LYAPUNOV STABILITY LEARNING WITH NONLINEAR CONTROL VIA INDUCTIVE BIASES

Anonymous authors

Paper under double-blind review

ABSTRACT

Finding a control Lyapunov function (CLF) in a dynamical system with a controller is an effective way to guarantee stability, which is a crucial issue in safety-concerned applications. Recently, deep learning models representing CLFs have been applied into a learner-verifier framework to identify satisfiable candidates. However, the learner treats Lyapunov conditions as complex constraints for optimisation, which is hard to achieve global convergence. It is also too complicated to implement these Lyapunov conditions for verification. To improve this framework, we treat Lyapunov conditions as inductive biases and design a neural CLF and a CLF-based controller guided by this knowledge. This design enables a stable optimisation process with limited constraints, and allows end-to-end learning of both the CLF and the controller. Our approach achieves higher convergence rate and larger region of attraction (ROA) in learning the CLF compared to existing methods among abundant experiment cases. We also thoroughly reveal why the success rate decreases with previous methods during learning.

023 024 025

026

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

In recent years, deep learning models have demonstrated significant potential in controlling nonlinear dynamical systems with high performance results within various applications such as car navigation (Han et al., 2022), robot scooping (Niu et al., 2023), and quadrotor flying (O'Connell et al., 2022). However, as deep learning methods led to black-box models, when safety concerns cannot be overlooked, the real-life implementation requires theoretical analysis of the stability performance, creating an open question (Amodei et al., 2016).

For a dynamical system with a controller, the theory of Lyapunov stability is an important approach in stability analysis, which determines a control Lyapunov function (CLF) and a region of attraction (ROA) (Giesl & Hafstein, 2015). Within the ROA, the system is proven to be asymptotically stable around the equilibrium. Nonetheless, this theory does not provide a way to systematically discover a CLF. Designing a feasible framework to achieve this goal becomes a necessary research topic.

Previous works focus on finding CLFs for polynomial dynamical systems (Khodadadi et al., 2014; Majumdar et al., 2013). For nonlinear dynamics, a learner-verifier framework is proposed with polynomial CLF candidates to guarantee stability (Ravanbakhsh & Sankaranarayanan, 2019), which is extended to learn neural CLFs with a linear-quadratic regulator (LQR) controller (Chang et al., 2019). Additionally, a mathematical analysis is provided (Zhou et al., 2022) and learning piecewise models as CLFs and dynamics is studied for simplicity (Dai et al., 2020).

However, three shortcomings exist within this learner-verifier framework. First, three Lyapunov conditions are converted to soft constraints in the trainer (Chang et al., 2019; Dai et al., 2020; Zhou et al., 2022), but the complex combination of loss weights makes it hard to optimise the neural CLF candidate to satisfy all these conditions at the same time.

Second, to release this difficulty in learning, the overlooked region around the equilibrium is introduced (Chang et al., 2019; Zhou et al., 2022; Zinage & Bakolas, 2023). The verifier will not check the satisfaction of Lyapunov conditions within this region:

- 052 $\Omega_0 = \{ \mathbf{s} \, | \, \| \mathbf{s} \mathbf{s}^* \| < r_0 \}, \tag{1}$
- where s^{*} is the equilibrium state and $r_0 \in \mathbb{R}_+$ is a radius. But the existence of this region will lead to rough or even fake results deceiving the verifier, along with a controller failing to stabilise the system.

Table 1:	Framework	structures	comparison	of	different	methods

METHODS	MODELS	EFFECTS FOR TH	E TRAINER AND THE VERIFIER	IMPLEMENTATION	RESULTS
ULC (Zhou et al., 2022) NLC (Chang et al., 2019)	Vanilla neural networks	Multiple Lyapunov risk losses	Independent library, with overlooked region	Simple and fast	Inaccurate
Ours	Lyapunov inductive networks	Only one Lyapunov risk loss	Verified within trainer, no overlooked region	1 1	1
LSNNC (Dai et al., 2021)	Piecewise linear networks	Multiple Lyapunov risk losses	Nonlinear solver using CPU only	Complex and slow	Accurate

Third, the verifier consists of a non-convex solver to check the Lyapunov conditions, which is independent from the deep learning library and usually runs on CPU only. To express Lyapunov conditions in the verifier, users have to extract weights from the neural CLF candidate and then hard-code this deep learning model, its derivative, the dynamics and controller models with only basic mathematical operations. The implementation will be impractical when models become complex.

To address these issues mentioned above, we propose an end-to-end pipeline for learning the neural CLF and controller for the nonlinear dynamical system. Apart from optimising constraints to meet the Lyapunov conditions, we first treat Lyapunov conditions as inductive biases. As compared in Table 1, by incorporating this knowledge into the neural CLF and the controller, we can satisfy mostly the Lyapunov conditions before learning, reducing the optimisation burden and improving the possibility of convergence. Additionally, we can perform the verification step using only the deep learning library, simplifying the framework for the easy implementation.

071 **Contribution**. First, we design the neural CLF and the nonlinear controller with one neural network 072 instructed by Lyapunov conditions as prior inductive biases, which enables us to train them in a 073 synthesis way. Second, we incorporate the verifier into trainer and propose an end-to-end framework 074 to find satisfiable CLFs for nonlinear dynamical systems. Third, we provide a thorough investigation 075 with regard to the robustness of different methods, the reasons of their differences in performance, and 076 the effects of the other heuristic learning factor called the geometric shaping loss. We demonstrate 077 robust convergence and superior performance in finding CLFs with larger ROAs compared to 078 counterparts.

079

054

056

2 RELATED WORKS

081 082 083

084

085

086

087

880

089

090

091

Lyapunov theory with classical methods. The application of the Lyapunov theory ranges from simple to complex cases. For linear dynamical systems, the linear-quadratic (LQR) controller is able to achieve the Lyapunov stability with a quadratic Lyapunov function (Khalil, 2015). The control-affine polynomial dynamics is also proven to be stable with a polynomial controllers and a sum-of-square (SOS) polynomial Lyapunov function using semidefinite programming (SDP) (Majumdar et al., 2013; Khodadadi et al., 2014; Jarvis-Wloszek et al., 2003; Henrion & Garulli, 2005). Besides, the SDP optimisation is widely expanded in a rich group of work (Parrilo, 2000; Papachristodoulou & Prajna, 2005). However, the scale of the SDP grows exponentially related to the dimension of dynamics with a SOS low-degree polynomial Lyapunov function (Parrilo, 2000).

Lyapunov theory for stability estimation and analysis. For nonlinear systems without controller, 092 the research purpose is to prove the feature of stability. Researchers firstly turn to deep learning 093 to directly approximate known regions of attractions (ROAs) (Berkenkamp et al., 2016a; Richards 094 et al., 2018). To find a Lyapunov function to prove asymptotic stability, the learner-verifier frame-095 work proposed in (Ravanbakhsh & Sankaranarayanan, 2019) has been further extended with deep 096 learning (Grüne, 2020; Abate et al., 2020; Dai et al., 2020; Grüne, 2021; Gaby et al., 2022). To approximate the Lyapunov function and verify satisfaction of the Lyapunov conditions, deep learning 098 models have been applied with a SMT solver (Grüne, 2020; Abate et al., 2020). Piecewise linear systems have also been addressed using ReLU-activated networks with the MIP solver (Dai et al., 2020). Convergence has been analytically studied and networks have been designed to accelerate 100 convergence (Grüne, 2021; Gaby et al., 2022). Despite the increased expression ability in deep 101 learning for approximating the Lyapunov function, verifying the Lyapunov conditions among the 102 whole defined region within non-convex solvers is difficult to implement. The framework is also 103 unstable with complex optimisation targets. Moreover, the MIP solver requires piecewise linear 104 functions, which limits its usage when other known or learnt nonlinear dynamics models are available. 105

Lyapunov theory for control with stability guarantee. Gaussian process models are firstly applied
 to improve the accuracy of dynamical models for more reliable control (Berkenkamp & Schoellig, 2015; Sui et al., 2015; Berkenkamp et al., 2016b; Koller et al., 2018), as well as for learning safe

108 regions for control policy (Schreiter et al., 2015; Turchetta et al., 2019). Recent, several works focus 109 on introducing a controller that can be proven stable with respect to Lyapunov theory (Chang et al., 110 2019; Dai et al., 2021; Zhou et al., 2022; Zinage & Bakolas, 2023). In (Chang et al., 2019), the 111 learner-verifier framework is first used to find a CLF candidate for nonlinear dynamical systems 112 using the LQR controller, and this methodology is later extended to nonlinear controllers (Dai et al., 2021; Zhou et al., 2022). This framework is combined with Koopman operator theory to learn the 113 dynamical system at the same time (Zinage & Bakolas, 2023). Additionally, a method is proposed for 114 decomposing the dynamical system into a continuous branch of Lyapunov functions and controllers 115 for subsystems for generalisation (Zhang et al., 2023). However, as noted earlier, challenges exist 116 in synthetically learning controllers and the corresponding CLF with a complex optimisation target, 117 where careful tuning weights of the loss for convergence is required. 118

119 120

121

122

123 124

128

129

134

3 PRELIMINARIES

We consider the nonlinear control-affine Lipschitz continuous dynamical systems subject to bounded control inputs:

$$\dot{\mathbf{s}} = \mathbf{f}(\mathbf{s}) + \mathbf{g}(\mathbf{s})\mathbf{u}(\mathbf{s}),\tag{2}$$

125 where Ω is a closed state domain, $\mathbf{s} \in \Omega \subseteq \mathbb{R}^n$, $\mathbf{f} : \Omega \to \mathbb{R}^n$, $\mathbf{g} : \Omega \to \mathbb{R}^{n \times m}$ and $\mathbf{u} : \Omega \to [\mathbf{u}_{\min}, \mathbf{u}_{\max}] \subseteq \mathbb{R}^m$. The bounded controller corresponds to real-world situations, following previous works (Zhou et al., 2022; Dai et al., 2021)

Lyapunov conditions. Given a goal equilibrium state s^* with control $u^* = u(s^*)$, the control Lyapunov function (CLF) V(s) satisfies the following conditions (Giesl & Hafstein, 2015):

$$\dot{V}(\mathbf{s}) < 0 \ \forall \mathbf{s} \in \Omega, \, \mathbf{s} \neq \mathbf{s}^*,$$
(3a)

$$V(\mathbf{s}) > 0 \ \forall \mathbf{s} \in \Omega, \, \mathbf{s} \neq \mathbf{s}^*, \tag{3b}$$

$$V(\mathbf{s}^*) = 0, \, \dot{V}(\mathbf{s}^*) = 0,$$
(3c)

where $\dot{V}(\mathbf{s}) = \nabla V(\mathbf{s})^{\mathrm{T}} \dot{\mathbf{s}} = \nabla V(\mathbf{s})^{\mathrm{T}} (\mathbf{f} + \mathbf{gu})$ is the time derivative, and $\nabla V(\mathbf{s}) = \frac{\partial V(\mathbf{s})}{\partial \mathbf{s}}$ is the partial derivative with respect to s.

Region of Attraction (ROA). We consider the compact region defined by $\mathcal{D}_{\rho} = \{\mathbf{s} \mid V(\mathbf{s}) \leq \rho, \rho \in \mathcal{R}_+\} \subseteq \Omega$, where all Lyapunov conditions in Equation (3) are met. The largest level set is defined by $\mathcal{D} = \max_{\rho} \mathcal{D}_{\rho}$ as the ROA. Here, the CLF proves the asymptotic stability of the system within ROA around the equilibrium. As depicted in Figure 1, as long as the initial state \mathbf{s}_0 is within the corresponding ROA, because $\dot{V}(\mathbf{s}) < 0$, the CLF value strictly decreases to 0 with time according to the Lyapunov conditions, which implies that the state will converge to \mathbf{s}^* :

$$\forall \mathbf{s}(0) = \mathbf{s}_0 \in \mathcal{D} : \lim_{t \to \infty} V(\mathbf{s}(t)) \to 0 \Rightarrow \lim_{t \to \infty} \mathbf{s}(t) \to \mathbf{s}^*.$$

145 146

144

147 148

- 150
- 151

158

Figure 1: An illustration of a CLF candidate satisfying Lyapunov conditions within the closed state region Ω . It displays the maximum level set D that can be found. The CLF value is strictly decreasing with respect to time in D because it is a closed region.

To the best of our knowledge, there is no way to design a general form for the CLF and the bounded controller to completely satisfy all Lyapunov conditions. Utilising deep learning models to represent the CLF is a feasible way to find a suitable CLF. However, training vanilla neural networks with excessive constraints shown in Equation (3) is difficult because the searching space of weights to

balance constraints is too broad. If we consider the knowledge as inductive biases and design the
 neural CLF candidate and controller instructed by them, we can simplify the learning framework,
 release the training burden, and still retain theoretical guarantees presented in Zhou et al. (2022).

4 Method

In this section, we update the learner-verifier framework with an end-to-end learning pipeline illustrated in Algorithm 1 to find the CLF and nonlinear controller for the dynamical system, which comprises two parts: pretraining the dynamics and training the entire neural CLF control system.

171 172 173

186

187

191 192

193

194

196

197

166

167

4.1 DYNAMICAL SYSTEM PRETRAINING

174 When dynamics is unknown or simplified dynamics is needed, it can be approximated simply using 175 regression before learning the neural CLF. Two multilayer perceptrons (MLPs) \mathbf{f}_{ϕ_1} and \mathbf{g}_{ϕ_2} can be 176 used to model \mathbf{f} and \mathbf{g} , respectively, with ϕ_1 and ϕ_2 being the parameters. Given samples ($\mathbf{s}, \mathbf{u}, \dot{\mathbf{s}}$), 177 the L^2 norm is used for the optimisation: $\mathcal{L}_{dyn}(\mathbf{s}) = \|\dot{\mathbf{s}} - \dot{\mathbf{s}}\|_2$, where $\dot{\mathbf{s}} = \mathbf{f}_{\phi_1}(\mathbf{s}) + \mathbf{g}_{\phi_2}(\mathbf{s})\mathbf{u}$ and $\dot{\mathbf{s}}$ 178 represent the time derivative of the state obtained from the network and the ground truth, respectively.

Following the proof presented in (Zhou et al., 2022), the effect of the difference of the learned dynamics and the ground truth can be eliminated by introducing a positive number *b* in condition (3a) for training: $\dot{V}(s) < -b$. Here $b \ge M(K_{dyn}\delta + \epsilon + K_{\phi}\delta) > 0$ is related to the norm of the derivative of the Lyapunov function $M = \|\frac{\partial V}{\partial s}\|$, the learnt error ϵ , the sample interval δ , the Lipschitz constants of the dynamics K_{dyn} and the learnt dynamics K_{ϕ} . Still, the determination of *b* requires some prior knowledge. For simplicity, we utilise **f** and **g** to refer the dynamics afterwards.

4.2 Self-supervised Training

The self-supervised learning pipeline is shown in Figure 2. To reduce the complexity of the optimisation target, we carefully design the neural CLF candidate and the controller to satisfy most of the constraints of Equation (3). Next, we introduce the optimisation process.

Figure 2: The self-supervised framework to synthetically learn the neural CLF and the CLF-based controller for nonlinear dynamics. Solid black arrows represent forward flows: Given the state s, the values of dynamics f, g and Lyapunov function $V, \nabla V$ are obtained and then fed into the CLF-based control policy for control u. Then the loss is calculated for optimisation. Red dash-dot arrows represent backpropagation flows for different loss terms.

Control Lyapunov Function Candidate. With proper design of the architecture of the CLF candidate, we can meet the semi-definite positive Lyapunov condition around the equilibrium s^{*}. The sum-of-squares (SOS) structure is utilised for polynomial Lyapunov functions (Papachristodoulou & Prajna, 2005) and SOS neural Lyapunov functions are only applied to approximate known ROAs for classification (Berkenkamp et al., 2016a). Here, we build the sum-of-squares neural CLF candidate V_{θ} with network $\phi_{\theta} : \mathbb{R}^n \to \mathbb{R}^l$ as:

209 210 211

212

$$V_{\theta}(\mathbf{s}) = V_1(\mathbf{s}) + V_2(\mathbf{s}) = \|\phi_{\theta}(\mathbf{s}) - \phi_{\theta}(\mathbf{s}^*)\|_2^2 + k \log(1 + \left(\sum_{i}^{n} (s_i - s_i^*)\right)^2), \tag{4}$$

where $\|\cdot\|_p$ denotes the L^p norm, k > 0 is a hyperparameter, l is the hidden dimension, and θ is the network parameter. It can be easily verified that this candidate satisfies $V_{\theta}(\mathbf{s}^*) = 0$, $V_{\theta}(\mathbf{s}) > 0, \mathbf{s} \neq \mathbf{s}^*$, and $\dot{V}_{\theta}(\mathbf{s}^*) = \nabla V_{\theta}(\mathbf{s}^*)^{\mathrm{T}} \dot{\mathbf{s}}^* = \nabla V_{\theta}(\mathbf{s}^*)^{\mathrm{T}} \mathbf{0} = 0$. Therefore, conditions (3b) and (3c) are satisfied. The introduction of the second loss term V_2 can serve as a valuable augmentation for V_{θ} because it guarantees that V_{θ} equals 0 only when the state is at the equilibrium point s^{*}. Its gradient is $\nabla V_2(\mathbf{s}) = \frac{2\sum_{i=1}^{n} (s_i - s_i^*)}{1 + (\sum_{i=1}^{n} (s_i - s_i^*))^2}$, whereby $\lim_{\|\mathbf{s} - \mathbf{s}^*\|_2 \to 0} \nabla V_2(\mathbf{s}) = 0$ and $\lim_{\|\mathbf{s} - \mathbf{s}^*\|_2 \to \infty} \nabla V_2(\mathbf{s}) = 0$. This indicates that $V_2(\mathbf{s})$ increases gradually and smoothly when close or far from the equilibrium point and does not overpower the expression of the neural network part. So we can highlight the effect of $V_1(\mathbf{s})$ during training.

CLF-Based Controller. Given a CLF, the Sontag's feedback control (Sontag, 1989; Freeman & Primbs, 1996) can ensure the condition (3a) is met. However, the controlling output can be excessively large, which is unrealistic in the real world. Under the constraint of the bounded control output, we build the controller model as follows:

227 228 229

230

245

251

253 254 255

$$\mathbf{u}(\mathbf{s}) = \bar{\mathbf{u}}_1(\mathbf{s}) + \mathbf{u}_2(\mathbf{s}) = \operatorname{clip}(\mathbf{u}_1(\mathbf{s}), \mathbf{u}_{1,\min}, \mathbf{u}_{1,\max}) + \mathbf{u}_2(\mathbf{s}),$$
(5a)

$$\mathbf{u}_{1}(\mathbf{s}) = -\frac{\nabla V(\mathbf{s})^{\mathrm{T}} \mathbf{f} \mathbf{g}^{\mathrm{T}} \nabla V(\mathbf{s})}{\nabla V(\mathbf{s})^{\mathrm{T}} \mathbf{g} \mathbf{g}^{\mathrm{T}} \nabla V(\mathbf{s})}, \ \mathbf{u}_{2}(\mathbf{s}) = -\mathbf{q}_{1} \cdot \tanh(\mathbf{q}_{2} \cdot \mathbf{g}^{\mathrm{T}} \nabla V(\mathbf{s})),$$
(5b)

where $\mathbf{q}_1, \mathbf{q}_2 \in \mathbb{R}^m_+$ are vectors with positive elements and \cdot denotes the dot product for vectors. \mathbf{u}_1 aims to counterbalance the effect of the dynamical function \mathbf{f} . The function $\operatorname{clip}(\mathbf{x}, \mathbf{x}_{\min}, \mathbf{x}_{\max}) = \max(\min(\mathbf{x}, \mathbf{x}_{\max}), \mathbf{x}_{\min})$ constrains the values outside the range $[\mathbf{x}_{\min}, \mathbf{x}_{\max}]$ to the range edges, $\mathbf{u}_{1,\min} = \mathbf{u}_{\min} + \mathbf{q}_1$ and $\mathbf{u}_{1,\max} = \mathbf{u}_{\max} - \mathbf{q}_1$ are the control range for \mathbf{u}_1 . \mathbf{u}_2 is already bounded by the tanh function and can drive the system to equilibrium, where \mathbf{q}_1 defines the amplitude of \mathbf{u}_2 and \mathbf{q}_2 controls how fast \mathbf{u}_2 reaches the maximum output.

Here we design a controller integrated with the CLF to approach condition (3a) without introducing a new neural network. For a rough estimation of the time derivative of CLF, given Equation (2) and (5b), when $\mathbf{u}_1(\mathbf{s}) = \bar{\mathbf{u}}_1(\mathbf{s})$, we have

$$\dot{V}(\mathbf{s}) = \nabla V^{\mathrm{T}} \dot{\mathbf{s}} = \nabla V^{\mathrm{T}} (\mathbf{f} + \mathbf{g} \mathbf{u}_{1} + \mathbf{g} \mathbf{u}_{2})) \text{ use Eq.}(2)$$

$$= \nabla V^{\mathrm{T}} \mathbf{f} - \frac{\nabla V^{\mathrm{T}} \mathbf{g} \nabla V^{\mathrm{T}} \mathbf{f} \mathbf{g}^{\mathrm{T}} \nabla V}{\nabla V^{\mathrm{T}} \mathbf{g} \mathbf{g}^{\mathrm{T}} \nabla V} - (\mathbf{g}^{\mathrm{T}} \nabla V)^{\mathrm{T}} (\mathbf{q}_{1} \cdot \tanh(\mathbf{q}_{2} \cdot \mathbf{g}^{\mathrm{T}} \nabla V)) \text{ use Eq.}(5b) \quad (6)$$

$$= - (\mathbf{g}^{\mathrm{T}} \nabla V)^{\mathrm{T}} (\mathbf{q}_{1} \cdot \tanh(\mathbf{q}_{2} \cdot \mathbf{g}^{\mathrm{T}} \nabla V)).$$

Since the signs of the corresponding elements between $\mathbf{g}^{\mathrm{T}}\nabla V$ and $\tanh(\mathbf{g}^{\mathrm{T}}\nabla V)$ are always the same and $(\mathbf{q}_1, \mathbf{q}_2)$ are positive vectors, $(\mathbf{g}^{\mathrm{T}}\nabla V)^{\mathrm{T}}(\mathbf{q}_1 \cdot \tanh(\mathbf{q}_2 \cdot \mathbf{g}^{\mathrm{T}}\nabla V))$ is positive, i.e., $\dot{V}(\mathbf{s}) \leq 0$.

As discussed in section 3, the whole satisfaction within region $\mathbf{u}_1(\mathbf{s}) \neq \bar{\mathbf{u}}_1(\mathbf{s})$ can be approached by optimisation, with only one Lyapunov risk loss term shown in Equation (7b).

Optimisation. The training of the neural CLF and the CLF-based controller in Equation (4) and (5) relies on self-supervised learning. We define the loss function as:

$$\mathcal{L}(\mathbf{s}) = \mathcal{L}_{\text{lya}}(\mathbf{s}) + \mathcal{L}_{\text{else}}(\mathbf{s}), \tag{7a}$$

$$\mathcal{L}_{\text{lya}}(\mathbf{s}) = \frac{1}{N} \sum_{i=1}^{N} \lambda_1 w(\mathbf{s}_i) (\max(\dot{V}_{\theta}(\mathbf{s}_i) + b, 0))^2$$
(7b)

256 257 258

259

$$\mathcal{L}_{\text{else}}(\mathbf{s}) = \frac{1}{N} \sum_{i=1}^{N} \lambda_2 w(\mathbf{s}_i) \left\| \mathbf{u}_1(\mathbf{s}_i) - \bar{\mathbf{u}}_1(\mathbf{s}_i) \right\|_2,$$
(7c)

where $\dot{V}_{\theta}(\mathbf{s}_i) = \nabla \mathbf{V}_{\theta}(\mathbf{f} + \mathbf{g}\bar{\mathbf{u}})(\mathbf{s}_i)$, $\mathcal{L}_{\text{lya}}(\mathbf{s})$ represents the Lyapunov risk for condition (3a), $\mathcal{L}_{\text{else}}(\mathbf{s})$ enforces a soft constraint to prevent the controller output from exceeding the constraint range, N is the number of samples, $w(\mathbf{s}_i)$ is the weight of different sample, and $(\lambda_1, \lambda_2, b)$ are hyperparameters with $\lambda_1 > 0, \lambda_2 > 0, b \ge 0$. $w(\mathbf{s}_i)$ can prioritise training on some target regions and is set as 1 for simplicity in our work. As $\mathcal{L}_{\text{lya}}(\mathbf{s})$ decreases, a neural CLF and a controller meeting the satisfaction could be found during the self-supervised learning.

As for implementation and optimisation, four things are worth pointing out. First, the Lyapunov risk loss $\mathcal{L}_{1ya}(s)$ is simplified because we only need to satisfy condition (3a). In previous works, all three Lyapunov conditions in Equation (3) are converted to soft constraints as Lyapunov risks within the

311 312

313 314

315

316

317 318 319

320 321

322

270

Algorithm 1: Lyapunov-Stable Control Function TrainLyapunovSystem($\Omega, \mathbf{f}_{\phi_1}(\mathbf{s}), \mathbf{g}_{\phi_2}(\mathbf{s})$) Set CLF $V_{\theta}(\mathbf{s})$, optimiser optim, total iteration steps max_step; $\mathbf{S} \leftarrow \text{GenerateGridSamples}(\Omega);$ /* Capital letter: batch. */ for i = 1 to max_step do $\nabla \mathbf{V}_{\theta}(\mathbf{S}) \leftarrow \operatorname{autograd}(\mathbf{V}_{\theta}(\mathbf{S}));$ $\mathbf{U}_1, \mathbf{\overline{U}}_1, \mathbf{\overline{U}} \leftarrow \text{Equation (5a) and (5b)};$ $\hat{\mathbf{S}} \leftarrow \mathbf{f}_{\phi_1}(\mathbf{S}) + \mathbf{g}_{\phi_2}(\mathbf{S})\bar{\mathbf{U}};$ $\mathcal{L} = \frac{1}{|\mathbf{S}|} \left(\lambda_1 (\max(\nabla \mathbf{V}_{\theta} \mathbf{\dot{\hat{S}}}, \mathbf{0}))^2 + \lambda_2 \| \mathbf{U}_1 - \bar{\mathbf{U}}_1 \|_2 \right);$ \mathcal{L} .backward(); optim.step(); satisfiable, counterexamples ← CheckSatisfiability(); $\mathbf{S} \leftarrow (\mathbf{S} \setminus \text{old counterexamples}) \cup \text{counterexamples};$ if $\mathcal{L}_{lya, verify} \to 0$ then break; return $V_{\theta}(\mathbf{s})$ Function Main() **Input:** verified region Ω , controller parameters $\mathbf{u}_{1,\min}, \mathbf{u}_{1,\max}, \mathbf{q}_1, \mathbf{q}_2$; $\mathbf{f}_{\phi_1}(\mathbf{s}), \mathbf{g}_{\phi_2}(\mathbf{s}) \leftarrow \texttt{PretrainDynamicsModel}(\Omega);$ $V_{\theta}(\mathbf{s}) \leftarrow \text{TrainLyapunovSystem}(\Omega, \mathbf{f}_{\phi_1}(\mathbf{s}), \mathbf{g}_{\phi_2}(\mathbf{s}));$ $ROA \leftarrow FindROA(\Omega, \mathbf{V}_{\theta}(\mathbf{s}));$

loss function (Chang et al., 2019; Dai et al., 2020; Zhou et al., 2022; Zinage & Bakolas, 2023):

$$\bar{\mathcal{L}}_{\text{lya}} = \frac{1}{N} \sum_{i=1}^{N} \left(C_1 \max(\dot{V}_{\theta}(\mathbf{s}_i), b_1) + C_2 \max(-V_{\theta}(\mathbf{s}_i), b_2) \right) + C_3 V_{\theta}^2(\mathbf{0}) + C_4 \left\| \frac{\partial V_{\theta}}{\partial \mathbf{s}}(\mathbf{0}) \right\|, \quad (8)$$

where $C_1, C_2, C_3, C_4, b_1, b_2$ are weights. Concerning the high complexity of the combination of their loss weights, it is very difficult to tune these weights to achieve ideal results. Delicately tuned learning settings can also be unstable when dynamical systems change.

Second, the verification of condition (3a) can be simply accomplished using deep learning packages.
 Other non-convex solvers is not needed over the verification region to examine the satisfaction of multiple constraints. So the whole training process is end-to-end for easy implementation without hard-coding neural networks and related derivatives.

Third, there is no overlooked region around the equilibrium mentioned in Equation (1) to pass the verification process. The whole region will be utilised for exploration and verification, which will make sure the satisfaction region starts from the equilibrium. This is important for the robustness of the learning results.

Fourth, the loss in Equation (7) is only for successfully finding a satisfactory neural CLF. To encourage exploration for a larger ROA, other tuning terms such as the geometric shaping term can be useful:

$$\mathcal{L}_{\text{shape}} = \frac{1}{N} \sum_{i=1}^{N} \eta_1 \left(\|\mathbf{Hs}_i\|_2^2 - \eta_2 V(\mathbf{s}_i) \right)^2,$$
(9)

where **H** is an orthogonal transformation matrix and $\eta_1, \eta_2 \in \mathbb{R}_+$ are two hyperparameters (Chang et al., 2019; Zhou et al., 2022). Equation (9) can help prevent the neural CLF from being flat and shape it to match the verified region Ω . How this term works is also investigated in experiments.

5 EXPERIMENTS

5.1 ROBUSTNESS AND PERFORMANCE EVALUATION

323 The targets of this experiment are twofold. First, to compare the robustness of different methods, we examine their performance in finding neural CLF with related to a large amount of cases. Second, to

reveal the ability in finding large stability regions, we collect the areas of ROAs among those success cases for comparison.

 Experiment Setup. Two nonlinear dynamical systems, unicycle path following and inverted pendulum, are used because their official implementations are available within previous works (Chang et al., 2019; Zhou et al., 2022; Dai et al., 2021; Zinage & Bakolas, 2023) and can be viewed as representative cases. We believe these two systems can serve as reliable indicators for evaluation.

The inverted pendulum with an unstable equilibrium $s^* = (\theta^*, \omega^*) = (0, 0)$ is defined by:

$$\dot{\theta} = \omega, \ \dot{\omega} = (mgl\sin\theta - D\omega + u)/ml^2,$$

where the gravity and damping are g = 9.81 and D = 0.1, respectively. The learning region is defined as $\Omega = \{[\theta, \omega] | -4 \le \theta \le 4, -4 \le \omega \le 4\}$ with control limits $-u_{amp} \le u \le u_{amp}, u_{amp} = 20$.

The wheeled vehicle path following problem is to control distance error d_e and angle error θ_e . The equilibrium is $\mathbf{s}^* = (d_e^*, \theta_e^*) = (0, 0)$ and the dynamical equation is:

$$\dot{d}_e = v \sin(\theta_e), \ \dot{\theta}_e = -(v \cos(\theta_e))/(1 - d_e \kappa) + u_e$$

where κ is the target path. The learning region is defined as $\Omega = \{[d_e, \theta_e] | -0.8 \le d_e \le 0.8, -0.8 \le \theta_e \le 0.8\}$, with control limits $-u_{amp} \le u \le u_{amp}, u_{amp} = 5$.

For the first robustness target, we vary parameters of these dynamical systems to create sufficient cases shown in Table 2. This means that the learning procedure will repeat 150 and 90 times for each method to collect the success rate. In contrast, these systems were presented with only a set of fixed parameters before (Chang et al., 2019; Zhou et al., 2022; Dai et al., 2021; Zinage & Bakolas, 2023).

Table 2: Parameter settings for nonlinear dynamical systems

EXPERIMENTS	PARAM1	PARAM2	SEEDS	TOTAL
INVERTED PENDULUM	m:(0,5,0.8,1.0,1.2,1.5)	l:(0.8, 1.0, 1.2)	11 - 20	$10 \times 5 \times 3 = 150$ cases
PATH FOLLOWING	κ : (0.8, 1.0, 1.2)	v:(1.0, 1.5, 2.0)	11 - 20	$10 \times 3 \times 3 = 90$ cases

For the second performance target, in each case where the learning process succeeds with a neural CLF candidate, we enumerate and find the closed contour \overline{D} covering the maximum region as the ROA, within which the Lyapunov conditions are verified. Then we calculate the area $A_{\mathcal{D}}$ within the contour using the Green's theorem: $A_{\mathcal{D}} = \iint_{\mathcal{D}} dx \, dy = \oint_{\overline{\mathcal{D}}} 0.5 \cdot (x \, dy - y \, dx)$.

Because the geometric shaping term presented in Equation (9) is utilised within previous works to improve performance (Chang et al., 2019; Zhou et al., 2022), we also evaluate its effects within the experiment. Here $\mathbf{H} = \mathbf{I}$ is the diagonal matrix because the learning region is square. We tune η_2 for each method, change η_1 from 0.1 to at most 9.0, and repeat the above whole testing procedure.

Model Setup. To benchmark our method, we employ three representative methods, the unknown Lyapunov control (ULC, Zhou et al. (2022)), neural Lyapunov control (NLC, Chang et al. (2019)) and the Lyapunov-stable neural network control (LSNNC, Dai et al. (2021)). NLC utilises a LQR controller and ULC utilises a LQR controller with a tanh function scaling the output range:

366

332

333

340

344

345

346

347 348

 $\mathbf{u} = \mathbf{K}(\mathbf{s} - \mathbf{s}^*) + \mathbf{u}^*,$ $\mathbf{u} = u_{\text{amp}} \cdot \tanh(\mathbf{K}(\mathbf{s} - \mathbf{s}^*)) + \mathbf{u}^*.$ (10)

368 LSNNC utilises a neural network control $\mathbf{u} = \text{clip}(\mathbf{u}_{\phi}(\mathbf{s}) - \mathbf{u}_{\phi}(\mathbf{s}^*) + \mathbf{u}^*, \mathbf{u}_{\min}, \mathbf{u}_{\max})$ and is considered as a more powerful method than NLC and ULC.

The sum-of-square (SOS) polynomial with the LQR controller serves as our baseline following previous works. For LQR, we first linearise the dynamical function at the equilibrium s^* . If we can solve the related Riccati equation (Khalil, 2015) to obtain a positive semidefinite matrix **P**, the quadratic form $V(s) = s^T P s$ will be a Lyapunov function in the neighbourhood of the target point.

For NLC and ULC, the overlooked region $\Omega_0 = \{\mathbf{s} \mid ||\mathbf{s} - \mathbf{s}^*|| < r_0\}$ exists during the verification process, where $r_0 = 0.2$ and 0.1 for the inverted pendulum and path following dynamics, respectively. Even though one result can pass the verification, it only proves that the controller can stabilise the

system to the overlooked region, not to the equilibrium.

Table 3: Model	and training	settings of	our method	for two d	vnamical s	systems
					J	J

PARAMETERS	δ_{learn}	δ_{verify}	$\mid k$	\mathbf{q}_1	\mathbf{q}_2	λ_1	λ_2	b	η_1	η_2	lr	$\triangle T$
INVERTED PENDU	LUM 2×10^{-1}	$^{-2}$ 2 × 10 ⁻³	6	2	10^{3}	1	1	0.1	1	1	0.01	1
PATH FOLLOWING	5×10^{-1}	$^{-3}$ 10^{-3}	6	2	10^{3}	1	1	0.1	2	0.2	0.01	2

415

378

379 380

For our model, we also test our neural Lyapunov function with the LQR controller (called ours-l) and the tanh-LQR controller (called ours-t) shown in Equation (10). Considering the data efficiency, we optimise using relatively sparse grid samples (with interval δ_{learn}) during training. For every ΔT epochs, we conduct the verification using dense grid samples (with interval δ_{verify}), which returns counterexamples that violate the Lyapunov condition (3*a*) for training. The settings of our model are shown in Table 3.

Results. The learning results are compared in Table 4, where results with overlooked regions are
 underlined for distinction. Overall, our method outperforms counterparts with higher success rate
 and larger ROAs over successful learning cases.

For our framework, the high success rates imply that our method is more stable among different learning cases. This result supports our idea that designing the neural networks models instructed by Lyapunov conditions is better than only optimising them with constraints. After reducing the learning difficulties, we can retain a stable performance in success rate and then introduce more features to search for better results. Figure 3(a) presents two neural CLFs founded by our method.

The shaping term is beneficial for the optimisation, increasing the success rate and the area of ROA. This is because losses in Equation (7) are only for the success of learning, and the learner will concentrate on one success result each time. As revealed in Figure 3(b), the ROA can be small because of the shape of neural CLF. The introduce of this shaping term can help the optimisation path escape from local minima and encourage the learning process to search for a better solution.

Utilising different controllers also affects the learning results. The areas of ROA increase using our
 controller compared with the LQR-like controllers. This supports utilising an expressive controller
 which can better adjust for the satisfaction of the Lyapunov conditions. These LQR-like controllers
 cannot totally stabilise the path following system, so the overlooked region around the equilibrium is
 also needed for ours-t and ours-l.

For LSNNC, their performance is also comparative, achieving large area of ROA in the inverted pendulum system. But the success rate implies that the performance is not stable and the learning speed for complicated models with only CPU (8 hours at most for one case) is 20-100 times slower than other methods. Therefore, the learning test with the geometric shaping term is not considered, which can take several months to tune hyperparameters and examine thousands of cases. Concerning that the time consumption will increase greatly when systems become complex, we believe that designing an end-to-end pipeline for the acceleration on GPU is important.

Figure 3: The training results of our method. (a) shows the learned neural CLF candidates (colormaps) and the derivatives (blue wireframes) for inverted pendulum dynamics (left) and path following (right) in 3D space. The contour of the CLF is also projected on the plane V = 0. (b) presents ROAs (black contours) of the CLFs. The area of ROA grows extensively larger with the geometric shaping term (right) than that without the term (left) because of a flatter shape. Colourful dash lines represent simulated trajectories, where black stars and red solid stars are end points and equilibriums, respectively. The deviation of stars represents how well the controller can stabilise the system.

				INVER	ted Pendulum	I			
	No Su i pivo	Ours	Ours-t	Ours-l	ULC (Zhou et a	al., 2022) NI	C (Chang et al., 20	019) LSNNC (Dai et al., 20)	21) LQR
SUCCESS RATE	SHAPING SHAPING	97.33%	90.07%	95.33%	36.66%		89.33%	- 09.33%	-
AREA OF ROA	NO SHAPING	6.90 ± 2.67	14.07 ± 3.84	5.47 ± 1.21	$1.70 \pm 1.$	25	6.84 ± 2.86	30.78 ± 8.27	6.86
	SHAPING	34.43 ± 4.33	8.33 ± 2.33	3.78 ± 0.98	$\frac{11.33 \pm 8}{-}$.01	13.39 ± 4.10	-	0.80
				PATH	H FOLLOWING	1 40440 1 1 17	G (0)		
	NO SHAPING	93.33%	90.8%	88.89%	ULC (Zhou et a 44.44%	u., 2022) NI	- (Chang et al., 20	28.89%	- LQK
CCESS RATE	SHAPING	100%	100%	87.78%	43.33%		-	-	-
AREA OF ROA	NO SHAPING SHAPING	1.42 ± 0.41 1.54 ± 0.37	0.88 ± 0.08 1.03 ± 0.14	0.76 ± 0.17 0.92 ± 0.28	$\frac{0.79 \pm 0.}{0.93 \pm 0.}$	33	FAILED	0.81 ± 0.11	FAILED
	1		1	1					
or the UL egions arc ne correct	C and NL ound the ed CLF and	C, we be quilibriun controller	lieve than set for the set of the set o	t their lo the verific classify	w success ers. Their three repr	s rates s r success resentati	hould be b sful output ive types fo	blamed on the ov s are also not me or their results:	erlooked ant to be
Accepta	DIE CLF:	As shown	i ili rigu	te 4(a), u	le Lyapu		unions are	annost meet, w	liere only
minim	ım poınt s	slightly de	eviates fr	om the ta	arget equi	ılıbrium	•		
Rough C quilibrium locate w as the resurther shr (d)). The	CLF: As sl n, which is ithin the o sult (Figur ink the cor underline	hown in F s outlined overlooked re 4(c)). H nflicting r d result li	Figure 4(d l by black d region, However, region, th sted in T	c-d), the l k dash-do the verifi , if the op e verifier able 4 co	Lyapunov ot contour ication ca otimiser g will retu ontains su	v conditi rs. If thi n be sati gets stuc rn false ccessful	ons cannot s conflictir isfied and t k within a until the en cases in th	t be met around ng region is smal he framework w local minima ar nd of the learnin his situation.	the target Il enough ill output id cannot g (Figure
Eslar CI	E. As she		4(1-)	41			41.		4 : 4
ake CL	LF: As sho	wn in Fig	gure 4(b)	, the neu	ral CLF C	candidat	e passes th	ie verification bu	il is not a
at all.	The train	er finds a	solution	to deceiv	ve the vei	rifier wit	th the help	of the overlook	ed region.
aiectorie	s also sho	w that the	e control	ler canno	t stabilise	e the svs	stem to the	equilibrium at a	11
	5 4155 5110	unat the	- controll	.er canno	. 500011150	e ine bye	to the	- Jamorrain at t	
ese exar	nples exp	lain whv	the overl	looked re	gion is n	ot a wis	e option. 7	The Lyapunov co	onditions
und the	equilibri	im cannot	t he mor	anteed w	which can	lead to	the nonev	istent of the $R\Omega$	4
und the	equilibilit	ini canno	i oc gual	anteeu, v	vincii call	i icaŭ iŭ	the nonext	istent of the KOA	1.
- invecti	gation of	the geom	etric sha	ning term	n is also r	resente	d within Fi	oure 5 We can	see that a
	Sanon of	ale geom			1 15 a150 p		a within fi	$r_{\rm S}$ and J . We call $r_{\rm S}$	when i
lable ch	once of w	eight η_1 (can incre	ease both	ine succ	ess rate	and the ar	ea of KOA. But	when η_1
ows large	er, the suc	cess rate	and even	the area	of ROA	will deci	rease. This	s means that this	term can
lp escap	e from loc	cal minim	um poin	ts during	optimisa	ation, bu	t overly er	mphasising this	loss term
ll introd	lice more	learning	lifficultic	s hecaus	e it is not	a requi	site ontimi	sing target	
ii iiiu0u		icarining (unicunt	is occaus	C II IS 1101	a requi	sic optim	ising target.	
	V(c)			V(s)		F/(a)		in s	
0.8	v (5)	0.8			0.8	v(s)	16	0.8	10
		0.80			9.5				
0.4		0.4	MANN.		0.4		40	0.4	
			100	2000	0.2	12 A			
0.0		0.0		+ 19	0.0			0.0	
0.5	11913	10.5		XXN	5.0	1. St			
0.4		04		MXX			K/////		
-0.4		-0.4	2	11 M	-0.4			0.4	XY
		X		1///				MAN	SHI.
-0.8	-0.4 0.0 0	4 0.8 -0.8	0.8 -0.4	0.0 0.4		-0.4 0.0	0.4 0.8 -	0.8 -0.4 0.0 0	4 0.8
5.0	(a)			(h)		(a)		(A)	0.0
	(a)			(0)		(C)		(u)	
gure 4: F	our repres	sentative 1	learning	cases of l	NLC and	ULC. (a	a-b) plot tv	vo neural CLF ca	andidates
(a) n anci	ng the yes	ification	hut (h) :	not o C	I E of oll	(a, d) d	now the de	rivetives V(a)	where the
(s) passi	ng the ver	meation,	out (0) 1	s not a C	LF at all.	(c-a) si	iow me de	$\frac{1}{2}$ $\frac{1}$	vilete tile
rification	n can pass	s in (c) bu	it cannot	t 1n (d). I	Regions of	overlook	ted by the	verifier ($\{\mathbf{s} \mid \mathbf{s} $	$ < 0.1 \})$
d region	s conflicti	ng tha Lu	aninov c	ondition	$(\dot{V}(\mathbf{r}) >$	() are o	utlined by	dark red dash ci	reles and
1 1 1			ar an an a se s		1 1 1 5 1 2	ULALE U			11,11,05,01000
	dot cont	ing the Ly	apunov c	Colourf	$(V(\mathbf{S}) \ge$	0) are u	acont cirry	ilated trajactoria	whore
ack dash	-dot conto	ours, resp	ectively.	Colourf	$(V(\mathbf{s}) \ge$ ul dash li	nes repi	esent simu	ulated trajectorie	es, where

Table 4:	Success ra	ate and areas	s of ROAs	obtained by	different	methods1

5.2 EXTENSION

We set up our framework on two more complex dynamical systems for extension. One is the 4-DOF spacecraft rendezvous operation process given by the Hill Clohessy Wiltshire (HCW) equations:

$$\dot{x} = v_x, \ \dot{v}_x = 3n^2x + 2nv_y + u_1, \ \dot{y} = v_y, \ \dot{v}_y = -2nv_y + u_2,$$

¹The underlined results represent that the training of the corresponding methods can succeed only with the overlooked region $\Omega_0 = \{ \mathbf{s} \mid ||\mathbf{s} - \mathbf{s}^*|| < r_0 \}.$

Figure 5: The area of ROA and success rate related to the value of η_1 in inverted pendulum (a) and path following dynamics (b). Increasing η_1 can enlarge the area of ROA, while can further decrease the success rate in training.

where $n = 1.1127 \times 10^{-3}$ is a variable related to the low earth orbit and the gravitation. The other is the 6-DOF 2D quadrotor model given by

$$\begin{split} \dot{x} &= v_x, \ \dot{v}_x = -\sin(\theta)(u_1 + u_2)/m, \\ \dot{y} &= v_y, \ \dot{v}_y = \cos(\theta)(u_1 + u_2)/m - g \\ \dot{\theta} &= w, \ \dot{w} = l(u_1 - u_2)/I, \end{split}$$

where (m, l, I, g) = (0.486, 0.25, 0.00383, 9.81) are the mass, length, inertia and gravity. The learnt CLF are shown in Figure 6(a), and we also sample 10 random initial states and plot the change of the CLF value among the simulated trajectories in Figure 6(b). It can be seen that as the states reach the equilibrium, the value decrease monotonically.

Figure 6: (a) The learnt CLF candidates are presented for the spacecraft (left) and 2D quadrotor (right) dynamics. (b) The CLF value along the simulated trajectories with random initial states in the spacecraft (up) and 2D quadrotor (down) dynamics, where values decreases monotonically as the system is driven to the equilibrium point.

6 CONCLUSION

We propose an end-to-end framework for learning Lyapunov functions and controllers for nonlinear dynamical systems. Our method reduces the constraints related to the Lyapunov conditions, simplifies the learning framework and decrease the difficulty in hyperparameter tuning by using a sum-of-squares neural network as the control Lyapunov function (CLF) and a CLF-based bounded nonlinear controller. Our approach exhibits excellent and robust performance in finding Lyapunov functions with the largest region of attraction (ROA) and the highest success rate using simple settings, highlighting its potential in better facilitating Lyapunov stability analysis and nonlinear control learning.

Limitations and future works. Our framework focuses on simplifying training process and improv ing the success rate, and further attention can be paid on the following aspects: 1. As the training
 complexity grows exponentially to the dimension of dynamics, it is essential to express dynamics in
 a data-efficient way, for example, achieving appropriate dynamics with reduced dimension. 2. To
 find a more powerful control policy with the stability guarantee, integrating our method with the
 model-based reinforcement learning framework will be further explored.

540 REFERENCES

546

552

567

573

578

579

580

581

- Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. Formal synthesis of
 lyapunov neural networks. *IEEE Control Systems Letters*, 5(3):773–778, 2020.
- Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
 Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.
- F. Berkenkamp and A. P. Schoellig. Safe and robust learning control with gaussian processes. In *Control Conference*, 2015.
- F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attraction for uncertain, nonlinear systems with gaussian processes. *Decision & Control*, pp. 4661–4666, 2016a.
- Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization for quadrotors with gaussian processes. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 491–496. IEEE, 2016b.
- Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural information processing systems, 32:3245–3254, 2019.
- Hongkai Dai, Benoit Landry, Marco Pavone, and Russ Tedrake. Counter-example guided synthesis
 of neural network lyapunov functions for piecewise linear systems. In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1274–1281. IEEE, 2020.
- Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. Lyapunov-stable
 neural-network control. In *Robotics: Science and Systems XVII*. rss, 2021.
- Randy A Freeman and James A Primbs. Control lyapunov functions: New ideas from an old source. In *Proceedings of 35th IEEE conference on decision and control*, volume 4, pp. 3926–3931. IEEE, 1996.
- Nathan Gaby, Fumin Zhang, and Xiaojing Ye. Lyapunov-net: A deep neural network architecture for
 lyapunov function approximation. In 2022 IEEE 61st Conference on Decision and Control (CDC),
 pp. 2091–2096. IEEE, 2022.
- Peter Giesl and Sigurdur Hafstein. Review on computational methods for lyapunov functions.
 Discrete & Continuous Dynamical Systems-B, 20(8):2291, 2015.
- Lars Grüne. Computing lyapunov functions using deep neural networks. *arXiv preprint arXiv:2005.08965*, 2020.
- Lars Grüne. Overcoming the curse of dimensionality for approximating lyapunov functions with
 deep neural networks under a small-gain condition. *IFAC-PapersOnLine*, 54(9):317–322, 2021.
 - Ruihua Han, Shengduo Chen, Shuaijun Wang, Zeqing Zhang, Rui Gao, Qi Hao, and Jia Pan. Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped rewards. *IEEE Robotics and Automation Letters*, 7(3):5896–5903, 2022.
- Didier Henrion and Andrea Garulli. *Positive polynomials in control*, volume 312. Springer Science & Business Media, 2005.
- Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and Andrew Packard. Some controls applications of sum of squares programming. In *42nd IEEE international conference on decision and control*, volume 5, pp. 4676–4681. IEEE, 2003.
- Hassan K Khalil. Nonlinear control, volume 406, pp. 211–212. Pearson New York, 2015.
- Larissa Khodadadi, Behzad Samadi, and Hamid Khaloozadeh. Estimation of region of attraction for polynomial nonlinear systems: A numerical method. *ISA transactions*, 53(1):25–32, 2014.
- Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause. Learning-based model
 predictive control for safe exploration. In 2018 IEEE conference on decision and control (CDC),
 pp. 6059–6066. IEEE, 2018.

594	Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control design along trajectories
595	with sums of squares programming. In 2013 IEEE International Conference on Robotics and
596	Automation, pp. 4054–4061. IEEE, 2013.
507	

- Yaru Niu, Shiyu Jin, Zeqing Zhang, Jiacheng Zhu, Ding Zhao, and Liangjun Zhang. Goats:
 Goal sampling adaptation for scooping with curriculum reinforcement learning. *arXiv preprint arXiv:2303.05193*, 2023.
- Michael O'Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
 Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds. *Science Robotics*, 7(66):eabm6597, 2022.
- Antonis Papachristodoulou and Stephen Prajna. A tutorial on sum of squares techniques for systems analysis. In *Proceedings of the 2005, American Control Conference, 2005.*, pp. 2686–2700. IEEE, 2005.
- Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness
 and optimization. California Institute of Technology, 2000.
- Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from counterexamples and demonstrations. *Autonomous Robots*, 43(2):275–307, 2019.
- Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
 Adaptive stability certification for safe learning of dynamical systems. In *Conference on Robot Learning*, pp. 466–476. PMLR, 2018.
- Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and Marc Toussaint. Safe exploration for active learning with gaussian processes. In *ECML PKDD*, pp. 133–149. Springer, 2015.
- Eduardo D Sontag. A 'universal' construction of artstein's theorem on nonlinear stabilization. Systems & control letters, 13(2):117–123, 1989.
- Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with gaussian processes. In *International conference on machine learning*, pp. 997–1005. PMLR, 2015.
- Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive machine learning. *Advances in Neural Information Processing Systems*, 32:2891–2901, 2019.
- Songyuan Zhang, Yumeng Xiu, Guannan Qu, and Chuchu Fan. Compositional neural certificates for networked dynamical systems. In *5th Annual Learning for Dynamics & Control Conference*, pp. 272–285, 2023.
- Ruikun Zhou, Thanin Quartz, Hans De Sterck, and Jun Liu. Neural lyapunov control of unknown nonlinear systems with stability guarantees. In *Advances in Neural Information Processing Systems*, pp. 29113–29125, 2022.
 - Vrushabh Zinage and Efstathios Bakolas. Neural koopman lyapunov control. *Neurocomputing*, 2023.
- 635 636

630

604

- 637
- 638 639
- 640

641

- 642
- 643

644

645

646

647