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Abstract

Spurious correlations are one of the biggest pain
points for users of modern machine learning. To
handle this issue, many approaches attempt to
learn features that are causally linked to the pre-
diction variable. Such techniques, however, suffer
from various flaws—they are often prohibitively
complex or based on heuristics and strong assump-
tions that may fail in practice. There is no one-
size-fits-all causal feature identification approach.
To address this challenge, we propose a simple
way to fuse multiple noisy estimates of causal fea-
tures. Our approach treats the underlying causal
structure as a latent variable and exploits recent
developments in estimating latent structures with-
out any access to ground truth. In addition, our
approach omnivorously integrates any source of
causal signal. We propose new sources, including
an automated way to extract causal insights from
existing ontologies or foundation models. On mul-
tiple benchmark environmental shift datasets, our
discovered features can train a model via vanilla
empirical risk minimization that outperforms mul-
tiple baselines, including automated causal fea-
ture discovery techniques such as invariant risk
minimization on three benchmark datasets.

1. Introduction
Standard training pipelines struggle to differentiate between
features that are causally linked to the prediction target and
those that are merely associations. When measured in a new
environment, such associations may no longer be predictive;
they become spurious correlations. This leads to models that
are brittle: they may perform well in environments identical
to those they were trained on, but fail to generalize to oth-
ers. The importance of this problem has spurred significant
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research in the hope of building tools to identify a set of
causal features that transfer to any environment.

The holy grail is an algorithm that provably locates causal
features from data without any additional signal. In gen-
eral, this is hopeless. It is known that identifying causal
relationships from observational data is not possible absent
additional assumptions or knowledge. Recent works attempt
to use information from data drawn from multiple environ-
ments to discover a common set of causal features (Peters
et al., 2016; Arjovsky et al., 2019; Krueger et al., 2021).
These techniques are promising but suffer from multiple
flaws. For example, invariant risk minimization (IRM) (Ar-
jovsky et al., 2019) requires a vast number of environments
to be guaranteed to learn causal features—and may perform
worse than vanilla empirical risk minimization when this
fails to happen (Rosenfeld et al., 2021). Experimentally,
none of these techniques are known to work in all cases
(Dranker et al., 2021). Furthermore, by targeting a full
end-to-end solution usable in any scenario, they ignore the
presence of easily-accessible sources of causal knowledge
in many specific scenarios.

Given the substantial challenge of a single technique that
always finds spurious correlations, an alternative is to build
an omnivorous method that can flexibly take advantage of
any kind of causal signal.

We propose COMNIVORE , a system that takes a step to-
wards satisfying this property by two key aspects. First,
it enables the use of multiple sources to generate potential
candidate feature sets. In particular, it allows for simple
human-based specifications. When not available, it enables
for simple ways to automate such specifications. Second, it
extracts causal features from the resulting candidate feature
sets by combining the outputs of multiple causal estimation
approaches. Using principles similar to those in weak su-
pervision (Ratner et al., 2018), it estimates the reliability of
each causal estimate output, without ground truth. It then
provides a higher-quality fused set of estimated features.

COMNIVORE is compatible with any pre-existing approach
to causal feature estimation. It has the benefit of simplicity—
not requiring any specialized loss functions or difficult bi-
level optimization. Effectively, COMNIVORE simply asks
as many sources of signal as possible for causal information,
weights this information, and trains a downstream model on
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the detected features with vanilla empirical risk minimiza-
tion. We validate COMNIVORE empirically, showing that
it outperforms competing end-to-end baselines like IRM,
while improving on ERM by 37.9% on three benchmark
datasets.

2. Background and Problem Setting
We first describe some of the tools we will use and then
detail the problem setting.

Identifying Causal Features Discovering causal features
is an active area of research under which approach can
take many forms. We briefly describe the approach we use.
First, an important problem in causal inference is learn-
ing causal structures from observational data, interventions,
structural assumptions, or heuristics. Naturally, such ap-
proaches do not work in every setting; violations of their
underlying assumptions can be thought of as noise. For in-
stance, Peter-Clark (PC) (Spirtes et al., 2000), FCI (Spirtes
et al., 2000), and Greedy Equivalence Search (Chickering,
2003) assume the absence of certain conditions on the latent
confounders between features. Grow-Shrink (GS) (Margari-
tis, 2003), Incremental Association Markov Blanket (IAMB)
(Tsamardinos et al., 2003), Interleaved IAMB (Yaramakala
& Margaritis, 2005), and Exact Search (Silander & Mylly-
maki, 2012) require the underlying model to have a certain
Bayesian structure. More recent optimization-based meth-
ods (Zheng et al., 2018) (Zheng et al., 2020) are limited by
optimization constraints. These assumptions thus limit their
accuracy when applied to complex and high-dimensional
data.

Weak Supervision Weak supervision is a set of techniques
that are used to construct labeled training sets (Ratner et al.,
2016; 2018; Fu et al., 2020) from unlabeled training data.
The idea is that even though no labels are available, multiple
noisy estimates of each label are observed. These are the
outputs of labeling functions λ1, . . . , λm. The challenge
is to determine the reliability of these functions and to use
this information to fuse their outputs into a pseudolabel of
higher quality than each of their individual votes. We use
similar principles to fuse noisy causal estimates.

Problem Setting We have access to a dataset
{(x1, y1), . . . , (xn, yn)} of samples drawn from some
distribution D. Potentially, we have access to additional
training distribution sets from D2, D3, . . . , Dk. We
refer to these as the k training environments. Different
environments represent the different data collection settings
(e.g., hospital, time periods, countries, demographics).

Our goal is to learn a model f(x) that performs well in new
scenarios. Typically this means that it generalizes well to
test distributions Dtest, where Dtest and Dtrain are non-
overlapping (i.e., Dtest ∪ Dtrain = ∅). However, we might
also be interested in f(x) performing well in subpopulation

shift scenarios. In this case, our goal is to maximize f(x)’s
performance across all domains seen during training (i.e.,
Dtest ⊆ Dtrain ), but the proportions of samples from each
domain can change.

We also assume we have access to pretrained model or
foundation model (FM) embeddings. These embeddings are
the outputs of a mapping g : X → Z from input space to
latent embedding space. This mapping is fixed and obtained
from off-the-shelf models.

3. Approach

Algorithm 1 COMNIVORE

Input: Training dataset drawn from a distribution Dorig =
{(x1, y1), . . . , (xn, yn)}, causal feature selection
functions λ, embedding mapping f

Generate candidate sets C
for Ci ∈ C do

for λi ∈ λ do
Generate causal structure estimates Gi

for Gi ∈ G do
if fusing method == Graph-based WS then

Compute λj’s weight wj

while Annealing iteration do
Minimize weighted objective as in (1) to get
Ĝ

collect all zi ∈ z that has a causal edge to label
node

if fusing method == Vanilla WS then
for zi in z do

Construct label matrix L

Get causal predictions from WS system Ŷi±
1

Result: Singleton set of configurations .

We present our method to train models robust to spurious
correlations: COMNIVORE. At high level, we break up
the task into two parts. Our first goal is to obtain many
sources of potentially causal features and group them into a
set of distinct feature transformations. These might include
the raw features, embeddings from pretrained models like
a ResNet or foundation models like CLIP, the result from
performing a manually-chosen transformation/augmentation
on the dataset, or their combinations. We call the resulting
sets of feature transformations the candidate sets.

Directly relying on the features in these candidate sets may
not be sufficient, however—they may also be affected by
spurious correlations. To further refine our estimated fea-
tures, we run a suite of causal estimation approaches for
each set. We refer to these as the causal feature selection
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Figure 1: COMNIVORE seeks to find causal features through a two-step process. It flexibly pulls together multiple sources of
candidate feature sets (left). It runs these candidate sets through a suite of causal feature estimation approaches and models
and combines the resulting estimates (center). A conventional end model is trained on the discovered features (right).

functions. We will estimate the reliability of each of the se-
lection functions and produce an improved overall estimate
of the causal features. Finally, we combine the resulting
estimated features from each of the candidate sets and train
the end model.

Generating candidate sets Our first task is to generate
candidate sets {C1, C2, . . . , Cb}. These are transformed
versions of the original features that ideally have some re-
duced spuriousness. Potential choices of these include,

• Embeddings from off-the-shelf models, such as foun-
dation models like CLIP,

• Existing end-to-end invariant feature construction
methods, like IRM, when suitable,

• Manually-selected transformations/augmentations,
• Automated transformations/augmentations.

We describe the latter two possibilities. First, we observe
that humans can often identify causal features with ease. As
a running example, consider the Waterbirds dataset (Wah
et al., 2011) (Zhou et al., 2018). The goal is to classify
birds as being water-based or terrestrial, and the background
in the images of these birds (bodies of water versus land)
acts as a spurious feature. This is challenging for training
algorithms to discern, but nearly trivial for humans. It is
easy to encode this human insight into transformations that
can be built with off-the-shelf tools. In this case, running a
standard segmentation algorithm to isolate the bird acts as
such a transformation, as shown in Figure 2.

Manually-selected transformations help translate easily-
acquired human insights into high-quality candidate sets.

However, we do not always have access to such information.
In Appendix C, we show how to automate the process of en-
coding human insights into causal versus spurious features.
This will enable us to get the best-of-both worlds.

The term Candidate Set loosely applies to any result of
transformations that can possibly reduce spuriousness in the
original sample. When using manually-selected transfor-
mation, this term refers to the transformed samples. When
using invariant feature construction like IRM, Candidate
Set refers to the latent feature extracted from the penulti-
mate layer of an IRM model. For the first case, we then
get the latent representation using foundation model or any
pretrained model θ : C → {z11 , . . . , z1d}, . . . , {zn1 , . . . , znd }.

Generating causal feature selection functions Next,
we use the suite of causal inference algorithms listed
in Section 2 to obtain the estimated causal struc-
tures for each candidate set. These algorithms take
the sets of features paired with the corresponding la-
bels {({z11 , . . . , z1d}, y1), . . . , ({zn1 , . . . , znd }, yn)} for each
available training environment and output the estimates of
causal structures that govern the relationships among indi-
vidual features and with the label. These causal structures
are represented in form of DAGs in G. Formally, given
m causal algorithms, the output of each algorithm λa is
described by

λa : {({z11 , . . . , z1d}, y1), . . . , ({zn1 , . . . , znd }, yn)} → G,
a = 1, . . .m

One challenge is that such algorithms often have high com-
plexity, sometimes superexponential in the number of fea-
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tures. We use a simple way to address this difficulty. We
map the features into a lower-dimensional space, perform
estimation in this space, and then return to the original space.
We use Feature Agglomeration (Steinbach et al., 2000), but
our method is compatible with any dimensionality reduc-
tion technique. At the end of this step, we have m DAGs
{G1, . . . , Gm} per candidate set and environment.

Our approach treats the causal inference algorithms like
labeling functions in weak supervision (section 2). Since
these algorithms assume certain conditions or heuristics,
we expect their causal estimate outputs to be noisy. Weak
supervision nicely complements our need to combine these
noisy estimates since it fuses noisy labels to build a labeled
dataset.

Fusing noisy causal estimates Our final task is to obtain
a fused estimate G from the DAGs. Our goal is to obtain a
better set of features compared to the noisy DAG estimates
{G1, . . . , Gm}. We employ two weak supervision-based
techniques to combine the Ga’s into Ĝ:

1. Graph-based Weak Supervision. With this approach,
we learn weights wa for each estimate Ga. These weights
correspond to average distances to a true G∗ which we do
not observe. To estimate the weights, we use the algorithm
in (Shin et al., 2022), described below. We embed the graphs
into Rd, producing an embedding r(Ga). We set up the
following system of equations for triplets (a, b, c) chosen
from {1, . . . ,m}:

∥r(Ga)− r(Gb)∥2 = ∥r(Ga)− r(G∗)∥2 + ∥g(Gb)− r(G∗)∥2

∥r(Ga)− r(Gc)∥2 = ∥r(Ga)− r(G∗)∥2 + ∥g(Gc)− r(G∗)∥2

∥r(Gb)− r(Gc)∥2 = ∥r(Gb)− r(G∗)∥2 + ∥r(Gc)− r(G∗)∥2.

To obtain ∥r(Ga)− r(G∗)∥2, we add the first two equa-
tions, subtract the third, and divide by two. This is an
estimate of the average distance between our (embeddings
of) graphs; the weights w are just the reciprocals, so that
wa = 1/(∥r(Ga)− r(G∗)∥2).
Once we have estimated ŵa, we perform the following
optimization,

Ĝ = argmin
G∈G

1

m

m∑
j=1

wjdH(G,Gj) (1)

Note that we compute the mean in the original DAG space,
not in the embedding space. We use simulated annealing
(Kirkpatrick et al., 1983), an iterative global search opti-
mization method, to obtain Ĝ. Next we take all features zi
that have a causal path in Ĝ to the label node as the causal
feature subset.

2. Vanilla Weak Supervision. Alternatively, instead of
searching for the best overall causal structure, we can try

O
rig

in
al

Tr
an

sf
or

m
ed

WILDS Waterbirds

O
rig

in
al

Tr
an

sf
or

m
ed

WILDS CelebA

Figure 2: Manual candidate set examples. Humans can
easily observe that background is not causally linked to bird
species (left) and that gender is not linked to hair (right).

to solve a perhaps more manageable problem: is feature
zi causally related to the label y? We treat this problem
for each feature zi as a simple classification problem Yi ∈
{±1} where +1 means a causal edge present between zi
and y in DAG Gj , 0 indicates no relationship, and −1 an
anti-causal edge present between zi and y.

Inspired by (Fu et al., 2020), for each zi, we first construct a
k×m label matrix L, where k is the number of environments
we have access to and m is the number of causal estimation
functions. Note that L is constructed for each zi in each
candidate set separately. We encode the predictions output
by each estimation algorithm into L and pass it as input to
any weak supervision approach, e.g., (Ratner et al., 2018;
2019; Fu et al., 2020).

4. Experiments
This section validates the following claims about COMNI-
VORE:

• Performance (Section 4.1): We show that COMNIVORE
outperforms baseline end-to-end approaches (IRM (Ar-
jovsky et al., 2019) and REx (Krueger et al., 2021)) on
unseen environment Dnew with comparable performance
on the original environment Dorig on both subpopulation
shift and domain generalization datasets.

• Ablations (Section 4.2): The source of COMNIVORE’s
lift on Dnew while retaining good performance on Dorig

is all components of the approach. We show this by com-
paring COMNIVORE with training vanilla ERM and base-
line approaches using the foundation model embeddings
of the candidate sets.

Datasets We evaluate COMNIVORE on three datasets in the
WILDS benchmark (Koh et al., 2020). In subpopulation
shift, we use Waterbirds, which combines bird images from
the CUB dataset (Wah et al., 2011) with backgrounds from
the Places dataset (Zhou et al., 2018); and CelebA celebrity
faces dataset (Liu et al., 2015); In domain generalization,
we use Camelyon17 (Bándi et al., 2019), which task is
to identify tumor in medical images. We also evaluate on
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IRM REx COMNIVORE-G COMNIVORE-V

Dataset Dnew Dorig Dnew Dorig Dnew Dorig Dnew Dorig

Waterbirds 37.5 72.3 58.6 95.5 71.0 91.4 71.0 90.7
CelebA 63.3 88.5 61.6 85.1 60.4 88.6 63.4 90.1
Camelyon17 64.2∗ 82.6∗ 75.0 87.0 87.2 91.6 72.3 89.0
ColorMNIST 66.9∗ 70.8∗ 68.7∗ 71.5∗ 70.4 99.7 80.0 67.2

Table 1: COMNIVORE performance compared to baseline end-to-end approaches. All scores are accuracy. Best results for
Dnew are highlighted in blue and Dorig in red. COMNIVORE -G uses Graph-based WS as fusing method, COMNIVORE-V
uses Vanilla WS. Results are average over three runs. Results marked by ∗ are quoted from appropriate papers.

ERM ERM(Augment) COMNIVORE-G

Dataset Dnew Dorig Dnew Dorig Dnew Dorig

Waterbirds 24.6 96.0 63.7 93.7 71.0 91.4
CelebA 2.20 93.8 52.0 90.0 60.4 88.6
Camelyon17 78.2 89.5 74.3 90.0 87.2 91.6
ColorMNIST 9.0 93.0 22.8 100.0 70.4 99.7

Table 2: COMNIVORE ablations. All scores are accuracy.

ColorMNIST, where spurious correlations between digits
and color are artificially created, similar to the synthetic
task used in IRM and REx. We list the complete dataset
details in Appendix F.1. Pre-trained embeddings We use
pre-trained CLIP embeddings (Radford et al., 2021).

4.1. Performance Comparisons

We compare COMNIVORE with IRM and REx, measuring
accuracy on the original train distribution Dorig and the
new test distribution Dnew. For COMNIVORE , we train
a simple 2-layer MLP using ERM on the sets of causal
features acquired using both graph-based WS and vanilla
WS. For IRM and REx, we experiment with 2-layer MLPs
using two choices of feature extractors: CLIP and ResNet50.
The latter follows the choice of architecture used in the
WILDS benchmark (Koh et al., 2020). We report the best
of the two results.

Table 1 shows the results. COMNIVORE outperforms IRM
and REx on Dnew across all datasets. For Dorig, COM-
NIVORE’s performance is comparable to the best baseline
on Waterbirds (by 4.6%) and achieved the best accuracies
on ColorMNIST (tie with IRM), CelebA and Camelyon17.
This reflects our method’s ability to ingest and refine a large
number of causal features.

We also note that we construct our implementation of Col-
orMNIST. In contrast with IRM and REx, we do not col-
lapse the classes and directly use the digits 0 vs 1. In IRM’s
version of ColorMNIST, IRM achieves 70.8% accuracy on
Dorig and 66.9% Dnew; and in REx’s implementation, REx
achieves 71.5% accuracy on Dorig and 68.7% on Dnew. Our
main experimental table contains the values we obtained on
our version of the dataset. As an additional point of com-
parison, we note that EIIL (Creager et al., 2021) achieves
a 69.7% accuracy on Dorig and 78.8% Dnew in Waterbirds

dataset.

4.2. Ablations

We train models using vanilla ERM on the extracted features
of the candidate sets and original images, without perform-
ing the causal estimate step. We report the results in table
2. On Dnew, COMNIVORE outperforms both vanilla ERM
trained using original images and candidate sets. COMNI-
VORE’s performance on Dorig is within relatively compara-
ble accuracy with the best of vanilla ERM on Waterbirds,
CelebA, and ColorMNIST (by 5.6%, 5.2%, and 0.3%) and
performed the best on Camelyon17. This result demon-
strates that COMNIVORE ’s performance lift is produced by
both candidate set generation and causal feature selection.
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Appendix
We discuss related work (Appendix A), provide a glossary containing key terminology (Appendix B) and algorithm table
(Appendix ??), introduce additional details into our algorithm claims (Appendix E), then give extra experimental details and
results (Appendix F). We also provide theoretical analysis considering simple setups where estimates of causal features are
useful (Appendix D). Finally, we show a simple approach to automate the process of encoding human insights into causal
versus spurious features mentioned in section 3 (Appendix C).

A. Related Work
This section presents discussion of related work and connections to our work.

Invariant learning methods such as IRM (Arjovsky et al., 2019), REx (Krueger et al., 2021), and a multitude of similar
works (Ahmed et al., 2020; Parascandolo et al., 2020; Ahuja et al., 2020; Creager et al., 2021) share a similar goal with
our work. The aim is finding feature representations that are invariant across domains or environments. We can think of
these invariant features as similar to our goal causal feature subset. This is achieved mainly by minimizing specialized
loss functions. IRM and REx minimize the sum of loss terms across environments and thus require environment labels.
Environment Inference for Invariant Learning (EIIL) (Creager et al., 2021) and Predictive Group Invariance (PGI) (Ahmed
et al., 2020) train an initial ERM model to infer environment labels and later on train another model with invariant learning
objectives. In contrast, COMNIVORE estimates the causal features in-prior to training a model and thus circumvents the
need for any specialized loss functions.

Improving robustness to spurious correlations and distribution shift is an extensive line of work that can be divided
into two aspects, based on whether access to group/domain information is given or not. In the line that requires group
information a priori, one popular work is group distributionally robust optimization (GDRO) (Sagawa et al., 2019), which
divides the data into explicit groups and then trains them to directly minimize the worst group-level error among these
groups. Similarly, Fish (Shi et al., 2021) and Inter-environment Gradient Alignment (IGA) (Koyama & Yamaguchi, 2020)
aim to improve domain generalization performance by maximizing inter-domain gradient terms in their loss functions.

More similar to our approach are methods that do not assume group information at training time. For instance, distributionally
robust optimization (DRO) minimizes worst group loss within a ball centered around the training distribution (Ben-Tal et al.,
2013; Duchi et al., 2016). More recent methods (Nam et al., 2020; Liu et al., 2021; Zhang et al., 2022) train two ERM
models: the first one is to estimate which data points play a crucial role in their subsequent steps (e.g., which points belong
to minority groups, which samples come from the same class but has different spurious features, etc.). Next, such methods
train another ERM model with specialized objectives (e.g., to up-weight minority groups, using contrastive loss to learn
invariant features, etc.). Note that all of these works are compatible with our approach as well.

Causal inference algorithms (Spirtes et al., 2000; Margaritis, 2003; Chickering, 2003; Tsamardinos et al., 2003;
Yaramakala & Margaritis, 2005; Silander & Myllymaki, 2012; Zheng et al., 2018;?) seek to discover the structure that
governs relationship between set of features in the data. Ideally, for our purpose, if we feed the sets of features and labels
into these algorithms, we hope to be able to extract the features that have a causal link to the label. Unfortunately, this
problem is statistically and computationally hard (Chickering, 1996; Chickering et al., 2004). As a result, these methods
resort to local heuristics and assumptions, thus limiting their accuracy when applied to complex high-dimensional data. Our
approach fuses these noisy estimates of causal structures to get the estimated set of causal features on which training an end
model will be robust to spurious correlation and domain shift.

Weak supervision is a set of techniques that use noisy sources of labels to construct labeled training sets without access to
ground truth labels (Ratner et al., 2016; 2018; Fu et al., 2020). This technique is vastly explored for binary classification
problems. Recently, (Shin et al., 2022) enables weak supervision over broader sets of problems, which also serves as a basis
for our graph-based weak supervision fusion method.

B. Glossary
The glossary is given in Table 3 below.
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Symbol Used for

x Input data point x ∈ X .
y Ground truth label y ∈ Y = {0, 1}.
D Data Distribution, where each Di is a distribution where samples are drawn (e.g., Dtrain and Dtest).
f End classification model.
g A fixed mapping from input space X to embedding space Z that is made available by the off-the-shelf

foundation model.
C Candidate sets.
z Features z = {z1, . . . zd}, where each zi is feature vector entry at index i.
n Number of data points.
d Number of features (i., dimension of feature vector).
λ Causal inference algorithms λ = {λ1, . . . , λm} that votes on each {({z11 , . . . , z1d}, y1),

. . . , ({zn1 , . . . , znd }, yn)}.
m Number of causal inference estimate algorihtms.
G DAG (Directed Acyclic Graph), where each Gm ∈ G represent a noisy estimate of causal structure.
G Space of graphs.
Ĝ Combination of Gs.
G∗ True causal structure (not observable).
r(G) Graph embedding.
L Label matrix.
θ Accuracy of λ, where θm is accuracy of λm

Table 3: Glossary of variables and symbols used in this paper.

C. Automating Candidate Set Transformations
There are many situations where a human user may not be aware of a spurious pattern in the data. Had CelebA (Liu et al.,
2015) not contained the appropriate annotation, a machine learning practitioner wishing to predict hair colors may have
overlooked this feature’s spurious correlation with gender. More generally, it is not always certain that users may have
sufficient domain expertise to design hand-crafted transformations for candidate feature sets.

We describe a simple method to fully automate the candidate set transformation. An illustrative example is provided for the
Waterbirds dataset (Sagawa et al., 2019). To discover patterns in the training images, we generate a caption for each image
using a CLIP-based captioner (Mokady et al., 2021), then extract captions’ keywords. We search each label (waterbird and
landbird) on Wikipedia (Wikipedia contributors) and extract the keywords from the first resulting article’s introduction
section.

Spurious words are considered to be the top m most common caption keywords that do not occur in the article keywords.
We next break each training image into non-overlapping p× p patches. If zero-shot CLIP (Radford et al., 2021) predicts any
of the spurious words in a given patch with confidence greater than τ , the patch is covered. A resulting image from this
process is depicted in Figure 3.

Figure 3: Automated transformation candidate set. Left, an image from Waterbirds (Sagawa et al., 2019) with its caption’s
keywords in bold. Right, a 10× 10 patch is covered if zero-shot CLIP (Radford et al., 2021) predicts with confidence greater
than 0.6 the presence of any word in {tree, branch, forest, beach, rock, woman, ocean, field, man, background}. These
words were discovered to associate with non-causal information and therefore signal that the corresponding patch should be
masked out.

We note that there are many potential ways to fully automate the candidate set transforms by taking advantage of ontologies
and pretrained models. The proposed procedure requires only the label names and some form of task description, for
instance that the dataset is comprised of images, allowing it to also be implemented in other settings outside the specific
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example described above.

C.1. Result with Automated Candidate Set

We evaluate COMNIVORE when using the candidate set built from automated transformations described previously. We use
a patch size p of 75, spurious word list length m of 10 and threshold τ of 0.6 on Waterbirds (Sagawa et al., 2019). As shown
in Table 4, this configuration yields a similar performance to COMNIVORE with human-supervised LFs for Dorig . AutoLF’s
score of 66.2 on Dnew also improves by 7.6% on the baseline Dnew Waterbirds results of Table 4.

We observed that the result is typically sensitive to the choices of threshold. We hypothesize that expanding the approach to
larger ontologies will further close the gap to manual performance.

REx Manual Candidate Set Automated Candidate Set

Dnew 58.6 71.0 66.2
Dorig 95.5 90.7 93.1

Table 4: COMNIVORE-V with manually-built versus automated transformation-based candidate set and REx, the prior
approach with best Dnew performance. All scores are accuracy. The automated approach extracts human insights by
combining the use of foundation models and ontologies, offering close-to-manual performance.

D. Theoretical Analysis
While the idea of fusing multiple noisy causal estimates is intuitively appealing, it is not clear whether we can expect this
to work and under what conditions. This section is dedicated to showing how, in certain simple scenarios, the resulting
estimates of the causal structure are useful.

Setup and Noise Distributions We will consider two scenarios. In the first, we have some candidate set of features
z1, . . . , zk, and we are interested in determining whether zi is causal for output y. In other words, we are predicting a set
D ⊆ {1, . . . , k}. In the second scenario, we additionally take into account the causal structure, i.e., a directed acyclic graph
G over the nodes z1, . . . , zk.

We denote the causal recovery techniques by λa for a = 1, . . . ,m, so that λa : Rk×n → 2{1,...,k} in the first case, or
λa : Rk → G in the second case. Recall that G is the set of DAGs on k nodes. Finally, we have a access to k environments,
where for each environment, we observe n samples of the features z1, . . . , zk.

Each causal estimation function λa may fail in a variety of ways; this may be because the underlying assumptions are not
met, or because of noise, or for some other reason. The outcome of such noise is either a predicted set D not equal to the
true D∗, or a predicted graph G not equal to G∗. We will model the noise in the estimation approaches with the following
model inspired by (Shin et al., 2022):

Pθ(λ
1, . . . , λm|D∗) =

1

Z
exp

(
−

m∑
a=1

θadH(λa, D∗)

)
, (2)

where Z is the normalizing partition function, dH is the Hamming distance, and θ = [θ1, . . . , θm]T is a vector of parameters.
For sets, dH is simply the size of the symmetric diference. We can also operate in the second scenario by switching D∗ to
G∗ on both sides of (2). In this case, the Hamming distance over graphs counts the number of differences in edges. Note
how the model works: if θa is large, then the probability mass is significantly reduced even for a small distance between the
prediction and the true causal model; this implies that the quality of the approach λa is high. If θa is small, then even a large
distance does not significantly reduce the probability, so λa is low-quality.

Note that richer models are possible; for example, we could replace the graph Hamming distance with the interventional
distance as in (Peters & Bühlmann, 2015). The advantage of the exponential family model above is that it is tractable
without requiring significant specifications on the underlying causal model.
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Figure 4: Synthetic Experiments. Errors on Dorig and Dnew when using only causal features converges to lower bound
(error on Dorig using all features) with increasing θ.

Estimating Qualities and Performing Fusion The main challenge is how to estimate θ1, . . . , θm. The two techniques in
Algorithm 1 work for these two scenarios. We show that the second approach has consistent estimation of θ in terms of the
number of environments k.

Theorem D.1. Suppose λa, . . . , λm are distributed according to (2) and we have access to k training environments. Using
vanilla weak supervision to estimate θ̂, we have that E[∥θ̂ − θ∗∥] ≤ O(1/

√
k).

This implies that, given sufficiently many environments, the weights we learn for use in Algorithm 1 reflect the underlying
quality of the causal estimation functions.

D.1. Theoretical Analysis Experiment

We evaluate a key claim from our theoretical characterization outlined above. We expect that as the values of the θ parameter
vector are larger, the quality of the causal estimation functions improves, and that our resulting algorithm produces causal
features that perform well in a new environment.

We validate this notion using a synthetic dataset reflecting a simple linear regression setup. In the original environment
Dorig, the label is a function of all of the features, while in the new environment Dnew, the label is a function of only a
subset of features—and the remaining features have a significantly different distribution from their counterparts in Dorig.

The results are shown in Fig. 4. We swept the average magnitude of θ, used our two approaches based on graph-based WS
(left) and vanilla WS (right), trained a linear regression end model, and measured the root mean squared error (RMSE).
As expected, using all features results in very good error in Dorig (green curve) and very poor error in Dnew (red curve).
Applying our causal approaches resulted in nearly-as-good Dorig performance (blue curve), and vastly improved Dnew

performance (yellow curve). As we hoped, the error of this curve generally decreases with improved quality estimates (i.e.,
larger θ). Additionally, we note that the vanilla WS approach, while slightly noisier, produces a smaller final error. This
suggests a closer analysis of the two approaches would be useful.

E. Additional Algorithmic Details
E.1. Projection to Low-Dimensional Space

We use sklearn’s (Buitinck et al., 2013) implementation of feature agglomeration, an unsupervised dimensionality reduction
technique that uses agglomerative clustering to group together features that look very similar (Steinbach et al., 2000). Our
method also works with any dimensionality reduction technique like PCA (F.R.S., 1901). We chose feature agglomeration
because it provides an automatic mapping from higher to lower dimensional space, thus eliminating the need to manually set
thresholds for the components.

E.2. L Matrix Computation

In Vanilla WS fusion method, for each zi, we construct a k ×m label matrix L, where k is the number of environments
we have access to and m is the number of causal estimation functions. Formally, let A(b,j) be the d× d adjacency matrix
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representation of Gj from bth environment, and the label node is the dth node in Gj , each entry of L is defined by:

Lbj =


1, if A

(b,j)
id = 1

0, if A
(b,j)
id = 0

−1, if A
(b,j)
id = −1

, b ∈ 1 . . . k, j ∈ 1 . . .m, i ∈ 1, . . . d− 1 (3)

F. Experimental Details
F.1. Dataset Details

Table 5 shows details on train/dev/test splits for each dataset, as well as the number of smallest group samples in distribution
shift datasets. All splits are following the default provided by WILDS benchmark (Koh et al., 2020).

Dataset Ntrain Ndev Ntest Nsmallest

Waterbirds 4,795 1,199 5,794 56
CelebA 162,770 19,867 19,962 1,387
Camelyon17 302,436 33,560 85,054 (Dnew) + 34,904 (Dorig) N/A

Table 5: Details for each dataset. Ntrain: The size of the unlabeled training set. Ndev: The size of the labeled dev set. Ntest:
The size of the held-out test set. Nsmallest: The size of the smallest group for subpopulation shift datasets.

We evaluate COMNIVORE on three datasets in the WILDS benchmark (Koh et al., 2020). In subpopulation shift,
Waterbirds’s spurious correlation occurs between label Y = {landbirds,waterbirds} and background attribute A =
{land,water}.; CelebA celebrity faces dataset (Liu et al., 2015) has spurious correlation between the hair color label
Y = {blond, dark} and the gender attribute A = {male, female}; In domain generalization, Camelyon17 (Bándi et al.,
2019)’s domain shift is the different hospitals where training and test samples are collected.

F.2. ColorMNIST

We construct our implementation of synthetic colored version of the MNIST dataset (Deng, 2012). In contrast with IRM and
REx, we do not collapse the classes (i.e., y = 0 for digits 0− 4 and y = 1 for digits 5− 9). Instead, we directly use the
digits 0 vs 1. More specifically, we take MNIST subsets of digits 0 and 1, assign a color to each digit, and flip the color on
Dtest. We use the default train/dev/test splits provided by MNIST.

We also note that in IRM’s version of ColorMNIST, IRM achieves 70.8% accuracy on Dorig and 66.9% Dnew; and in REx’s
implementation, REx achieves 71.5% accuracy on Dorig and 68.7% on Dnew. Our main experimental table contains the
values we obtained on our version of the dataset.

F.3. Manual Candidate Sets

This section details the construction of manual candidate sets used in our experiments. The original and transformed images
are shown in figure 5. For Waterbirds and celebA, segmentation is done using Pytorch’s off-the-shelf DeepLabV3 model
(Chen et al., 2017). For Camelyon17, the candidate set generated is the gaussian blurred version of the original images,
generated using PIL’s Gaussian Blur filter (Umesh, 2012). For ColorMNIST, the candidate set used is the original images
and the black and white version. Table 6 details the candidate sets used for best numbers reported.

F.4. Hyperparameters and Model Selection

F.4.1. END CLASSIFICATION MODEL

Experiments were done three times, and we reported an average of three runs. Models are selected based on the best
performance on the dev set (and OOD dev set for Camelyon17). Experiments are conducted using two NVIDIA RTX A4000
GPUs. For all datasets, we train a 2-layer MLP with 512 hidden dimensions. Best hyperparameters are reported in table 7.
All models are trained using 0.9 momentum and 0.1 l2 regularization penalty. Training epochs are set until 500, and we
picked the checkpoint with the highest dev performance.
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Dataset Candidate Sets Used

Waterbirds {Segmentation}
CelebA {Original, Segment + Crop Bottom, Segment + Crop Face}
Camelyon17 {Original, Gaussian Blur}
ColorMNIST {Original, bw}

Table 6: Candidate Set used for each dataset. Original images can also be a candidate set (e.g., in celebA and Camelyon17).
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Figure 5: Candidate Sets

Dataset dim(z) Learning rate Batch size

Waterbirds 5 5e− 4 32
CelebA 3 1e− 4 16
Camelyon17 3 5e− 4 1280
ColorMNIST 10 1e− 4 1280

Table 7: Best hyperparameters. dim(z) is the lower dimension space used to project features.

F.5. Baseline Implementations

IRM A ResNet50 is trained using the IRM implementation from the WILDS benchmark (Koh et al., 2020). Reported
results are averaged across three runs, using the hyperparameters yielding highest average accuracy on the dev set in any
epoch. In real-world applications, the best strategy would often be to select a model that balances somewhere in between
maximizing average and worst-group accuracy as determined by domain experts. In this work, however, we choose to report
epochs that maximize average accuracy without regard to worst-group accuracy in order to establish a uniform, unbiased
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method to select the “best" hyperparameters and performance metrics.

The maximum possible number of epochs is 200. Momentum of 0.9, IRM λ of 100 and penalty annealing iterations of 500
are used for all datasets. Learning rate and batch size are reported in Table 8.

Dataset Learning rate Batch size

Waterbirds 1e− 5 128
CelebA 1e− 6 96
ColorMNIST 1e− 7 64

Table 8: Best hyperparameters for IRM.

We do not report the hyperparameters for Camelyon, because we report IRM result on Cameyon based on the WILDS
leaderboard (WILDS).

REx We train a 2-layer MLP with 256 hidden dimensions using REx implementation for all datasets. Experiments were
done three times, and we reported an average of three runs. The maximum possible number of epochs is 500, and we picked
the checkpoint with the highest performance on dev set (and OOD dev set for Camelyon17). Penalty annealing iterations of
100 are used for all the datasets. Other best hyperparameters are reported in Table 9.

Dataset Learning rate Batch size β

Waterbirds 1e− 3 2000 10000
CelebA 3e− 3 4000 100
Camelyon17 3e− 3 32 100
ColorMNIST 3e− 5 1000 10000

Table 9: Best hyperparameters for REx. β is assigned weight for variance of risks in REx risk function used to balance
between reducing average risk and enforcing quality of risks(Krueger et al., 2021).


