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Abstract
The advent of ChatGPT and DeepSeek has001
led to a widespread outbreak of content gen-002
eration over the internet, amplifying the de-003
mand for reliable and scalable moderation so-004
lutions to monitor the sheer volume of gener-005
ated content. Current approaches that rely on006
Deep Neural Networks(DNNs), fail to meet007
user expectations in transparency and reliabil-008
ity. Additionally, it is a common issue in which009
safe content is blocked or harm content is not.010
Rule-based approaches provide interpretabil-011
ity, but they are limited in scalability and fail012
to meet the dynamic moderation needs. In013
this paper, we present CAL (Chunk Attention-014
based Learning to Obtain Interpretability and015
Boost Performance in Content Moderation):016
a novel approach that simultaneously provide017
interpretability and enhance classification per-018
formance in content moderation. Experiments019
on 8+ golden multilingual datasets show that020
CAL outperforms traditional state-of-the-art ap-021
proaches in interpretability and significantly im-022
proves the F1 score in text classification. More-023
over, it achieves consistent gains across three024
different backbone models and three distinct025
taxonomy classification tasks. Furthermore,026
we validate CAL’s practical scalability through027
seamless integration into a production-scale028
model, where it achieves millisecond latency029
while processing 3.5 billion daily requests.030

1 Introduction031

The launch of ChatGPT has paved the way to-032

wards AI-generated content (AIGC) and boosted033

rapid growth in LLM adoption across industries034

(Zhao et al., 2024b). OpenAI’s annualized rev-035

enue has doubled to $3.4 Billion in the six months036

starting from late 2023 (Ghaffary, 2024). Recent037

launched model like DeepSeek-R1 achieved 10 mil-038

lion downloads and 1.8 million daily active users039

within weeks of release (of Apps, 2025). However,040

LLMs can generate harm content that violates eth-041

ical or social norms (Weidinger et al., 2021), and042

will greatly affect the economic value of AIGC. It 043

is critical and urgent to ensure the safety of con- 044

tent generation (Halaweh, 2023; Deshpande et al., 045

2023). Similarly, social media platforms, such 046

as RedNote, X (formerly Twitter) have billions 047

of global users posting text and comments, face 048

the same challenge to moderate content at scale 049

while adhering to legal standards, ethical norms 050

and social norms cross different cultures and re- 051

gions (CNN, 2025; Singhal et al., 2023). 052

Therefore, major corporations such as Google 053

and Microsoft have provided content moderation 054

as an industry service. In terms of scalability and 055

efficiency, DNNs are widely adopted to meet the in- 056

creasing demand for complex modern content mod- 057

eration (Malik et al., 2023). But there are limita- 058

tions in DNNs. First, given the “black box” nature 059

of DNNs, it’s challenging to interpret the decision- 060

making process (Räuker et al., 2023). Considering 061

that Content Moderation is highly sensitive and fre- 062

quently evolving to accommodate diverse cultures 063

and regions (Singhal et al., 2023), it’s especially 064

hard for users to understand why certain content 065

is blocked. Second, DNNs are data driven method 066

and can inherit biases from the training data (Hall 067

et al., 2022). Especially in the field of content mod- 068

eration it’s complex and difficult to collect balanced 069

and unbiased data. One example is annotators can’t 070

possibly understand all ethical and social norms of 071

different cultures and regions, producing biased 072

training data (Singhal et al., 2023). Given its sen- 073

sitive and subjective nature, content moderation is 074

more vulnerable to multiple sources of bias. 075

Contrasting with DNNs, prior works such as 076

(Clarke et al., 2024; Xin et al., 2024) explored 077

Rule-based approaches such as blocklists and key 078

phrases matching, which inherently expose the in- 079

terpretable classification logic, but they face scala- 080

bility limitations when adhering to evolving rules. 081

Recent work in LLMs such as GPT-4, though ca- 082

pable of adapting to evolving rules and addressing 083
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dynamic moderation needs (AlDahoul et al., 2024),084

lack the specialization for content moderation and085

may overlook unsafe content. Moreover, their com-086

putational overhead leads to prohibitive cost and087

latency, making LLMs impractical for real-time088

content moderation. Therefore, it remains an un-089

resolved challenge to provide both interpretability090

and scalability in real-time content moderation.091

To address this challenge, we present CAL092

(Chunk Attention-based Learning): a novel dual-093

task framework that unifies classification and in-094

terpretability in DNNs. CAL introduces an auxil-095

iary interpretability task alongside different back-096

bone models and extracts determining semantic097

segments for the classification decision. CAL is098

model-agnostic and can be plugged into any DNNs.099

In summary, the contributions of this paper are as100

follows:101

• We propose a dual-task framework to unify102

classification and interpretability. CAL jointly103

optimizes interpretability alongside a main104

classification task, and incurs no additional105

computational cost or latency cost.106

• We demonstrate how CAL can be plugged into107

backbone models. Using Turing and BERT108

as backbone models we improve the F1-score109

by up to 7%, and the gain is consistent across110

8 golden multilingual datasets and 3 binary111

classification tasks.112

• We demonstrate that CAL produces reliable113

interpretable rationales. It outperforms the tra-114

ditional approach in terms of interpretability,115

across 8 golden multilingual datasets.116

• We conduct an in-depth analysis of its gains117

in interpretability and classification, and we118

believe it will benefit future advancements in119

this area.120

2 Related Work121

Interpretability Current approaches to inter-122

pretability in text classification predominantly fall123

into three categories: gradient based techniques,124

quantifying feature contributions, and auxiliary ex-125

planatory models. While these approaches provide126

partial insights into model decisions, they are con-127

strained by critical limitations. (1) Gradient-based128

Attribution: These methods compute the impor-129

tance of each input feature via partial derivatives130

of model output with respect to the inputs, thereby131

identifying keywords that influence model deci- 132

sions (Sundararajan et al., 2017). Despite their 133

computational efficiency, they have some critical 134

limitations. First, it lacks sensitivity (Zhao et al., 135

2024a). Second, it often produces discrete key- 136

words leading to noisy and unreadable explana- 137

tions. (2) Post Hoc Mechanisms: Frameworks like 138

SHAP (SHapley Additive explanations) leverage 139

Shapley values from game theory to quantify fea- 140

ture contributions to model output (Lundberg and 141

Lee, 2017). While theoretically principled, they 142

are limited by high computational latency and poor 143

scalability (Chen et al., 2023). (3) Auxiliary Ex- 144

planatory Models: Hybrid architectures that pair 145

classifier model with auxiliary explanatory model 146

(Rudin, 2019) have two issues. First, with two 147

models involved it doubles DevOps cost. Second, 148

it often produce inconsistent result between two 149

models. 150

Multi-Task Learning Multi-task learning(MTL) 151

enhances the generalization capabilities of DNNs 152

through jointly optimization on multiple tasks 153

(Ruder, 2017). By leveraging shared representa- 154

tions, MTL improves model robustness and gener- 155

alization, thereby capable of addressing two crit- 156

ical challenges in content moderation: (1) Inter- 157

pretability: By introducing auxiliary tasks MTL 158

incentivizes DNNs to pay attention to semanti- 159

cally significant features across tasks, thereby pro- 160

vides interpretability by extracting text segments or 161

phrases drive both the primary classification task 162

and the auxiliary interpretability task. (2) Data 163

Bias: MTL’s noise-averaging effect suppresses di- 164

vergent noise patterns across tasks. Shared repre- 165

sentation through joint learning that reduce over- 166

fitting to task-specific biases. Prior studies have 167

explored the application of MTL in Natural Lan- 168

guage Processing (NLP) (Chen et al., 2024), its 169

application to interpretability - particularly in the 170

context of content moderation - remains underex- 171

plored. To the best of our knowledge, our work 172

is the first to explore MTL in interpretable con- 173

tent moderation and we provide a comprehensive 174

study of its efficacy across three DNN architectures 175

(Turing, BERT, Zcode). 176

3 Framework 177

In this section, we present CAL framework, outline 178

how CAL operates through two variants: CAL- 179

standard and CAL-advanced. 180

As depicted in Figure 1, CAL incorporates a 181
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Figure 1: Chunk Attention-based Learning Framework: CAL is comprised of two downstream task, primary
classification task and auxiliary interpretability task, which jointly learn semantic embedding representations

Input
Text

I meant average. White people have higher maximums,
of course.  Various factors, such as socioeconomic
status, access to resources, and historical contexts,
play significant roles in shaping these averages ......

['White people 
have higher 
maximums. ]

Output ChunksOutput Label 

1

GPT-4

# Definitions for the hate cateory
- Definitions: {Definitions}

   ......

.# Begin Hate Labeling Task

- Text: {text}

# Output for Hate Labeling Task

   - Label: a number

   - Core Chunks: [chunks1, chunks2]

Figure 2: Auto chunk extraction pipeline

dual-task architecture, where two tasks share a182

backbone model with task-specific heads for joint183

optimization. Primary Classification Task: A184

sentence-level linear classifier predicts taxonomy185

labels. Auxiliary Interpretability Task: A token-186

level classifier predicts BIO tags for semantically187

critical text spans (core chunks).188

As illustrated in Figure 2, we utilize GPT-4 to189

annotate taxonomy labels and core chunks using a190

single prompt to get the labeled training datasets.191

By employing this dual-task architecture, CAL192

incentivizes model to focus on semantically critical193

text spans through chunk attention-based learning,194

thereby enhancing generalization for both classifi-195

cation and interpretability tasks.196

3.1 CAL-standard197

Next, let’s delve into the data flow in the training198

stage within CAL-standard framework. When an199

input text, along with its core chunk label and tax-200

onomy label, denoted as (xi, yi, zi), is passed into201

CAL-standard framework, it undergoes tokeniza- 202

tion and initial encoding via the feature extraction 203

layer. This layer then converts the core chunk la- 204

bel yi into a BIO tag format label ti that model can 205

easily process using the POS algorithm (Church, 206

1988), and project the taxonomy label zi to the se- 207

quence label si. Subsequently, these encoded data 208

are passed onto a shared heavy neural network (i.e. 209

encoder) to generate semantic sentence embedding 210

representations Oi. This sentence embedding is 211

then passed to both a lightweight sentence classi- 212

fier layer and a lightweight token classifier layer for 213

further forward propagation calculations. Specifi- 214

cally, the lightweight sentence classifier layer is em- 215

ployed to output predicted taxonomy classification 216

spred. This output spred is subsequently combined 217

with the sentence label si from the training data 218

to compute the Binary Cross-Entropy (BCE) loss 219

over taxonomy labels. Similarly, the linear token 220

classifier layer is designed to produce predicted 221

token probabilities tpred. This output tpred is then 222

juxtaposed with ti, which contains interpretable ra- 223

tionales information, to calculate the Cross-Entropy 224

(CE) loss. 225

In implementation, a sentence classifier layer 226

comprises several lightweight network structures, 227

including a linear classifier, a dropout module, and 228

a pooling layer. The token classification layer is 229

constructed similarly. The final loss is calculated 230

as the weighted sum of the two losses above. 231

The training loop is detailed in Algorithm 1. 232

3.2 CAL-advanced 233

CAL-advanced extends CAL-standard by intro- 234

ducing chunk attention feedback mechanism 235

(see Figure 1, dotted lines). This mechanism dy- 236

namically refines sentence embeddings using the 237
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Algorithm 1 CAL-standard Supervised Training
Require: Feature Extraction Layer Θf Token Classification
Layer Θt Sequence Classification Layer Θs

Input: training data X = {(x1, y1, z1), . . . , (xn, yn, zn)}
Output: Updated parameters Θf Θt Θs

1: Initalize Θf Θt and Θs

2: while not concerged do
3: Get mini-batch Xb

4: for tokens xi chunks yi and category zi in Xb do
5: Get tokens label ti = Chunk2BIO(yi)
6: Get sequence label si = Category2Label(zi)
7: Get tpred = Θt(Θf (xi)), spred = Θs(Θf (xi))
8: Compute L = LBCE(ti, tpred)+λLCE(si, spred)

9: Update parameters of Θf Θt and Θs

10: end for
11: end while

saliency of the output core chunks. The following238

sections detail this mechanism.239

1. Core Chunk Identification: Identifies the core240

chunks by selecting tokens from the input sam-241

ple that are labeled ’B’ or ’I’, indicating that242

these tokens form parts of the core chunks.243

2. Saliency-Weighted Embedding Fusion: Re-244

trieves the embedding values corresponding245

to these tokens and sums them. This sum is246

then multiplied by a constant factor for weight247

adjustment.248

3. Embedding Adjustment: Combines this249

weighted sum with the original [CLS] token250

embedding values, and generate an updated251

final sentence-level embedding. This updated252

embedding is then used as the input for the253

sequence classification layer. In our imple-254

mentation, we set the constant factor to 0.25.255

Note that during the inference stage, BIO labels256

are unavailable. Instead, CAL-advanced utilizes257

predicted BIO labels as a substitute for the BIO258

labels used in the training stage.259

Improvements260

In the field of content moderation, traditional261

classifiers often fail to detect harmful content in262

long text input (e.g., 10k-20k characters), where263

semantically significant segments constitute only a264

small portion. This often results in overlooking of265

harm content.266

CAL-standard addresses this by incentivizing267

model to focus on sematic critical chunks, how-268

ever its performance degrades as attention weights269

attenuate in longer texts.270

Algorithm 2 CAL-advanced Supervised Training
Require: Feature Extraction Layer Θf Token Classification
Layer Θt Sequence Classification Layer Θs

Input: training data X = {(x1, y1, z1), . . . , (xn, yn, zn)}
Output: Updated parameters Θf Θt Θs

1: Initalize Θf Θt and Θs

2: while not concerged do
3: Get mini-batch Xb

4: for tokens xi chunks yi and category zi in Xb do
5: Get tokens label ti = Chunk2BIO(yi)
6: Get sequence label si = Category2Label(zi)
7: Get tpred = Θt(Θf (xi))
8: Get weighted feature extraction result rw =

[a1...an | ai =

{
α Θf (xi)j , if tij ∈ [B, I]

0, if tij = O
]

9: Get spred = Θs(rw +Θf (xi))
10: Compute L = LBCE(ti, tpred) +

λLCE(si, spred)
11: Update parameters of Θf Θt and Θs

12: end for
13: end while

CAL-advanced introduces a chunk attention 271

feedback mechanism that dynamically re-weights 272

critical segments. By tuning attention distribution 273

through iterative feedback, it further improves clas- 274

sification accuracy in long-text scenarios compared 275

to CAL-standard. 276

4 Experiments Setup 277

We apply CAL in three backbone models - Tur- 278

ing, Bert, Zcode - to validate its efficacy across 279

diverse DNN architectures (Zcode is presented in 280

Appendix A): 281

1. Turing (Microsoft, 2022): A state-of-the-art 282

model for multilingual tasks, serving as our 283

high standard baseline. 284

2. Multilingual-distilBERT (Sanh et al., 2020): 285

An open-source, lightweight model by dis- 286

tilling BERT, chosen to demonstrate CAL’s 287

adaptability across model scales. 288

3. Z-Code++ (He et al., 2023): A state-of-the- 289

art pre-trained language model, selected as 290

our production backbone model because of its 291

exceptional text comprehension capabilities. 292

4.1 Baseline 293

We compare the performance of our baseline mod- 294

els before and after applying CAL, in terms of 295

both classification and interpretability. 296

Classification: We use the Turing model (Mi- 297

crosoft, 2022) and Multilingual-distilBERT model 298
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(Sanh et al., 2020) as our baseline models for clas-299

sification tasks.300

Interpretability: We set Turing model as the301

backbone model, given its demonstrated excep-302

tional performance in text classification tasks. Ad-303

ditionally, we chose the gradient-based attribution304

(Sundararajan et al., 2017) and post hoc mechanism305

- SHAP (Lundberg and Lee, 2017) as our baseline306

for interpretability tasks.307

4.2 Training parameters308

In our experiment, all models were trained using309

AdamW optimizer with a weight decay of 0.01310

applied to all training data. We utilized a learning311

rate of 1e-5, a batch size of 32, and set epochs to 20.312

Our models were trained on NVIDIA Tesla V100313

32GB GPUs using Azure Machine Learning Studio.314

Each category was given its own training dataset315

comprising ∼100k data sampless. The training of316

all variations of CAL, as well as the baseline, across317

all three backbone models and three taxonomies,318

required an estimated total of 180 GPU hours.319

4.3 Test Dataset320

Given the scarcity, suboptimal quality, and limited321

multilingual support in the public dataset for con-322

tent moderation(Mathew et al., 2021), we choose323

our proprietary, high-quality RAI Golden Multi-324

lingual Dataset for evaluation.325

Coverage: Tier-1 major languages (English,326

Japanese, German, Spanish, French, Portuguese,327

Italian, Chinese), each language forms an indepen-328

dent test set consisting of ∼5k samples balanced329

across three taxonomies (sexual, hate, violence).330

Quality labels: Taxonomy labels and core331

chunks annotated by GPT-4. We evaluated the332

consistency between GPT-4 and human labels sur-333

passed 80% across all languages‘s dataset.334

4.4 Training Dataset335

Data Sources: Per-taxonomy datasets (∼100k336

samples each) were sampled from the produc-337

tion corpus. The production corpus originated338

from GPT-4 and public datasets. Many of these339

datasets, which originally contained taxonomy la-340

bels but lacked chunk labels, were relabeled by341

native speakers. Dataset Distribution: For each342

taxonomy dataset, the percentage of samples la-343

beled as the taxonomy’s respective category (vio-344

lence, hate, or sexual) varies - 18.09% for violence,345

16.52% for hate, and 23.07% for sexual. The rest of346

the samples were not representative of their respec- 347

tive taxonomy. Average Text Length: The average 348

length of sample texts varies across taxonomies, 349

with 40 characters for violence, 33 for hate, and 350

31 for sexual. Collection Process: Datasets were 351

sampled from the production corpus and processed 352

through chunk extraction pipeline mentioned be- 353

fore for label acquisition. Datasets were discarded 354

if there was a discrepancy between GPT-4 predicted 355

taxonomy label and the original label. 356

5 Results and Discussions 357

In this section, we present and analyze our exper- 358

iment result from two aspects: text classification 359

and model interpretability (see Appendix A.5 for 360

comprehensive discussion regarding the computa- 361

tional efficiency of our framework). 362

5.1 Text Classification 363

Tables 1-3 present taxonomy-specific F1 scores 364

across Tier-1 major languages. In this section, we 365

detail the key findings for CAL-standard and CAL- 366

advanced. 367

5.1.1 Taxonomy Violence 368

• CAL-standard: Positive gains across lan- 369

guages with +5.07% English, +3.79% French, 370

+3.83% Spanish using Turing backbone. 371

Gains persist with +4.12% French, +3.65% 372

Italian using DistilBERT. 373

• CAL-advanced: Gains surpass in most lan- 374

guages with +7.28% English, +5.22% French, 375

+4.42 % Italian, +4.59% Portuguese, +4.07% 376

Spanish over using Turing backbone. Most 377

languages show degradations (e.g., –6.41% 378

German, –3.75% French) using DistilBERT. 379

5.1.2 Taxonomy Hate 380

• CAL-standard: Improvements are consistent 381

(e.g., +3.62% French, +3.41% German) using 382

Turing backbone. Gains remain positive but 383

are modest (ranging roughly from +0.22% to 384

+2.11%) using DistilBERT. 385

• CAL-advanced: Gains are slightly lower 386

than CAL-standard (e.g., English +1.47% vs. 387

+1.68% for CAL-standard) and even a slight 388

drop is observed in Japanese (–0.27%) using 389

Turing. Significant degradations in most lan- 390

guages (e.g., English –3.93%, French -5.40%, 391

German –4.82%, Spanish –5.93%) using Dis- 392

tilBERT. 393
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Model
F1 score on 8 multilingual datasets

Chinese English French German Italian Japanese Portuguese Spanish
Baseline+ 0.649 0.608 0.627 0.634 0.604 0.659 0.702 0.580

CAL-standard+ 0.655 0.659 0.665 0.641 0.614 0.663 0.721 0.618
0.59% 5.07% 3.79% 0.66% 0.99% 0.38% 1.94% 3.83%

CAL-advanced+ 0.667 0.681 0.679 0.636 0.648 0.674 0.748 0.620
1.78% 7.28% 5.22% 0.16% 4.42% 1.48% 4.59% 4.07%

Baseline
△

0.580 0.522 0.490 0.545 0.423 0.532 0.558 0.466
CAL-standard△ 0.581 0.539 0.532 0.550 0.460 0.538 0.574 0.467

0.16% 1.77% 4.12% 0.56% 3.65% 0.55% 1.63% 0.07%
CAL-advanced△ 0.585 0.506 0.453 0.480 0.445 0.523 0.548 0.440

0.51% -1.56% -3.75% -6.41% 2.17% -0.95% -0.97% -2.59%

Table 1: Taxonomy violence, +Uses Turing as backbone model.△Uses multilingual-distilBERT as backbone model.

Model
F1 score on 8 multilingual datasets

Chinese English French German Italian Japanese Portuguese Spanish
Baseline+ 0.613 0.600 0.650 0.536 0.418 0.641 0.501 0.673

CAL-standard+ 0.632 0.617 0.686 0.570 0.446 0.641 0.508 0.687
1.91% 1.68% 3.62% 3.41% 2.75% 0.07% 0.76% 1.39%

CAL-advanced+ 0.619 0.615 0.676 0.551 0.448 0.638 0.513 0.674
0.69% 1.47% 2.56% 1.46% 2.91% -0.27% 1.27% 0.13%

Baseline△ 0.501 0.534 0.578 0.421 0.295 0.541 0.424 0.586
CAL-standard△ 0.522 0.540 0.584 0.423 0.313 0.541 0.442 0.601

2.11% 0.60% 0.52% 0.22% 1.77% -0.03% 1.72% 1.50%
CAL-advanced△ 0.503 0.495 0.524 0.373 0.299 0.503 0.372 0.527

0.19% -3.93% -5.40% -4.82% 0.37% -3.87% -5.19% -5.93%

Table 2: Taxonomy hate, +Uses Turing as backbone model.△Uses multilingual-distilBERT as backbone model.

Model
F1 score on 8 multilingual datasets

Chinese English French German Italian Japanese Portuguese Spanish
Baseline+ 0.822 0.855 0.824 0.794 0.854 0.716 0.879 0.840

CAL-standard+ 0.849 0.867 0.831 0.803 0.861 0.758 0.886 0.840
2.72% 1.21% 0.71% 0.94% 0.70% 4.16% 0.66% -0.01%

CAL-advanced+ 0.849 0.864 0.824 0.805 0.852 0.764 0.880 0.844
2.69% 0.88% 0.00% 1.14% -0.15% 4.79% 0.10% 0.38%

Baseline△ 0.735 0.734 0.760 0.676 0.775 0.566 0.764 0.718
CAL-standard△ 0.764 0.780 0.775 0.710 0.785 0.607 0.795 0.745

2.92% 4.60% 1.50% 3.45% 1.06% 4.17% 3.11% 2.74%
CAL-advanced△ 0.703 0.706 0.749 0.667 0.739 0.589 0.762 0.687

-3.15% -2.76% -1.16% -0.91% -3.62% 2.37% -0.22% -3.04%

Table 3: Taxonomy sexual, +Uses Turing as backbone model.△Uses multilingual-distilBERT as backbone model.

5.1.3 Taxonomy Sexual394

• CAL-standard: Gains are consistent with a395

notable +4.16% Japanese using Turing back-396

bone. Consistent gains across all languages397

with +4.60% using DistilBERT.398

• CAL-advanced: Gains are similar to CAL-399

standard using Turing. Significant degra-400

dations in most languages (e.g., Chinese401

–3.15%, English –2.76%, French –1.16%, Ital- 402

ian –3.62%, Spanish –3.04%)) using Distil- 403

BERT. 404

5.1.4 Result Analysis 405

Below, we outline our observations and findings. 406

1. CAL-standard consistently boosts F1-score 407

across models and datasets. 408

• MTL Framework: Incentivizes the model 409
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Method
8 multilingual

datasets
segment-level token-level char-level

Variance
F1 F1 F1

SHAP

English

0.180 0.165 0.469 0.020
gradient 0.247 0.230 0.540 0.020

original classifier 0.203 0.199 0.443 0.013
CAL 0.616 0.597 0.736 0.004

SHAP

German

0.104 0.087 0.254 0.006
gradient 0.209 0.191 0.416 0.010

original classifier 0.088 0.086 0.231 0.005
CAL 0.472 0.457 0.574 0.003

SHAP

Japanese

0.128 0.136 0.468 0.025
gradient 0.302 0.293 0.457 0.006

original classifier 0.157 0.133 0.293 0.005
CAL 0.553 0.558 0.631 0.001

SHAP

Spanish

0.164 0.153 0.392 0.012
gradient 0.286 0.256 0.539 0.016

original classifier 0.130 0.120 0.356 0.012
CAL 0.533 0.511 0.652 0.004

SHAP

Chinese

0.300 0.289 0.586 0.019
gradient 0.335 0.322 0.473 0.005

original classifier 0.188 0.167 0.292 0.003
CAL 0.588 0.596 0.622 0.000

SHAP

Italian

0.159 0.156 0.304 0.005
gradient 0.259 0.231 0.448 0.009

original classifier 0.098 0.089 0.260 0.006
CAL 0.514 0.503 0.601 0.002

SHAP

French

0.122 0.109 0.293 0.007
gradient 0.233 0.211 0.459 0.013

original classifier 0.130 0.124 0.295 0.006
CAL 0.531 0.522 0.637 0.003

SHAP

Portuguese

0.091 0.080 0.255 0.006
gradient 0.298 0.279 0.524 0.012

original classifier 0.102 0.094 0.289 0.008
CAL 0.571 0.564 0.665 0.002

Table 4: Comparison of Chunk Extraction Quality Across
Different Levels.

to focus on semantically decisive features for410

both classification and interpretability. Addi-411

tionally, different tasks have different noise412

patterns, through joint learning it suppresses413

divergent noise patterns across tasks, thereby414

reducing overfitting to task-specific biases.415

These benefits contribute to better generaliza-416

tion and enhanced performance for both tasks.417

Additionally, the successful application of418

MTL depends on two key prerequisites: the419

tasks must be closely related to each other,420

and the training datasets for both tasks must421

be of high quality with reliable labels. CAL422

framework meets these criteria by employing423

Chunk Attention-based Learning to closely424

associate the tasks and using GPT annotation425

to generate reliable labels for auxiliary task.426

• Chunk Attention-based Learning: CAL ap-427

plying Chunk Attention-based Learning to428

tightly connect the two tasks. Within CAL429

framework, the extraction of core chunks that430

align with a specific taxonomy provides com-431

pelling evidence for the relevance; conversely,432

the absence of such core chunks indicates a433

weak or non-existent relevance. This mutual434

reinforcement — where attention-based chunk435

extraction reinforces classification decisions436

and, in turn, classification outcomes guide437

the focus of the attention mechanism — ul-438

timately enhances feature representation and 439

overall classification performance. 440

• Quality Annotation: Without high-quality 441

annotations, CAL framework would strug- 442

gle to maintain data consistency between two 443

tasks, reducing the effectiveness of Dual-Task 444

Framework and Chunk Attention-based 445

Learning, and ultimately affect the overall 446

classification performance. By leveraging 447

GPT-4 to generate high-quality annotations, 448

it ensures the mutual reinforcement between 449

classification and chunk extraction. 450

2. CAL-advanced shows Inconsistent Perfor- 451

mance. 452

• Performance Boost in Long-Text: We ob- 453

serve that it’s mainly consisting of long texts 454

in violence taxonomy, where semantically sig- 455

nificant segments may be obscured in long 456

texts, and chunk attention feedback’s additive 457

saliency forces attention on these segments 458

and improve the performance. 459

• Performance Variance across Models: We 460

observe overall gains over Turing, but overall 461

degradation over DistillBERT. It seems Tur- 462

ing’s 17B parameters absorb feedback noise, 463

while DistillBERT’s 66M parameters may 464

overfit to chunk re-weighting. 465

• Hard Mode Limitation: We apply chunk at- 466

tention feedback in hard mode, re-weighting 467

the embedding information of tokens corre- 468

sponding to chunk labels by a fixed constant. 469

It doesn’t generalize well across models and 470

data, we will evaluate adaptive weighting as 471

future work. 472

5.2 Interpretability 473

For focused analysis, we report results on the vi- 474

olence taxonomy across eight languages in the 475

RAI Golden Multilingual Dataset, omitting CAL- 476

advanced due to space constraints. 477

5.2.1 Evaluation 478

CAL generates interpretable rationales by exact- 479

ing semantically critical text spans (chunks). We 480

evaluate its performance by measuring the align- 481

ment between predicted chunks and golden chunks, 482

similar to the evaluation process of sequence tag- 483

ging. However traditional evaluation metrics used 484
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in sequence tagging (e.g., exact match) are lim-485

ited to manage the fuzzy boundaries and contextual486

continuity of chunks.487

To address these limitations, we propose a no-488

val evaluation mechanism that captures both the489

accuracy and completeness of chunk extraction.490

Our proposed mechanism employs a multi-granular491

analysis approach to ensure a more comprehensive492

evaluation process.493

5.2.2 Accuracy Assessment494

We assess the accuracy of core chunks’ at three495

different granularities: character, token, and seg-496

ment (parts of a sentence, separated by punctuation497

marks). At each of these levels, we use the follow-498

ing method to measure accuracy. Let’s explore this499

using the token-level as an example:500

Given the i-th test sample as input, NP,i rep-501

resents the number of predicted core chunks seg-502

mented at the token level, NT,i represents the num-503

ber of target core chunks segmented at the token504

level, and NT∩P,i stands for the number of seg-505

ments that overlap between the predicted and target506

core chunks, both segmented at the token level.507

pi =
NT∩P,i

NT,i

(1) ri =
NT∩P,i

NP,i

(2)508

Using Equation (1), we first calculate the pro-509

portion of segments that overlap between the target510

and predicted segments, represented as pi. Simi-511

larly, Equation (2) allows us to find the proportion512

of segments that overlap between the target and the513

predicted segments, denotes as ri.514

P =
1

n

n∑
i=1

pi (3) R =
1

n

n∑
i=1

ri (4) F1 = 2 ×
P × R

P + R
(5)

515

Upon evaluating all test samples, we compute516

the arithmetic mean of all pi and ri values to pro-517

duce the overall indicators, P and R, which quantify518

the relationship between the predicted and target519

core chunks in all samples. Lastly, the harmonic520

mean of P and R, referred to as the F1 score, serves521

as the final measure of accuracy in the relationship522

between the predicted and the target core chunks,523

as illustrated in Equations (3-5).524

This hierarchy addresses the fuzzy boundary525

problem: a near-hit chunk missing one character526

(e.g. "I hate you" vs. "I hate yo") would retain high527

character-level F1 but low token-level F1, reflecting528

partial correctness while penalizing fragmentation.529

5.2.3 Completeness Quantification530

As demonstrated in Equation (6), we employ the531

concept of variance as a metric to quantify the532

completeness of the core chunks, where F1char,533

F1token, F1segment represent the F1 scores at the 534

"character, token, segment" levels respectively. 535536

variance =
1

3

3∑
i=1

(Xi − X)
2
, X =

X1 + X2 + X3

3
(6) 537

The variance is computed from these F1 scores, 538

providing a quantitative measure of the complete- 539

ness of the core chunks. 540

• High variance indicates fragmented pieces 541

(e.g. core chunks = ["I", "hate", "you"]). 542

• Low variance indicates contiguous spans (e.g. 543

core chunks = ["I hate you"]).). 544

This metric penalizes systems that sporadically 545

highlight individual tokens (common in gradient- 546

based attribution) while rewarding holistic reason- 547

ing (e.g. contextual continuity of semantically sig- 548

nificant chunks). 549

5.2.4 Result Analysis 550

As shown in Table 4, CAL-standard outperforms 551

all the three baselines in F1 scores across levels 552

and languages. Specifically its performance gen- 553

erally improves from character-level to segment- 554

level, showing that CAL are better to capture larger, 555

semantic segments. Additionally CAL achieves the 556

most balanced performance across levels - the high- 557

est varience score, demonstrating its capability of 558

capturing contextual continuity of semantically sig- 559

nificant chunks. 560

6 Conclusion 561

In this paper, we present CAL, a novel Dual- 562

Task Learning framework that enhances text clas- 563

sification with interpretability in content mod- 564

eration without introducing computational over- 565

head. Through jointly optimizing an auxiliary inter- 566

pretability task CAL achieves two critical advance- 567

ments. (1) Performance Gains: Experiments re- 568

sult on 8+ golden multilingual datasets demonstrate 569

that CAL improves classification F1 by up to 7% 570

over single-task baselines. (2) Interpretability: 571

Extract interpretable rationales via chunk attention, 572

significantly outperforming gradient-based attribu- 573

tion and SHAP across languages. 574

Deployed in our production content moderation 575

platform, CAL achieves milliseconds latency while 576

processing 3.5 billion daily requests demonstrating 577

its practicality in serving real-time content mod- 578

eration. Though evaluated on moderation tasks, 579

CAL’s architecture is domain-agnostic, offering 580

a blueprint for interpretable text classification in 581

healthcare and other domains. 582
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7 Limitations583

7.1 Dependence on High-Quality Chunk584

Annotations585

The CAL approach relies heavily on core chunks as586

interpretability task labels, implying that the quality587

of these annotated chunks by GPT-4 (or any other588

LLMs) could significantly impact the quality of the589

subsequent interpretability task. If the extracted590

core chunk labels are of inferior quality, it could591

negatively affect the quality of the interpretability592

task. Furthermore, the shared hidden layer in our593

multitask setup can create a domino effect. A re-594

duction in the quality of one task can potentially595

degrade the performance of another task, such as596

text classification. This could potentially lead not597

only to the CAL framework’s inability to provide598

reliable interpretable features but also a decrease in599

the original text classifier’s performance. A possi-600

ble future research could be to examine the impact601

of the quality of annotated core chunk labels on the602

performance of the CAL framework.603

7.2 Fixed Attention re-weighting in604

CAL-advanced605

In CAL-advanced, we introduce a chunk attention606

feedback mechanism aimed at enhancing perfor-607

mance on long texts by re-weighting the embed-608

dings corresponding to chunk labels. In the current609

implementation, this re-weighting is performed in610

a hard mode by multiplying a fixed constant. How-611

ever, this fixed approach shows poor generalization612

and inconsistent performance across different back-613

bone models and datasets.614

In future work, we plan to evaluate adaptive615

weighting strategies that dynamically adjust the616

re-weighting factor based on the estimated saliency617

of each chunk, with the goal of achieving more618

consistent and robust performance across a wider619

range of models and datasets.620

7.3 Dependence on DNN-based backbone621

model622

Our CAL approach can be applied to any backbone623

model, but it necessitates a DNN-based backbone624

model. It remains uncertain if the backbone model625

is not a DNN-based model, the multitask frame-626

work that CAL depends upon may not function627

optimally, as the employment of two lightweight628

classifiers sharing a heavy-duty network to com-629

plete various downstream tasks might not be feasi-630

ble. Further researches may be needed to directly631

validate the corresponding outcomes for backbone 632

models that are not DNN-based backbone model. 633

8 Ethics 634

The data used in this work is a proprietary asset 635

of the company. The collection process adheres to 636

established ethical guidelines and regulatory stan- 637

dards, and fully complies with the strict compliance 638

requirements set by our company. To the best of 639

our knowledge, there are no ethical risks associated 640

with the data or its use in this work. 641
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A Extension and practical usage778

We’ve utilized the CAL framework in practical on-779

line content moderation services. In the following780

discussion, we provided a comprehensive overview781

of this online real traffic application, covering the782

testing data we used, our experimental setup, and783

the results we achieved.784

A.1 Experiments setting785

To address a variety of user needs, our online text786

classifier for is not a mere binary classifier, but787

a complex tool designed for multi-label, multi-788

severity, and multi-lingual text classification. The789

’multi-label’ aspect allows it to simultaneously790

identify harmful content across different categories791

like hate speech, sexual violence, and self-harm.792

The ’multi-severity’ aspect ensures we not only cat-793

egorize the input text but also assess its specific794

severity level within those categories.795

A.1.1 Baseline796

Given a consistent training set, we utilize Zcode797

++(He et al., 2023) as backbone model to iden-798

tify four taxonomies, supporting multi-class, multi-799

severity, and multi-lingual text classification.800

A.1.2 Our proposed CAL801

Maintaining the same conditions as the baseline,802

including a consistent backbone model and training803

dataset, we implement CAL framework to Zcode804

++(He et al., 2023) as new approach.805

A.2 Dataset806

We have used several datasets for our evalua-807

tion. some of these datasets are publicly available,808

while others are our internal dataset, these internal809

datasets will be made publicly accessible in the810

future. Each dataset possesses specific taxonomy811

labels for classification. Using our Auto-chunk ex-812

traction module, we’ve supplemented these with813

interpretable chunk labels, enhancing their utility814

for interpretability evaluation.815

A.2.1 Internal Eval816

This dataset consists of 1996 samples that have817

been annotated using our internal taxonomy Guid-818

ance. It encompasses multiple categories, including819

hate, sexual, violence, and self-harm.820

A.2.2 OpenAI Eval821

It is an evaluation set from OpenAI, which com-822

prises 979 samples and includes content across four823

harm categories.824

Taxonomy Datasets
Baseline CAL-standard Delta
Binary F1

Violence

Internal Eval 76.4 77.7 +1.3
OpenAI Eval 57.8 60.3 +2.5

Average 74.4 74.4 +1.9

SelfHarm

Internal Eval 78.7 84.2 +5.5
Suicide Watch 98.3 98.3 +0.0

Average 85.8 86.0 +2.8

Sexual

Internal Eval 87.1 88.5 +1.4
OpenAI Eval 91.1 90.9 -0.2

Average 89.1 90.0 +0.8

Hate
Internal Eval 76.1 76.2 +0.1

ETHOS 76.8 81.5 +4.7
Average 75.6 74.4 +2.4

Multiclass F1 (>4)
Violence

RAI
Golden
Datasets

55.4 57.0 +1.6
SelfHarm 58.5 61.8 +3.3
Sexual 74.8 74.8 0.0
Hate 40.9 43.3 +2.4

Multiclass F1 (>2)
Violence

RAI
Golden
Datasets

70.2 70.7 +0.5
SelfHarm 78.2 80.5 +2.3
Sexual 87.0 87.8 +0.5
Hate 64.1 64.5 +0.4

Table 5: Comparison of the performance of online multi-
lingual multi-task and multi-level models after applying
the REAVEAL method.

A.2.3 ETHOS 825

ETHOS dataset is from the 2020 paper . Human an- 826

notated text from YouTube and Reddit comments. 827

A threshold of 0.5 is applied when converting to 828

a binary label. Note: Many of the examples with 829

label scores below 0.5 are quite hateful and fall 830

within hate category when applying our taxon- 831

omy’s guidance definition. 832

A.2.4 SuicideWatch 833

Text taken from SuicideWatch subreddit and 834

weakly labeled. 835

A.2.5 RAI Golden Dataset 836

The RAI Golden Dataset is a benchmark dataset, 837

labeled by native speakers of eight major Tier-1 838

languages: English, Japanese, German, Spanish, 839

French, Portuguese, Italian, and Chinese. Each lan- 840

guage forms an independent test set, divided into 841

four subcategories: sexual, hate, and violence, self- 842

harm. Each subcategory includes approximately 843

5k samples, labeled according to three dimensions: 844

"is_sexual", "is_hate", and "is_violence", each as- 845

signed a severity value ranging from 0 to 7. 846

Additionally, each dataset sample includes label 847

data for evaluating text interpretability capabilities, 848

with GPT annotations providing the ground truth 849

for these labels. We further validated its quality 850

by manually labelling 100 samples from each lan- 851

guage dataset. The consistency between GPT and 852
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Method Eval datasets
segment-level token-level char-level

Variance
P R F1 P R F1 P R F1

CAL English dataset 0.864 0.778 0.789 0.859 0.775 0.785 0.874 0.851 0.838 0.0006
CAL German dataset 0.654 0.638 0.623 0.655 0.633 0.620 0.693 0.701 0.679 0.0007
CAL Japanese dataset 0.805 0.772 0.770 0.807 0.775 0.775 0.834 0.800 0.803 0.0002
CAL Spanish dataset 0.728 0.694 0.687 0.721 0.687 0.678 0.759 0.787 0.755 0.0012
CAL Chinese dataset 0.825 0.766 0.773 0.819 0.759 0.766 0.825 0.784 0.804 0.0002
CAL Italian dataset 0.736 0.719 0.706 0.731 0.715 0.700 0.757 0.776 0.749 0.0004
CAL French dataset 0.717 0.691 0.683 0.715 0.690 0.680 0.750 0.744 0.731 0.0005
CAL Portuguese dataset 0.783 0.719 0.742 0.780 0.742 0.739 0.811 0.818 0.800 0.0008

Table 6: Comparison of Chunk Extraction Quality Across Different Levels

a text sample Batchsize 1000 reqs took seconds Delta(CAL - Baseline) %Delta(CAL - Baseline)content type Length Baseline CAL

safe content 10k chars
1 22.511 22.610 0.000 0.44%
5 35.810 36.247 0.438 1.22%

10 49.809 51.792 1.984 3.98%

safe and harmful content 10k chars
1 22.868 23.025 0.157 0.68%
5 36.101 38.138 2.037 5.64%

10 50.854 53.237 2.383 4.69%

harmful content 10k chars
1 28.437 29.036 0.599 2.11%
5 41.338 43.796 2.457 5.94%

10 60.611 62.594 1.984 3.27%

Table 7: Latency Comparison results

human labels surpassed 80% across all languages,853

demonstrating the reliability of the interpret labels.854

A.3 Text classification result855

Table 1 reports our classification evaluation results856

for our online model on binary dataset and multi-857

class datasets.858

(1)Result on binary evaluation datasets Our859

observations on binary evaluation datasets indi-860

cate that the CAL-standard method consistently861

improves the F1-score across all taxonomies. No-862

tably, the method boosts the F1-score by an average863

of 1.9%, 2.8%, 0.8% and 2.4% for violence, self-864

harm, sexual, and hate taxonomies, respectively. In865

some instances, the F1 gain even peaks at 5.5%.866

(2) Result on multi-class evaluation datasets:867

For the multi-class evaluation datasets, we utilized868

two distinct thresholds to evaluate the model’s qual-869

ity at various severity levels. The multi-class evalu-870

ation data shown in the table above is derived from871

the average F1 values across eight languages. The872

findings suggest that irrespective of whether the873

severity level is set to 2 or 4, the CAL-advanced874

method invariably enhances the model’s F1 score.875

Note: As our online models are trained on a876

vast amount of data, the baseline performance is877

already impressive. We were pleasantly to find878

that our proposed CAL-standard method can fur-879

ther enhance the model’s quality. Moreover, unlike880

previous experiments, the backbone of the online 881

model is based on Zcode++, a different backbone, 882

once again demonstrating the robustness and prac- 883

ticality of our method. 884

A.4 Text interpretablity result 885

Table 6 presents the interpretability evaluation re- 886

sults of our online model after applying the CAL- 887

standard framework. We observe that the utiliza- 888

tion of the CAL method results in high F1 scores 889

under three granularity levels for the online model, 890

exceeding 0.7 across all eight multilingual datasets. 891

In many instances, the chunk-level F1 score even 892

surpasses 0.8, indicating high accuracy in chunk 893

extraction. 894

As discussed before, the final chunk F1 and to- 895

ken F1 values can measure the completeness of 896

our chunk extraction. The minimal difference ob- 897

served in the last column of Table 2 across all eight 898

multilingual datasets further confirms the high com- 899

pleteness of the chunks. 900

Note:We have not included a baseline result us- 901

ing the same data to train the initial text classi- 902

fier because the classifier wasn’t trained with inter- 903

pretability information, leading to low F1 scores 904

across all three granularity levels. Additionally, 905

we’ve omitted results from the shape gradient 906

method as a comparison baseline due to the time- 907

consuming nature of these methods, particularly 908
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the gradient method. We haven’t yet gathered all909

evaluation outcomes for it, though we have previ-910

ously tested both methods on smaller data sets.911

A.5 Latency Comparison results912

As depicted in Table 7, we conducted extensive913

latency tests for the CAL and baseline models using914

different test samples. The results are as follows:915

• For "safe content", the CAL model exhibits a916

slight latency increase of 0.44%, 1.22%, and917

3.98% for batch sizes of 1, 5, and 10, respec-918

tively.919

• For "safe and harmful content", the CAL920

model consistently shows a negligible in-921

crease in latency compared to the baseline922

model across all batch sizes. It shows an in-923

crease of 0.68%, 5.64%, and 4.69% for batch924

sizes of 1, 5, and 10, respectively.925

• For "harmful content", the CAL model consis-926

tently shows a slight increase in latency com-927

pared to the baseline model, with improve-928

ments of 2.11%, 5.94%, and 3.27% for batch929

sizes of 1, 5, and 10, respectively.930

From these results, it’s clear that regardless of the931

content type or the batch size, the latency increase932

with the CAL model compared to the baseline933

model is minimal and can be disregarded. This934

minor increase is due to the time needed to process935

the BIO tags predicted by the token classifier into936

interpretable core chunks as features.937

Furthermore, we observed that the latency is938

lower for safe content compared to harmful con-939

tent. Considering that in real-world scenarios, safe940

content makes up a large proportion, far exceeding941

95%, this further indicates that CAL is highly suit-942

able for practical production services. Therefore,943

the CAL model’s efficiency and scalability in pro-944

cessing all types of data sets make it a valuable tool945

for real-world applications where handling large946

volumes of data quickly is critical.947

In conclusion, although the CAL model has a948

very small increase in latency compared to the base-949

line model (less than 5%, almost negligible), it pro-950

vides better classification results and transparency951

for users. Overall, the CAL model is an excellent952

framework for practical scenarios, with almost no953

compute or latency cost increase compared to base-954

line.955

A.6 Conclusion 956

Differing from the experiments previously carried 957

out and mentioned in the main text,we applied the 958

CAL framework to a larger scale training dataset 959

and introduced a new backbone model. Even in a 960

non-simplistic classifier scenario, our CAL frame- 961

work consistently achieved stellar performance in 962

both classification and interpretability. These re- 963

sults powerfully demonstrate the robustness and 964

practicality of our proposed CAL framework, sug- 965

gesting that our approach could potentially be ap- 966

plied to any classification model based on neural 967

networks. 968

13


	Introduction
	Related Work
	Framework
	CAL-standard
	CAL-advanced

	Experiments Setup
	Baseline
	Training parameters
	Test Dataset
	Training Dataset

	Results and Discussions
	Text Classification
	Taxonomy Violence
	Taxonomy Hate
	Taxonomy Sexual
	Result Analysis

	Interpretability
	Evaluation
	Accuracy Assessment
	Completeness Quantification
	Result Analysis


	Conclusion
	Limitations
	Dependence on High-Quality Chunk Annotations
	Fixed Attention re-weighting in CAL-advanced
	Dependence on DNN-based backbone model

	Ethics
	Extension and practical usage
	Experiments setting
	Baseline
	Our proposed CAL

	Dataset
	Internal Eval
	OpenAI Eval
	ETHOS
	SuicideWatch
	RAI Golden Dataset

	Text classification result
	Text interpretablity result
	Latency Comparison results
	Conclusion


