars and red solid stars are end points and equilibriums,
respectively. The deviation of stars represents how well the controller can stabilise the system.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Success rate and areas of ROAs obtained by different methods1

INVERTED PENDULUM

Ours Ours-t Ours-l ULC (Zhou et al., 2022) NLC (Chang et al., 2019) LSNNC (Dai et al., 2021) LQR

SUCCESS RATE
NO SHAPING 82.67% 96.67% 95.33% 12% 54.67% 69.33% -

SHAPING 97.33% 90% 96.66% 36.66% 89.33% - -

AREA OF ROA NO SHAPING 6.90± 2.67 14.07± 3.84 5.47± 1.21 1.70± 1.25 6.84± 2.86 30.78± 8.27 6.86
SHAPING 34.43± 4.53 8.53± 2.35 3.78± 0.98 11.33± 8.01 15.59± 4.16 - 6.86

PATH FOLLOWING

Ours Ours-t Ours-l ULC (Zhou et al., 2022) NLC (Chang et al., 2019) LSNNC (Dai et al., 2021) LQR

SUCCESS RATE
NO SHAPING 93.33% 90.8% 88.89% 44.44% - 28.89% -

SHAPING 100% 100% 87.78% 43.33% - - -

AREA OF ROA NO SHAPING 1.42± 0.41 0.88± 0.08 0.76± 0.17 0.79± 0.14 FAILED 0.81± 0.11 FAILED
SHAPING 1.54± 0.37 1.03± 0.14 0.92± 0.28 0.93± 0.33 FAILED - FAILED

For the ULC and NLC, we believe that their low success rates should be blamed on the overlooked
regions around the equilibrium set for the verifiers. Their successful outputs are also not meant to be
the correct CLF and controller and we classify three representative types for their results:

1. Acceptable CLF: As shown in Figure 4(a), the Lyapunov conditions are almost meet, where only
the minimum point slightly deviates from the target equilibrium.

2. Rough CLF: As shown in Figure 4(c-d), the Lyapunov conditions cannot be met around the target
equilibrium, which is outlined by black dash-dot contours. If this conflicting region is small enough
to locate within the overlooked region, the verification can be satisfied and the framework will output
it as the result (Figure 4(c)). However, if the optimiser gets stuck within a local minima and cannot
further shrink the conflicting region, the verifier will return false until the end of the learning (Figure
4(d)). The underlined result listed in Table 4 contains successful cases in this situation.

3. Fake CLF: As shown in Figure 4(b), the neural CLF candidate passes the verification but is not a
CLF at all. The trainer finds a solution to deceive the verifier with the help of the overlooked region.
Trajectories also show that the controller cannot stabilise the system to the equilibrium at all.

These examples explain why the overlooked region is not a wise option. The Lyapunov conditions
around the equilibrium cannot be guaranteed, which can lead to the nonexistent of the ROA.

The investigation of the geometric shaping term is also presented within Figure 5. We can see that a
suitable choice of weight η1 can increase both the success rate and the area of ROA. But when η1
grows larger, the success rate and even the area of ROA will decrease. This means that this term can
help escape from local minimum points during optimisation, but overly emphasising this loss term
will introduce more learning difficulties because it is not a requisite optimising target.

(a) (b) (c) (d)

Figure 4: Four representative learning cases of NLC and ULC. (a-b) plot two neural CLF candidates
V (s) passing the verification, but (b) is not a CLF at all. (c-d) show the derivatives V̇ (s), where the
verification can pass in (c) but cannot in (d). Regions overlooked by the verifier ({s | ‖s‖ < 0.1})
and regions conflicting the Lyapunov condition (V̇ (s) > 0) are outlined by dark red dash circles and
black dash-dot contours, respectively. Colourful dash lines represent simulated trajectories, where
black stars are end points. By contrast, the equilibrium points are marked with red solid stars.

5.2 EXTENSION

We set up our framework on two more complex dynamical systems for extension. One is the 4-DOF
spacecraft rendezvous operation process given by the Hill Clohessy Wiltshire (HCW) equations:

ẋ = vx, v̇x = 3n2x+ 2nvy + u1, ẏ = vy, v̇y = −2nvy + u2,

1The underlined results represent that the training of the corresponding methods can succeed only with the
overlooked region Ω0 = {s | ‖s− s∗‖ < r0}.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) inverted pendulum (b) path following

Figure 5: The area of ROA and success rate related to the value of η1 in inverted pendulum (a) and
path following dynamics (b). Increasing η1 can enlarge the area of ROA, while can further decrease
the success rate in training.

where n = 1.1127× 10−3 is a variable related to the low earth orbit and the gravitation. The other is
the 6-DOF 2D quadrotor model given by

ẋ = vx, v̇x = −sin(θ)(u1 + u2)/m,

ẏ = vy, v̇y = cos(θ)(u1 + u2)/m− g,
θ̇ = w, ẇ = l(u1 − u2)/I,

where (m, l, I, g) = (0.486, 0.25, 0.00383, 9.81) are the mass, length, inertia and gravity. The learnt
CLF are shown in Figure 6(a), and we also sample 10 random initial states and plot the change of the
CLF value among the simulated trajectories in Figure 6(b). It can be seen that as the states reach the
equilibrium, the value decrease monotonically.

(b) Lyapunov values related to time(a) Lyapunov functions

Figure 6: (a) The learnt CLF candidates are presented for the spacecraft (left) and 2D quadrotor
(right) dynamics. (b) The CLF value along the simulated trajectories with random initial states in the
spacecraft (up) and 2D quadrotor (down) dynamics, where values decreases monotonically as the
system is driven to the equilibrium point.

6 CONCLUSION

We propose an end-to-end framework for learning Lyapunov functions and controllers for nonlinear
dynamical systems. Our method reduces the constraints related to the Lyapunov conditions, simplifies
the learning framework and decrease the difficulty in hyperparameter tuning by using a sum-of-squares
neural network as the control Lyapunov function (CLF) and a CLF-based bounded nonlinear controller.
Our approach exhibits excellent and robust performance in finding Lyapunov functions with the
largest region of attraction (ROA) and the highest success rate using simple settings, highlighting its
potential in better facilitating Lyapunov stability analysis and nonlinear control learning.

Limitations and future works. Our framework focuses on simplifying training process and improv-
ing the success rate, and further attention can be paid on the following aspects: 1. As the training
complexity grows exponentially to the dimension of dynamics, it is essential to express dynamics in
a data-efficient way, for example, achieving appropriate dynamics with reduced dimension. 2. To
find a more powerful control policy with the stability guarantee, integrating our method with the
model-based reinforcement learning framework will be further explored.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
lyapunov neural networks. IEEE Control Systems Letters, 5(3):773–778, 2020.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

F. Berkenkamp and A. P. Schoellig. Safe and robust learning control with gaussian processes. In
Control Conference, 2015.

F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attraction
for uncertain, nonlinear systems with gaussian processes. Decision & Control, pp. 4661–4666,
2016a.

Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for
quadrotors with gaussian processes. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 491–496. IEEE, 2016b.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural
information processing systems, 32:3245–3254, 2019.

Hongkai Dai, Benoit Landry, Marco Pavone, and Russ Tedrake. Counter-example guided synthesis
of neural network lyapunov functions for piecewise linear systems. In 2020 59th IEEE Conference
on Decision and Control (CDC), pp. 1274–1281. IEEE, 2020.

Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-stable
neural-network control. In Robotics: Science and Systems XVII. rss, 2021.

Randy A Freeman and James A Primbs. Control lyapunov functions: New ideas from an old source.
In Proceedings of 35th IEEE conference on decision and control, volume 4, pp. 3926–3931. IEEE,
1996.

Nathan Gaby, Fumin Zhang, and Xiaojing Ye. Lyapunov-net: A deep neural network architecture for
lyapunov function approximation. In 2022 IEEE 61st Conference on Decision and Control (CDC),
pp. 2091–2096. IEEE, 2022.

Peter Giesl and Sigurdur Hafstein. Review on computational methods for lyapunov functions.
Discrete & Continuous Dynamical Systems-B, 20(8):2291, 2015.

Lars Grüne. Computing lyapunov functions using deep neural networks. arXiv preprint
arXiv:2005.08965, 2020.

Lars Grüne. Overcoming the curse of dimensionality for approximating lyapunov functions with
deep neural networks under a small-gain condition. IFAC-PapersOnLine, 54(9):317–322, 2021.

Ruihua Han, Shengduo Chen, Shuaijun Wang, Zeqing Zhang, Rui Gao, Qi Hao, and Jia Pan.
Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped
rewards. IEEE Robotics and Automation Letters, 7(3):5896–5903, 2022.

Didier Henrion and Andrea Garulli. Positive polynomials in control, volume 312. Springer Science
& Business Media, 2005.

Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and Andrew Packard. Some
controls applications of sum of squares programming. In 42nd IEEE international conference on
decision and control, volume 5, pp. 4676–4681. IEEE, 2003.

Hassan K Khalil. Nonlinear control, volume 406, pp. 211–212. Pearson New York, 2015.

Larissa Khodadadi, Behzad Samadi, and Hamid Khaloozadeh. Estimation of region of attraction for
polynomial nonlinear systems: A numerical method. ISA transactions, 53(1):25–32, 2014.

Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based model
predictive control for safe exploration. In 2018 IEEE conference on decision and control (CDC),
pp. 6059–6066. IEEE, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories
with sums of squares programming. In 2013 IEEE International Conference on Robotics and
Automation, pp. 4054–4061. IEEE, 2013.

Yaru Niu, Shiyu Jin, Zeqing Zhang, Jiacheng Zhu, Ding Zhao, and Liangjun Zhang. Goats:
Goal sampling adaptation for scooping with curriculum reinforcement learning. arXiv preprint
arXiv:2303.05193, 2023.

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. Science
Robotics, 7(66):eabm6597, 2022.

Antonis Papachristodoulou and Stephen Prajna. A tutorial on sum of squares techniques for systems
analysis. In Proceedings of the 2005, American Control Conference, 2005., pp. 2686–2700. IEEE,
2005.

Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness
and optimization. California Institute of Technology, 2000.

Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from coun-
terexamples and demonstrations. Autonomous Robots, 43(2):275–307, 2019.

Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Conference on Robot
Learning, pp. 466–476. PMLR, 2018.

Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and Marc
Toussaint. Safe exploration for active learning with gaussian processes. In ECML PKDD, pp.
133–149. Springer, 2015.

Eduardo D Sontag. A ‘universal’construction of artstein’s theorem on nonlinear stabilization. Systems
& control letters, 13(2):117–123, 1989.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with
gaussian processes. In International conference on machine learning, pp. 997–1005. PMLR, 2015.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive machine
learning. Advances in Neural Information Processing Systems, 32:2891–2901, 2019.

Songyuan Zhang, Yumeng Xiu, Guannan Qu, and Chuchu Fan. Compositional neural certificates for
networked dynamical systems. In 5th Annual Learning for Dynamics & Control Conference, pp.
272–285, 2023.

Ruikun Zhou, Thanin Quartz, Hans De Sterck, and Jun Liu. Neural lyapunov control of unknown
nonlinear systems with stability guarantees. In Advances in Neural Information Processing Systems,
pp. 29113–29125, 2022.

Vrushabh Zinage and Efstathios Bakolas. Neural koopman lyapunov control. Neurocomputing, 2023.

12

