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Abstract

The advent of ChatGPT and DeepSeek has
led to a widespread outbreak of content gen-
eration over the internet, amplifying the de-
mand for reliable and scalable moderation so-
lutions to monitor the sheer volume of gener-
ated content. Current approaches that rely on
Deep Neural Networks(DNNs), fail to meet
user expectations in transparency and reliabil-
ity. Additionally, it is a common issue in which
safe content is blocked or harm content is not.
Rule-based approaches provide interpretabil-
ity, but they are limited in scalability and fail
to meet the dynamic moderation needs. In
this paper, we present CAL (Chunk Attention-
based Learning to Obtain Interpretability and
Boost Performance in Content Moderation):
a novel approach that simultaneously provide
interpretability and enhance classification per-
formance in content moderation. Experiments
on 8+ golden multilingual datasets show that
CAL outperforms traditional state-of-the-art ap-
proaches in interpretability and significantly im-
proves the F1 score in text classification. More-
over, it achieves consistent gains across three
different backbone models and three distinct
taxonomy classification tasks. Furthermore,
we validate CAL’s practical scalability through
seamless integration into a production-scale
model, where it achieves millisecond latency
while processing 3.5 billion daily requests.

1 Introduction

The launch of ChatGPT has paved the way to-
wards Al-generated content (AIGC) and boosted
rapid growth in LLM adoption across industries
(Zhao et al., 2024b). OpenAl’s annualized rev-
enue has doubled to $3.4 Billion in the six months
starting from late 2023 (Ghaffary, 2024). Recent
launched model like DeepSeek-R1 achieved 10 mil-
lion downloads and 1.8 million daily active users
within weeks of release (of Apps, 2025). However,
LLMs can generate harm content that violates eth-
ical or social norms (Weidinger et al., 2021), and

will greatly affect the economic value of AIGC. It
is critical and urgent to ensure the safety of con-
tent generation (Halaweh, 2023; Deshpande et al.,
2023). Similarly, social media platforms, such
as RedNote, X (formerly Twitter) have billions
of global users posting text and comments, face
the same challenge to moderate content at scale
while adhering to legal standards, ethical norms
and social norms cross different cultures and re-
gions (CNN, 2025; Singhal et al., 2023).
Therefore, major corporations such as Google
and Microsoft have provided content moderation
as an industry service. In terms of scalability and
efficiency, DNNs are widely adopted to meet the in-
creasing demand for complex modern content mod-
eration (Malik et al., 2023). But there are limita-
tions in DNNs. First, given the “black box” nature
of DNNE, it’s challenging to interpret the decision-
making process (Riuker et al., 2023). Considering
that Content Moderation is highly sensitive and fre-
quently evolving to accommodate diverse cultures
and regions (Singhal et al., 2023), it’s especially
hard for users to understand why certain content
is blocked. Second, DNNs are data driven method
and can inherit biases from the training data (Hall
et al., 2022). Especially in the field of content mod-
eration it’s complex and difficult to collect balanced
and unbiased data. One example is annotators can’t
possibly understand all ethical and social norms of
different cultures and regions, producing biased
training data (Singhal et al., 2023). Given its sen-
sitive and subjective nature, content moderation is
more vulnerable to multiple sources of bias.
Contrasting with DNNs, prior works such as
(Clarke et al., 2024; Xin et al., 2024) explored
Rule-based approaches such as blocklists and key
phrases matching, which inherently expose the in-
terpretable classification logic, but they face scala-
bility limitations when adhering to evolving rules.
Recent work in LLMs such as GPT-4, though ca-
pable of adapting to evolving rules and addressing



dynamic moderation needs (AlDahoul et al., 2024),
lack the specialization for content moderation and
may overlook unsafe content. Moreover, their com-
putational overhead leads to prohibitive cost and
latency, making LLMs impractical for real-time
content moderation. Therefore, it remains an un-
resolved challenge to provide both interpretability
and scalability in real-time content moderation.

To address this challenge, we present CAL
(Chunk Attention-based Learning): a novel dual-
task framework that unifies classification and in-
terpretability in DNNs. CAL introduces an auxil-
iary interpretability task alongside different back-
bone models and extracts determining semantic
segments for the classification decision. CAL is
model-agnostic and can be plugged into any DNNs.
In summary, the contributions of this paper are as
follows:

* We propose a dual-task framework to unify
classification and interpretability. CAL jointly
optimizes interpretability alongside a main
classification task, and incurs no additional
computational cost or latency cost.

* We demonstrate how CAL can be plugged into
backbone models. Using Turing and BERT
as backbone models we improve the F1-score
by up to 7%, and the gain is consistent across
8 golden multilingual datasets and 3 binary
classification tasks.

* We demonstrate that CAL produces reliable
interpretable rationales. It outperforms the tra-
ditional approach in terms of interpretability,
across 8 golden multilingual datasets.

* We conduct an in-depth analysis of its gains
in interpretability and classification, and we
believe it will benefit future advancements in
this area.

2 Related Work

Interpretability Current approaches to inter-
pretability in text classification predominantly fall
into three categories: gradient based techniques,
quantifying feature contributions, and auxiliary ex-
planatory models. While these approaches provide
partial insights into model decisions, they are con-
strained by critical limitations. (1) Gradient-based
Attribution: These methods compute the impor-
tance of each input feature via partial derivatives
of model output with respect to the inputs, thereby

identifying keywords that influence model deci-
sions (Sundararajan et al., 2017). Despite their
computational efficiency, they have some critical
limitations. First, it lacks sensitivity (Zhao et al.,
2024a). Second, it often produces discrete key-
words leading to noisy and unreadable explana-
tions. (2) Post Hoc Mechanisms: Frameworks like
SHAP (SHapley Additive explanations) leverage
Shapley values from game theory to quantify fea-
ture contributions to model output (Lundberg and
Lee, 2017). While theoretically principled, they
are limited by high computational latency and poor
scalability (Chen et al., 2023). (3) Auxiliary Ex-
planatory Models: Hybrid architectures that pair
classifier model with auxiliary explanatory model
(Rudin, 2019) have two issues. First, with two
models involved it doubles DevOps cost. Second,
it often produce inconsistent result between two
models.

Multi-Task Learning Multi-task learning(MTL)
enhances the generalization capabilities of DNNs
through jointly optimization on multiple tasks
(Ruder, 2017). By leveraging shared representa-
tions, MTL improves model robustness and gener-
alization, thereby capable of addressing two crit-
ical challenges in content moderation: (1) Inter-
pretability: By introducing auxiliary tasks MTL
incentivizes DNNs to pay attention to semanti-
cally significant features across tasks, thereby pro-
vides interpretability by extracting text segments or
phrases drive both the primary classification task
and the auxiliary interpretability task. (2) Data
Bias: MTL’s noise-averaging effect suppresses di-
vergent noise patterns across tasks. Shared repre-
sentation through joint learning that reduce over-
fitting to task-specific biases. Prior studies have
explored the application of MTL in Natural Lan-
guage Processing (NLP) (Chen et al., 2024), its
application to interpretability - particularly in the
context of content moderation - remains underex-
plored. To the best of our knowledge, our work
is the first to explore MTL in interpretable con-
tent moderation and we provide a comprehensive
study of its efficacy across three DNN architectures
(Turing, BERT, Zcode).

3 Framework

In this section, we present CAL framework, outline
how CAL operates through two variants: CAL-
standard and CAL-advanced.

As depicted in Figure 1, CAL incorporates a
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Figure 1: Chunk Attention-based Learning Framework: CAL is comprised of two downstream task, primary
classification task and auxiliary interpretability task, which jointly learn semantic embedding representations

I meant average. White people have higher maximums,
of course. Various factors, such as socioeconomic
status, access to resources, and historical contexts,
play significant roles in shaping these averages ......

Definitions for the hate cateory
- Definitions: {Definitions}

# Begin Hate Labeling Task

- Text: {text}

# Output for Hate Labeling Task

- Label: a number

- Core Chunks: [chunks1, chunks2]

['White people
have higher
maximums. ]

Output Label  Output Chunks

Figure 2: Auto chunk extraction pipeline

dual-task architecture, where two tasks share a
backbone model with task-specific heads for joint
optimization. Primary Classification Task: A
sentence-level linear classifier predicts taxonomy
labels. Auxiliary Interpretability Task: A token-
level classifier predicts BIO tags for semantically
critical text spans (core chunks).

As illustrated in Figure 2, we utilize GPT-4 to
annotate taxonomy labels and core chunks using a
single prompt to get the labeled training datasets.

By employing this dual-task architecture, CAL
incentivizes model to focus on semantically critical
text spans through chunk attention-based learning,
thereby enhancing generalization for both classifi-
cation and interpretability tasks.

3.1 CAL-standard

Next, let’s delve into the data flow in the training
stage within CAL-standard framework. When an
input text, along with its core chunk label and tax-
onomy label, denoted as (z;, y;, z;), is passed into

CAL-standard framework, it undergoes tokeniza-
tion and initial encoding via the feature extraction
layer. This layer then converts the core chunk la-
bel y; into a BIO tag format label ¢; that model can
easily process using the POS algorithm (Church,
1988), and project the taxonomy label z; to the se-
quence label s;. Subsequently, these encoded data
are passed onto a shared heavy neural network (i.e.
encoder) to generate semantic sentence embedding
representations O;. This sentence embedding is
then passed to both a lightweight sentence classi-
fier layer and a lightweight token classifier layer for
further forward propagation calculations. Specifi-
cally, the lightweight sentence classifier layer is em-
ployed to output predicted taxonomy classification
Spred- This output ;.4 is subsequently combined
with the sentence label s; from the training data
to compute the Binary Cross-Entropy (BCE) loss
over taxonomy labels. Similarly, the linear token
classifier layer is designed to produce predicted
token probabilities t,..q4. This output t,,..4 is then
juxtaposed with 72, which contains interpretable ra-
tionales information, to calculate the Cross-Entropy
(CE) loss.

In implementation, a sentence classifier layer
comprises several lightweight network structures,
including a linear classifier, a dropout module, and
a pooling layer. The token classification layer is
constructed similarly. The final loss is calculated
as the weighted sum of the two losses above.

The training loop is detailed in Algorithm 1.

3.2 CAL-advanced

CAL-advanced extends CAL-standard by intro-
ducing chunk attention feedback mechanism
(see Figure 1, dotted lines). This mechanism dy-
namically refines sentence embeddings using the



Algorithm 1 CAL-standard Supervised Training

Algorithm 2 CAL-advanced Supervised Training

Require: Feature Extraction Layer © ; Token Classification
Layer ©; Sequence Classification Layer O,

Input: training data X = {(z1,y1,21),-- -, (Tn,Yn,2n)}
Output: Updated parameters Oy ©; O,

1: Initalize ©f ©; and O,

2: while not concerged do

3: Get mini-batch X

4 for tokens x; chunks y; and category z; in X3 do

5: Get tokens label ¢; = Chunk2BIO(y;)

6: Get sequence label s; = Category2Label(z;)

7: Get tprea = ©:(O(24)), Sprea = Os(O (i)

8 Compute £ = Lpcr(ti, tprea) AL E(Si, Spred)

9: Update parameters of Oy O, and O,
10: end for
11: end while

saliency of the output core chunks. The following
sections detail this mechanism.

1. Core Chunk Identification: Identifies the core
chunks by selecting tokens from the input sam-
ple that are labeled "B’ or ’'I’, indicating that
these tokens form parts of the core chunks.

2. Saliency-Weighted Embedding Fusion: Re-
trieves the embedding values corresponding
to these tokens and sums them. This sum is
then multiplied by a constant factor for weight
adjustment.

3. Embedding Adjustment: Combines this
weighted sum with the original [CLS] token
embedding values, and generate an updated
final sentence-level embedding. This updated
embedding is then used as the input for the
sequence classification layer. In our imple-
mentation, we set the constant factor to 0.25.

Note that during the inference stage, BIO labels
are unavailable. Instead, CAL-advanced utilizes
predicted BIO labels as a substitute for the BIO
labels used in the training stage.

Improvements

In the field of content moderation, traditional
classifiers often fail to detect harmful content in
long text input (e.g., 10k-20k characters), where
semantically significant segments constitute only a
small portion. This often results in overlooking of
harm content.

CAL-standard addresses this by incentivizing
model to focus on sematic critical chunks, how-
ever its performance degrades as attention weights
attenuate in longer texts.

Require: Feature Extraction Layer © y Token Classification
Layer ©+ Sequence Classification Layer O,
Input: training data X = {(z1,y1,21), ...
Output: Updated parameters Oy ©; O

7(xﬂ/7yn7 Z’")}

1: Initalize ©f ©; and O,

2: while not concerged do

3: Get mini-batch X

4 for tokens x; chunks y; and category z; in X3 do

5 Get tokens label ¢; = Chunk2BIO(y; )

6: Get sequence label s; = Category2Label(z;)

7: Get tpreq = O (@f (321))

8 Get weighted feature extraction result r,, =

« @f(xi)]-, iftij S [B,I}
[a1...an | a; = 0 ity = O ]
9: Get Spred = Os(rw + Of(x4))
10: Compute L = Lpce(ti, tpred) +
>\LCE (Si7 Spred)
11: Update parameters of © y O and O,
12: end for

13: end while

CAL-advanced introduces a chunk attention
feedback mechanism that dynamically re-weights
critical segments. By tuning attention distribution
through iterative feedback, it further improves clas-
sification accuracy in long-text scenarios compared
to CAL-standard.

4 Experiments Setup

We apply CAL in three backbone models - Tur-
ing, Bert, Zcode - to validate its efficacy across
diverse DNN architectures (Zcode is presented in
Appendix A):

1. Turing (Microsoft, 2022): A state-of-the-art
model for multilingual tasks, serving as our
high standard baseline.

2. Multilingual-distilBERT (Sanh et al., 2020):
An open-source, lightweight model by dis-
tilling BERT, chosen to demonstrate CAL’s
adaptability across model scales.

3. Z-Code++ (He et al., 2023): A state-of-the-
art pre-trained language model, selected as
our production backbone model because of its
exceptional text comprehension capabilities.

4.1 Baseline

We compare the performance of our baseline mod-
els before and after applying CAL, in terms of
both classification and interpretability.
Classification: We use the Turing model (Mi-
crosoft, 2022) and Multilingual-distilBERT model



(Sanh et al., 2020) as our baseline models for clas-
sification tasks.

Interpretability: We set Turing model as the
backbone model, given its demonstrated excep-
tional performance in text classification tasks. Ad-
ditionally, we chose the gradient-based attribution
(Sundararajan et al., 2017) and post hoc mechanism
- SHAP (Lundberg and Lee, 2017) as our baseline
for interpretability tasks.

4.2 Training parameters

In our experiment, all models were trained using
AdamW optimizer with a weight decay of 0.01
applied to all training data. We utilized a learning
rate of 1e-5, a batch size of 32, and set epochs to 20.
Our models were trained on NVIDIA Tesla V100
32GB GPUs using Azure Machine Learning Studio.
Each category was given its own training dataset
comprising ~100k data sampless. The training of
all variations of CAL, as well as the baseline, across
all three backbone models and three taxonomies,
required an estimated total of 180 GPU hours.

4.3 Test Dataset

Given the scarcity, suboptimal quality, and limited
multilingual support in the public dataset for con-
tent moderation(Mathew et al., 2021), we choose
our proprietary, high-quality RAI Golden Multi-
lingual Dataset for evaluation.

Coverage: Tier-1 major languages (English,
Japanese, German, Spanish, French, Portuguese,
Italian, Chinese), each language forms an indepen-
dent test set consisting of ~5k samples balanced
across three taxonomies (sexual, hate, violence).

Quality labels: Taxonomy labels and core
chunks annotated by GPT-4. We evaluated the
consistency between GPT-4 and human labels sur-
passed 80% across all languages ‘s dataset.

4.4 Training Dataset

Data Sources: Per-taxonomy datasets (~100k
samples each) were sampled from the produc-
tion corpus. The production corpus originated
from GPT-4 and public datasets. Many of these
datasets, which originally contained taxonomy la-
bels but lacked chunk labels, were relabeled by
native speakers. Dataset Distribution: For each
taxonomy dataset, the percentage of samples la-
beled as the taxonomy’s respective category (vio-
lence, hate, or sexual) varies - 18.09% for violence,
16.52% for hate, and 23.07% for sexual. The rest of

the samples were not representative of their respec-
tive taxonomy. Average Text Length: The average
length of sample texts varies across taxonomies,
with 40 characters for violence, 33 for hate, and
31 for sexual. Collection Process: Datasets were
sampled from the production corpus and processed
through chunk extraction pipeline mentioned be-
fore for label acquisition. Datasets were discarded
if there was a discrepancy between GPT-4 predicted
taxonomy label and the original label.

5 Results and Discussions

In this section, we present and analyze our exper-
iment result from two aspects: text classification
and model interpretability (see Appendix A.5 for
comprehensive discussion regarding the computa-
tional efficiency of our framework).

5.1 Text Classification

Tables 1-3 present taxonomy-specific F1 scores
across Tier-1 major languages. In this section, we
detail the key findings for CAL-standard and CAL-
advanced.

5.1.1 Taxonomy Violence

* CAL-standard: Positive gains across lan-
guages with +5.07% English, +3.79% French,
+3.83% Spanish using Turing backbone.
Gains persist with +4.12% French, +3.65%
Italian using DistilBERT.

* CAL-advanced: Gains surpass in most lan-
guages with +7.28% English, +5.22% French,
+4.42 9% Italian, +4.59% Portuguese, +4.07%
Spanish over using Turing backbone. Most
languages show degradations (e.g., —-6.41%
German, —3.75% French) using DistilBERT.

5.1.2 Taxonomy Hate

* CAL-standard: Improvements are consistent
(e.g., +3.62% French, +3.41% German) using
Turing backbone. Gains remain positive but
are modest (ranging roughly from +0.22% to
+2.11%) using DistilBERT.

* CAL-advanced: Gains are slightly lower
than CAL-standard (e.g., English +1.47% vs.
+1.68% for CAL-standard) and even a slight
drop is observed in Japanese (—0.27%) using
Turing. Significant degradations in most lan-
guages (e.g., English —3.93%, French -5.40%,
German —4.82%, Spanish —5.93%) using Dis-
tilBERT.



Model F1 score on 8 multilingual datasets

Chinese | English | French | German | Italian | Japanese | Portuguese | Spanish

Baseline™ 0.649 0.608 0.627 0.634 0.604 0.659 0.702 0.580

CAL-standard* 0.655 0.659 0.665 0.641 0.614 0.663 0.721 0.618
059% | 507% | 3.79% | 0.66% | 0.99% | 0.38% 1.94% 3.83%

CAL-advanced® | 0.667 0.681 0.679 0.636 0.648 0.674 0.748 0.620
1.78% | 7.28% | 5.22% | 0.16% | 442% | 1.48% 4.59% 4.07 %

Baseline 0.580 0.522 0.490 0.545 0.423 0.532 0.558 0.466

CAL-standard 0.581 0.539 0.532 0.550 0.460 0.538 0.574 0.467
016% | 1.77% | 412% | 0.56% | 3.65% | 0.55% 1.63% 0.07 %

CAL-advanced 0.585 0.506 0.453 0.480 0.445 0.523 0.548 0.440
0.51% | -1.56% | -3.75% | -6.41% | 2.17% | -0.95% -0.97% -2.59%

Table 1: Taxonomy violence, *Uses Turing as backbone

model.” Uses multilingual-distilBERT as backbone model.

Model F1 score on 8 multilingual datasets

Chinese | English | French | German | Italian | Japanese | Portuguese | Spanish

Baseline* 0.613 0.600 0.650 0.536 0.418 0.641 0.501 0.673

CAL-standard* 0.632 0.617 0.686 0.570 0.446 0.641 0.508 0.687
191% | 1.68% | 3.62% | 3.41% | 2.75% | 0.07% 0.76 % 1.39%

CAL-advanced™ | 0.619 0.615 0.676 0.551 0.448 0.638 0.513 0.674
0.69% | 1.47% | 2.56% | 1.46% | 2.91% | -0.27% 1.27% 0.13%

Baseline 0.501 0.534 0.578 0.421 0.295 0.541 0.424 0.586

CAL-standard 0.522 0.540 0.584 0.423 0.313 0.541 0.442 0.601
211% | 0.60% | 0.52% | 0.22% | 1.77% | -0.03% 1.72% 1.50%

CAL-advanced 0.503 0.495 0.524 0.373 0.299 0.503 0.372 0.527
019% | -3.93% | -5.40% | -4.82% | 0.37% | -3.87% -5.19% -5.93%

Table 2: Taxonomy hate, *Uses Turing as backbone model.” Uses multilingual-distilBERT as backbone model.

Model F1 score on 8 multilingual datasets

Chinese | English | French | German | Italian | Japanese | Portuguese | Spanish

Baseline™ 0.822 0.855 0.824 0.794 0.854 0.716 0.879 0.840

CAL-standard* 0.849 0.867 0.831 0.803 0.861 0.758 0.886 0.840
272% | 1.21% | 0.71% | 0.94% | 0.70% | 4.16% 0.66 % -0.01%

CAL-advanced™ | 0.849 0.864 0.824 0.805 0.852 0.764 0.880 0.844
2.69% | 0.88% | 0.00% | 1.14% | -0.15% | 4.79% 0.10% 0.38%

Baseline 0.735 0.734 0.760 0.676 0.775 0.566 0.764 0.718

CAL-standard 0.764 0.780 0.775 0.710 0.785 0.607 0.795 0.745
292% | 4.60% | 1.50% | 3.45% | 1.06% | 4.17% 3.11% 2.74%

CAL-advanced 0.703 0.706 0.749 0.667 0.739 0.589 0.762 0.687
3.15% | -2.76% | -1.16% | -091% | -3.62% | 2.37% -0.22% -3.04%

Table 3: Taxonomy sexual, *Uses Turing as backbone model.”* Uses multilingual-distilBERT as backbone model.

5.1.3 Taxonomy Sexual

* CAL-standard: Gains are consistent with a
notable +4.16% Japanese using Turing back-
bone. Consistent gains across all languages
with +4.60% using DistilBERT.

* CAL-advanced: Gains are similar to CAL-
standard using Turing. Significant degra-
dations in most languages (e.g., Chinese

-3.15%, English —2.76%, French —1.16%, Ital-
ian —3.62%, Spanish —3.04%)) using Distil-
BERT.

5.1.4 Result Analysis

Below, we outline our observations and findings.
1. CAL-standard consistently boosts F1-score
across models and datasets.

e MTL Framework: Incentivizes the model



8 multilingual | segment-level | token-level | char-level

Method datasets Fi Fi Fi | erance
SHAP 0.180 0.165 0.469 0.020
gradient English 0.247 0.230 0.540 0.020
original classifier 0.203 0.199 0.443 0.013
CAL 0.616 0.597 0.736 0.004
SHAP 0.104 0.087 0.254 0.006
gradient German 0.209 0.191 0.416 0.010
original classifier 0.088 0.086 0.231 0.005
CAL 0.472 0.457 0.574 0.003
SHAP 0.128 0.136 0.468 0.025
gradient Japanese 0.302 0.293 0.457 0.006
original classifier i 0.157 0.133 0.293 0.005
CAL 0.553 0.558 0.631 0.001
SHAP 0.164 0.153 0.392 0.012
gradient Spanish 0.286 0.256 0.539 0.016
original classifier panis 0.130 0.120 0356 0.012
CAL 0.533 0.511 0.652 0.004
SHAP 0.300 0.289 0.586 0.019
gradient Chinese 0.335 0.322 0.473 0.005
original classifier ) 0.188 0.167 0.292 0.003
CAL 0.588 0.596 0.622 0.000
SHAP 0.159 0.156 0.304 0.005
gradient Italian 0.259 0.231 0.448 0.009
original classifier 0.098 0.089 0.260 0.006
CAL 0.514 0.503 0.601 0.002
SHAP 0.122 0.109 0.293 0.007
gradient 0.233 0.211 0.459 0.013

— - French

original classifier 0.130 0.124 0.295 0.006
CAL 0.531 0.522 0.637 0.003
SHAP 0.091 0.080 0.255 0.006
gradient Portuguese 0.298 0.279 0.524 0.012
original classifier 0.102 0.094 0.289 0.008
CAL 0.571 0.564 0.665 0.002

Table 4: Comparison of Chunk Extraction Quality Across
Different Levels.

to focus on semantically decisive features for
both classification and interpretability. Addi-
tionally, different tasks have different noise
patterns, through joint learning it suppresses
divergent noise patterns across tasks, thereby
reducing overfitting to task-specific biases.
These benefits contribute to better generaliza-
tion and enhanced performance for both tasks.

Additionally, the successful application of
MTL depends on two key prerequisites: the
tasks must be closely related to each other,
and the training datasets for both tasks must
be of high quality with reliable labels. CAL
framework meets these criteria by employing
Chunk Attention-based Learning to closely
associate the tasks and using GPT annotation
to generate reliable labels for auxiliary task.

* Chunk Attention-based Learning: CAL ap-
plying Chunk Attention-based Learning to
tightly connect the two tasks. Within CAL
framework, the extraction of core chunks that
align with a specific taxonomy provides com-
pelling evidence for the relevance; conversely,
the absence of such core chunks indicates a
weak or non-existent relevance. This mutual
reinforcement — where attention-based chunk
extraction reinforces classification decisions
and, in turn, classification outcomes guide
the focus of the attention mechanism — ul-

timately enhances feature representation and
overall classification performance.

* Quality Annotation: Without high-quality
annotations, CAL framework would strug-
gle to maintain data consistency between two
tasks, reducing the effectiveness of Dual-Task
Framework and Chunk Attention-based
Learning, and ultimately affect the overall
classification performance. By leveraging
GPT-4 to generate high-quality annotations,
it ensures the mutual reinforcement between
classification and chunk extraction.

2. CAL-advanced shows Inconsistent Perfor-
mance.

* Performance Boost in Long-Text: We ob-
serve that it’s mainly consisting of long texts
in violence taxonomy, where semantically sig-
nificant segments may be obscured in long
texts, and chunk attention feedback’s additive
saliency forces attention on these segments
and improve the performance.

* Performance Variance across Models: We
observe overall gains over Turing, but overall
degradation over DistillBERT. It seems Tur-
ing’s 17B parameters absorb feedback noise,
while DistillBERT’s 66M parameters may
overfit to chunk re-weighting.

* Hard Mode Limitation: We apply chunk at-
tention feedback in hard mode, re-weighting
the embedding information of tokens corre-
sponding to chunk labels by a fixed constant.
It doesn’t generalize well across models and
data, we will evaluate adaptive weighting as
future work.

5.2 Interpretability

For focused analysis, we report results on the vi-
olence taxonomy across eight languages in the
RAI Golden Multilingual Dataset, omitting CAL-
advanced due to space constraints.

5.2.1 Evaluation

CAL generates interpretable rationales by exact-
ing semantically critical text spans (chunks). We
evaluate its performance by measuring the align-
ment between predicted chunks and golden chunks,
similar to the evaluation process of sequence tag-
ging. However traditional evaluation metrics used



in sequence tagging (e.g., exact match) are lim-
ited to manage the fuzzy boundaries and contextual
continuity of chunks.

To address these limitations, we propose a no-
val evaluation mechanism that captures both the
accuracy and completeness of chunk extraction.
Our proposed mechanism employs a multi-granular
analysis approach to ensure a more comprehensive
evaluation process.

5.2.2 Accuracy Assessment

We assess the accuracy of core chunks’ at three
different granularities: character, token, and seg-
ment (parts of a sentence, separated by punctuation
marks). At each of these levels, we use the follow-
ing method to measure accuracy. Let’s explore this
using the token-level as an example:

Given the i-th test sample as input, Np; rep-
resents the number of predicted core chunks seg-
mented at the token level, N7 ; represents the num-
ber of target core chunks segmented at the token
level, and Nrnp; stands for the number of seg-
ments that overlap between the predicted and target

core chunks, both segmented at the token level.

» Ntnp,i Nrnp,i
= — =
N,

- O] n=—os O

Using Equétion (1), we first calghlate the pro-
portion of segments that overlap between the target
and predicted segments, represented as p;. Simi-
larly, Equation (2) allows us to find the proportion
of segments that overlap between the target and the
predicted segments, denotes as r;.

1 1 PxR
P=— i (3) R=— ri 4 Fl1=2x
n;p ( nZ; ¢ PR

Uporiiévaluating all test samples, we compute
the arithmetic mean of all p; and r; values to pro-
duce the overall indicators, P and R, which quantify
the relationship between the predicted and target
core chunks in all samples. Lastly, the harmonic
mean of P and R, referred to as the F1 score, serves
as the final measure of accuracy in the relationship
between the predicted and the target core chunks,
as illustrated in Equations (3-5).

This hierarchy addresses the fuzzy boundary
problem: a near-hit chunk missing one character
(e.g. "I hate you" vs. "I hate yo") would retain high
character-level F1 but low token-level F1, reflecting
partial correctness while penalizing fragmentation.

(5)

5.2.3 Completeness Quantification

As demonstrated in Equation (6), we employ the
concept of variance as a metric to quantify the
completeness of the core chunks, where F'1.4,4,

Fliokens F'lsegment represent the F1 scores at the

"character, token, segment" levels respectively.

3
. 1 -2 = X1+X2+ X3
variance = — X, —X), X=—-—1-""—"7"H7 6
3;:1( i ) 3 (6)

The variance is computed from these F1 scores,

providing a quantitative measure of the complete-
ness of the core chunks.

* High variance indicates fragmented pieces
(e.g. core chunks = ["I", "hate", "you"]).

* Low variance indicates contiguous spans (e.g.
core chunks = ["I hate you"]).).

This metric penalizes systems that sporadically
highlight individual tokens (common in gradient-
based attribution) while rewarding holistic reason-
ing (e.g. contextual continuity of semantically sig-
nificant chunks).

5.2.4 Result Analysis

As shown in Table 4, CAL-standard outperforms
all the three baselines in F1 scores across levels
and languages. Specifically its performance gen-
erally improves from character-level to segment-
level, showing that CAL are better to capture larger,
semantic segments. Additionally CAL achieves the
most balanced performance across levels - the high-
est varience score, demonstrating its capability of
capturing contextual continuity of semantically sig-
nificant chunks.

6 Conclusion

In this paper, we present CAL, a novel Dual-
Task Learning framework that enhances text clas-
sification with interpretability in content mod-
eration without introducing computational over-
head. Through jointly optimizing an auxiliary inter-
pretability task CAL achieves two critical advance-
ments. (1) Performance Gains: Experiments re-
sult on 8+ golden multilingual datasets demonstrate
that CAL improves classification F1 by up to 7%
over single-task baselines. (2) Interpretability:
Extract interpretable rationales via chunk attention,
significantly outperforming gradient-based attribu-
tion and SHAP across languages.

Deployed in our production content moderation
platform, CAL achieves milliseconds latency while
processing 3.5 billion daily requests demonstrating
its practicality in serving real-time content mod-
eration. Though evaluated on moderation tasks,
CAL’s architecture is domain-agnostic, offering
a blueprint for interpretable text classification in
healthcare and other domains.



7 Limitations

7.1 Dependence on High-Quality Chunk
Annotations

The CAL approach relies heavily on core chunks as
interpretability task labels, implying that the quality
of these annotated chunks by GPT-4 (or any other
LLMs) could significantly impact the quality of the
subsequent interpretability task. If the extracted
core chunk labels are of inferior quality, it could
negatively affect the quality of the interpretability
task. Furthermore, the shared hidden layer in our
multitask setup can create a domino effect. A re-
duction in the quality of one task can potentially
degrade the performance of another task, such as
text classification. This could potentially lead not
only to the CAL framework’s inability to provide
reliable interpretable features but also a decrease in
the original text classifier’s performance. A possi-
ble future research could be to examine the impact
of the quality of annotated core chunk labels on the
performance of the CAL framework.

7.2 Fixed Attention re-weighting in
CAL-advanced

In CAL-advanced, we introduce a chunk attention
feedback mechanism aimed at enhancing perfor-
mance on long texts by re-weighting the embed-
dings corresponding to chunk labels. In the current
implementation, this re-weighting is performed in
a hard mode by multiplying a fixed constant. How-
ever, this fixed approach shows poor generalization
and inconsistent performance across different back-
bone models and datasets.

In future work, we plan to evaluate adaptive
weighting strategies that dynamically adjust the
re-weighting factor based on the estimated saliency
of each chunk, with the goal of achieving more
consistent and robust performance across a wider
range of models and datasets.

7.3 Dependence on DNN-based backbone
model

Our CAL approach can be applied to any backbone
model, but it necessitates a DNN-based backbone
model. It remains uncertain if the backbone model
is not a DNN-based model, the multitask frame-
work that CAL depends upon may not function
optimally, as the employment of two lightweight
classifiers sharing a heavy-duty network to com-
plete various downstream tasks might not be feasi-
ble. Further researches may be needed to directly

validate the corresponding outcomes for backbone
models that are not DNN-based backbone model.

8 Ethics

The data used in this work is a proprietary asset
of the company. The collection process adheres to
established ethical guidelines and regulatory stan-
dards, and fully complies with the strict compliance
requirements set by our company. To the best of
our knowledge, there are no ethical risks associated
with the data or its use in this work.
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A Extension and practical usage

We’ve utilized the CAL framework in practical on-
line content moderation services. In the following
discussion, we provided a comprehensive overview
of this online real traffic application, covering the
testing data we used, our experimental setup, and
the results we achieved.

A.1 Experiments setting

To address a variety of user needs, our online text
classifier for is not a mere binary classifier, but
a complex tool designed for multi-label, multi-
severity, and multi-lingual text classification. The
’multi-label’ aspect allows it to simultaneously
identify harmful content across different categories
like hate speech, sexual violence, and self-harm.
The "multi-severity’ aspect ensures we not only cat-
egorize the input text but also assess its specific
severity level within those categories.

A.1.1 Baseline

Given a consistent training set, we utilize Zcode
++(He et al., 2023) as backbone model to iden-
tify four taxonomies, supporting multi-class, multi-
severity, and multi-lingual text classification.

A.1.2 Our proposed CAL

Maintaining the same conditions as the baseline,
including a consistent backbone model and training
dataset, we implement CAL framework to Zcode
++(He et al., 2023) as new approach.

A.2 Dataset

We have used several datasets for our evalua-
tion. some of these datasets are publicly available,
while others are our internal dataset, these internal
datasets will be made publicly accessible in the
future. Each dataset possesses specific taxonomy
labels for classification. Using our Auto-chunk ex-
traction module, we’ve supplemented these with
interpretable chunk labels, enhancing their utility
for interpretability evaluation.

A.2.1 Internal Eval

This dataset consists of 1996 samples that have
been annotated using our internal taxonomy Guid-
ance. It encompasses multiple categories, including
hate, sexual, violence, and self-harm.

A.2.2 OpenAl Eval

It is an evaluation set from OpenAl, which com-
prises 979 samples and includes content across four
harm categories.
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Baseline CAL-standard Delta
Taxonomy Datasets -
Binary F1
Internal Eval 76.4 77.7 +1.3
Violence OpenAl Eval 57.8 60.3 +2.5
Average 74.4 74.4 +1.9
Internal Eval 78.7 84.2 +5.5
SelfHarm Suicide Watch 98.3 98.3 +0.0
Average 85.8 86.0 +2.8
Internal Eval 87.1 88.5 +1.4
Sexual OpenAl Eval 91.1 90.9 -0.2
Average 89.1 90.0 +0.8
Internal Eval 76.1 76.2 +0.1
Hate ETHOS 76.8 81.5 +4.7
Average 75.6 74.4 +2.4
Multiclass F1 (>4)
Violence RAI 55.4 57.0 +1.6
SelfHarm Golden 58.5 61.8 +3.3
Sexual Datasets 74.8 74.8 0.0
Hate 40.9 433 +2.4
Multiclass F1 (>2)
Violence RAI 70.2 70.7 +0.5
SelfHarm Golden 78.2 80.5 +2.3
Sexual Datasets 87.0 87.8 +0.5
Hate 64.1 64.5 +0.4

Table 5: Comparison of the performance of online multi-
lingual multi-task and multi-level models after applying
the REAVEAL method.

A.23 ETHOS

ETHOS dataset is from the 2020 paper . Human an-
notated text from YouTube and Reddit comments.
A threshold of 0.5 is applied when converting to
a binary label. Note: Many of the examples with
label scores below 0.5 are quite hateful and fall
within hate category when applying our taxon-
omy’s guidance definition.

A.2.4 SuicideWatch

Text taken from SuicideWatch
weakly labeled.

subreddit and

A.2.5 RAI Golden Dataset

The RAI Golden Dataset is a benchmark dataset,
labeled by native speakers of eight major Tier-1
languages: English, Japanese, German, Spanish,
French, Portuguese, Italian, and Chinese. Each lan-
guage forms an independent test set, divided into
four subcategories: sexual, hate, and violence, self-
harm. Each subcategory includes approximately
5k samples, labeled according to three dimensions:
"is_sexual", "is_hate", and "is_violence", each as-
signed a severity value ranging from O to 7.
Additionally, each dataset sample includes label
data for evaluating text interpretability capabilities,
with GPT annotations providing the ground truth
for these labels. We further validated its quality
by manually labelling 100 samples from each lan-
guage dataset. The consistency between GPT and



segment-level token-level char-level .
Method Eval datasets P g R Fi P R Fi P R Fi Variance
CAL English dataset 0.864 | 0.778 | 0.789 | 0.859 | 0.775 | 0.785 | 0.874 | 0.851 | 0.838 | 0.0006
CAL German dataset | 0.654 | 0.638 | 0.623 | 0.655 | 0.633 | 0.620 | 0.693 | 0.701 | 0.679 | 0.0007
CAL Japanese dataset | 0.805 | 0.772 | 0.770 | 0.807 | 0.775 | 0.775 | 0.834 | 0.800 | 0.803 | 0.0002
CAL Spanish dataset 0.728 | 0.694 | 0.687 | 0.721 | 0.687 | 0.678 | 0.759 | 0.787 | 0.755 | 0.0012
CAL Chinese dataset 0.825 | 0.766 | 0.773 | 0.819 | 0.759 | 0.766 | 0.825 | 0.784 | 0.804 | 0.0002
CAL Italian dataset 0.736 | 0.719 | 0.706 | 0.731 | 0.715 | 0.700 | 0.757 | 0.776 | 0.749 | 0.0004
CAL French dataset 0.717 | 0.691 | 0.683 | 0.715 | 0.690 | 0.680 | 0.750 | 0.744 | 0.731 | 0.0005
CAL | Portuguese dataset | 0.783 | 0.719 | 0.742 | 0.780 | 0.742 | 0.739 | 0.811 | 0.818 | 0.800 | 0.0008

Table 6: Comparison of Chunk Extraction Quality Across Different Levels

e ttte;‘:’:ample Congip—| Batehsize mlﬁgs t°°kéf:£“ds Delta(CAL - Baseline) | %Delta(CAL - Baseline)
1 22.511 22.610 0.000 0.44%
safe content 10k chars 5 35.810 36.247 0.438 1.22%
10 49.809 51.792 1.984 3.98%
1 22.868 23.025 0.157 0.68%
safe and harmful content | 10k chars 5 36.101 38.138 2.037 5.64%
10 50.854 53.237 2.383 4.69%
1 28.437 29.036 0.599 2.11%
harmful content 10k chars 5 41.338 43.796 2.457 5.94%
10 60.611 62.594 1.984 3.27%

Table 7: Latency Comparison results

human labels surpassed 80% across all languages,
demonstrating the reliability of the interpret labels.

A.3 Text classification result

Table 1 reports our classification evaluation results
for our online model on binary dataset and multi-
class datasets.

(1)Result on binary evaluation datasets Our
observations on binary evaluation datasets indi-
cate that the CAL-standard method consistently
improves the F1-score across all taxonomies. No-
tably, the method boosts the F1-score by an average
of 1.9%, 2.8%, 0.8% and 2.4% for violence, self-
harm, sexual, and hate taxonomies, respectively. In
some instances, the F1 gain even peaks at 5.5%.

(2) Result on multi-class evaluation datasets:
For the multi-class evaluation datasets, we utilized
two distinct thresholds to evaluate the model’s qual-
ity at various severity levels. The multi-class evalu-
ation data shown in the table above is derived from
the average F1 values across eight languages. The
findings suggest that irrespective of whether the
severity level is set to 2 or 4, the CAL-advanced
method invariably enhances the model’s F1 score.

Note: As our online models are trained on a
vast amount of data, the baseline performance is
already impressive. We were pleasantly to find
that our proposed CAL-standard method can fur-
ther enhance the model’s quality. Moreover, unlike

previous experiments, the backbone of the online
model is based on Zcode++, a different backbone,
once again demonstrating the robustness and prac-
ticality of our method.

A.4 Text interpretablity result

Table 6 presents the interpretability evaluation re-
sults of our online model after applying the CAL-
standard framework. We observe that the utiliza-
tion of the CAL method results in high F1 scores
under three granularity levels for the online model,
exceeding 0.7 across all eight multilingual datasets.
In many instances, the chunk-level F1 score even
surpasses 0.8, indicating high accuracy in chunk
extraction.

As discussed before, the final chunk F1 and to-
ken F1 values can measure the completeness of
our chunk extraction. The minimal difference ob-
served in the last column of Table 2 across all eight
multilingual datasets further confirms the high com-
pleteness of the chunks.

Note:We have not included a baseline result us-
ing the same data to train the initial text classi-
fier because the classifier wasn’t trained with inter-
pretability information, leading to low F1 scores
across all three granularity levels. Additionally,
we’ve omitted results from the shape gradient
method as a comparison baseline due to the time-
consuming nature of these methods, particularly

12



the gradient method. We haven’t yet gathered all
evaluation outcomes for it, though we have previ-
ously tested both methods on smaller data sets.

A.5 Latency Comparison results

As depicted in Table 7, we conducted extensive
latency tests for the CAL and baseline models using
different test samples. The results are as follows:

¢ For "safe content”, the CAL model exhibits a
slight latency increase of 0.44%, 1.22%, and
3.98% for batch sizes of 1, 5, and 10, respec-
tively.

e For "safe and harmful content", the CAL
model consistently shows a negligible in-
crease in latency compared to the baseline
model across all batch sizes. It shows an in-
crease of 0.68%, 5.64%, and 4.69% for batch
sizes of 1, 5, and 10, respectively.

¢ For "harmful content", the CAL model consis-
tently shows a slight increase in latency com-
pared to the baseline model, with improve-
ments of 2.11%, 5.94%, and 3.27% for batch
sizes of 1, 5, and 10, respectively.

From these results, it’s clear that regardless of the
content type or the batch size, the latency increase
with the CAL model compared to the baseline
model is minimal and can be disregarded. This
minor increase is due to the time needed to process
the BIO tags predicted by the token classifier into
interpretable core chunks as features.

Furthermore, we observed that the latency is
lower for safe content compared to harmful con-
tent. Considering that in real-world scenarios, safe
content makes up a large proportion, far exceeding
95%, this further indicates that CAL is highly suit-
able for practical production services. Therefore,
the CAL model’s efficiency and scalability in pro-
cessing all types of data sets make it a valuable tool
for real-world applications where handling large
volumes of data quickly is critical.

In conclusion, although the CAL model has a
very small increase in latency compared to the base-
line model (less than 5%, almost negligible), it pro-
vides better classification results and transparency
for users. Overall, the CAL model is an excellent
framework for practical scenarios, with almost no
compute or latency cost increase compared to base-
line.
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A.6 Conclusion

Differing from the experiments previously carried
out and mentioned in the main text,we applied the
CAL framework to a larger scale training dataset
and introduced a new backbone model. Even in a
non-simplistic classifier scenario, our CAL frame-
work consistently achieved stellar performance in
both classification and interpretability. These re-
sults powerfully demonstrate the robustness and
practicality of our proposed CAL framework, sug-
gesting that our approach could potentially be ap-
plied to any classification model based on neural
networks.
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