Zhijian Wu East China Normal University Shanghai, China zjwu_97@stu.ecnu.edu.cn

> Yang Hu New York University Brooklyn, USA yh5965@nyu.edu

Abstract

Although deep learning-based methods have made significant advances in the field of image restoration (IR), they often suffer from excessive model parameters. To tackle this problem, this work proposes a compact Transformer (Compacter) for lightweight image restoration by making several key designs. We employ the concepts of projection sharing, adaptive interaction, and heterogeneous aggregation to develop a novel Compact Adaptive Self-Attention (CASA). Specifically, CASA utilizes shared projection to generate Query, Key, and Value to simultaneously model spatial and channelwise self-attention. The adaptive interaction process is then used to propagate and integrate global information from two different dimensions, thus enabling omnidirectional relational interaction. Finally, a depth-wise convolution is incorporated on Value to complement heterogeneous local information, enabling global-local coupling. Moreover, we propose a Dual Selective Gated Module (DSGM) to dynamically encapsulate the globality into each pixel for context-adaptive aggregation. Extensive experiments demonstrate that our Compacter achieves state-of-the-art performance for a variety of lightweight IR tasks with approximately 400K parameters.

CCS Concepts

• Computing methodologies → Computer vision; Reconstruction; • Computer systems organization → Neural networks.

Keywords

Deep Learning, Lightweight Image Restoration, Self-Attention

ACM Reference Format:

Zhijian Wu, Jun Li, Yang Hu, and Dingjiang Huang. 2024. Compacter: A Lightweight Transformer for Image Restoration. In *Proceedings of the 32nd ACM International Conference on Multimedia (MM '24), October 28-November 1, 2024, Melbourne, VIC, Australia.* ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3664647.3680811

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

@ 2024 Copyright held by the owner/author (s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0686-8/24/10

https://doi.org/10.1145/3664647.3680811

Jun Li Nanjing Normal University Nanjing, China lijuncst@njnu.edu.cn

Dingjiang Huang* East China Normal University Shanghai, China djhuang@dase.ecnu.edu.cn

1 Introduction

As a classical task in low-level computer vision, image restoration (IR) aims to recover high-quality counterparts from degraded images by removing degraded content. With the rapid development of deep learning, convolutional neural networks (CNNs) have become the de facto method for modern IR algorithms. Various advanced CNN designs were introduced into the image restoration task leading to further performance progress [55, 61, 62]. However, CNNs suffer from limitations in long-range dependencies modeling because convolution operators are more advantageous in extracting local information [21]. Recently, the dominance of CNNs has been challenged by vision Transformer-based models, which exhibit superior performance due to the advantage of self-attention in long-range modeling [15]. However, the quadratic complexity of self-attention makes it difficult to apply to image restoration tasks involving high-resolution images [6]. Many attempts have been made to develop more efficient self-attention mechanisms for image restoration. SwinIR [26] uses the shifted window mechanism to limit the scope of attention to the window, such that linear complexity is achieved. Similar strategies were adopted by Uformer [42] for building a hierarchical network architecture. Restormer [53] proposes to use channel-wise self-attention instead of spatial one to achieve linear complexity.

Despite significant advances, most attempts have been devoted to improving large-scale image restoration models while neglecting the development of lightweight models. Lightweight image restoration networks are still fraught with great challenges. Specifically, most existing methods stack a single spatial or channel selfattention, making single-dimensional information modeling fail to achieve comprehensive feature interactions. Although some recent methods [7, 37] have been proposed to use the two self-attention mechanisms alternatively, it may lead to a large number of model parameters. In addition, the simple sequential combination is not fully capable of effectively modeling omnidirectional higher-order relational interactions. Besides, self-attention focuses more on global long-range information and is inferior at modeling local information [33], which is detrimental to pixel-level image restoration tasks. These problems are more severe in lightweight models, which cannot stack enough layers due to limited capacity.

In this paper, we propose a novel compact Transformer called Compacter for lightweight image restoration. Specifically, we propose a compact adaptive self-attention (CASA) mechanism through

^{*}Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

Figure 1: Comparisons between our Compacter and other state-of-the-art algorithms. *Left*: PSNR vs. Parameters on the Manga109 [32] dataset for super-resolution (×4). *Right*: PSNR vs. Parameters on the LOL [43] dataset for low-light enhancement. The proposed Compacter achieves a better trade-off between performance and parameters.

the design of projection sharing, adaptive interaction, and heterogeneous aggregation. CASA first utilizes shared projections for generating Query, Key, and Value to simultaneously establish spatial and channel self-attention. Subsequently, the bidirectional interaction process is utilized to adaptively propagate and integrate the two global information from two different axes, thereby realizing omnidirectional relational interactions. Finally, a depth-wise convolution is performed in parallel on Value to complement the locality to achieve heterogeneous aggregation of global and local information. With these designs, CASA enables comprehensive information dissemination and interaction within a compact computational unit. Furthermore, we propose a dual selective gated module (DSGM) to further calibrate the aggregated features and obtain per-pixel global dependencies. DSGM utilizes parallel branches to encode local information and gated to each other to adaptively promote favorable pixels and suppress detrimental pixels, thus producing high-quality restoration results. Thanks to two complementary components, our Compacter enables comprehensive pixel-relational interaction and maintains a desirable model size. We conducted comprehensive experiments on four lightweight image restoration tasks, our method achieved superior performance with significantly fewer parameters. Figure 1 illustrates the comparison of the image superresolution and low-light enhancement tasks. We further provide extensive ablation experiments to demonstrate the effectiveness of the architectural design.

To sum up, we summarize the contributions of this paper as follows:

- We propose a compact Transformer-based network, called Compacter, for lightweight image restoration.
- We present compact adaptive self-attention (CASA) that achieves adaptive interaction through cross-modulation between spatial and channel global information. A novel dual selective gated module (DSGM) is proposed for dynamic context aggregation.
- Extensive experiments show that Compacter achieves SOTA results on various lightweight restoration tasks with significantly fewer parameters.

2 Related Work

2.1 Image Restoration

The purpose of image restoration is to recover a clean version from a degraded image. In recent years, deep learning-based image restoration methods have achieved unprecedented success. In particular, CNN models have achieved state-of-the-art performance on various tasks such as super-resolution [16, 29, 38], denoising [54], deraining [23, 49], and low-light enhancement [24, 59]. Image restoration algorithms are driven by the design of advanced CNN network architectures. For example, the residual connection has been introduced for tasks such as super-resolution [62], image denoising [20], and has become a necessary component of image restoration networks. Multi-scale representation learning is also widely used in various restoration tasks [55] due to its superior performance. Subsequently, the emerging attention mechanism has been explored for further performance improvements in low-level vision tasks. RCAN [61] coupled channel attention within the SR network, remarkably improving the representational capability of the model. To better learn feature correlation, SAN [13] further proposed a second-order channel attention module. However, most attempts have been devoted to improving the performance of large restoration models, while neglecting the development of lightweight models. Although some lightweight methods [27, 29, 45] have emerged recently, they tend to be dedicated to specific tasks such as super-resolution. In contrast, our Compacter is a general-purpose lightweight image restoration network that can be used for various restoration-related tasks such as image super-resolution, denoising, deraining, and low-light enhancement.

2.2 Vision Transformers

Vision Transformer [15] has achieved impressive performance due to the self-attention mechanism, which naturally incorporates powerful dynamic weights and global dependency capture. However, the quadratic computational complexity of self-attention limits the application to vision tasks, which typically involve high-resolution images. IPT [6] pioneered introducing vision Transformer to image restoration tasks, which reduces the computational cost by decomposing the image into small patches and using a sequence of small patches as input. After that, SwinIR [26] used shifted-window-based self-attention to reduce the computational cost by restricting the scope of self-attention to the local window. A similar strategy is also used by Uformer [42], which constructs a U-shaped hierarchical network. In addition, Restormer [53] adopts channel attention instead of the original spatial attention, making the computational complexity linear in spatial resolution. Despite achieving promising performance, they restrict attention to a local scope and may not fully exploit the potential of Transformers in capturing global dependencies [64]. Some recent methods [7, 37] suggest alternating spatial and channel attention to achieve further performance improvements. However, these serial models do not adequately represent the process of fusion of spatial and channel information, due to the lack of ability to model their interactions. In addition, these efforts remain committed to developing large vision Transformer models. In contrast, this paper is dedicated to designing a lightweight image restoration network.

Figure 2: (a) The overall architecture of our proposed Compacter for image restoration. (b) The inner structure of the compact transformer layer (CTL).

3 Method

3.1 Overall Architecture

As shown in Figure 2 (a), the overall architecture of our Compacter consists of three main parts: shallow feature extraction, deep feature extraction, and reconstruction module. Specifically, the input lowquality image I_{LQ} is converted using a 3 × 3 convolution to extract shallow features. Subsequently, we use deep feature extraction to generate deep features F_D . The deep feature extraction consists of N compact transformer layers (CTL) and a 3 × 3 convolutional layer with residual concatenation applied. Finally, the deep features are fed to the reconstruction module to construct a high-quality output image I_{HQ} . The composition of the reconstruction module depends on different image restoration tasks. For image SR, a sub-pixel convolutional layer [34] is used to reconstruct the high-resolution image I_{HQ} . For other image reconstruction tasks, a convolutional layer is used to generate a residual image $I_{HQ} = I_{LQ} + I_R$.

Loss Function. Following prior works [12, 35], we optimize our model using dual-domain loss:

$$\mathcal{L}_{1} = ||I_{P} - I_{G}||_{1}, \quad \mathcal{L}_{f} = ||\mathcal{F}(I_{P}) - \mathcal{F}(I_{G})||_{1}, \tag{1}$$

$$\mathcal{L} = \mathcal{L}_1 + \lambda \mathcal{L}_f \tag{2}$$

where I_P and I_G represent the predicted image and ground truth. $\mathcal{F}(\cdot)$ is the 2D Fast Fourier Transform. λ is set to 0.1 for balancing dual-domain training.

3.2 Compact Transformer Layer

As shown in Figure 2 (b), our Compact Transformer Layer (CTL) consists of a compact adaptive self-attention (CASA) and a dual selective gated module (DSGM). It can be formulated as:

$$X' = CASA(LN(X_{in})) + X_{in},$$
(3)

$$X_{out} = \text{DSGM}(\text{LN}(X')) + X'$$
(4)

where X_{in} and X_{out} are the input and output features, $LN(\cdot)$ denotes the LayerNorm operation [3].

3.3 Compact Adaptive Self-Attention

Comprehensive and dense feature interactions help reconstruct finer results in restoration tasks that require dense per-pixel predictions. To fully mine the potential full correlation of features within a compact computational unit, we propose compact adaptive self-attention (CASA), as shown in Figure 3. Our CASA is based on the philosophy of *projection sharing*, *adaptive interaction* and *heterogeneous aggregation*. It not only adaptively models spatial and channel-wise global information and their interactions but also achieves global-local coupling through the aggregation of heterogeneous operators.

Projection Sharing. Given an input feature map $X \in \mathbb{R}^{C \times H \times W}$, we use linear layers to project it into query, key, and value $Q, K, V \in \mathbb{R}^{C \times H \times W}$. Subsequently, the generated Q, K, V are fed to spatial window self-attention (SWSA) and channel-wise self-attention (CWSA), respectively. Based on this design, SWSA and CWSA share Q, K, V generated by the same projection, allowing to modelling of both spatial and channel information in a more compact manner.

$$Q, K, V = \text{Linear}_i(X), i \in \{0, 1, 2\}$$
 (5)

$$Y_s = SWSA(Q, K, V), \quad Y_c = CWSA(Q, K, V)$$
(6)

where Linear(\cdot) denotes linear layer. The computational processes of SWSA and CWSA are elaborated as follows.

Spatial Window Self-Attention (SWSA). Given the query, key and value Q, K, V, we split them into non-overlapping windows with the resolution of N_w and flatten them in $\hat{Q}, \hat{K}, \hat{V} \in \mathbb{R}^{N_w \times \frac{HW}{N_w} \times C}$. The SWSA is formulated as:

$$\hat{Q}, \hat{K}, \hat{V} = \text{partition}(Q, K, V)$$
 (7)

$$SWSA = Softmax(\hat{Q} \cdot K^{\hat{T}} / \sqrt{d} + B) \cdot \hat{V}$$
(8)

where B is a dynamic position bias, whose value is learned through an MLP [40].

Channel-Wise Self-Attention (CWSA). Given the query, key, and value Q, K, V, we reshape them into $\hat{Q}, \hat{K}, \hat{V} \in \mathbb{R}^{C \times HW}$ and compute the transposed-attention map across channels. The CWSA process is defined as:

$$\hat{Q}, \hat{K}, \hat{V} = \operatorname{reshape}(Q, K, V)$$
 (9)

$$CWSA = Softmax(\hat{Q} \cdot K^{T}/\alpha) \cdot \hat{V}$$
(10)

where α is a learnable scaling factor.

Adaptive Interaction. After establishing spatial and channel longrange dependencies, we use a bidirectional interaction process to adaptively propagate and integrate the two global information from two different axes. We adopt the cross-modulation method [17] to MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

Figure 3: Illustration of compact adaptive self-attention (CASA).

Figure 4: Illustration of dual selective gated module (DSGM).

realize the bidirectional interaction. The computational procedure is formulated as follows:

$$\hat{Y}_s = Y_s \odot \text{Sigmoid}(Y_c), \quad \hat{Y}_c = Y_c \odot \text{Sigmoid}(Y_s)$$
 (11)

where \odot is element-wise multiplication. With bidirectional interaction, the spatial and channel self-attentions complement and augment each other, thereby enabling omni-axial global representations.

Heterogeneous Aggregation. Although self-attention excels at modeling long-range dependencies, it lacks an inductive bias that favors extracting high-frequency local information [21]. To address this issue, we propose to add a depth-wise convolution operation on the value V to complement the heterogeneous local information. Finally, all these representations are combined followed by aggregation using a linear layer:

$$CASA = Linear(\hat{Y}_{s} + \hat{Y}_{c} + DwConv(V))$$
(12)

Based on this design, our CASA not only realizes comprehensive dense feature interactions but also provides heterogeneous feature aggregation capability at different granularities within a compact computational unit.

3.4 Dual Selective Gated Module

We propose a dual selective gated module (DSGM) to further calibrate the aggregated features generated by CASA and encapsulate the comprehensive feature correlation to each pixel. Similar to the gating mechanism [14], features are fed to two parallel linear layers followed by depth-wise convolution to encode local pixel information.

$$Z_1 = \text{DwConv}(\text{Linear}(X)), \quad Z_2 = \text{DwConv}(\text{Linear}(X))$$
 (13)

The local-aware representations are converted into context-aware weights via Sigmoid and GELU activation functions, and adaptively filter the extracted pixel features using dual selective gating. Finally, a linear layer is used to aggregate these representations.

$$\hat{Z}_1 = Z_1 \odot \text{GELU}(Z_2), \quad \hat{Z}_2 = Z_2 \odot \text{Sigmoid}(Z_1)$$
 (14)

$$DSGM = \text{Linear}(Z_1 + Z_2) \tag{15}$$

The two different activation functions allow generating weights with different properties to adaptively promote beneficial pixels and suppress detrimental pixels when performing information aggregation. With the above design, our DSGM can more efficiently aggregate global information and local contexts while introducing less computation.

4 Experiment

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Metrics. We evaluate our Compacter on four image processing tasks. For the sake of fairness, the datasets used for all experiments follow exactly previous works [9, 10, 53, 65]. Training and testing datasets for each task are listed below.

Image Super-Resolution. Our model is trained on the DIV2K [1] dataset. The evaluation is implemented on five public datasets: Set5 [5], Set14 [48], BSD100 [31], Urban100 [22] and Manga109 [32].

Image Denoising. The image denoising task is trained on DIV2K, Flickr2K [36], BSD400 [2], and WED [30], and tested on CBSD68 [31], Kodak [18], McMaster [58], and Urban100 [22],

Low-Light Image Enhancement. The training and testing are implemented in the LOL [44] dataset.

Image Deraining. We use Rain13K [19] dataset for training, while evaluate on Rain100H [50] and Test100 [56].

Evaluation metrics. The common PSNR and SSIM are used to measure performance. Following standard practice, both metrics are computed in the RGB channel, except for the image deraining task, which is evaluated in the Y-channel in YCbCr space, following previous works [23, 27].

4.1.2 Implementation Details. Our model consists of 20 CTLs while the channel number is set to 48. For image super-resolution, we train the model using 500K iterations with a patch size of $64 \times$ 64 and a batch size of 32. The initial learning rate is set to $5 \times$ 10^{-4} and is halved at the milestones: [250K, 400K, 450K, 475K]. For other restoration tasks, we extract patches of size 128 from Table 1: Quantitative comparison (PSNR/SSIM) of different lightweight models on benchmark datasets for image SR task. The best and second-best results are colored in red and blue, respectively. Note that CAMxierSR [41] only reports quantitative results at the ×4 scale.

Methods	Scale	Parame	Set5 [5]	Set14 [48]	BSD100 [31]	Urban100 [22]	Manga109 [32]	Average
Wiethous	Scale		PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
LatticeNet [29]	×2	756K	38.15/0.9610	33.78/0.9193	32.25/0.9005	32.43/0.9302	38.94/0.9774	35.03/0.9371
SMSR [38]	×2	985K	38.00/0.9601	33.64/0.9179	32.17/0.8990	32.19/0.9284	38.76/0.9771	34.95/0.9365
SwinIR-light [26]	×2	878K	38.14/0.9611	33.86/0.9206	32.31/0.9012	32.76/0.9340	39.12/0.9783	35.24/0.9390
ESRT [28]	×2	777K	38.03/0.9600	33.75/0.9184	32.25/0.9001	32.58/0.9318	39.12/0.9774	35.15/0.9375
FMEN [16]	×2	748K	38.10/0.9609	33.75/0.9192	32.26/0.9007	32.41/0.9311	38.95/0.9778	35.09/0.9379
ELAN-light [59]	×2	582K	38.17/0.9611	33.94 /0.9207	32.30/0.9012	32.76/0.9340	39.11/0.9782	35.26/0.9390
DiVANet [4]	×2	902K	38.16/0.9612	33.80/0.9195	32.29/0.9012	32.60/0.9325	39.08/0.9775	35.19/0.9384
NGswin [11]	×2	998K	38.05/0.9610	33.79/0.9199	32.27/0.9008	32.53/0.9324	38.97/0.9777	35.12/0.9384
SRFormer-light [65]	×2	853K	38.23/0.9613	33.94/0.9209	32.36/0.9019	32.91/0.9353	39.28/0.9785	35.34/0.9396
Compacter (Ours)	×2	393K	38.24/0.9619	34.08/0.9215	32.35/0.9026	32.99/0.9354	39.40/0.9786	35.41/0.9400
LatticeNet [29]	×3	765K	34.53/0.9281	30.39/0.8424	29.15/0.8059	28.33/0.8538	33.63/0.9442	31.13/0.8738
SMSR [38]	×3	993K	34.40/0.9270	30.33/0.8412	29.10/0.8050	28.25/0.8536	33.68/0.9445	31.15/0.8743
SwinIR-light [26]	×3	886K	34.62/0.9289	30.54/0.8463	29.20/0.8082	28.66/0.8624	33.98/0.9478	31.40/0.8787
ESRT [28]	×3	770K	34.42/0.9268	30.43/0.8433	29.15/0.8063	28.46/0.8574	33.95/0.9455	31.28/0.8759
FMEN [16]	×3	757K	34.45/0.9275	30.40/0.8435	29.17/0.8063	28.33/0.8562	33.86/0.9462	31.24/0.8759
ELAN-light [59]	×3	590K	34.61/0.9288	30.55/0.8463	29.21/0.8081	28.69/0.8624	34.00/0.9478	31.41/0.8787
DiVANet [4]	×3	949K	34.60/0.9285	30.47/0.8447	29.19/0.8073	28.58/0.8603	33.94/0.9468	31.36/0.8775
NGswin [11]	×3	1,007K	34.52/0.9282	30.53/0.8456	29.19/0.8078	28.52/0.8603	33.89/0.9470	31.33/0.8778
SRFormer-light [65]	×3	861K	34.67/0.9296	30.57/0.8469	29.26/0.8099	28.81/0.8655	34.19/0.9489	31.50/0.8802
Compacter (Ours)	×3	399K	34.69/0.9300	30.65/0.8477	29.28/0.8117	28.90/0.8659	34.31/0.9487	31.56/0.8808
LatticeNet [29]	×4	777K	32.30/0.8962	28.68/0.7830	27.62/0.7367	26.25/0.7873	30.54/0.9075	29.01/0.8206
SMSR [38]	×4	1,006K	32.12/0.8932	28.55/0.7808	27.55/0.7351	26.11/0.7868	30.54/0.9085	28.97/0.8209
SwinIR-light [26]	×4	897K	32.44/0.8976	28.77/0.7858	27.69/0.7406	26.47/0.7980	30.92/0.9151	29.26/0.8274
ESRT [28]	×4	751K	32.19/0.8947	28.69/0.7833	27.69/0.7379	26.39/0.7962	30.75/0.9100	29.14/0.8244
FMEN [16]	×4	769K	32.24/0.8955	28.70/0.7839	27.63/0.7379	26.28/0.7908	30.70/0.9107	29.11/0.8238
ELAN-light [59]	×4	601K	32.43/0.8975	28.78/0.7858	27.69/0.7406	26.54/0.7982	30.92/0.9150	29.27/0.8274
DiVANet [4]	×4	939K	32.41/0.8973	28.70/0.7844	27.65/0.7391	26.42/0.7958	30.73/0.9119	29.18/0.8257
NGswin [11]	×4	1,019K	32.33/0.8963	28.78/0.7859	27.66/0.7396	26.45/0.7963	30.80/0.9128	29.20/0.8262
SRFormer-light [65]	×4	873K	32.51/0.8988	28.82/0.7872	27.73/0.7422	26.67/0.8032	31.17/0.9165	29.38/0.8296
CAMixerSR [41]	×4	765K	32.51/0.8988	28.82/0.7870	27.72/0.7416	26.63/0.8012	31.18/0.9166	29.37/0.8290
Compacter (Ours)	×4	408K	32.53/0.8994	28.88/0.7876	27.76/0.7440	26.69/0.8025	31.24 /0.9148	29.42/0.8297

Figure 5: Qualitative comparison for ×4 super-resolution on the Urban100 and Manga109 datasets.

the training images with the batch size set to 32. We use 400K iterations to train the model. The initial learning rate is 1×10^{-3} and steadily decreases to 10^{-7} as the cosine annealing decays. Following

[54], we use common horizontal and vertical flips, and random rotations of 90, 180, and 270 degrees for data augmentation. Note that no other data augmentation (e.g., Mixup, RGB channel shuffle)

Table 2: Quantitative compa	arison on benchmark datas	ets for blind image denoising	. σ refers to the noise level.
r			

Mathada	Danama	_	CBSD	68 [31]	Kodak	Kodak24 [18] McMaster [ster [58]	Urban100 [22]	
Methods	Params	σ	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
SwinIR-light [26]	905K		34.16	0.9323	35.18	0.9269	35.23	0.9295	34.59	0.9478
Restormer-light [53]	1,054K		33.99	0.9311	34.86	0.9244	34.69	0.9229	34.00	0.9439
CAT-light [8]	1,042K		34.01	0.9304	34.90	0.9237	34.83	0.9247	34.12	0.9443
ART-light [57]	1,084K	15	34.08	0.9315	35.00	0.9251	35.10	0.9282	34.44	0.9467
NGswin [11]	993K		34.12	0.9324	35.12	0.9268	35.17	0.9294	34.53	0.9476
RAMiT-1 [10]	818K		34.16	0.9324	35.13	0.9264	35.22	0.9297	34.58	0.9478
Compacter (Ours)	407K		34.22	0.9674	35.17	0.9674	35.30	0.9758	34.67	0.9726
SwinIR-light [26]	905K		31.50	0.8883	32.69	0.8868	32.90	0.8977	32.23	0.9222
Restormer-light [53]	1,054K		31.33	0.8865	32.38	0.8833	32.44	0.8905	31.60	0.9161
CAT-light [8]	1,042K		31.37	0.8855	32.43	0.8822	32.58	0.8928	31.75	0.9167
ART-light [57]	1,084K	25	31.40	0.8864	32.49	0.8833	32.74	0.8956	32.03	0.9195
NGswin [11]	993K		31.44	0.8884	32.61	0.8865	32.82	0.8978	32.13	0.9215
RAMiT-1 [10]	818K		31.50	0.8888	32.64	0.8862	32.91	0.8989	32.21	0.9223
Compacter (Ours)	407K		31.57	0.9443	32.69	0.9478	32.97	0.9619	32.32	0.9569
SwinIR-light [26]	905K		28.22	0.8006	29.54	0.8089	29.71	0.8339	28.89	0.8658
Restormer-light [53]	1,054K		28.04	0.7974	29.19	0.8034	29.31	0.8256	28.30	0.8559
CAT-light [8]	1,042K		28.11	0.7960	29.29	0.8024	29.48	0.8296	28.46	0.8573
ART-light [57]	1,084K	50	28.08	0.7950	29.27	0.8000	29.48	0.8279	28.62	0.8584
NGswin [11]	993K		28.13	0.8011	29.42	0.8087	29.59	0.8339	28.75	0.8644
RAMiT-1 [10]	818K		28.24	0.8024	29.51	0.8083	29.74	0.8376	28.93	0.8671
Compacter (Ours)	407K		28.36	0.8956	29.58	0.9066	29.78	0.9310	29.03	0.9199

CBSD: 123074

Figure 6: Image denoising results with noise level σ = 50 on the Kodak24 and CBSD datasets.

or training skills (e.g., pre-training, multi-stage training) are used. The Adam algorithm was used with $\beta_1 = 0.9$ and $\beta_2 = 0.99$ for model optimization. All experiments are implemented in the PyTorch framework with four NVIDIA Tesla V100s.

4.2 Image Super-Resolution

We compare our method with state-of-the-art lightweight superresolution algorithms, as shown in Table 1. It can be seen that our

Figure 7: Qualitative comparison on the LoL dataset for low-light enhancement. Please zoom in for a better view.

Figure 8: Qualitative comparison on the Rain100H dataset for image deraining. Please zoom in for a better view.

Table 3: Quantitative comparison for Low-light image enhancement on the LoL [44] dataset.

m 11 4 C	· ··· ··	•	c •	1
Inhla A.C.	hin ntitativa	comparison	tor image	dornining
	Juaninalive	COMPANISON	IUI IIIIage	uciannie

501

Method	Params	Test100 [56] PSNR/SSIM	Rain100H [50 PSNR/SSIM
UMRL [52]	984K	24.41/0.8290	26.01/0.8320
JORDER-E [49]	4,170K	27.08/0.8720	24.54/0.8020
MSPFN [23]	13,350K	27.50/0.8760	28.66/0.8600
DRT [27]	1,180K	27.02/0.8470	29.47/0.8460
TAO-Net [25]	755K	28.59/0.8870	28.96/0.8640
RAMiT [10]	935K	30.44/0.9012	29.69/0.8775
Compacter (Ours)	407K	30.63/0.9075	29.73/0.8826

Method	Params	PSNR	SSIM
KinD [63]	8,020K	20.86	0.7900
FIDE [47]	8,620K	18.27	0.6550
DRBN [51]	5,270K	20.13	0.8300
KinD++ [60]	8,275K	21.80	0.8338
EnlightenGAN [24]	8,640K	17.48	0.6507
Uformer [42]	5,290K	16.36	0.7110
Restormer [53]	26,130K	22.43	0.8230
URetinex-Net [45]	1,230K	21.32	0.8348
KinD-SKF[46]	8,500K	21.91	0.8350
LLFormer [39]	24,520K	23.65	0.8160
Compacter (Ours)	407K	23.76	0.8375

Compacter achieves the best performance on almost all five benchmark datasets for all scale factors. In particular, our method achieves an average of 0.05 dB higher PSNR than the latest CAMixerSR (CVPR2024) with 46% fewer parameters. In addition, our method outperforms prominent SRFormer-light (ICCV2023) on average at all scales with less than half of the parameters. Compared to NGswin (CVPR2023), our method achieves up to 0.43 dB PSNR improvement on Manga109 with fewer parameters. These results demonstrate the superiority of our method.

In Figure 5, we also provide a visualization comparison of different lightweight SR methods at ×4 scale. It can be seen that competing algorithms are prone to erroneous textures and patterns. In contrast, the images produced by our method are clearer and visually closer to the ground truth. These visual results also illustrate the advantages of our Compacter in recovering details and textures.

4.3 Image Denoising

We follow [10, 53] to perform blind denoising experiments on the synthetic benchmark datasets generated using additive white Gaussian noise. The lightweight denoising methods used for comparison are derived from [9]. Table 2 shows the performances of different approaches on several benchmark datasets for noise levels 15, 25, and 50. It can be seen that our method achieves the best tradeoff between efficiency and performance. Specifically, our method embraces significantly fewer parameters while obtaining superior performance compared with other methods. For example, for the challenging noise level 50 on the Urban100 dataset, our method outperforms SwinIR by 0.14 dB in PSNR, while the parameters are less than half of it. In addition, the far more perceptually relevant SSIM index shows that our Compacter has a significant advantage over other methods.

Figure 6 shows the denoising results of different methods. It can be seen that existing methods fail to recover enough details due to severe noise degradation. In contrast, our method provides better restoration of structure and detail, resulting in a clearer restoration.

4.4 Low-light Image Enhancement

We conduct low-light enhancement experiments on the LOL dataset. Table 3 shows the quantitative results, from which one can observe

that our method achieves better performance while having significantly fewer parameters. Specifically, our Compacter outperforms the acclaimed general-purpose image restoration method Restormer [53] by 1.33dB PSNR while requiring only 1.5% of its parameters. Furthermore, our method also outperforms the much larger LL-Former [39] and KinD-SKF [46], even though they are specifically tailored for low-light enhancement tasks. We further compared the visual results of the different methods in Figure 7. Compared to competitors, our method generates images with more natural and vivid colors.

4.5 Image Deraining

We further evaluate our method on the image deraining task. The qualitative results can be viewed in Table 4. As may be seen, our model improved over the state-of-the-art performances on both datasets. The average PSNR gain of our model over the latest lightweight model RAMiT [10] is 0.11 dB. Figure 8 shows a visual comparison on the more challenging Rain100H. Compared to other algorithms, our model produces images that are clearer and more consistent with the ground truth.

4.6 Ablation Study

For ablation experiments, we train super-resolution models on DIV2K for 200K iterations. The evaluations were performed on the Manga109 dataset [32] for $\times 2$ scale super-resolution. FLOPs are calculated on input image size $3 \times 256 \times 256$.

Compact Transformer Layer. We performed ablation experiments to validate their effectiveness by removing CASA or DSGM from the CTL. For a fair comparison, we adjusted the depth of the models so that their parameters and FLOPs were comparable. Table 5 shows that removing CASA leads to severe performance degradation. This illustrates that the ability to model dense interactions is critical for restoration tasks that require per-pixel prediction. In addition, the absence of DSGM also leads to significant performance degradation. DSGM further improves the restoration performance by enhancing the useful information and suppressing the detrimental pixels through dual selective gating. In contrast, the full model achieves the best performance by coupling two complementary components.

Compact Adaptive Self-Attention (CASA). We conduct an ablation study to investigate the effectiveness of each component of CASA. As shown in Table 6, neither a single SWSA nor CWSA can achieve the desired performance, which suggests that unidimensional self-attention cannot realize comprehensive information interaction. Although the combination of the two attention techniques can achieve better performance, the absence of the *projection sharing* strategy leads to noticeable additional parameters and computational overheads. In addition, *adaptive interaction* further boosts performance barely costing any parameters and FLOPs. *Heterogeneous aggregation* also brings a 0.05dB performance improvement at a cost of a limited computational budget.

Dual Selective Gated Module (DSGM). We further explored the effectiveness of DSGM design as shown in Table 7. It can be seen that introducing depth-wise convolution in vanilla FFNs can bring performance improvement with few parameters and FLOPs. This strategy is also widely adopted by advanced image restoration

Table 5: Ablation study of the CTL on the Manga109 dataset for $\times 2$ scale image super-resolution.

Methods	PSNR	Params	FLOPs	
w/o CASA	38.54	749K	48G	
w/o DSGM	38.74	396K	57G	
Full Model	39.29	393K	47G	

Table 6: Ablation study on the micro design of the CASA. w/o projection sharing denotes SWSA and CWSA independently use linear layer to generate Q, K, V. w/o heterogeneous aggregation means removing depth-wise convolution on the V.

Methods	PSNR	Params	FLOPs
only SWSA	39.24	393K	42G
only CWSA	38.98	393K	30G
w/o projection sharing	39.28	458K	51G
w/o adaptive interaction	39.25	393K	47G
w/o heterogeneous aggregation	39.24	384K	46G
CASA (Ours)	39.29	393K	47G

Table 7: Ablation study on the micro design of the DSGM.

Methods	PSNR	Params	FLOPs
FFN (Baseline)	39.23	418K	49G
ConvFFN (+DwConv) [65]	39.28	435K	51G
GDFN (+Gating Mechanism) [53]	39.26	390K	47G
DSGM (Ours)	39.29	393K	47G

networks [42, 53]. In addition, the gating mechanism helps to further reduce the model parameters and computation but leads to some performance degradation. In contrast, our DSGM utilizing the dual selective gating mechanism can achieve superior performance while barely imposing additional computations.

5 Conclusion

In this paper, we present a novel compact Transformer for lightweight image restoration. Specifically, we propose compact adaptive self-attention (CASA) for comprehensive information dissemination and interaction within a compact computational unit. CASA simultaneously establishes the global context of spatial and channel as well as their interactions and achieves global-local coupling through heterogeneous aggregation. In addition, we propose a dual selective gated module (DSGM) to achieve dynamic context aggregation through a dual-path structure and gating mechanism. Thanks to two complementary components, our Compacter enables comprehensive pixel-level relational interactions while maintaining desirable model sizes. Extensive experiments demonstrate that Compacter achieves state-of-the-art performance on several restoration tasks with fewer model parameters.

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Grant 62072185, U1711262, 62173186, and 61703096.

References

- Eirikur Agustsson and Radu Timofte. 2017. Ntire 2017 challenge on single image super-resolution: Dataset and study. In CVPR workshops. 126–135.
- [2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. 2010. Contour detection and hierarchical image segmentation. *IEEE TPAMI* 33, 5 (2010), 898–916.
- [3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
- [4] Parichehr Behjati, Pau Rodriguez, Carles Fernández, Isabelle Hupont, Armin Mehri, and Jordi Gonzàlez. 2023. Single image super-resolution based on directional variance attention network. *Pattern Recognition* 133 (2023), 108997.
- [5] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. 2012. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In *BMVC*.
- [6] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2021. Pre-trained image processing transformer. In CVPR. 12299–12310.
- [7] Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. 2023. Dual Aggregation Transformer for Image Super-Resolution. In *ICCV*. 12312–12321.
- [8] Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xin Yuan, et al. 2022. Cross Aggregation Transformer for Image Restoration. *NeurIPS* 35 (2022), 25478–25490.
- Haram Choi, Cheolwoong Na, Jinseop Kim, and Jihoon Yang. 2023. Exploration of Lightweight Single Image Denoising with Transformers and Truly Fair Training. In ICMR. 452–461.
- [10] Haram Choi, Cheolwoong Na, Jihyeon Oh, Seungjae Lee, Jinseop Kim, Subeen Choe, Jeongmin Lee, Taehoon Kim, and Jihoon Yang. 2023. RAMiT: Reciprocal Attention Mixing Transformer for Lightweight Image Restoration. arXiv preprint arXiv:2305.11474 (2023).
- [11] Haram Choi et al. 2023. N-gram in swin transformers for efficient lightweight image super-resolution. In CVPR. 2071–2081.
- [12] Yuning Cui, Wenqi Ren, Sining Yang, Xiaochun Cao, and Alois Knoll. 2023. IRNeXt: Rethinking Convolutional Network Design for Image Restoration. In *ICML*. 6545–6564.
- [13] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. 2019. Secondorder attention network for single image super-resolution. In CVPR. 11065–11074.
- [14] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language modeling with gated convolutional networks. In *ICML*. 933–941.
- [15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
- [16] Zongcai Du, Ding Liu, Jie Liu, Jie Tang, Gangshan Wu, and Lean Fu. 2022. Fast and Memory-Efficient Network Towards Efficient Image Super-Resolution. In *CVPR*. 853–862.
- [17] Qihang Fan, Huaibo Huang, Xiaoqiang Zhou, and Ran He. 2023. Lightweight Vision Transformer with Bidirectional Interaction. *NIPS* 36 (2023).
- [18] Rich Franzen. 1999. Kodak lossless true color image suite. source: http://r0k. us/graphics/kodak 4, 2 (1999).
- [19] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. 2017. Removing rain from single images via a deep detail network. In *CVPR*. 3855–3863.
- [20] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte. 2019. Self-guided network for fast image denoising. In *ICCV*. 2511–2520.
- [21] Katherine Hermann, Ting Chen, and Simon Kornblith. 2020. The origins and prevalence of texture bias in convolutional neural networks. *NIPS* 33 (2020), 19000–19015.
- [22] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. 2015. Single image superresolution from transformed self-exemplars. In CVPR. 5197–5206.
- [23] Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun Jiang. 2020. Multi-scale progressive fusion network for single image deraining. In CVPR. 8346–8355.
- [24] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang Wang. 2021. Enlightengan: Deep light enhancement without paired supervision. *IEEE TIP* 30 (2021), 2340–2349.
- [25] Yufeng Li, Zhentao Fan, Jiyang Lu, and Xiang Chen. 2022. TAO-Net: Task-Adaptive Operation Network for Image Restoration and Enhancement. *IEEE Signal Processing Letters* 29 (2022), 2198–2202.

- [26] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. Swinir: Image restoration using swin transformer. In *ICCV*. 1833– 1844.
- [27] Yuanchu Liang, Saeed Anwar, and Yang Liu. 2022. Drt: A lightweight single image deraining recursive transformer. In CVPR. 589–598.
- [28] Zhisheng Lu, Hong Liu, Juncheng Li, and Linlin Zhang. 2022. Efficient transformer for single image super-resolution. CVPRW (2022).
- [29] Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cuihua Li, and Yun Fu. 2020. Latticenet: Towards lightweight image super-resolution with lattice block. In ECCV. Springer, 272–289.
- [30] Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei Zhang. 2016. Waterloo exploration database: New challenges for image quality assessment models. *IEEE TIP* 26, 2 (2016), 1004–1016.
- [31] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, Vol. 2. 416–423.
- [32] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2017. Sketch-based manga retrieval using manga109 dataset. *Multimedia Tools and Applications* 76, 20 (2017), 21811–21838.
- [33] Francesco Pinto, Philip HS Torr, and Puneet K. Dokania. 2022. An impartial take to the cnn vs transformer robustness contest. In ECCV. 466–480.
 [34] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken.
- [34] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR. 1874–1883.
- [35] Long Sun, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. 2023. Spatially-adaptive feature modulation for efficient image super-resolution. In *ICCV*. 13190–13199.
- [36] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. 2017. Ntire 2017 challenge on single image super-resolution: Methods and results. In CVPR workshops. 114–125.
- [37] Hang Wang, Xuanhong Chen, Bingbing Ni, Yutian Liu, and Jinfan Liu. 2023. Omni Aggregation Networks for Lightweight Image Super-Resolution. In CVPR. 22378–22387.
- [38] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan Guo. 2021. Exploring sparsity in image super-resolution for efficient inference. In CVPR. 4917–4926.
- [39] Tao Wang, Kaihao Zhang, Tianrun Shen, Wenhan Luo, Bjorn Stenger, and Tong Lu. 2023. Ultra-high-definition low-light image enhancement: A benchmark and transformer-based method. In AAAI, Vol. 37. 2654–2662.
- [40] Wenxiao Wang, Wei Chen, Qibo Qiu, Long Chen, Boxi Wu, Binbin Lin, Xiaofei He, and Wei Liu. 2023. Crossformer++: A versatile vision transformer hinging on cross-scale attention. *IEEE TPAMI* (2023).
- [41] Yan Wang, Yi Liu, Shijie Zhao, Junlin Li, and Li Zhang. 2024. CAMixerSR: Only Details Need More" Attention". In CVPR. 25837–25846.
- [42] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li. 2022. Uformer: A general u-shaped transformer for image restoration. In CVPR. 17683–17693.
- [43] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. 2018. Deep retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808.04560 (2018).
- [44] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. 2018. Deep Retinex Decomposition for Low-Light Enhancement. In BMCV.
 [45] Wenkur Weighter Weighter Strenger To Weighter Veng and Venger
- [45] Wenhui Wu, Jian Weng, Pingping Zhang, Xu Wang, Wenhan Yang, and Jianmin Jiang. 2022. URetinex-Net: Retinex-Based Deep Unfolding Network for Low-Light Image Enhancement. In CVPR. 5901–5910.
- [46] Yuhui Wu, Chen Pan, Guoqing Wang, Yang Yang, Jiwei Wei, Chongyi Li, and Heng Tao Shen. 2023. Learning semantic-aware knowledge guidance for low-light image enhancement. In CVPR. 1662–1671.
- [47] Ke Xu, Xin Yang, Baocai Yin, and Rynson WH Lau. 2020. Learning to restore low-light images via decomposition-and-enhancement. In CVPR. 2281–2290.
- [48] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. 2010. Image superresolution via sparse representation. IEEE TIP 19, 11 (2010), 2861–2873.
- [49] Wenhan Yang, Robby T Tan, Jiashi Feng, Zongming Guo, Shuicheng Yan, and Jiaying Liu. 2019. Joint rain detection and removal from a single image with contextualized deep networks. *IEEE TPAMI* 42, 6 (2019), 1377–1393.
- [50] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. 2017. Deep joint rain detection and removal from a single image. In CVPR. 1357–1366.
- [51] Wenhan Yang, Shiqi Wang, Yuming Fang, Yue Wang, and Jiaying Liu. 2021. Band representation-based semi-supervised low-light image enhancement: Bridging the gap between signal fidelity and perceptual quality. *IEEE TIP* 30 (2021), 3461– 3473.
- [52] Rajeev Yasarla, Vishal M Patel, and et al. 2019. Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining. In CVPR. 8405–8414.
- [53] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. 2022. Restormer: Efficient transformer for highresolution image restoration. In CVPR. 5728–5739.

MM '24, October 28-November 1, 2024, Melbourne, VIC, Australia

Zhijian Wu, Jun Li, Yang Hu, and Dingjiang Huang.

- [54] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2021. Multi-stage progressive image restoration. In CVPR. 14821–14831.
- [55] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. 2022. Learning enriched features for fast image restoration and enhancement. *IEEE TPAMI* 45, 2 (2022), 1934–1948.
- [56] He Zhang, Vishwanath Sindagi, and Vishal M Patel. 2019. Image de-raining using a conditional generative adversarial network. *IEEE TCSVT* 30, 11 (2019), 3943–3956.
- [57] Jiale Zhang, Yulun Zhang, Jinjin Gu, Yongbing Zhang, Linghe Kong, and Xin Yuan. 2023. Accurate image restoration with attention retractable transformer. *ICLR* (2023).
- [58] Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. 2011. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. *Journal of Electronic imaging* 20, 2 (2011), 023016–023016.
- [59] Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. 2022. Efficient long-range attention network for image super-resolution. In ECCV. Springer, 649–667.

- [60] Yonghua Zhang, Xiaojie Guo, Jiayi Ma, Wei Liu, and Jiawan Zhang. 2021. Beyond brightening low-light images. IJCV 129 (2021), 1013–1037.
- [61] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. 2018. Image super-resolution using very deep residual channel attention networks. In ECCV. 286–301.
- [62] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018. Residual dense network for image super-resolution. In CVPR. 2472–2481.
- [63] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. 2019. Kindling the darkness: A practical low-light image enhancer. In ACM MM. 1632–1640.
- [64] Haiyu Zhao, Yuanbiao Gou, Boyun Li, Dezhong Peng, Jiancheng Lv, and Xi Peng. 2023. Comprehensive and Delicate: An Efficient Transformer for Image Restoration. In CVPR. 14122–14132.
- [65] Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin Hou. 2023. Srformer: Permuted self-attention for single image super-resolution. In ICCV. 12780–12791.