Transformer-based normative modelling for anomaly
detection of early schizophrenia
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Abstract

Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis
remains a challenge. Machine learning studies have shown that classifiers tend to
be overly narrow in the diagnosis prediction task. The overlap between conditions
leads to high heterogeneity among participants that is not adequately captured by
classification models. To address this issue, normative approaches have surged
as an alternative method. By using a generative model to learn the distribution
of healthy brain data patterns, we can identify the presence of pathologies as
deviations or outliers from the distribution learned by the model. In particular,
deep generative models showed great results as normative models to identify
neurological lesions in the brain. However, unlike most neurological lesions,
psychiatric disorders present subtle changes widespread in several brain regions,
making these alterations challenging to identify. In this work, we evaluate the
performance of transformer-based normative models to detect subtle brain changes
expressed in adolescents and young adults. We trained our model on 3D MRI
scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of
neurotypical controls and psychiatric patients with early-stage schizophrenia from
an independent dataset (N=93) from the Human Connectome Project. Using the
predicted likelihood of the scans as a proxy for a normative score, we obtained an
AUROC of 0.82 when assessing the difference between controls and individuals
with early-stage schizophrenia. Our approach surpassed recent normative methods
based on brain age and Gaussian Process, showing the promising use of deep
generative models to help in individualised analyses.

1 Introduction

Schizophrenia is a chronic mental health disorder that causes a range of heterogenic psychological
symptoms and significantly impairs the quality of life of millions of people worldwide. The current
gold-standard diagnosis for schizophrenia, described in the Diagnostics and Statistical Manual of
Mental Disorders (DSM-V) [[L1]) relies on a professional inquiring the patient and evaluating the
presence of at least three of the five main symptoms (i.e., delusions, hallucinations, disorganised
or incoherent speaking, disorganised or unusual movements and negative symptoms). Issues of
inter-rater reliability and ambiguous criteria descriptions [34]] are factors that are pushing the field of
psychiatry to search for more objective and operationalisable biomarkers of psychiatric conditions.
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It has been shown that schizophrenia is associated with subtle brain abnormalities that can be detected
via structural Magnetic Resonance Imaging (sMRI) data [23]]. This has led researchers to try to
build reliable predictors of schizophrenia by employing machine learning algorithms. The most
popular approaches utilised supervised learning on structural data to build classifiers [26}[14]. Despite
presenting modest to good accuracies on the testing sets, most algorithms fail to generalize to the early
stages of the condition and to cross-site validation [20}32]. These failures can be partly attributed
to training on small and limited datasets that fail to capture the full distribution of patients and the
population in general.

To address these limitations, there has been an effort to move to unsupervised learning techniques that
focus on building normative models of the healthy brain and try to capture variations from normality
as predictors of psychiatric conditions [[16]. The challenge of collecting large swathes of brain data
becomes more manageable if only healthy participants’ data are required. Recently, researchers have
proposed unsupervised anomaly detection algorithms to identify brain pathologies, such as brain
lesions, from sMRI [4} 3. 16]. These methods are based on autoencoders to learn a latent representation
of healthy brain data. After training, these models assess new examples to detect pathologies based
on their deviation from normality. In this context, the current state of the art is held by variational
autoencoder (VAE) based methods [5]], which try to reconstruct a test image as the nearest sample
on the learned normal manifold, using the reconstruction error to quantify the degree and spatial
distribution of any anomaly [21]. However, the success of this approach is limited by the fidelity of
reconstructions from most VAE architectures [9], and by unwanted reconstructions of pathological
features not present in training data, which suggests a failure of the model to internalize complex
relationships between distant imaging features [21]. To address these issues, a recent study achieved
state-of-the-art performance in unsupervised brain anomaly detection using an architecture based on
transformers [21]]. The robustness of transformers to map input data relationships, whose distances
vary widely, makes them great candidates for neuroimaging tasks, especially anomaly detection
(12 21].

In this study, we investigated if a normative model with an architecture based on transformers could
be used to detect psychopathologies, such as schizophrenia, from brain 3d sSMRI and if it could be
further used to study the local variations associated with this condition. We found that by training
a Vector Quantized VAE (VQVAE) with an autoregressive transformer, we could classify between
controls and participants with early-stage schizophrenia with high accuracy.

2 Methods

2.1 Normative model

The main component of the algorithm is an autoregressive Transformer [31] that learns a mapping
of probabilities of a given sequence of values, which is an approximation of the likelihood of
the distribution. Although computationally demanding, Transformers are able to capture highly
complex dependencies across large distances due to their attention mechanism that weighs the
linear transformation of the input with itself. The computational cost of the attention mechanism
scales quadratically with the sequence length, making it unfeasible to sequence the original highly-
dimensional brain data. Our method encodes the 3-dimensional sSMRI brain data into a smaller discrete
latent space before being fed as input to the autoregressive Transformer. Using a VQVAE [29], we
reduce the dimensionality from 192x224x192 to 24x28x24 voxels while maintaining the relevant
structural information. This dimensionality-reduction step makes it feasible to train a Transformer
to learn the probability distribution of the latent space. Both the VQVAE and the Transformer are
trained separately using only healthy participants from the Human Connectome Project. Further
details on the data used, model architecture and training settings are described in the supplementary
material.

2.2 Evaluation and analysis

We estimate the probability of each index in the latent representation obtained by the VQVAE
for each brain scan through the output of the trained transformer. The autoregressive transformer
weighs the already evaluated latent indices to predict the conditional probability of the next index in
the latent representation. This method will result in the model flagging indices that do not follow
the sequencing observed from the trained data by assigning them low probability values. This



Table 1: Performance of the different normative methods at identifying participants with schizophrenia
as outliers. All methods presented a significant difference between the distribution of controls and
individuals with schizophrenia (i.e., p-value < 0.05) for their metrics metric of normality.

Method AUROC 1 Correlation 1 P-value
GPR [17] 0.636 0.215 0.038
BLR [13] 0.678 0.301 0.003
Brain Age [19] 0.732 0.391 <0.001
VQVAE + Transformer [Ours] 0.828 0.568 <0.001

follows from cases where there are changes to the normal structuring of the brain as the transformer
was trained on a healthy cohort. By summing the log-likelihood of all the elements of the latent
representation, we obtain a log-likelihood estimation per individual in the evaluation set. The
evaluation set is composed by the Human Connectome Project for Early Psychosis (HCP—EP)[H
cohort, where both neurotypical participants (n=46), and participants with early-stage schizophrenia
(n=47) are present. We hypothesise that images acquired from participants with schizophrenia will
have a lower log-likelihood than controls due to the subtle changes in their brain structures being
captured by the transformer as unlikely. We measure this through a correlation analysis between
the participants diagnosis and its log-likelihood. We further study how efficient this method is at
identifying individuals with early-stage schizophrenia by measuring the Area Under the ROC curve
(AUROC) of the log-likelihood estimation with the diagnosis as the target variable. As baseline, we
evaluated three normative models that have previously been considered for psychiatry data: Gaussian
process regression [17]], Bayesian linear regression [13] and a state-of-the-art brain age prediction
model [19]. For further details on these baselines, see the supplementary materials. Finally, we
studied how likelihood measures vary locally for participants with schizophrenia by mapping the
likelihood estimations of the latent representations to different regions of the brain space, using the
Desikan-Killiany cortical atlas (aparc) and the automatic segmentation volume (aseg) [8]].

3 Results

As shown in Table[T] our model outperforms all baselines at identifying participants with schizophre-
nia showing a high AUROC of 0.828. We also obtained a Pearson’s correlation coefficient of 0.568
(p-value < 0.001) when analyzing the correlation between the brain log-likelihood and the categorical
label of diagnosis. At a regional level of analysis, no single region’s likelihood presented a correlation
to the diagnosis higher than the global likelihood estimation, but the prefrontal cortex, the temporal
cortex and the ventricles presented the highest effect size measured through Cohen’s D.

4 Discussion

In our study, we applied VQVAE and autoregressive transformers to create a normative method
to predict how likely it is for a sample to belong to the healthy population. When applying the
method to subjects from the HCP-EP dataset, we showed that our method was able to distinguish
between healthy controls and participants with early-stage schizophrenia with a AUCROC=0.828. By
using data from participants within 3 years of the onset of psychotic symptoms, we are less exposed
to confounds such as prolonged medication or chronicity. Our normative score was more robust
compared to other baseline methods, such as the z-score from the fitted Gaussian process regression,
the z-score from the fitted Bayesian linear regression, or the prediction error of the state-of-the-art in
brain age prediction (the Simple Fully Convolution Network (SFCN) [19] model). Please refer to the
Supplementary material for more information about the different models.

The Gaussian process and Bayesian linear regression underperform the other two approaches in
identifying schizophrenic participants as outliers. Fitting as many models as there are local regions
makes these two normative approaches incapable of retrieving information among brain regions
when building uncertainty estimates. As schizophrenia is known to be a condition that affects

"https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis/document/hcp-
ep
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Figure 1: Violin plots of proxies used for anomaly detection. For each distribution, the dashed
lines identifies the median and the 25th and 75th quartiles. A. presents the distribution between
cohorts for the mean z-scores obtained using uni-variate Gaussian process regressions. B. presents
the distributions of the mean z-scores using Bayesian linear regression. C. presents the distributions
obtained using the mean absolute error of a brain age model and D. presents our model’s difference
in distribution between control participants and individuals with early-stage schizophrenia using the
estimated negative log likelihood per individual as a metric for detecting schizophrenia.

several areas simultaneously and the way that these areas communicate with each other [27, [15]], it is
expected that these models underperform. This is not the case in both the brain age approach and our
VQVAE+Transformer model, where the voxel-level data is used to train both models in a multivariate
method, where deep neural networks’ high non-linearity can extract high-level information from
different regions at the same time in a fully data-driven manner. One reason that can justify our
model outperforming the brain age approach is that learning to map the age of individuals through
MRI brain data results in using the reconstruction error as a proxy for identifying outliers which is
an indirect task. Our model learns to explicitly predict the likelihood distribution of brain data from
healthy participants. Another advantage of our model against brain age modeling is that it outputs a
regional estimation of the likelihood that can be used to analyse the local structures for biomarkers of
a given anomaly. There is no direct local representation for the brain age model as it predicts just a
single value (i.e., the age of the participant).

One important limitation of our method is that it does not account for the demographic information
of the participants, such as age and sex when building the normative model. One avenue that we
leave for future work is to condition the transformer estimation based on context to have a likelihood
estimation that is demographic dependent. Another limitation of our approach is the robustness of the
model on data that do not follow a similar distribution of the training data [[18]]. In this scenario, the
model fails to identify healthy brains, marking all data with low likelihood. This shift in distribution
can happen when using different scanner’s acquisition settings or different field strengths. In this
work, an external dataset is used (i.e., the HCP-EP), but it is under the umbrella of the Human
Connectome Project, as is the training data. One solution that was implemented here and can be
further explored is the data augmentation of the training data to simulate the output of the different
scanner’s settings, increasing the model’s robustness to distribution shifts.

Regarding the regional analysis, it was observed that no isolated region is driving the correct prediction
of participants with schizophrenia. Therefore, taking the whole brain likelihood estimation benefits
the prediction power. This assessment follows closely with what is known from the literature, as
schizophrenia is a condition with heterogeneous brain structure profiles [27,[15]. The regions with
the largest effect sizes follow what is known from the literature about brain changes related to
schizophrenia. The prefrontal cortex has been associated with the mechanisms that underlie the onset
of the psychiatric conditions [36, 24} 22]] and the temporal cortex has been associated with volume
reduction [24]] and positive symptoms [33]] in participants with schizophrenia.



Due to the fast pace of the development of deep generative models in other fields like computer
vision, we believe these models are a promising tool to help build stronger biomarkers for psychiatric
research.
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5 Supplementary Material

5.1 Datasets

In this study, we used T1-weighted volumes from healthy subjects to train our normative models
of the brain. These volumes were from two datasets: the Human Connectome Project - Young
Adult (HCP-YA) [30]] and the Human Connectome Project - Development (HCP-D) [25)]. From the
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Table 2: Demographic information for the subjects from the Human Connectome Project Young
Adults (HCP-YA), Human Connectome Project Development (HCP-D), and Human Connectome
Project for Early Psychosis (HCP-EP). For the HCPEP, we are presenting the data from the following
classes: Control (HP) and subjects with early psychosis (EP). We used Student’s t test and Chi-square
test to verify if age and gender are significantly different in the HCP-EP dataset.

HCP-D  HCP-YA HCP-EP (n=93)

(n=652) (n=1,113) HP EP
(n=46) (n=47) stats
Age,y 1.87p=0.07
M@anisp 14-0i4.1 28.8i3,7 23~6i2.8 22.612‘6
Range 5-21 22-37 16-30 19-31
SCX, n 2-07p:0.15
Men o) 301a6%)  907Ts%)  29s3%)  37(19%)

Women(%) 351(54%) 606(55%) 17(37%) 10(21%)

HCP-YA dataset, we used 1,113 volumes taken from the “1200 Subjects Data Release’ﬂ From the
HPC-D, we used 652 volumes from the "Lifespan 2.0 Release" ﬂ In total, we had 1,765 subjects (808
male and 957 female) with an age range from 5 to 37 years old (Avg. (SD) = 23.3(8.1) years old).

To evaluate our method, we used the Human Connectome Project - Early Psychosis (HCP-EP)
("Release 1.1"), a study with the goal to acquire high quality imaging, behavioral, clinical, cognitive,
and genetic data on a cohort of early psychosis patients. Importantly, the data from HCP-EP was
acquired at different acquisition sites. The HCP-EP focus on early psychosis (both affective and
non-affective psychosis), within the first 3 years of the onset of psychotic symptoms. This is a critical
time period when there are fewer confounds such as prolonged medication exposure and chronicity,
and when early intervention strategies will be most effective. From the HCP-EP, we used the volumes
of 46 neurotypical participants and the volumes of 47 subjects with diagnosed schizophrenia and
balanced the groups for age and sex (see Table 2] for demographic details).

5.2 MRI processing

All images were corrected for intensity non-uniformity originating from the bias field using the
function N4 bias-field correction [28] from the Advanced Normalisations Tools (ANTSs - version
2.3.4) [2]. The images were also registered to a common space (MNI152NLin2009aSym) applying
rigid and affine transformations using the RegistrationSynQuick command from the ANTs. At the
end, we had high-resolution volumes (1mm?), where each volume had 192 x 224 x 192 voxels.

5.3 Model Implementation

VQVAE The VQVAE learns to map the 3-dimensional structural MRI data input into a discrete
latent representation. It is constituted by an Encoder and a Decoder. The Encoder maps observations
z € RP to a latent embedding z € R?*™, where D and d represent respectively the dimensions
of the observations and the latent representations and n represents the dimensions of the latent
embedding vector. Each element in the latent embedding z. is mapped onto the nearest vector in
a finite vocabulary codebook ex € R™ where K is the pre-determined size of the discrete space.
This discreteness allows the autoregressive Transformer to estimate the probability of any of the K
codebook vectors to be generated next. The Decoder reconstructs the original observation 22 from
the latent embedding.

Autoregressive Transformer Autoregressive models explicitly learn the likelihood function of
the next index by mapping the previous values in a sequence to its estimation of the probability of
the possible values, p(s;) = p(s;|s<;). We use a decoder-only transformer architecture due to its

"http://www.humanconnectome.org/documentation/S 1200/

Zhttps://www.humanconnectome.org/study/hcp-lifespan-development/document/hcp-development-20-
release



autoregressive nature and because it outperforms other autoregressive models such as the PixelCNN
[L]. The autoregressive transformer receives as input 1D sequences which are unmasked sequentially
so that the model is only informed by values it has already estimated. The 3D latent representation is
flattened using the raster scan order before being given as input to the transformer. The categorical
nature of the VQ-VAE latent representation allows the transformer to predict the likelihood of any
of the available elements in the codebook. This is done through a softmax non-linear function
as the transformer output. The transformer is trained by maximizing the training log-likelihood,
Ey~p(z) [~log p(s;)], of the training data, where only healthy participants are considered.

Implementation details Regarding the VQVAE architecture, the model was composed of 3 residual
blocks, outputting 256 channels each. The discrete latent space was composed of 128 code elements
where each was composed of a vector of length 64. The model was trained for 200 epochs with a
batch size of 16, with the Adam optimiser, a learning rate of 3e ~* and a learning rate decay of 0.9999.
Dropout at a rate of 0.1 was used.

Regarding the Transformer architecture, the autoregressive model was composed of 16 layers, with 8
attention heads. It receives as input the bottleneck from the VQVAE which is 16128 elements long.
The vocabulary size is 128. The model was trained for 356 epochs with a batch size of 2. The Adam
optimiser was used alongside a learning rate of 1e 3 and a learning decay of 0.999997. Dropout was
used at a rate of 0.3.

5.4 Baseline normative models

Voxel-wise Brain age prediction with deep neural networks Brain age prediction consists in
building predictive models of participants’ age using only brain data, generally T1-weighted MRI
scans. It uses multivariate regression to find correlates of changes in brain-structure and the biological
age to build age predictors, despite the ageing process not being uniform across a population. As
symptoms of psychiatric disorders are exacerbated during ageing, the brain age predictor trained on
healthy control participants has been suggested as a normative model for psychiatric conditions, by
measuring prediction error [7,[16]. We used the state-of-the-art in brain age prediction, the Simple
Fully Convolution Network (SFCN) [19], trained on the HCP-D and HCP-YA 3-dimensional brain
data, as a normative model of the brain trained on predicting age. The model’s prediction error on the
HCP-EP data was used as a proxy measure for detection of participants with schizophrenia.

Region-wise Gaussian Process Regression Following previous literature on phenotyping
schizophrenia using normative models [35]], we used set of Gaussian process regressors (GPR)
trained to predict regional volumes of 183 brain regions using age and sex as covariables. In inference
time, the trained models estimate the predicted brain volume and the confidence of prediction. The
z-scores (i.e., the prediction error normalized by the prediction uncertainty) across all regions for each
participant are used as proxies of anomaly. In this study, we used the Predictive Clinical Neuroscience
(PCN) toolkitE]that is optimised for normative modelling of clinical imaging data.

Region-wise Bayesian Linear Regression As a third baseline, we used Bayesian linear regressive
(BLR) models, trained to infer the same regional volumes from healthy control participants using age
and sex as covariables [[13]]. Similar to our approach and unlike Gaussian process regressors, Bayesian
linear regressors estimate likelihood-based statistics that can be used as proxies for normative models.
They are able to model non-Gaussian predictive distributions, as is the case in our approach. As in
the Gaussian process regression, we measure as proxy of anomaly detection the mean z-score over all
regions measured for a given participant using the PCN toolkit. The larger the z-score, the more out
of distribution the sample is.

5.5 Region-level analysis - extension

We estimate the normative scores of each cortical region and anatomical structure (from aseg+aparc
parcellation) by calculating the median log-likelihood of the latent variables that are inside the region
when upsampling them onto the original brain space. We found that 16 regions out of 113 presented
a different normative score between control and subjects with schizophrenia with a significance level

*github.com/amarquand/PCNtoolkit
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Figure 2: Top 10 brain regions with the highest effect size measured by Cohen’s d.

below p=0.05, but none show significance once the result is corrected by the Bonferroni correction
for multiple comparisons [[10]]. These results contrast with the global estimation where the difference
between log-likelihoods of the two cohorts is significant (p-value<0.001). The Bonferroni correction
is quite conservative and assumes independence between estimations, which in statistical inferences
in homotopic and adjacent regions is not a correct assumption. Instead, here we focus on the effect
sizes of each statistical test. In Fig. 2] we show the regions with highest measure effect size (Cohen’s
d), with them presenting small to medium effect sizes (between 0.42 and 0.57). The regions with the
highest values were present in the prefrontal cortex (i.e., the left precentral gyrus and the right pars
orbitalis), the temporal cortex (i.e., the right and left fusiform gyri and the left transverse temporal
gyrus), the right lateral ventricle, the anterior portion of the corpus callosum, and the left and right
choroid plexus.
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