
Hindsight Merging: Diverse Data Generation with Language Models

Veniamin Veselovsky*1 Benedikt Stroebl*1 Gianluca Bencomo*1

Dilip Arumugam1 Lisa Schut3 Arvind Narayanan1 Thomas L. Griffiths1,2

1Department of Computer Science, Princeton University
2Department of Psychology, Princeton University

3OATML, Deptartment of Computer Science, University of Oxford

Abstract

Pre-training a language model equips it with a
broad understanding of the world, while fine-
tuning refines it into a helpful assistant. How-
ever, fine-tuning does not exclusively enhance task-
specific behaviors but also suppresses some of the
beneficial variability from pre-training. This reduc-
tion in diversity is partly due to the optimization
process, which theoretically decreases model en-
tropy in exchange for task performance. To coun-
teract this, we introduce hindsight merging, a tech-
nique that combines a fine-tuned model with a
previous training checkpoint using linear interpo-
lation to restore entropy and improve performance.
Hindsight-merged models retain strong instruction-
following capabilities and alignment while display-
ing increased diversity present in the base model.
Additionally, this results in improved inference
scaling, achieving a consistent 20-50% increase in
pass@10 relative to the instruction tuned model
across a coding benchmark and series of models.
Our findings suggest that hindsight merging is an
effective strategy for generating diverse genera-
tions that follow instructions.

1 INTRODUCTION

Humans solve a wide variety of problems by reusing previ-
ously learned knowledge and applying diverse patterns of
thinking [Griffiths et al., 2019]. This ability to adapt and
explore multiple cognitive pathways allows human reason-
ing to converge to correct solutions over time [Collins and
Frank, 2013, Tomov et al., 2020, Solway et al., 2014, Maisto
et al., 2015, Correa et al., 2023]. The adaptive reuse of avail-
able resources is not just a hallmark of human intelligence
but also a key ingredient in the design of reliable artificial
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intelligence (AI) systems. In many AI applications, diver-
sity plays a crucial role. Repeated sampling from language
models relies on a wide variety of generated responses to
enhance performance [Brown et al., 2024]. Compound AI
systems [Zaharia et al., 2024] improve their scalability and
inference capabilities when diverse data inputs and mod-
els are integrated. However, while diversity enhances both
human reasoning and AI training, the challenge of generat-
ing synthetic datasets with sufficient richness and variation
remains an unresolved problem.

The primary challenge can be understood through the lens of
optimization. Both humans and language models are known
to directly fit their training data [Hasson et al., 2020], but
the breadth of human experience leads to more diversity
in our ability to reason. Large language models (LLMs)
trained on a vast and diverse internet corpora produce a base
model that generates a wide variety of outputs. However,
we remove much of this diversity when we fine-tune due
to the use of smaller datasets and the objective of aligned
behavior [Murthy et al., 2024]. This creates a paradox: the
optimization that improves task performance undermines
the model’s ability to generate the broad range of outcomes
necessary for rich and diverse synthetic datasets. Simply,
the best model for solving a task is not necessarily the best
model for generating a dataset.

In this work, we explore this trade-off between optimizing
on task-specific datasets and producing diverse synthetic
datasets. We introduce a theoretically-motivated approach
to increasing diversity, hindsight merging, that merges an
instruction-tuned model with prior training checkpoints
to better accommodate the trade-off required for diverse
dataset generation (see Figure 1). Through hindsight merg-
ing, we demonstrate that the resulting data is more diverse,
maintains instruction-following abilities, and has improved
pass@k performance compared to the constituent models
before merging.
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Figure 1: Overview of our main findings.

2 THE ENTROPY SPECTRUM

While fine-tuning language models is crucial for achieving
high performance on downstream tasks, it requires special-
izing the response distribution away from the broad, di-
verse data that was well-approximated during pre-training.
Suppose pre-training involved fitting language model re-
sponses to match a distribution P . Later, fine-tuning the
pre-trained language model demands matching a new re-
sponse distribution Q. Let H(·) denote the entropy of a
distribution [Shannon, 1948, Cover and Thomas, 2012]. It
is to be expected that H(Q) < H(P ); indeed, given that
current best practices often take P as an Internet-scale distri-
bution over prompt-response pairs, it may be more realistic
to consider H(Q)≪ H(P ). During fine-tuning, a language
model is being optimized away from accurately approxi-
mating P to fit Q, which forces a decrease in entropy to
accommodate the new response distribution. Such a drop
entropy naturally begets a commensurate drop in overall
response diversity.

This section attempts to make this intuitive idea mathemat-
ically precise in two concrete ways. First, we focus on su-
pervised fine-tuning and adopt a local perspective by study-
ing the change in entropy per optimization step. Second,
we adopt a reinforcement-learning perspective to implic-
itly consider how entropy changes after multiple iterations
of policy optimization. Taken together, these theoretical
findings corroborate the intuitive notion that fine-tuning de-
creases entropy and, in doing so, reduces the diversity of lan-
guage model responses. We conclude with an information-
theoretic motivation for a simple remedy to this vanished
diversity: mixing response distributions between the current
fine-tuned model and the pre-trained base model.

2.1 SUPERVISED FINE-TUNING

Consider a neural network qθ(xt+1|x1:t) =
softmax(f(x1:t; θ)), parameterized by θ ∈ RD, that
models a predictive distribution over next-token generations.
We denote qθ(xt+1|x1:t) as qθ(x) for brevity. Let us define
parameter updates during fine-tuning as a transition operator

T : RD → RD, which induces the following mapping M
on the output space:

M : qkθ (x) 7→ qk+1
θ (x) (1)

where qk+1
θ (x) = softmax(f(x1:t;T (θk))) after applying

the transition θk+1 = T (θk). For all subsequent calcula-
tions, please consult Appendix A for detailed derivations.
The total entropy of the predictive distribution after K up-
date steps from some base model q0θ(x) is given by:

H(qKθ ) = H(q0θ) +

K−1∑
k=0

Ex∼qkθ

[
log

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣] ,
(2)

where |∂M/∂q| denotes the Jacobian determinant of M at
each update step. For stochastic gradient descent (SGD), the
transition operator T is defined as

θk+1 ← θk − α∇θL(θk), (3)

where α is the learning rate. Although M does not admit
a closed form solution, we can approximate it using a first-
order Taylor expansion for small α:

M(q) ≈ q − α
[
diag(q)− qq⊤

] ∂f(x; θ)
∂θ

∇θL(θ). (4)

Taking the Jacobian yields:

H(qkθ )−H(qk−1
θ ) ≈ Ex∼qkθ

[log |I − αH|] , (5)

where H = [E −G] ∂f(x;θ)
∂θ ∇θL(θ) for Eijk = δij · δjk

and Gijk = δikqj + δjkqi. This approximation denotes how
much entropy changes per update step using SGD.

During supervised fine-tuning (SFT), the goal is to align the
model’s next-token predictions with a target data-generating
process, p⋆(xt+1|x1:t), which is typically smaller and less
diverse than the original pre-training data. In the most com-
mon case, we perform SFT with the cross-entropy loss. The
gradient term from Equation 4 can be approximated by the
expression

∂f(x; θ)

∂θ
∇θL(θ) ≈ (q − y), (6)



Figure 2: Analysis of theoretical volume changes for SGD based on logit rank (1-10) and softmax entropy in next-token
predictions (topk = 600). Using 10 random arXiv abstracts from January 2025, we compute next-token predictive distributions
and compute the Jacobian of the SGD step when the correct token corresponds to each logit.

where q denotes model output probabilities and y represents
the one-hot encoded ground-truth labels for the input x.
Note that this approximation captures the classical gradient
for cross-entropy, but under the assumption of a small α
and dominance of logit-level loss terms in the gradient flow.
While simplifying, this approximation allows us to analyze
of how entropy over next-token predictions evolves at each
step of the optimization process using Equation 5.

In Figure 2, we show approximate changes to model en-
tropy, indicated by |∂M/∂q|. To build an intuition, when
|∂M/∂q| > 1, the volume of the predictive distribution
qθ(xt+1|x1:t) is expanding, implying an increase in entropy
over model generations given the token history x1:t. When
|∂M/∂q| < 1, volume is shrinking, implying a decrease in
entropy.

Optimizing the cross-entropy loss affects model behavior
differently depending on the rank of the ground-truth log-
its. For rank-1 predictions, all models contract in volume,
thereby systematically reducing the entropy of conditional
distributions for next-token predictions as they begin to
fit the data perfectly. In this case, entropy decrease is a
symptom of overfitting. For rank-2 through rank-10 pre-
dictions, lower-entropy models show volume expansion
whereas higher entropy models continue to contract. Re-
gardless of rank, high-entropy models consistently exhibit
volume contraction, with less aggressive contractions as the
prediction rank increases.

2.2 REINFORCEMENT LEARNING WITH
HUMAN FEEDBACK

Aside from the supervised approach examined in the preced-
ing section, an alternative route to fine-tuning a language
model uses reinforcement learning [Stiennon et al., 2020,
Ouyang et al., 2022]. Compared to the local analysis in
the previous sub-section, which characterizes how entropy
changes per optimization step, this section presents a more

global picture. As the reinforcement learning with human
feedback (RLHF) pipeline carries various adornments that
complicate analysis, this section restricts its focus to a sim-
pler Markov decision process (MDP) wherein learning an
optimal policy is equivalent to learning the per-token dis-
tribution of some underlying fine-tuning response distribu-
tion. Under mild assumptions, we show that fine-tuning a
language model towards a lower-entropy dataset via policy-
gradient updates [Sutton et al., 1999] decreases the entropy
in the language models responses relative to the pretrained
model. We encourage readers to consult Appendix B for all
technical details.

Let V be a finite vocabulary of tokens such that the set of

possible token sequences is L =
∞⋃

n=1
Vn. Let µ ∈ ∆(L) be

the distribution over prompts and let p⋆ : L → ∆(L) be the
ground-truth response distribution given any prompt. Next,
we specify a MDP in which any LLM is a policy and the
reward function is constructed such that learning the optimal
policy amounts to obtaining a LLM that matches p⋆.

Consider the infinite-horizon, discounted MDP [Bellman,
1957, Puterman, 1994] M = ⟨S,A,R, T , µ, γ⟩. Here
S = L represents any token sequence from V . The ac-
tion space A = V ∪ {STOP} contains all valid tokens a
LLM may emit as well as an explicit STOP token to denote
response completion. Logically, the MDP follows determin-
istic transition dynamics T : S×A → S which appends the
selected token to the current state: T (s, a) = ⟨s, a⟩.1 The
initial state distribution µ ∈ ∆(S) is precisely the distribu-
tion over prompts from above. The discount factor γ ∈ [0, 1)
conveys the effective time horizon for optimizing rewards.
So far, we have specified a controlled Markov process (that
is, a MDP without a reward function) such that any policy
π : S → ∆(A) represents a LLM that examines the prompt
along with any partially-generated response thus far and

1For brevity, we omit an absorbing, zero-reward terminal state
that an agent transitions to upon choosing the STOP action.



emits a distribution over next tokens.

To capture the objective of fine-tuning a LLM towards
a ground-truth response distribution p⋆, we consider a
policy-dependent reward function defined as R(s, a) =

log
(

p⋆(a|s)
π(a|s)

)
. Recall that the performance of any policy

π with respect to a prompt s ∈ S is given by its associ-

ated value function V π(s) = E
[ ∞∑
t=0

γtR(st, at) | s0 = s

]
.

With a slight abuse of notation, we account for randomness
in the initial state through V π(µ) ≜ Es0∼µ [V

π(s0)]. Re-
call that any policy induces a corresponding discounted
stationary state visitation distribution dπµ(s) = (1 −

γ)
∞∑
t=0

γtPπ(st = s), where Pπ(st = ·) ∈ ∆(S) is the

distribution over states visited by policy π at timestep t. In-
tuitively dπµ encodes which states policy π will occupy using
γ to account for near-term versus future visitation. In the
context of LLMs, dπµ encodes a distribution over prompts
and partial/complete responses generated by a particular
LLM π.

We define the optimal policy π⋆ ofM as achieving supremal
value with associated value function V ⋆(µ) = sup

π
V π(µ).

For the particular choice of policy-dependent reward func-
tion, we see that an optimal policy π⋆ minimizes the KL-
divergence between its own per-step token distribution
and that of the ground-truth distribution p⋆: V ⋆(µ) =
− inf

π

1
(1−γ)Es∼dπ

µ
[DKL(π(· | s) || p⋆(· | s))] .

Theorem 1 (Informal). Let π0 be an initial, pre-trained
base model and πK be the fine-tuned LLM after K ∈ N
iterations of policy-gradient updates. Then, we have

Es∼d⋆
µ

[
DKL(π

⋆
s || πK

s )
]
≲ Es∼d⋆

µ

[
DKL(π

⋆
s || π0

s)
]
.

As the optimal policy of the MDP M is p⋆, Theorem
1 affirms that making policy-gradient updates [Sutton
et al., 1999] brings the fine-tuned LLM πK closer (in KL-
divergence) to the lower-entropy response distribution p⋆

than the higher-entropy pre-trained model π0.

2.3 TOWARD RECOVERING DIVERSITY

Just as the reduction of entropy formalized in the previous
two sub-sections is an intuitive consequence of language
model fine-tuning, we use this final sub-section to moti-
vate an equally intuitive solution: mixing model parame-
ters. Prior work establishes a link between the blending
of model parameters and a commensurate blending of the
associated model response distributions [Kangaslahti and
Alvarez-Melis, 2024]. One might naturally hope to obtain
the “best of both worlds” by mixing weights of a pre-trained
language model fit to a high-entropy response distribution

and those of a fine-tuned model closely approximating a
low-entropy response distribution. We may formalize this
intuition with a first proposition that considers an obvious
linear interpolation between response distributions:

Proposition 1. Consider two arbitrary probability distribu-
tions P and Q such that H(P ) ≥ H(Q). For any α ∈ [0, 1],
define Mα = α · P + (1− α) ·Q. Then,

H(Q) ≤ H(M) ≤ H(P )

A more general information-theoretic analysis allows us to
obtain looser bounds on the entropy of response sampled
from the mixture distribution that goes beyond just linear
interpolation:

Proposition 2. Consider two arbitrary probability distri-
butions P,Q ∈ ∆(X ) with X1 ∼ P and X2 ∼ Q. Let
Z ∈ ∆({1, 2}) be a random index following an arbitrary
distribution. Then, XZ is a random variable denoting a sam-
ple from the mixture distribution between P and Q induced
by Z. Moreover,

2 · min
i∈{1,2}

H(Xi) ≤ H(XZ) ≤ 2 · max
i∈{1,2}

H(Xi) + 1.

Proofs may be found in Appendix C. Together, these two
propositions highlight one promising pathway to recover-
ing the response diversity lost due to standard fine-tuning
practices; namely, by blending the response distributions of
the current fine-tuned language model and the pre-trained
base model. In the next section, we present our hindsight
merging approach that uses interpolation between respective
model weights to achieve this diverse mixture of response
distributions.

3 DIVERSE GENERATION

In Section 2, we showed that fine-tuning on low diversity
datasets leads to low diversity data generations in fine-tuned
models. We propose hindsight merging — interpolating
between the weights of the base model, which has a high
diversity, and the fine-tuned model — to improve diversity
in the generations.

Mixing weights leverages the fact that, during fine-tuning,
the model is likely in the neural tangent kernel (NTK)
regime [Fort et al., 2020, Wortsman et al., 2022c,b, Ilharco
et al., 2022]. When the model is in the NTK regime, the
functional updates are approximately linear. Therefore, by
interpolating between the weights, we approximately roll-
back the model along its optimization trajectory to previous
checkpoints that capture the desirable results of fine-tuning
but at higher levels of entropy.



3.1 ENCOURAGING DIVERSITY

Hindsight merging. For model merging, we focus our anal-
ysis on a couple classes and sizes of models: Llama-3.1-8b,
Llama-2-7b, Llama-2-13b, Llam-3.1-70b. For each of these
models we combine both the base and instruct models using
MergeKit [Goddard et al., 2024] and use linear interpolation
(c.f., Appendix G for further information). For the Llama-2
series of models, we combine it with the Vicuna instruct
version Chiang et al. [2023].

To merge the models, we define a parameter α ∈ [0, 1]
which measures the merging coefficient. When α = 0 the
merged model equals the base model when α = 1, it is
entirely the instruct copy. For experiments, we restrict α ∈
{0, 0.7, 0.9, 1}. We denote α = 0 as the “pretrained” model,
and α = 1 as the “instruct” model. For the pretrained model,
we convert prompts to completion prompts, whereas for the
merged models we use a chat template.

3.2 EVALUATION

Data. We take 378 tasks from MBPP+, a large-scale bench-
mark dataset for code generation in Python [Liu et al., 2024].
MBPP+ is an extension of the original MBPP benchmark
with additional unit tests to improve test coverage and avoid
false positives.

Diversity. In many applications of synthetic data, semantic
diversity outweighs syntactic diversity—diverse approaches
are more valuable than diverse use of language for the same
approach. To account for this, we rely on a BERTScore-
style [Zhang et al., 2019] similarity metric. For each of the
rewritten generations, we embed the traces using OpenAI’s
text-embedding-3-small with 150 dimensions. We
measure the local similarity or the average cosine similarity
across generations from the same question and the global
similarity as the diversity in generations across different
questions.

Performance. For each of the programming tasks in
MBPP+, we test a model’s performance on the dataset us-
ing the provided unit tests (functions that verify the code
correctness). Here we report two scores, the pass@1 and
pass@k [Kulal et al., 2019]. Pass@1 is the average number
of generations that are correct, irrespective of if the model
gets multiple correct generations for one question. On the
other hand, pass@k tests if a model has k tries to solve a
problem, what are the chances at least one of the generations
passes the unit tests. Explicitly, we estimate pass@k using
the following formula from Chen et al. [2021]:

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

) ]

Instruction following. Pre-training a language model pro-
vides it with an understanding of the world, however dur-
ing the fine-tuning stage the model becomes an assistant
learning how to follow instructions. Thus, merging the two
models, may lead to reduced performance in the instruction
following tasks the model was trained on. One such task is
refusal, where when prompted with a potentially problem-
atic request, an instruction-tuned language model is explic-
itly trained to refuse that request. To evaluate the hindsight-
merged models, we see how performance on SORRY-Bench
— a benchmark for safety refusals — changes [Xie et al.,
2024]. To evaluate SORRY-Bench generations, we use GPT-
4.1-mini-as-a-judge.

4 RESULTS

In our experiments, we show that we (1) can induce diver-
sity in the generations using hindsight merging, (2) does
not harm model performance in other aspects, such as in-
struction following, and (3) improves model pass@k perfor-
mance.

4.1 THE BEST OF BOTH WORLDS

Diversity. To begin, we explore how varying the α parame-
ter affects diversity of the model generations. In Figure 3,
we illustrate the global similarity metrics across the different
models. Within the global context (cross-question similar-
ity) reducing the alpha makes the model on average more
diverse. Across the four models we studied, the fully in-
struct model has the highest on average BERTScore across
its generated responses.

In Figure 4 we show the intra-question similarity for the
different models. Within the Vicuna models we find that
hindsight merging actually results in reduced diversity for
generations of the same question compared with the fully
instruct model. On the other hand, for the Llama-3.1-8B
and Llama-3.1-70B models, we find that the fully instruct
model consistently provides the most homogeneous answers.
The difference between the Vicuna and Llama model is
largely explained by the inability of the Vicuna models
to solve some of the coding problems, resulting in highly
unstable behavior. For some of the questions, the model
merely repeats the original prompt vs. other times generating
highly varying solutions. This behavior is further backed up
by the general poor performance shown below.

Failure-to-Refuse. Figure 6 presents a heat-map of failure-
to-refuse rates across the 44 SORRY-Bench content clusters.
Each column corresponds to a model variant; the number
in parentheses beside the name is its mean failure rate (i.e.,
the fraction of hazardous prompts it answered instead of
refusing). Darker shades mark categories where the model
answered when it should have refused, so higher values
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Figure 3: Average cosine similarity across embeddings of generated text in the global settings.

mean weaker safety behavior.

For the Llama-3.1-8B family, the pretrained checkpoint an-
swers almost half of restricted prompts (0.48). Blending in
instruct weights sharply reduces this: at α = 0.7 the rate
falls to 0.32, at α = 0.9 to 0.30, and the fully-instruct model
settles at 0.28. Thus even a modest interpolation captures
most of the instruction-tuned caution while preserving base-
model fluency. On the other hand, for the Llama-3.1-70B
family scale alone does not buy safety. The 70B pretrained
model is the least compliant in the study (0.75). α = .70
cuts the failure rate nearly in half (0.42), and full instruc-
tion tuning brings it down to 0.45, still well above the 8B
instruct score. Finally, both Vicuna models show the same
monotonic trend. For the 7B model the pretrained fails to
refuse around 47% of the time reduced to 0.44 in α = 0.7,
further reduced to 0.40 in α = 0.9, compared to 0.37 in
the instruct setting. The 13B model demonstrates a similar
pattern: 0.47 → 0.42 → 0.31 → 0.31.

4.2 CODING PERFORMANCE

We evaluate how well merged models perform on MBPP+
by measuring pass@k for k ∈ 1, . . . , 10. Figure 5 shows
inference scaling results across four model families. We ob-
serve a consistent trend across all models: hindsight merging
seems to improve performance and achieve the best of both
worlds, instruct and pretrained models. For all four model
families, the highest pass@10 results are attained by hind-
sight merged models.

These gains seem to be more pronounced for weaker mod-
els like Vicuna-7B and Vicuna-13B. Vicuna-7B’s pass@10
jumps from 0.296 in the instruct model to 0.491 with
α = 0.7, while also improving pass@1 from 0.085 to

0.255. Similarly, Vicuna-13B improves from 0.41 to 0.56
on pass@10 when merging with α = 0.7. These results
show that merging can recover strong performance while
retaining instruction-following capabilities.

Interestingly, for the strongest model—Llama-3.1-70B—the
gains are more modest, suggesting that the performance-
diversity trade-off is already well-balanced in larger models.
Nevertheless, the merged model with α = 0.7 achieves the
highest overall performance for both pass@1 and pass@10.

In summary, the evidence indicates that hindsight merging
reliably improves performance under repeated sampling
(pass@k), with the strongest effects seen in smaller models.
This confirms that inference scaling benefits from balancing
instruction-following with higher generation diversity.

5 RELATED WORK

Model merging. Model merging refers to combining the
weights of different models to create a new model that ide-
ally retains the strengths of its components. This approach
has been found to produce models that perform well across
multiple tasks originally handled by the individual mod-
els [Wortsman et al., 2022a]. Notably, model merging has
been shown to be more effective than data mixing for inte-
grating knowledge across models [Aakanksha et al., 2024],
and various strategies have been explored to improve its ef-
fectiveness [Akiba et al., 2025, Yadav et al., 2024]. Addition-
ally, Wortsman et al. [2022c] showed that model merging
improve robustness to data shifts.

A common method for model merging is linear interpola-
tion, where the weights of two or more models are combined
using a weighted sum [Wortsman et al., 2022a]. Depending
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Figure 4: Average cosine similarity across embeddings of generated text in the local settings.

on the training regime, linear interpolation is approximately
equal to ensembling models [Wortsman et al., 2022c,b].
Related to this idea, task vectors have been proposed as a
method for model adaptation: a task can be approximated by
computing the difference in the weights of a fine-tuned a lan-
guage model and the base model. This difference represents
the task, and can be combined with other task vectors to
improve model performance [Ilharco et al., 2022]. Related
to this paper, task vectors have been used to convert a base
language model into a change model [Huang et al., 2024b].
This builds on recent work that shows the representations
of the base and instruct models are aligned [Kissane et al.,
2024b,a, Lindsey et al., 2024, Minder et al., 2025].

Model post-training and reasoning. Model post-training
consists of everything that is done after the pretraining and
is critical to making the model a capable assistant [Bai et al.,
2022] and aligning them with human values [Hendrycks
et al., 2023]. The release of o1 was a harbinger for post-
training reasoning into language models [Jaech et al., 2024],
leading to a series of highly effective models, e.g., DeepSeek
R1 [Guo et al., 2025], S1 [Muennighoff et al., 2025].

Reasoning work builds on the observation that additional
compute to solve tasks leads to dramatic improvements
in performance. This additional reasoning can be achieved
through prompting [Prystawski et al., 2024, Wei et al., 2022]
increasing computational depth [Goyal et al., 2024, Pfau
et al., 2024], and explicitly training reasoning into language
models [De Sabbata et al., 2024, Luo et al., 2024, Zelikman
et al., 2022]. To train a reasoning model, work has shown
that the data traces require high diversity, quality, and a
range of difficulties [Muennighoff et al., 2025].

Synthetic data curation and diversity. Synthetic data cu-

ration is used for a wide range of applications from rea-
soning model distillation [Guo et al., 2025] to self-play
in language models [Kumar et al., 2024]. One active area
of research is designing diverse synthetic data generation
pipelines [Samvelyan et al., 2024, Veselovsky et al., 2023,
Ge et al., 2024, Zelikman et al., 2022, Yu et al., 2024, Chen
et al., 2024], one approach explicitly asks the LLM to gen-
erate diverse hypotheses before solving a task [Wang et al.,
2024b, Fröhling et al., 2024, Zhang et al., 2024b]. One
application of synthetic data has been training reasoning
models [Bespoke Labs, 2025], where it has been shown that
weaker models provide better synthetic data than stronger
models [Bansal et al., 2024] given that an accurate verifier
is available to score responses [Stroebl et al., 2024]

Synthetic data is usually generated using RLHF models,
which have been shown to reduce the diversity of the gener-
ated data [Murthy et al., 2024, Achiam et al., 2023, Casper
et al., 2023, Go et al., 2023, Perez et al., 2022]. Other work
has shown that while they exhibit reduced diversity, it may
not be problematic since it filters noisy and unhelpful gener-
ations [Lake et al., 2024], a claim we further explore in this
paper. One specific example where more diverse outputs
are associated with better performance is inference scaling
through best-of-n, where multiple candidate generations are
sampled, and the highest-scoring output—often selected via
a verifier or heuristic function—is chosen [Brown et al.,
2024, Wang et al., 2024a].

6 DISCUSSION

In this paper, we focus on reconciling a tension in generating
data with language models: maintaining the output diver-
sity of the base model without losing the strong instruction



0 1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Vicuna-7B v1.5

0 1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Vicuna-13B v1.5

0 1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Llama-3.1-8B

0 1 2 3 4 5 6 7 8 9 10
k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Llama-3.1-70B

Pretrained  = 0.7  = 0.9 Instruct

Figure 5: Inference scaling across different k between 1 and 10.

following abilities of the fine-tuned models. We show that
fine-tuning via either supervised learning or reinforcement
learning reduces output diversity by lowering the entropy
during optimization. To counter this, we propose hindsight
merging for getting the best of both worlds by merging in-
struct models with their past checkpoints. Our experiments
show the value of this method by both studying generated
data, alongside its downstream applications. We illustrate
that merging leads to more diversity, maintains instruction
following, and exhibits better inference scaling behavior.

Extensions. One natural first avenue for extending the meth-
ods outlined in this paper is scaling up of model parameters
and data. Even in our GPU-constrained settings, we saw
inference scaling laws that demonstrate optimistic findings,
and as we scale model size, number of samples generated,
and number of questions answered, we expect similar im-
provements to hold. Second, a more rigorous comparison
with other diversity increasing methods. Classically, entropy
has been added to language models through temperature
scaling. A more rigorous comparison of temperature scaling

methods may provide interesting insights into how different
diversity techniques result in different downstream implica-
tions. Additionally, our work focuses on LERP for merging,
but other methods could create different generation behav-
iors. While merging is usually done on the model level,
logit-level mixing [Huang et al., 2024a, Zhang et al., 2024a]
may offer alternative distributional approaches.

Limitations. While hindsight merging improves diversity
and inference scaling, our approach has several limitations.
First, verifier reliability: diverse generations produce re-
sponses that could increase the risk of misleading external
verifiers often used to enable inference scaling [Stroebl et al.,
2024]. Second, domain specificity: our experiments focus
on code generation, and it remains unclear whether simi-
lar gains would extend to other tasks such as mathematics.
Third, alternative methods: concurrent work suggests that
generating synthetic data using base models combined with
iterative rewriting can also enhance performance [Zhu et al.,
2025]. This indicates that diverse, synthetic data generation
may be achievable even with α = 0, (that is, without explicit



hindsight merging). However, in our experiments, we found
that base models often struggle to generate high-quality,
coherent, and sufficiently-long reasoning traces, limiting the
effectiveness of this approach.

As the use of language model outputs grows, it will be-
come increasingly important to generate diverse data. We
believe that the careful interplay of richly-diverse base mod-
els and instruction-following, fine-tuned models may open
up a wealth of opportunity for generating diverse and high-
quality data.

Reproducibility. We make the code and data used
in this paper available here: https://github.com/
benediktstroebl/hindsight-merging.
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A TRACKING ENTROPY CHANGES OVER OPTIMIZATION STEPS

In this section, we aim to provide a more rigorous treatment of Section 2. We will proceed pedagogically and first derive
Equation 2, which forms the base of our analysis.

Suppose that we are performing K transformations on some predictive distribution qkθ (xt+1|x1:t) for x ∈ X denoted by
qkθ (x) for brevity. Let

M : qkθ (x) 7→ qk+1
θ (x) = softmax(f(x;T (θk)))

denote an invertible and differentiable transformation on the space of predictive distributions. Assume that all integrals exist
and that the conditions for the change-of-variables theorem are met. Let qk+1

θ (x) = M(qkθ (x)) denote an application of this
transformation.

By the change-of-variables formula, we have

qk+1
θ (x) = qkθ (x)

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣−1

, (7)

where
∣∣∣∂M∂q (

qkθ (x)
)∣∣∣ denotes the determinant of the Jacobian matrix for the transformation M . Taking the natural logarithm

of both sides gives:

log qk+1
θ (x) = log qkθ (x)− log

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣ . (8)

Now, let us take the expectation of both sides with respect to qk+1
θ (x) and apply the definition for differential entropy:

H[qk+1
θ ] = −Eqk+1

θ

[
log qkθ (x)

]
+ Eqk+1

θ

[
log

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣] . (9)

Since the change-of-variables formula ensures py(y)dy = px(x)dx, we can re-write the left-hand integrals in terms of qkθ
and obtain

H[qk+1
θ ] = H[qkθ ] + Eqkθ

[
log

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣] , (10)

which, after summing for K iterations starting at q0θ(x), produces Equation 2:

H[qKθ ] = H[q0θ ] +

K−1∑
k=0

Ex∼qkθ

[
log

∣∣∣∣∂M∂q (
qkθ (x)

)∣∣∣∣] ,
*Equal contribution
†Equal contribution
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A.1 DERIVING M(q) UNDER GRADIENT DESCENT

Let z = f(x; θ) and q(x) = softmax(z) = σ(z). Applying a single gradient descent step:

z′ = f(x; θ − α∇θL(θ)) (11)

Using a first-order Taylor expansion around θ, we obtain:

z′ ≈ f(x; θ) +
∂f(x; θ)

∂θ
(θ′ − θ) (12)

From the gradient update rule θ′ − θ = −α∇θL(θ), this simplifies to:

z′ = z − α
∂f(x; θ)

∂θ
∇θL(θ) (13)

Defining M(q) as the transformed distribution after the update:

M(q) = q′ = σ(z′) = σ

(
z − α

∂f(x; θ)

∂θ
∇θL(θ)

)
(14)

To linearize around q, we expand:

q′ ≈ q +
∂σ(z)

∂z
(z′ − z) (15)

With σ as the softmax function, this leads to:

M(q) ≈ q − α
[
diag(q)− qq⊤

] ∂f(x; θ)
∂θ

∇θL(θ), (16)

where q denotes the softmax probabilities produced by the network f(x; θ) given data x.

A.2 JACOBIAN OF M(q)

The Jacobian ∂
∂qM(q) allows us to track volume changes, per update step, over qθ(x) = softmax(f(x; θ)). Consider the

Jacobian for the approximation from Appendix A.1:

∂

∂q
M(q) ≈ ∂

∂q

[
q − α

[
diag(q)− qq⊤

] ∂f(x; θ)
∂θ

∇θL(θ)
]
. (17)

Since ∂f(x;θ)
∂θ ∇θL(θ) is parametrized by θ, we treat it as a constant and only consider the term q − α

[
diag(q)− qq⊤

]
. It is

simple to show that the Jacobian of this term with respect to q is:

I − α [E −G] , (18)

where Eijk = δij · δjk and Gijk = δikqj + δjkqi. To approximate the ∂f(x;θ)
∂θ ∇θL(θ) term, we assume that (1) the learning

rate α is small and (2) ∂f(x;θ)
∂θ does not significantly vary with q near the current parameter setting θ.

For the cross-entropy loss, the gradient with respect to the logits is given by:

∂L(θ)
∂f

= q − y. (19)

for softmax probabilities q and ground-truth one-hot encoded vectors y. As a result of the assumptions above, we choose the
following approximation:

∂f(x; θ)

∂θ
∇θL(θ) ≈ q − y. (20)

Combining these assumptions the Jacobian of the update mapping M(q) can be approximated by

∂

∂q
M(q) ≈ I − α [Ekk −G] (q − y), (21)

where Eijk = δij · δjk and Gijk = δikqj + δjkqi.



B FINE-TUNING VIA REINFORCEMENT LEARNING DECREASES ENTROPY

B.1 PROBLEM FORMULATION

Let V be a finite vocabulary of tokens such that the set of possible token sequences is L =
∞⋃

n=1
Vn. A fine-tuning dataset

is generated by sampling a prompt and generating a corresponding response from some fixed ground-truth distribution.
Let µ ∈ ∆(L) be the distribution over prompts and let p⋆ : L → ∆(L) be the ground-truth response distribution. One
might expect p⋆ to take on a natural factorized form such that, for any initial prompt s ∼ µ and length-T response

w = (w1, w2, . . . , wT ), p⋆(w | s) =
T∏

t=1
p⋆(wt | w1, . . . , wt−1, s). We may write down a particular Markov decision

process (MDP) in which any LLM is a policy of the MDP and the reward function is constructed such that learning the
optimal MDP policy amounts to obtaining a LLM that matches p⋆.

Consider the infinite-horizon, discounted MDPM = ⟨S,A,R, T , µ, γ⟩. Here S = L represents language (a sequence of
tokens from V) consisting of a prompt and some partial or complete response. The action space A = V ∪ {STOP} contains
all valid tokens a LLM may emit as well as an explicit STOP token to denote the completion of a response. Logically, the
MDP follows deterministic transition dynamics T : S × A → S which appends the selected token to the current state:
T (s, a) = ⟨s, a⟩. For simplicity, we obviate the explicit incorporation of a designated absorbing, terminal state s⊥ that
an agent will transition to immediately upon selecting the STOP action. µ ∈ ∆(S) is an initial state distribution which
aligns with the distribution over prompts above; thus, any initial state already contains the prompt and subsequent token
selections are folded into the next state transitions. As usual, γ ∈ [0, 1) is the standard discount factor for communicating a
preference between near-term and long-term reward. So far, we have specified a controlled Markov process (that is, a MDP
without a reward function) such that any policy π : S → ∆(A) represents a LLM that examines the prompt along with any
partially-generated response thus far and emits a distribution over next tokens.

To capture the objective of fine-tuning a LLM towards a ground-truth response distribution p⋆, we consider a policy-
dependent reward function defined asR(s, a) = log

(
p⋆(a|s)
π(a|s)

)
. Recall that the performance of any policy π with respect

to a prompt s ∈ S is given by its associated value function V π(s) = E
[ ∞∑
t=0

γtR(st, at) | s0 = s

]
. With a slight abuse

of notation, we account for randomness in the initial state through V π(µ) ≜ Es0∼µ [V
π(s0)]. Recall that any policy

induces a corresponding discounted stationary state visitation distribution dπµ(s) = (1 − γ)
∞∑
t=0

γtPπ(st = s), where

Pπ(st = ·) ∈ ∆(S) is the distribution over states visited by policy π at timestep t. Intuitively dπµ encodes which states
policy π will occupy using γ to account for near-term vs future visitation. In the context of LLMs, dπµ encodes a distribution
over prompts and partial/complete responses generated by a particular LLM π. A well-known fact is that

V π(µ) = E

[ ∞∑
t=0

γtR(st, at)

]
=

1

(1− γ)
Es∼dπ

µ

[
Ea∼π(·|s) [R(s, a)]

]
.

We define the optimal policy π⋆ ofM as achieving supremal value with associated value function V ⋆(µ) = sup
π∈Π

V π(µ),

where Π ≜ {S → ∆(A)} denotes the class of all stationary, stochastic policies. For the particular choice of policy-dependent
reward function, we see that an optimal policy π⋆ minimizes the KL-divergence between its own per-step token distribution
and that of the ground-truth distribution p⋆:

V ⋆(µ) = sup
π∈Π

V π(µ)

= sup
π∈Π

1

(1− γ)
Es∼dπ

µ

[
Ea∼π(·|s) [R(s, a)]

]
= sup

π∈Π

1

(1− γ)
Es∼dπ

µ

[
Ea∼π(·|s)

[
log

(
p⋆(a | s)
π(a | s)

)]]
= − inf

π∈Π

1

(1− γ)
Es∼dπ

µ
[DKL(π(· | s) || p⋆(· | s))] .

Denote the visitation distribution of the optimal policy as d⋆µ ≜ dπ
⋆

µ . As the KL-divergence is non-negative and achieves its



minimum value when two distributions are equal, it follows that Es∼d⋆
µ
[DKL(π

⋆(· | s) || p⋆(· | s))] = 0.

B.2 ANALYSIS

LLM fine-tuning via reinforcement learning typically proceeds via policy search where any LLM can be seen as a
parameterized policy πθ : S → ∆(A) of the above MDP with parameters θ ∈ Θ ⊂ Rd. Let ΠΘ ≜ {πθ | θ ∈ Θ} ⊂ Π
denote the parameterized policy class. Our analysis proceeds using a smoothness assumption on ΠΘ.

Recall that a function f : Rd → R is β-smooth is

|∇f(x)−∇f(x′)||2 ≤ β||x− x′||2 ∀x, x′ ∈ Rd.

A consequence of this, either by Taylor’s Theorem or Lemma 3.4 of Bubeck et al. [2015], is

|f(x′)− f(x)−∇f(x) · (x− x′)| ≤ β

2
||x′ − x||22 ∀x, x′ ∈ Rd.

Assumption 1. For all πθ ∈ ΠΘ, the mapping θ 7→ log (πθ(a | s)) is β-smooth, ∀(s, a) ∈ S ×A.

Consider an iteration of fine-tuning k with current policy parameters θ(k) where we perform the following abstract policy
gradient update

θ(k+1) = θ(k) + ηω(k),

where η ∈ R≥0 is a learning rate and ω(k) is some vector for updating policy parameters (we will specify a concrete update
momentarily). For brevity, we use the shorthand πk ≜ πθ(k) . Observe that Assumption 1 yields the following lemma

Lemma 1. Under Assumption 1, for any state-action pair (s, a) ∈ S ×A,

log

(
πk+1(a | s)
πk(a | s)

)
≥ η∇θ log

(
πk(a | s)

)
· ω(k) − η2

β

2
||ω(k)||22.

Proof. Notice that for a β-smooth function f : Rd → R,

|f(x′)− f(x)−∇f(x) · (x− x′)| ≤ β

2
||x′ − x||22 =⇒ f(x′)− f(x) ≥ ∇f(x) · (x− x′)− β

2
||x′ − x||22.

Applying this to our β-smooth policies (by Assumption 1), we have

log

(
πk+1(a | s)
πk(a | s)

)
= log

(
πk+1(a | s)

)
− log

(
πk(a | s)

)
≥ ∇θ log

(
πk(a | s)

)
·
(
θ(k+1) − θ(k)

)
− β

2
||θ(k+1) − θ(k)||22

= η∇θ log
(
πk(a | s)

)
· ω(k) − η2

β

2
||ω(k)||22.

At this point, we specify a precise choice of policy-gradient update for ω(k). For brevity, we write the value function induced
by policy πk as V k ≜ V π

θ(k) . Additionally, we define the action-value function as

Qk(s, a) ≜ Qπ
θ(k) (s, a) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s, a0 = a

]
= R(s, a) + γV k(T (s, a)).

Consequently, the advantage function [Baird III, 1993, Sutton and Barto, 1998] is defined as Ak(s, a) ≜ Qk(s, a)− V k(s).
While the standard choice in the literature is Proximal Policy Optimization (PPO) [Schulman et al., 2017], we study a
simpler, special case of PPO more commonly known as advantage actor-critic [Mnih et al., 2016] (equivalent to running
PPO for exactly one epoch per minibatch of on-policy data). We define the policy-gradient update at iteration k as

ω(k) =
Ak(s, a)

||∇θ log (πk(a | s)) ||22
· ∇θ log

(
πk(a | s)

)
.

We assume that all policy-gradient updates have bounded norm.



Assumption 2. For all iterations k, ||ω(k)||2 ≤W , for some W ∈ R≥0.

We may then obtain the following lemma:

Lemma 2. At any iteration k, under Assumptions 1 and 2,

Es∼d⋆
µ

[
DKL(π

⋆
s || πk

s )−DKL(π
⋆
s || πk+1

s )
]
≥ (1− γ)ηEs0∼µ

[
V ⋆(s0)− V k(s0)

]
− η2βW 2

2
.

Proof.

Es∼d⋆
µ

[
DKL(π

⋆
s || πk

s )−DKL(π
⋆
s || πk+1

s )
]
= Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
log

(
π⋆(a | s)
πk(a | s)

)]
− Ea∼π⋆(·|s)

[
log

(
π⋆(a | s)

πk+1(a | s)

)]]
= Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
log

(
πk+1(a | s)
πk(a | s)

)]]
≥ Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
η∇θ log(π

k(a | s)) · ω(k) − η2
β

2
||ω(k)||22

]]
= Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
η∇θ log(π

k(a | s)) · Ak(s, a)

||∇θ log(πk(a | s))||22
· ∇θ log(π

k(a | s))− η2
β

2
||ω(k)||22

]]
= Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
η · A

k(s, a) · ||∇θ log(π
k(a | s))||22

||∇θ log(πk(a | s))||22
− η2

β

2
||ω(k)||22

]]
= Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
η ·Ak(s, a)− η2

β

2
||ω(k)||22

]]
≥ η · Es∼d⋆

µ

[
Ea∼π⋆(·|s)

[
Ak(s, a)

]]
− η2βW 2

2

= (1− γ)ηEs0∼µ

[
V ⋆(s0)− V k(s0)

]
− η2βW 2

2
,

where the first inequality follows from Assumption 2 and Lemma 1 above, the second inequality follows from Assumption
2, and the final equation follows from the performance-difference lemma [Kakade and Langford, 2002].

Using the above lemma, we may follow similar steps as Agarwal et al. [2021] to obtain a result that relates a current policy
after K iterations of policy-gradient updates to the initial policy π0 using the KL-divergence with the optimal policy as a
benchmark or “metric” for comparison.

Theorem 2. For a total number of iterations K ∈ N, under Assumptions 1 and 2, we have

Es∼d⋆
µ

[
DKL(π

⋆
s || πK

s )
]
≤ Es∼d⋆

µ

[
DKL(π

⋆
s || π0

s)
]
+

η2βW 2K

2
.

Proof. To start, first observe that

1

K

K−1∑
k=0

Es0∼µ

[
V ⋆(s0)− V k(s0)

]
=

1

Kη(1− γ)

K−1∑
k=0

η(1− γ)Es0∼µ

[
V ⋆(s0)− V k(s0)

]
≤ 1

Kη(1− γ)

K−1∑
k=0

(
Es∼d⋆

µ

[
DKL(π

⋆
s || πk

s )−DKL(π
⋆
s || πk+1

s )
]
+

η2βW 2

2

)

=
1

Kη(1− γ)

K−1∑
k=0

Es∼d⋆
µ

[
DKL(π

⋆
s || πk

s )−DKL(π
⋆
s || πk+1

s )
]
+

ηβW 2

2(1− γ)

=
1

Kη(1− γ)

(
Es∼d⋆

µ

[
DKL(π

⋆
s || π0

s)−DKL(π
⋆
s || πK

s )
])

+
ηβW 2

2(1− γ)
,



where the inequality follows from Lemma 2. Observe that, by definition of the optimal policy,
1
K

K−1∑
k=0

Es0∼µ

[
V ⋆(s0)− V k(s0)

]
≥ 0. So, we have

0 ≤ 1

Kη(1− γ)

(
Es∼d⋆

µ

[
DKL(π

⋆
s || π0

s)−DKL(π
⋆
s || πK

s )
])

+
ηβW 2

2(1− γ)
.

Multiplying through by Kη(1− γ) and rearranging terms, we see that

Es∼d⋆
µ

[
DKL(π

⋆
s || πK

s )
]
≤ Es∼d⋆

µ

[
DKL(π

⋆
s || π0

s)
]
+

η2βW 2K

2
,

as desired.

In the context of LLM fine-tuning, recall that the optimal policy π⋆ for the MDPM defined above is the ground-truth
distribution p⋆ for the fine-tuning dataset. Moreover, recall that fine-tuning begins with a LLM/policy π0 initialized with
parameters obtained via supervised language modeling on some broader data distribution (for example, the Internet) with
entropy (presumably) much larger than p⋆. For a sufficiently small learning rate η ≪ 1, Theorem 2 tells us fine-tuning with
RL to obtain a LLM that more closely approximates a lower-entropy distribution p⋆ must necessarily bring the model farther
away from the initial policy π0 that closely matches a higher-entropy pre-training distribution.

C INTERPOLATING BETWEEN TWO DISTRIBUTIONS

In this section, we discuss the resulting effects on entropy when we interpolate between two probability distributions
assuming two different flavors of interpolation.

C.1 LINEAR INTERPOLATION

Let p1(xt+1 | x1:t) denote a large, diverse corpus of internet text that is used to train a sufficiently parameterized base
model such that q0θ(xt+1 | x1:t) = p1(xt+1 | x1:t). Now, suppose that we fine-tune this base model q0θ such that we mix
the softmax probabilities over next-token predictions linearly with a fine-tuning dataset p2(xt+1 | x1:t) to produce some
q⋆θ(xt+1|x1:t) such that

q⋆θ(xt+1|x1:t) = αp1(xt+1 | x1:t) + (1− α)p2(xt+1 | x1:t), (22)

for α ∈ [0, 1]. Since Shannon’s entropy H(·) is concave over the space of probability distributions, it immediately follows
that for

min{H(p1),H(p2)} ≤ H(αp1(xt+1 | x1:t) + (1− α)p2(xt+1 | x1:t)) ≤ max{H(p1),H(p2)} (23)

we have

H(p2) ≤ H(q⋆θ) ≤ H(p1) (24)

provided that H(p1) ≥ H(p2).

C.2 BEYOND LINEAR INTERPOLATION

Consider two given probability distributions P,Q ∈ ∆(X ) such that X1 ∼ P and X2 ∼ Q. Let Z ∈ ∆({1, 2}) be a random
index following an arbitrary distribution. Then,

XZ =

{
X1 Z = 1

X2 Z = 2

is a random variable denoting a sample from the mixture distribution between P and Q induced by Z. For example, consider
Z ∼ Bernoulli(α) for α ∈ [0, 1]. Note that X1 and X2 are independent (X1 ⊥ X2).



By the chain rule of mutual information, we have

I(XZ ;X1, X2, Z) = I(XZ ;Z) + I(XZ ;X1 | Z) + I(XZ ;X2 | Z,X1).

Since X1 ⊥ X2, I(XZ ;X2 | Z,X1) = I(XZ ;X2 | Z). Recall that conditional mutual information first integrates out
randomness in the conditioning random variable (in this case, Z). So, when Z = 1, I(XZ ;X1 | Z = 1) = I(X1;X1 | Z =
1) = H(X1). Alternatively, when Z = 2, I(XZ ;X1 | Z = 2) = I(X2;X1 | Z = 2) = 0. The same logic holds mutatis
mutandis for the second conditional mutual information term I(XZ ;X2 | Z). So, the above expression simplifies as

I(XZ ;X1, X2, Z) = I(XZ ;Z) + I(XZ ;X1 | Z) + I(XZ ;X2 | Z)

= I(XZ ;Z) + P(Z = 1)H(X1) + P(Z = 2)H(X2)

= I(XZ ;Z) +H(XZ | Z)

= H(XZ)−H(XZ | Z) +H(XZ | Z)

= H(XZ).

The above just formalizes the obvious conclusion that knowing (X1, X2, Z) is sufficient for knowing everything about XZ .
Taking an alternative decomposition via the chain rule of mutual information, we have

I(XZ ;X1, X2, Z) = I(XZ ;X1) + I(XZ ;X2 | X1)︸ ︷︷ ︸
=I(XZ ;X2)

+ I(XZ ;Z | X1, X2)︸ ︷︷ ︸
≤H(Z)

≤ I(XZ ;X1) + I(XZ ;X2) +H(Z)

= H(X1)−H(X1 | XZ) +H(X2)−H(X2 | XZ) + H(Z)︸ ︷︷ ︸
≤log(2)=1

≤ H(X1) +H(X2) + 1

≤ 2 · max
i∈{1,2}

H(Xi) + 1.

Applying the identity above to this inequality yields H(XZ) ≤ 2 · max
i∈{1,2}

H(Xi) + 1.

Meanwhile, we also have

I(XZ ;X1, X2, Z) = I(XZ ;X1) + I(XZ ;X2 | X1)︸ ︷︷ ︸
=I(XZ ;X2)

+ I(XZ ;Z | X1, X2)︸ ︷︷ ︸
≥0

≥ I(XZ ;X1) + I(XZ ;X2)

= H(X1)−H(X1 | XZ) +H(X2)−H(X2 | XZ).

Since X1 ⊥ X2, either value of Z results in H(X1 | XZ) = H(X2 | Z) = 0. Thus,

I(XZ ;X1, X2, Z) ≥ H(X1)−H(X1 | XZ) +H(X2)−H(X2 | XZ)

= H(X1) +H(X2)

≥ 2 · min
i∈{1,2}

H(Xi).

In summary,
2 · min

i∈{1,2}
H(Xi) ≤ H(XZ) ≤ 2 · max

i∈{1,2}
H(Xi) + 1.



D INSTRUCTION FOLLOWING RESULTS

Figure 6: SORRY-Bench results across different model merges



E DATA CURATION DETAILS

We curated the dataset using the MBPP+ benchmark[Liu et al., 2024]. We used the full benchmark dataset of 378 questions.
Compared to the benchmark used in the original paper, the official implementation excluded 21 tasks from the dataset that
were prone to errors. The detailed parameter settings for data curation are summarized in Table 1.

Table 1: Data Curation Parameters

Parameter Value

Dataset MBPP+
Subset 378 questions as contained in official benchmark harness implementation 1

Number of Samples per Question 11
Sampling Temperature 0.7

F EVALUATION ON SORRY-BENCH

Generations were done using the default SORRY-Bench settings2.

G MODEL MERGING

LERP. LinEar inteRPolation is a technique used to interpolate weights between two vectors. This technique is a classic
approach for merging different neural network based models Wortsman et al. [2022b], Izmailov et al. [2019]. It consists of
defining an α parameter that defines a model mixing coefficient and then taking the weighted average across the weights.
Explicitly, if we have one set of weights v1 and v2 then we define a merged weight as vm = α · v1 + (1− α)v2. We use
the open-source implementation part of the mergekit3 project.

2See: https://github.com/sorry-bench/sorry-bench
3See: https://github.com/arcee-ai/mergekit

https://github.com/sorry-bench/sorry-bench
https://github.com/arcee-ai/mergekit
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