
Dual Cone Gradient Descent for Training
Physics-Informed Neural Networks

Youngsik Hwang
Artificial Intelligence Graduate School

UNIST
hys3835@unist.ac.kr

Dong-Young Lim∗

Department of Industrial Engineering
Artificial Intelligence Graduate School

UNIST
dlim@unist.ac.kr

Abstract

Physics-informed neural networks (PINNs) have emerged as a prominent approach
for solving partial differential equations (PDEs) by minimizing a combined loss
function that incorporates both boundary loss and PDE residual loss. Despite their
remarkable empirical performance in various scientific computing tasks, PINNs of-
ten fail to generate reasonable solutions, and such pathological behaviors remain dif-
ficult to explain and resolve. In this paper, we identify that PINNs can be adversely
trained when gradients of each loss function exhibit a significant imbalance in their
magnitudes and present a negative inner product value. To address these issues, we
propose a novel framework for multi-objective optimization, Dual Cone Gradient
Descent (DCGD), which adjusts the direction of the updated gradient to ensure it
falls within a dual cone region. This region is defined as a set of vectors where the
inner products with both the gradients of the PDE residual loss and the boundary
loss are non-negative. Theoretically, we analyze the convergence properties of
DCGD algorithms in a non-convex setting. On a variety of benchmark equations,
we demonstrate that DCGD outperforms other optimization algorithms in terms of
various evaluation metrics. In particular, DCGD achieves superior predictive accu-
racy and enhances the stability of training for failure modes of PINNs and complex
PDEs, compared to existing optimally tuned models. Moreover, DCGD can be
further improved by combining it with popular strategies for PINNs, including learn-
ing rate annealing and the Neural Tangent Kernel (NTK). Codes are available at
https://github.com/youngsikhwang/Dual-Cone-Gradient-Descent.

1 Introduction

Physics-informed Neural Networks (PINNs) proposed in Raissi et al. [1] have created a new paradigm
in deep learning for solving forward and inverse problems involving partial differential equations
(PDEs). The key idea of PINNs is to integrate physical constraints, governed by PDEs, into the loss
function of neural networks. This is in turn equivalent to finding optimal parameters for the neural
network by minimizing a loss function that combines boundary loss and PDE residual loss. Thanks
to their strong approximation ability and mesh-free advantage, PINNs have achieved great success in
a wide range of applications [2–8].

Building upon this success, the applications of PINNs have been extended to solve other functional
equations, including integro-differential equations [9], fractional PDEs [10], and stochastic PDEs
[11]. Moreover, numerous variants of PINNs have been developed to enhance their computational
efficiency and accuracy via domain decomposition methods [12, 13], advanced neural network
architectures [14–18], modified loss functions [19–21], different sampling strategies [22–24], and

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/youngsikhwang/Dual-Cone-Gradient-Descent

probabilistic PINNs [25, 26]. Recent studies have also explored optimizing PINNs by leveraging
function space geometry, providing an alternative perspective to enhance accuracy and computational
efficiency [27, 28].

Despite these achievements, several studies have reported that PINNs often fail to learn correct
solutions for given problems ranging from highly complex to relatively simple PDEs [29–31]. Due to
the unclear nature of pathologies in the training of PINNs, it has become a critical research topic to
explain and mitigate these phenomena. For example, [32, 33] observed that PINNs tends to get stuck
at trivial solutions while violating given PDE constraints over collocation points. The imbalance
between PDE residual loss and boundary loss was explored in Wang et al. [30], and a spectral bias of
PINNs was studied in Wang et al. [31]. Yao et al. [34] discussed the gap between the loss function
and the actual performance. Even with the insights from the aforementioned studies, a comprehensive
understanding of PINN’s failure modes remains largely unexplored in various scenarios.

In this paper, we explore these challenges from a novel perspective of multi-objective optimization.
We first provide a geometric analysis showing that PINNs can be adversely trained when the gradients
of each loss function exhibit a significant imbalance in their magnitudes, coupled with a negative inner
product value. Based on this finding, we characterize a dual cone region where both PDE residual
loss and boundary loss can be decreased simultaneously without the adverse training phenomenon.
We then propose a novel optimization framework, Dual Cone Gradient Descent (DCGD), for training
PINNs which updates the gradient direction to be contained in the dual cone region at each iteration.
Furthermore, we study the convergence properties of DCGD in a non-convex setting. In particular,
we find that DCGD can converge to a Pareto-stationary point. We validate the superior empirical
performance and universal applicability of DCGD through extensive experiments.

2 Preliminaries

Notation. The Euclidean scalar product is denoted by ⟨·, ·⟩, with ∥ · ∥ standing for the Euclidean
norm (where the dimension of the space may vary depending on the context). For a subspace W of a
vector space V , its orthogonal complement W⊥ is defined as

W⊥ := {v ∈ V |⟨u, v⟩ = 0, u ∈W}.
For a vector v ∈ V , the projection of v on a nontrivial subspace W is denoted by v∥W . Unless
otherwise specified, V represents Rd throughout the paper.

Related Works. Among various research directions in PINNs, we focus on reviewing optimization
strategies for PINNs. These can be broadly categorized into three main approaches: adaptive loss
balancing, gradient manipulation, and Multi-Task Learning (MTL). As an example of adaptive loss
balancing algorithms, Wang et al. [30] proposed a learning rate annealing (LRA) algorithm that
balances the loss terms by utilizing gradient statistics. Wang et al. [31] utilized the eigenvalues of
the Neural Tangent Kernel (NTK) to address the disparity in convergence rates among different
losses of PINNs. For gradient manipulation algorithms, the Dynamic Pulling Method (DPM) was
proposed in [35] to prioritize the reduction of the PDE residual loss. In [36], the authors used the
PCGrad algorithm, proposed in [37], for training PINNs to address multi-task learning challenges. Li
et al. [38] developed an adaptive gradient descent algorithm (AGDA) that resolves the conflict by
projecting boundary condition loss gradient to the normal plane of the PDE residual loss gradient.
Yao et al. [34] recently developed MultiAdam, a scale-invariant optimizer, to mitigate the domain
scaling effect in PINNs. Another important line of gradient manipulation involves Multi-Task
Learning (MTL) algorithms, which optimize a single model to perform multiple tasks simultaneously
[39, 40, 37, 41–44]. We will discuss that several MTL algorithms can be unified within the proposed
DCGD framework.

Physics-Informed Neural Networks. Let Ω ⊆ RD be a domain and ∂Ω be the boundary of Ω. We
consider the following nonlinear PDEs:

N [u](x) = f(x), x ∈ Ω

B[u](x) = g(x), x ∈ ∂Ω (2.1)

where N and B denote a nonlinear differential operator and a boundary condition operator, respec-
tively. We approximate u(x) by a deep neural network u(x; θ) parameterized by θ. To train the

2

neural network, the framework of PINNs minimizes the total loss function L(θ), which is a weighted
sum of PDE residual loss Lr(θ) and boundary condition loss Lb(θ), defined by:

L(θ) := ωrLr(θ) + ωbLb(θ) with (2.2)

Lr(θ) :=
1

Nr

Nr∑
i=1

|N [u(·; θ)](xi
r)− f(xi

r)|2, Lb(θ) :=
1

Nb

Nb∑
i=1

|B[u(·; θ)](xi
b)− g(xi

b)|2,

where ωr, ωb ≥ 0 are weights of each loss term, {xi
r}

Nr
i=1 denotes a set of collocation points that

are randomly sampled in Ω, and {xi
b}

Nb
i=1 the boundary sample points. Here, we set ωr = ωb = 1

throughout the paper. We note that the training of PINNs falls into the category of multi-objective
learning due to its structure of the loss function L(θ) in Eq. (2.2).

3 Empirical Observations and Issues in Training PINNs

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

0.0

0.1

0.2

0.3

0.4

Lo
ss

b

r

 if K *

 if K *

Figure 1: Training curves for the total
loss L (:= Lr + Lb), PDE residual loss
Lr, and boundary loss Lb for viscous
Burgers’ equation.

This section investigates issues that are frequently ob-
served during the training of PINNs in the context of
multi-objective learning. The parameter for the PINN
solution u(x; θ) is typically estimated by minimizing the
total loss function L(θ) with a (stochastic) gradient de-
scent method2:

θt+1 = θt − λ∇L(θt), t ∈ N

where ∇L(θ) is the gradient of the total loss function
L(θ) with respect to θ. However, a careless adoption of
standard gradient descent methods may lead to an incorrect
solution, as reducing the total loss does not necessarily
imply a decrease in both the PDE residual loss and boundary loss. This phenomenon is clearly
illustrated in Figure 1, which displays the curves of the total loss, PDE residual loss, and boundary
loss over epochs for solving the viscous Burger’s equation. Notably, while the total loss consistently
decreases throughout the training, the PDE loss adversely increases.

Conflicting and dominating gradients in PINNs. This issue is highly related with discrepancies
in the direction and magnitude between two gradients of the PDE residual and boundary loss.
Specifically, we define two gradients to be conflicting at the t-th iteration if they have a negative
inner product value, i.e., π

2 < ϕt ≤ π where ϕt is the angle between∇Lr(θt) and∇Lb(θt). When
there are conflicting gradients, parameter updates to minimize one loss function might increase the
other, leading to an inefficient learning process such as oscillating between optimizing for the two
loss functions and resulting in degraded solution quality [19]. Another problem arises when one
gradient is much larger than the other, i.e., ∥∇Lr(θt)∥ ≪ ∥∇Lb(θt)∥ or ∥∇Lr(θt)∥ ≫ ∥∇Lb(θt)∥.
The significant differences3 in the magnitudes of gradients in PINNs might create a situation where
the optimization algorithm primarily minimizes one loss function while neglecting the other. This
often results in slow convergence and overshooting, as the smaller gradient, though neglected, may
be more crucial in finding a better solution. To mitigate the imbalance in the gradients, loss balancing
approaches to rescale the weights of each loss term have been proposed [30, 31].

To examine these challenges in training PINNs, we record cosine value of the angle between∇Lr and
∇Lb, and the ratios of their magnitudes while training a PINN for the Helmholtz equation. Figure 2(a)
shows that conflicting gradients are observed in about half of the total iterations. Moreover, we
observe that the magnitude of the gradient of the PDE residual is several tens to hundreds of times
larger than that of the boundary loss (See Figure 2(b)). That is, conflicting and dominating gradients
are prevalent issues in the training of PINNs.

2In practice, adaptive gradient descent algorithms such as ADAM [45] are widely employed.
3Our subsequent analysis in Section 4.1 will clearly identify the extent to which significant differences in

gradient magnitude lead to a challenge.

3

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

cos()
0.0

0.2

0.4

0.6

0.8

De
ns

ity

(a) histogram of cos(ϕ)

0 50 100 150 200 250

|| r||/|| b||
0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

(b) histogram of R

Figure 2: Conflicting and dominating gradients in PINNs. Here, ϕ is defined as the angle between
∇Lr and ∇Lb, R = ∥∇Lr∥

∥∇Lb∥ is the magnitude ratio between gradients.

4 Methodology

In this section, we provide a geometric analysis to identify a dual cone region where both the PDE
residual loss and the boundary loss can decrease simultaneously. Subsequently, we introduce a
general framework for DCGD algorithms, ensuring that the updated gradient falls within this region.
We then propose three specifications of DCGD algorithms: projection, average, and center. All proofs
for main results in this section can be found in Appendix A.

4.1 Dual Cone Region

The concept of a dual cone plays a pivotal role in our DCGD algorithm. Formally, a dual cone is
defined as a set of vectors that have nonnegative inner product values with a given cone.
Definition 4.1. (Dual cone) Let K be a cone of Rd. Then, the set

K∗ = {y|⟨x, y⟩ ≥ 0 for all x ∈ K, y ∈ Rd}

is called the dual cone of K.

For each iteration t, consider a cone denoted by Kt, which is generated by rays of two gradients,
∇Lr(θt) and ∇Lb(θt):

Kt := {cx|c ≥ 0, x ∈ {∇Lr(θt),∇Lb(θt)}} .

In the context of PINNs, the dual cone of Kt, denoted by K∗
t , represents the set of gradient vectors

where each vector is neither conflicting with the gradient of the PDE loss nor with the gradient of the
boundary loss, i.e., for u ∈ K∗

t , ⟨u, ∇Lr(θt)⟩ ≥ 0 and ⟨u, ∇Lb(θt)⟩ ≥ 0.

In other words, when the total gradient ∇L(θt) is in K∗
t (as depicted by the region of the red line in

Figure 1), the standard gradient descent taking the direction∇L(θt) will decrease both the PDE and
boundary losses for a suitable step size. On the other hand, if ∇L(θt) /∈ K∗

t (the region indicated by
the blue line in Figure 1), one of the two losses will adversely increase even with sufficiently small
step sizes.

This indicates that the training process of PINNs can significantly vary depending on whether the
total gradient belongs to the dual cone region. The following theorem establishes the necessary and
sufficient conditions under which the total gradient falls within the dual cone region in terms of the
angle and relative magnitude between the gradients of the PDE residual and boundary loss.
Theorem 4.2. Suppose that ∇Lr(θt) and ∇Lb(θt) are given at each iteration t. Let ϕt be the
angle between ∇Lr(θt) and ∇Lb(θt), and R = ∥∇Lr(θt)∥

∥∇Lb(θt)∥ be their relative magnitude. Then,
∇L(θt) ∈ K∗

t if and only if

(i) ⟨∇Lb(θt), ∇Lr(θt)⟩ ≥ 0 , or

(ii) ⟨∇Lb(θt), ∇Lr(θt)⟩ < 0 and − cosϕt ≤ R ≤ −
1

cosϕt
.

Theorem 4.2 provides a clear criterion for when conflicting and dominating gradients lead to adverse
training in PINNs. For instance, the condition (ii) in Theorem 4.2 implies that the larger ϕt (the
more conflicting they are), even a slight difference in their magnitudes can result in adverse training.
In particular, Theorem 4.2 quantifies the extent of problematic relative magnitude between the two

4

Figure 3: Visualization of dual cone region K∗
t and its subspace Gt

gradients, thereby clarifying the concept of dominating gradients, which has not been previously
defined in the literature.

Thus, our strategy aims to devise an algorithm that chooses the updated gradient within the dual cone
region at each gradient descent step. For notational simplicity, we write∇tL∥∇L⊥

r
and∇tL∥∇L⊥

b
to

represent ∇L(θt)∥(∇Lr(θt))
⊥ and ∇L(θt)∥(∇Lb(θt))

⊥ , respectively. In particular, we are interested
in a simple and explicit subspace Gt, defined as the set of conic combinations of ∇tL∥∇L⊥

r
and

∇tL∥∇L⊥
b

:

Gt :=
{
c1∇tL∥∇L⊥

r
+ c2∇tL∥∇L⊥

b

∣∣c1, c2 ≥ 0
}
, (4.1)

for two reasons. Firstly, all vectors in Gt are easily computable due to the explicit expression of Gt,
whereas the dual cone K∗ is implicitly defined. Secondly, Gt contains two important components
of K∗

t , which are the projections of∇L(θt) onto∇Lr(θt)
⊥ and∇Lb(θt)

⊥ by its construction. The
next proposition shows that Gt always belongs to the dual cone region as illustrated in Figure 3.
Proposition 4.3. Suppose that ∇Lr(θt) and ∇Lb(θt) are given at each iteration t. Consider Gt,
the set of conic combinations of∇tL∥∇L⊥

r
and∇tL∥∇L⊥

b
, defined in Eq. (4.1). Then, Gt ⊆ K∗

t .

Consequently, the DCGD algorithm defines the updated gradient denoted by gdual
t within Gt at each

iteration t. A general framework for DCGD is presented in Algo 1.

Algorithm 1 Dual Cone Gradient Descent (base)

Require: learning rate λ, max epoch T , initial point θ0
for t = 1 to T do

Choose gdual
t ∈ G∗

t
θt = θt−1 − λgdual

t
end for

4.2 Convergence Analysis

To discuss the convergence properties of DCGD, we introduce the concept of Pareto optimality
(adapted to the PINN setting), which is a key in multi-objective optimization [46, 40].
Definition 4.4. (Pareto optimal and stationary) A point θ ∈ Rd is said to be Pareto-optimal if there
does not exist θ′ ∈ Rd such that

Lr(θ
′) ≤ Lr(θ) and Lb(θ

′) ≤ Lb(θ).

In addition, a point θ ∈ Rd is said to be Pareto-stationary if there exists α1, α2 such that

α1∇Lr(θ) + α2∇Lb(θ) = 0, α1, α2 ≥ 0, α1 + α2 = 1.

Intuitively, a Pareto-stationary point implies there is no feasible descent direction that would decrease
all loss functions simultaneously. For example, consider a point θt at which the cosine of the angle
ϕt between ∇Lr(θt) and∇Lb(θt) is −1, i.e., cos(ϕt) = −1. Such a point is Pareto-stationary.

5

The following theorem guarantees the convergence of the DCGD algorithm proposed in Algo 1 under
some regularities in a non-convex setting. Assume L(θ∗) := infθ∈Rd L(θ) > −∞.

Theorem 4.5. Assume that both loss functions, Lb(·) and Lr(·), are differentiable and the total
gradient∇L(·) is L-Lipschitz continuous with L > 0. If gdual

t satisfies the following two conditions:

(i) 2⟨∇L(θt), gdual
t ⟩ − ∥gdual

t ∥2 ≥ 0,

(ii) There exists M > 0 such that ∥gdual
t ∥ ≥M∥∇L(θt)∥,

then, for λ ≤ 1
2L , DCGD in Algo. 1 converges to a Pareto-stationary point, or converges as

1

T + 1

T∑
t=0

∥∇L(θt)∥2 ≤
2 (L(θ0)− L(θ∗))
λM(T + 1)

. (4.2)

Theorem 4.5 states that DCGD converges to either a Pareto-stationary point, characterized by ϕt such
that cos(ϕt) = −1, or a stationary point at a rate ofO(1/

√
T) in the nonconvex setting. Unlike single-

objective (nonconvex) optimization where the goal is to pursue a stationary point, in multi-objective
optimization, it is ideal to find a Pareto-stationary point that balances all loss functions. Thus, DCGD
offers significant theoretical and empirical advantages over popular optimization algorithms like SGD
and ADAM, which are only guaranteed to converge to a stationary point. The convergence of DCGD
to a Pareto-stationary point is empirically verified in Section 4.4.

4.3 Dual Cone Gradient Descent: Projection, Average, and Center

(a) DCGD (Projection) (b) DCGD (Average) (c) DCGD (Center)

Figure 4: The updated gradient gdual
t of three DCGD algorithms.

Different variants of DCGD can be designed by properly choosing the updated gradient gdual
t in Gt

satisfying the conditions (i), (ii) of Theorem 4.5. We present three specific algorithms: projection,
average, and center.

The first algorithm, named DCGD (Projection), uses the projection of the total gradient ∇L(θt)
onto Gt when ∇L(θt) /∈ K∗

t , which is the closest vector within Gt to ∇L(θt). Specifically, the
DCGD (Projection) algorithm specifies gdual

t as follows: (i)∇L(θt) if∇L(θt) ∈ K∗
t , (ii)∇tL∥∇L⊥

r

(c1 = 1, c2 = 0) if ∇L(θt) /∈ K∗
t and ⟨∇L(θt), ∇Lr(θt)⟩ < 0, (iii) ∇tL∥∇L⊥

b
(c1 = 0, c2 = 1) if

∇L(θt) /∈ K∗
t and ⟨∇L(θt), ∇Lb(θt)⟩ < 0. See also Eq. (E.1) and Algo. 2.

DCGD (Average) algorithm takes the average of ∇tL∥∇L⊥
r

and∇tL∥∇L⊥
b

when the total gradient is
outside K∗

t , i.e., c1 = c2 = 1
2 if∇L(θt) /∈ K∗

t . See Eq. (E.2) and Algo. 3.

We note that both DCGD (Projection) and DCGD (Average) use ∇L(θt) as gdual
t without any

manipulation when ∇L(θt) ∈ K∗
t . Moreover, they require determining if the total gradient is

contained in the dual cone at each iteration, which may incur additional computational costs. On the
other hand, gdual

t of DCGD (Center) is given by

gdual
t :=

⟨gct , ∇L(θt)⟩
∥gct∥2

gct where gct =
∇Lb(θt)

∥∇Lb(θt)∥
+
∇Lr(θt)

∥∇Lr(θt)∥
, (4.3)

which is geometrically interpreted as the projection of∇L(θt) onto the angle bisector gct of∇Lr(θt)
and ∇Lb(θt). The following proposition shows that gdual

t of DCGD (Center) resides within Gt

Proposition 4.6. Consider the updated gradient gdual
t of DCGD (Center) defined in Eq. (4.3). Then,

gdual
t ∈ Gt.

6

The visualization of these three algorithms can be found in Figure 4 and their pseudocodes are
provided in Appendix E. Moreover, the proposed DCGD algorithms satisfy the conditions (i) and (ii)
of Theorem 4.5. Consequently, the following Corollary summarizes the convergence of the proposed
DCGD algorithms.
Corollary 4.7. We impose the same assumptions as in Theorem 4.5. Then, DCGD (Projection),
DCGD (Average), and DCGD (Center) converge to either a Pareto-stationary point or a stationary
point.

In addition to the theoretical result in Corollary 4.7, Appendix D.1 provides an ablation study on the
empirical performance of three specific algorithms for solving benchmark PDEs.

0.75 0.50 0.25 0.00 0.25 0.50 0.75

cos(max
t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

(a) ADAM

0.0 0.2 0.4 0.6 0.8 1.0

cos(max
t)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

De
ns

ity

(b) DCGD (Projection)

0.0 0.2 0.4 0.6 0.8

cos(max
t)

0

5

10

15

20

25

De
ns

ity

(c) DCGD (Average)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cos(max
t)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

De
ns

ity

(d) DCGD (Center)

Figure 5: Distribution of cos(φmax
t) for each algorithm with φmax

t = max{φr
t , φ

b
t} where φr

t is the
angle between the updated vector and ∇Lr(θt), and φb

t is the angle between the updated vector and
∇Lb(θt).

4.4 Benefits of the DCGD framework

This subsection discusses benefits of DCGD through illustrative examples. We first investigate how
the proposed DCGD algorithms resolve the conflicting gradient issue discussed in Section 3. Given
each algorithm, at each iteration t, we define φr

t as the angle between the updated vector and∇Lr(θt),
and φb

t as the angle between the updated vector and ∇Lb(θt). Also, let φmax
t = max{φr

t , φ
b
t}. We

highlight that both φr
t and φb

t are less than π/2 under DCGD algorithms, as they ensure that the
updated vectors always belong to the dual cone. Figure 5 plots the distributions of cos(φmax

t) for
four different optimization algorithms: ADAM, DCGD (Projection), DCGD (Average), and DCGD
(Center) during the training of PINNs for solving the Helmholtz equation. It shows that three DCGD
algorithms completely eliminate conflicting gradients in contrast to ADAM. Moreover, we observe
that the distributions of cos(φmax

t) for DCGD (Projection) and DCGD (Average) are highly skewed
toward zero, which implies that one of the two losses is unlikely to significantly improve. On the
contrary, DCGD (Center) has a bell-shaped distribution with a mean of about 0.719, indicating
that the two gradients are more aligned. This leads to a continuous reduction in both losses in a
harmonious manner. Consistent with this observation, DCGD (Center) consistently outperforms
DCGD (Projection) and DCGD (Average) in our experiments. Please refer to the ablation study D.1
for further comparisons.

10 5 0 5 10
1

10

5

0

5

10

2

(a) ADAM

10 5 0 5 10
1

10

5

0

5

10

2

(b) DCGD

Figure 6: Toy example: the region where
the algorithm fails to reach a Pareto-
stationary point in multi-objective opti-
mization

We empirically demonstrate that DCGD can converge to
a Pareto-stationary point. Consider a (slightly modified)
toy example shown in [37, 41], which has two objective
functions; see Appendix C.2 for more details. We solve
the problem with 1,600 uniformly sampled initial points
using ADAM, DCGD (Projection), DCGD (Average),
and DCGD (Center). Then, we mark with a red dot
the point at which the algorithm fails to reach a Pareto-
stationary point. Figure 6 shows that while ADAM does
not reach a Pareto-stationary point across many areas,
all DCGD algorithms achieve convergence to Pareto-
stationary points throughout the entire space.

Several MTL algorithms, such as PCGrad [37],
MGDA [40], CAGrad [41], Aligned-MTL [44], and
Nash-MTL [43] have been developed based on different and independent approaches. In contrast, the
proposed DCGD framework provides a principled solution to the problem of conflicting gradients
by directly characterizing the dual cone. As a result, our framework unifies many of these MTL

7

algorithms as special cases, offering significant contributions not only to PINNs but also to the MTL
domain. Proofs for the unification of MTL algorithms within the DCGD framework can be found in
Appendix B.

5 Numerical Experiment

This section demonstrates the superiority of DCGD through three distinct perspectives. In Section 5.1,
we compare the performance of DCGD on five benchmark equations with that of a range of methods,
including ADAM [45], Learning Rate Annealing (LRA) [30], Neural Tangent Kernel (NTK) [31],
PCGrad [37], MGDA [40], CAGrad [41], Aligned-MTL [44], MultiAdam [34], and DPM [35].
Section 5.2 shows that DCGD can provide more accurate solutions for failure modes of PINNs and
complex PDEs where vanilla PINNs fail. In Section 5.3, we explore the compatibility of DCGD with
existing loss balancing schemes such as LRA and NTK.

To compare the effectiveness of DCGD with other optimization algorithms, we measure the accuracy
of the PINN solution trained by each optimizer using the relative L2-error. Then, we run each
experiment across 10 independent trials and report the mean, standard deviation, max, and min of the
best accuracy.

5.1 Comparison on benchmark equations

We solve three popular benchmark equations (the Helmholtz equation, the viscous Burgers’ equa-
tion, and the Klein-Gordon equation) and two high-dimensional PDEs (5D-Heat equation and
3D-Helmholtz equation) using vanilla PINNs with different optimization techniques. For DCGD, we
employ an adaptive gradient version of the DCGD (Center) algorithm, the DCGD (Center) combined
with ADAM (see Algo 5) by default for all experiments, provided in Appendix D.1. For other
methods, we perform careful hyperparameter tuning based on the recommendations in their papers.
The PDE equations and detailed experimental setting are provided in Appendix C.4. However, we do
not report the performance of DPM because it is not only highly sensitive to hyperparameters but
also exhibit poor performance, consistently observed in [47].

Table 1: Average of relative L2 errors in 10 independent trials for each algorithm on three benchmark
PDEs (3 independent trials for two high-dimensional PDEs). The value within the parenthesis
indicates the standard deviation. ‘-’ denotes that the optimizer failed to converge.

PDE equation

Optimizer Helmholtz Burgers’ Klein-Gordon Heat (5D) Helmholtz (3D)

ADAM 0.0609 (0.0231) 0.0683 (0.0285) 0.0792 (0.0386) 0.0097 (0.0072) 0.6109 (0.2096)
LRA 0.0066 (0.0025) 0.0180 (0.0094) 0.0069 (0.0037) 0.0052 (0.0056) 0.0831 (0.0123)
NTK 0.0358 (0.0107) 0.0224 (0.0061) 0.0223 (0.0151) 0.0027 (0.0012) 0.4037 (0.2620)
PCGrad 0.0109 (0.0031) 0.0159 (0.0061) 0.0286 (0.0064) 0.0083 (0.0049) 0.2532 (0.0476)
MGDA 0.7590 (0.1180) 0.9780 (0.0462) 0.6690 (0.2790) - 0.9883 (0.0217)
CAGrad 0.0735 (0.0390) 0.0321 (0.0063) 0.1850 (0.0301) 0.0043 (0.0016) 0.5854 (0.3032)
Aligned-MTL 0.6570 (0.0805) 0.0294 (0.0129) 0.5571 (0.1824) 0.0013 (0.0004) 0.9138 (0.0645)
MultiAdam 0.0211 (0.0032) 0.0875 (0.0303) 0.0228 (0.0038) 0.0009 (0.0007) 0.7809 (0.0031)
DCGD 0.0029 (0.0005) 0.0124 (0.0046) 0.0069 (0.0027) 0.0008 (0.0003) 0.0774 (0.0250)

DCGD+LRA 0.0023 (0.0007) 0.0104 (0.0021) 0.0050 (0.0013) 0.0012 (0.0005) 0.1045 (0.0485)
DCGD+NTK 0.0057 (0.0035) 0.0113 (0.0040) 0.0055 (0.0014) 0.0009 (0.0004) 0.3525 (0.2659)

Table 1 displays the mean and standard deviation of the relative L2 errors for each optimization
algorithm applied to the three PDE equations. The error plots of approximated PINN solutions and
other statistics of relative L2 errors are summarized in Appendix C.4. In the result tables, we highlight
the best and the second-best methods. While the second best methods vary across experiments, the
proposed method consistently outperforms other algorithms achieving the lowest L2 errors. This
result underscores the robustness and adaptability of our method for solving various PDEs.

5.2 Failure mode of PINNs and Complex P(I)DEs

8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

2

0

2

1(t0) = 0.55, 2(t0) = 0.81

IC
Reference: 1, 1
Reference: 2, 2
PINN: 1, 1
PINN: 2, 2

(a) SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

2

0

2

1(t0) = 2.72, 2(t0) = 2.55

IC
Reference: 1, 1
Reference: 2, 2
PINN: 1, 1
PINN: 2, 2

(b) ADAM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

2

0

2

1(t0) = 2.62, 2(t0) = 2.62

IC
Reference: 1, 1
Reference: 2, 2
PINN: 1, 1
PINN: 2, 2

(c) DCGD

Figure 7: Double pendulum problem: prediction of each method. SGD and ADAM find shifted
solutions, but DCGD successfully approximates the reference solution.

Table 2: Relative L2 errors for DCGD
(Center) on Chaotic KS equation, Convec-
tion equation and Volterra IDEs.

Equation Baseline DCGD

Chaotic KS 0.0687 0.0376
Convection 0.4880 0.0246
Volterra IDEs 0.0068 0.0011

We explore more challenging problems, including fail-
ure modes of PINNs and complex PDEs, where vanilla
PINNs fail to approximate solutions, and highlight
the universal applicability of DCGD. We refer to Ap-
pendix C.5 for detailed experimental settings.

First, we revisit the problem of a double pendulum
in Steger et al. [32], which is highly sensitive to ini-
tial conditions. The goal is to solve the trajectory of
{(θ1(t), θ2(t))}t≥t0 , governed by the nonlinear differential equation as discussed in Eq. (C.1). The
reference solution and its first-order derivative are represented by the blue solid and dotted lines,
respectively, in Figure 7. We train PINNs with SGD and ADAM to solve the double pendulum
problem, where their solutions are depicted by the red solid and dotted lines in Figure 7a and Fig-
ure 7b, respectively. The PINN solutions trained with SGD and ADAM fail to accurately approximate
the reference solution. In contrast, the reference solution is successfully recovered by our DCGD
algorithm (see Figure 7c). Second, we present the performance of DCGD for two challenging
PDEs: the chaotic Kuramoto-Sivashinsky (KS) equation and the convection equation. For the chaotic
KS equation, we combine DCGD with the causal training scheme of [22], the current state-of-the
art result. For the convection equation, DCGD is applied to PINNsFormer of [15]. As shown
in Table 2, DCGD achieves the lowest relative L2 errors for the complex PDEs compared to the
existing optimally tuned strategies, demonstrating its effectiveness in overcoming failure modes of
PINNs. Third, the universal applicability of DCGD is not limited to specific architectures, sampling
techniques, and training schemes. For example, A-PINN, designed for solving integral equations and
integro-differential equations, achieves state-of-the art results in nonlinear Volterra IDEs [9]. DCGD
significantly improves the performance of A-PINN for solving Volterra IDEs, as shown in Table 2.
Moreover, Table 4 shows that the performance of SPINN can be highly improved by applying DCGD
for solving multi-dimensional PDEs.

5.3 Compatibility of DCGD with existing methods

The proposed DCGD framework can be easily combined with existing PINN training strategies,
including loss balancing methods. To illustrate this advantage, we have designed DCGD algorithms
that integrate with LRA and NTK, named DCGD (Center) + LRA and DCGD (Center) + NTK,
respectively. Please refer to Algo. 6 for the detailed implementation.

We apply DCGD (Center) + LRA and DCGD (Center) + NTK to the same experiments described in
Section 5.1. Tables 1 and 3 demonstrate that the performance of DCGD algorithms can be further
enhanced across all the experiments in terms of the mean, maximum, and minimum of relative L2

errors by integrating existing ideas from the literature.

6 Conclusion and Discussion

In this work, we provided a clear criterion for when PINNs might be adversely trained, in terms of the
angle and relative magnitude ratio of the gradients of the PDE residual and boundary loss, through
a geometric analysis. Based on this theoretical insight, we characterized a dual cone region where
both losses can decrease simultaneously without gradient pathologies. We then proposed a general

9

framework for DCGD, which ensures that the updated gradient falls within the dual cone region, and
provided a convergence analysis. Within this general framework, we introduced three specific DCGD
algorithms and conduct extensive empirical experiments. Our experimental results demonstrate that
the proposed DCGD algorithms outperform other optimization algorithms. In particular, DCGD
is efficient in solving challenging problems such as failure modes of PINNs and complex PDEs
compared to the current state-of-the art approaches. Furthermore, DCGD can be easily combined
with other strategies and applied to variants of PINNs.

Although we have presented a novel optimization algorithm, DCGD, to address challenging issues in
PINNs, there still remain some interesting and important questions. For instance, one could design
a more powerful DCGD specification within the dual cone region that goes beyond the projection,
average, and center techniques. Also, while we mainly consider multi-objective optimization for
PINNs, future work can focus on more general and complex types of multi-task learning problems.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No.RS-2023-00253002), the Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2020-
0-01336, Artificial Intelligence Graduate School Program (UNIST)), and Startup Research Fund
(1.220132.01) of UNIST (Ulsan National Institute of Science & Technology).

References
[1] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[2] Erik Laurin Strelow, Alf Gerisch, Jens Lang, and Marc E. Pfetsch. Physics informed neural networks:
A case study for gas transport problems. Journal of Computational Physics, 481:112041, 2023. ISSN
0021-9991.

[3] Pushan Sharma, Wai Tong Chung, Bassem Akoush, and Matthias Ihme. A Review of Physics-Informed
Machine Learning in Fluid Mechanics. Energies, 16(5):2343, 2023.

[4] Peter R. Wiecha, Arnaud Arbouet, Christian Girard, and Otto L. Muskens. Deep learning in nano-photonics:
inverse design and beyond. Photon. Res., 9(5):B182–B200, May 2021.

[5] Mahmudul Islam, Md Shajedul Hoque Thakur, Satyajit Mojumder, and Mohammad Nasim Hasan. Ex-
traction of material properties through multi-fidelity deep learning from molecular dynamics simulation.
Computational Materials Science, 188:110187, 2021.

[6] Jonthan D Smith, Zachary E Ross, Kamyar Azizzadenesheli, and Jack B Muir. HypoSVI: Hypocentre
inversion with Stein variational inference and physics informed neural networks. Geophysical Journal
International, 228(1):698–710, 2022.

[7] Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate Forecasting With Physics-informed
Neural ODEs. In The Twelfth International Conference on Learning Representations, 2024.

[8] Yuyan Ni, Shikun Feng, Wei-Ying Ma, Zhi-Ming Ma, and Yanyan Lan. Sliced Denoising: A Physics-
Informed Molecular Pre-Training Method. arXiv preprint arXiv:2311.02124, 2023.

[9] Lei Yuan, Yi-Qing Ni, Xiang-Yun Deng, and Shuo Hao. A-PINN: Auxiliary physics informed neu-
ral networks for forward and inverse problems of nonlinear integro-differential equations. Journal of
Computational Physics, 462:111260, 2022.

[10] Guofei Pang, Lu Lu, and George Em Karniadakis. fPINNs: Fractional physics-informed neural networks.
SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[11] Dongkun Zhang, Ling Guo, and George Em Karniadakis. Learning in modal space: Solving time-dependent
stochastic PDEs using physics-informed neural networks. SIAM Journal on Scientific Computing, 42(2):
A369–A665, 2020.

[12] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-VPINNs: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics and
Engineering, 374:113547, 2021.

10

[13] Ameya D Jagtap and George E Karniadakis. Extended Physics-informed Neural Networks (XPINNs): A
Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial
Differential Equations. In AAAI spring symposium: MLPS, volume 10, 2021.

[14] Benjamin Wu, Oliver Hennigh, Jan Kautz, Sanjay Choudhry, and Wonmin Byeon. Physics Informed
RNN-DCT Networks for Time-Dependent Partial Differential Equations. In International Conference on
Computational Science, pages 372–379. Springer, 2022.

[15] Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang.
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks. International
Conference on Learning Representations, 2024.

[16] Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based Meta-Learning for
Low-Rank Physics-Informed Neural Networks. In Advances in Neural Information Processing Systems,
2023.

[17] Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong, and Eunbyung Park.
Separable Physics-Informed Neural Networks. In Advances in Neural Information Processing Systems,
2023.

[18] Jihun Han and Yoonsang Lee. Hierarchical learning to solve partial differential equations using physics-
informed neural networks. arXiv preprint arXiv:2211.08064v2, 2023.

[19] Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and
Engineering, 393:114823, 2022.

[20] Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Enhanced Physics-Informed Neural Networks with
Augmented Lagrangian Relaxation Method (AL-PINNs). Neurocomputing, page 126424, 2023.

[21] Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L2 Physics Informed Loss Always Suitable for
Training Physics Informed Neural Network? In Advances in Neural Information Processing Systems,
volume 35, pages 8278–8290, 2022.

[22] Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

[23] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-adaptive
and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 403:115671, 2023.

[24] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating Propagation Failures
in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling. In International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
7264–7302. PMLR, 23–29 Jul 2023.

[25] Arnaud Vadeboncoeur, Ömer Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami, and Fehmi Cirak. Fully
probabilistic deep models for forward and inverse problems in parametric PDEs. Journal of Computational
Physics, 491:112369, 2023.

[26] Arnaud Vadeboncoeur, Ieva Kazlauskaite, Yanni Papandreou, Fehmi Cirak, Mark Girolami, and
Ömer Deniz Akyildiz. Random Grid Neural Processes for Parametric Partial Differential Equations.
In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 34759–34778, 23–29 Jul 2023.

[27] Johannes Müller and Marius Zeinhofer. Achieving High Accuracy with PINNs via Energy Natural Gradient
Descent. In International Conference on Machine Learning, pages 25471–25485. PMLR, 2023.

[28] Johannes Müller and Marius Zeinhofer. Position: Optimization in SciML Should Employ the Function
Space Geometry. In Forty-first International Conference on Machine Learning, 2024.

[29] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. In Advances in Neural Information Processing
Systems, volume 34, pages 26548–26560, 2021.

[30] Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081, 2021.

11

[31] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent kernel
perspective. Journal of Computational Physics, 449:110768, 2022.

[32] Sophie Steger, Franz M. Rohrhofer, and Bernhard C Geiger. How PINNs cheat: Predicting chaotic motion
of a double pendulum. In The Symbiosis of Deep Learning and Differential Equations II, 2022.

[33] Jian Cheng Wong, Chinchun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal spaces
with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 2022.

[34] Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. MultiAdam: Parameter-wise
Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks. In International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
39702–39721. PMLR, 23–29 Jul 2023.

[35] Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park. DPM: A novel train-
ing method for physics-informed neural networks in extrapolation. In AAAI Conference on Artificial
Intelligence, number 9, pages 8146–8154, 2021.

[36] Bahador Bahmani and WaiChing Sun. Training multi-objective/multi-task collocation physics-informed
neural network with student/teachers transfer learnings. arXiv preprint arXiv:2107.11496, 2021.

[37] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
Surgery for Multi-Task Learning. In Advances in Neural Information Processing Systems, volume 33,
pages 5824–5836, 2020.

[38] Xiaojian Li, Yuhao Liu, and Zhengxian Liu. Physics-informed neural network based on a new adaptive
gradient descent algorithm for solving partial differential equations of flow problems. Physics of Fluids,
35(6), 2023.

[39] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization, 2018.

[40] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5):313–318, 2012.

[41] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-Averse Gradient Descent for Multi-
task learning. In Advances in Neural Information Processing Systems, volume 34, pages 18878–18890,
2021.

[42] Liyang Liu, Yi Li, Zhanghui Kuang, J Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang.
Towards impartial multi-task learning. In International Conference on Learning Representations, 2021.

[43] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan
Fetaya. Multi-Task Learning as a Bargaining Game. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 16428–16446.
PMLR, 17–23 Jul 2022.

[44] Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent Component
Alignment for Multi-Task Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 20083–20093, 2023.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[46] Harold M. Hochman and James D. Rodgers. Pareto optimal redistribution. The American economic review,
59(4):542–557, 1969.

[47] Lukas Fesser, Richard Qiu, and Luca D’Amico-Wong. Understanding and Mitigating Extrapolation
Failures in Physics-Informed Neural Networks. arXiv preprint arXiv:2306.09478v2, 2023.

[48] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, pages 249–256. JMLR
Workshop and Conference Proceedings, 2010.

[49] Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang, Songming
Liu, Lu Lu, et al. PINNacle: A comprehensive benchmark of physics-informed neural networks for solving
PDEs. arXiv preprint arXiv:2306.08827, 2023.

12

A Proofs for Section 4

Proof of Theorem 4.2. Recall that ϕt is the angle between ∇Lr(θt) and ∇Lb(θt), and R =
∥∇Lr(θt)∥
∥∇Lb(θt)∥ at each iteration t. Consider a cone Kt, defined as

Kt := {cx|c ≥ 0, x ∈ {∇Lr(θt),∇Lb(θt)}} .

Case (i). Suppose that ⟨∇Lb(θt), ∇Lr(θt)⟩ ≥ 0. Observe that

⟨∇L(θt), ∇Lr(θt)⟩ = ⟨∇Lb(θt), ∇Lr(θt)⟩+ ∥∇Lr(θt)∥2 ≥ 0,

⟨∇L(θt), ∇Lb(θt)⟩ = ⟨∇Lb(θt), ∇Lr(θt)⟩+ ∥∇Lb(θt)∥2 ≥ 0.

Therefore, by the definition of the dual cone, we have ∇L(θt) ∈ K∗
t .

Case (ii). Suppose that ⟨∇Lb(θt), ∇Lr(θt)⟩ < 0 and − cos(ϕt) ≤ R ≤ − 1
cos(ϕt)

. By multiplying
∥∇Lb∥∥∇Lr∥ to − cos(ϕt) ≤ R, we get

− cos(ϕt) ≤ R⇔ −∥∇Lb(θt)∥∥∇Lr(θt)∥ cos(ϕt) ≤ ∥∇Lr(θt)∥2,
⇔ ⟨∇Lb(θt), ∇Lr(θt)⟩+ ⟨∇Lr(θt), ∇Lr(θt)⟩ ≥ 0,

⇔ ⟨∇L(θt), ∇Lr(θt)⟩ ≥ 0. (A.1)

On the other hand, by multiplying ∥∇Lb(θt)∥2 cos(ϕt) to R ≤ − 1
cos(ϕt)

, we have

R ≤ − 1

− cos(ϕt)
⇔ ∥∇Lb(θt)∥∥∇Lr(θt)∥ cos(ϕt) ≥ −∥∇Lb(θt)∥2,

⇔ ⟨∇Lb(θt), ∇Lr(θt)⟩+ ⟨∇Lb(θt), ∇Lb(θt)⟩ ≥ 0,

⇔ ⟨∇L(θt), ∇Lb(θt)⟩ ≥ 0. (A.2)

Therefore, we conclude that if ⟨∇Lb(θt), ∇Lr(θt)⟩ < 0, then − cos(ϕt) ≤ R ≤ − 1
cos(ϕt)

is
equivalent to∇L(θt) ∈ K∗

t .

Proof of Proposition 4.3. Recall that

Gt :=
{
c1∇tL∥∇L⊥

r
+ c2∇tL∥∇L⊥

b

∣∣c1, c2 ≥ 0
}
. (A.3)

It is enough to show that we have ⟨g, ∇Lr(θt)⟩ ≥ 0 and ⟨g, ∇Lb(θt)⟩ ≥ 0 for any g ∈ Gt. By the
definition of Gt, there exists c1, c2 ≥ 0 such that g = c1∇tL∥∇L⊥

r
+ c2∇tL∥∇L⊥

b
for all g ∈ Gt.

One can easily check that

⟨g, ∇Lr(θt)⟩ = ⟨c2∇tL∥∇L⊥
b
, ∇Lr(θt)⟩

= ⟨c2
(
∇Lr(θt)−

⟨∇Lb(θt), ∇Lr(θt)⟩
∥∇Lb(θt)∥2

∇Lb(θt)

)
, ∇Lr(θt)⟩

= c2

(
∥∇Lr(θt)∥2 −

|⟨∇Lb(θt), ∇Lr(θt)⟩|2

∥∇Lb(θt)∥2

)
= c2∥∇Lr(θt)∥2(1− cos(ϕt))

≥ 0

where ϕt is the angle between ∇Lr(θt) and∇Lb(θt). One can derive that ⟨g, ∇Lb(θt)⟩ ≥ 0 in the
same manner. Therefore, we conclude that Gt ⊂ K∗

t .

Proof of Theorem 4.5. Let ϕt be the angle between ∇Lr(θt) and ∇Lb(θt), and ψt be the angle
between gdual

t and ∇L(θt) at the t-th iteration. Note that θt+1 = θt − λgdual
t where gdual

t satisfies the
conditions (i), (ii) of Theorem 4.5.

13

First of all, DCGD algorithm reaches a Pareto-stationary point if ϕt = −1 by Definition 4.4, at which
the optimization process is stopped.

Otherwise, we first observe from the differentiability and L-Lipschitz continuity condition of ∇L(·)
for all x, y ∈ Rd:

L(x)− L(y) =
∫ 1

0

⟨∇L(y + t(x− y)), x− y⟩dt

≤ ⟨∇L(y), x− y⟩+
∫ 1

0

⟨∇L(y + t(x− y))−∇L(y), x− y⟩dt

≤ ⟨∇L(y), x− y⟩+
∫ 1

0

∥∇L(y + t(x− y))−∇L(y)∥∥x− y∥dt

≤ ⟨∇L(y), x− y⟩+
∫ 1

0

Lt∥x− y∥2dt

= ⟨∇L(y), x− y⟩+ L

2
∥x− y∥2, (A.4)

where we have used Cauchy-Schwarz inequality for the third inequality. Using Eq. (A.4) and
Conditions (i), (ii) of Theorem 4.5, one calculates that for λ ≤ 1

2L ,

L(θt+1)− L(θt) ≤ −λ⟨∇L(θt), gdual
t ⟩+

Lλ2

2
∥gdual

t ∥2

≤ −λ⟨∇L(θt), gdual
t ⟩+

λ

4
∥gdual

t ∥2

= −λ
4

(
2⟨∇L(θt), gdual

t ⟩ − ∥gdual
t ∥2 + 2⟨∇L(θt), gdual

t ⟩
)

≤ −λ
2
⟨∇L(θt), gdual

t ⟩ ∵ condition (i)

≤ −λM
2
∥∇L(θt)∥2 ∵ Cauchy-Swartz inequality and condition (ii) (A.5)

By using telescoping sums, we further obtain
T∑

t=0

L(θt+1)− L(θt) = L(θT+1)− L(θ0)

≤ −λM
2

T∑
t=0

∥∇L(θt)∥2,

which yields

1

T + 1

T∑
t=0

∥∇L(θt)∥2 ≤
2 (L(θ0)− L(θT+1))

λM(T + 1)

≤ 2 (L(θ0)− L(θ∗))
λM(T + 1)

.

Proof of Proposition 4.6. Note that gct is the angle bisector of ∇Lr(θt) and ∇Lb(θt). From the
formula of vector projection, gdual

t of DCGD (Center) is the projection of∇L(θt) on to gct . Thus, it is
enough to show that gct is included in Gt.

We observe that

∇tL∥∇L⊥
r
= ∇L(θt)− ⟨∇L(θt), ∇Lr(θt)⟩

∇Lr(θt)

∥∇Lr(θt)∥2
(A.6)

= ∇Lb(θt)− ⟨∇Lb(θt), ∇Lr(θt)⟩
∇Lr(θt)

∥∇Lr(θt)∥2
, (A.7)

14

and

∇tL∥∇L⊥
b
= ∇L(θt)− ⟨∇L(θt), ∇Lb(θt)⟩

∇Lb(θt)

∥∇Lb(θt)∥2
(A.8)

= ∇Lr(θt)− ⟨∇Lr(θt), ∇Lb(θt)⟩
∇Lb(θt)

∥∇Lb(θt)∥2
. (A.9)

Then, by defining c1 = 1
∥∇Lb(θt)∥(1−cos(ϕt))

and c2 = 1
∥∇Lr(θt)∥(1−cos(ϕt))

, one can easily see that

c1∇tL∥∇L⊥
r
+ c2∇tL∥∇L⊥

b
= ∇Lb(θt)

(
c1 − c2

⟨∇Lr(θt), ∇Lb(θt)⟩
∥∇Lb(θt)∥2

)
+∇Lr(θt)

(
c2 − c1

⟨∇Lr(θt), ∇Lb(θt)⟩
∥∇Lr(θt)∥2

)
=
∇Lb(θt)

∥∇Lb(θt)∥
+
∇Lr(θt)

∥∇Lr(θt)∥
= gct .

That is, gct can be expressed as c1∇tL∥∇L⊥
r
+ c2∇tL∥∇L⊥

b
for some c1, c2 ≥ 0. Therefore, gct is in

Gt.

Proof of Corollary 4.7. We will show that gdual
t of each DCGD algorithm satisfies the conditions (i),

(ii) of Theorem 4.5. Three algorithms are summarized in Algo. 2, Algo. 3, and Algo. 4. We note that
a conflict threshold α is introduced as a stopping condition for DCGD algorithms, as they can reach a
Pareto-stationary point characterized by ϕt = π. That is, the algorithm stops when the parameter
converges close to a Pareto-stationary point such that π − α < ϕt ≤ π. Here, we assume α ≥ 0 is
fixed.

1. DCGD (Projection): Note that it is trival to show that gdual
t = ∇L(θt), when

⟨∇L(θt), ∇Lb(θt)⟩ ≥ 0, satisfies the conditions (i), (ii). Thus, we focus on the case when
⟨∇L(θt), ∇Lb(θt)⟩ < 0.

First of all, we need to show the condition (i)

2⟨∇L(θt), gdual
t ⟩ − ∥gdual

t ∥2 = ∥∇L(θt)∥2 − ∥gdual
t −∇L(θt)∥2 ≥ 0,

which is equivalent to that ∥∇L(θt)∥ ≥ ∥gdual
t −∇L(θt)∥. Using Eq. (A.6), one directly calculates

that

∥2∇tL∥L⊥
r
−∇L(θt)∥2 =

∥∥∥∥∇L(θt)− ⟨∇L(θt), ∇Lr(θt)⟩
∇Lr(θt)

∥∇Lr(θt)∥2

∥∥∥∥2
= ∥∇L(θt)∥2.

In the same manner, we have ∥2∇tL∥L⊥
b
−∇L(θt)∥2 = ∥∇L(θt)∥2. Since gdual

t is chosen in Gt,
specifically c1 = 1, c2 = 0 or c1 = 0, c2 = 0, we can write

∥gdual
t −∇L(θt)∥ =

∥∥∥(c1∇L∥L⊥
r
(θt) + c2∇L∥L⊥

b
(θt)

)
−∇L(θt)

∥∥∥
≤

∥∥∥∥(c1∇L∥L⊥
r
(θt) + c2∇L∥L⊥

b
(θt)

)
− c1 + c2

2
∇L(θt)

∥∥∥∥+

∥∥∥∥(c1 + c2
2

− 1

)
∇L(θt)

∥∥∥∥
≤

∥∥∥c1
2

(
2∇L∥L⊥

r
(θt)−∇L(θt)

)∥∥∥+
∥∥∥c2
2

(
2∇L∥L⊥

b
(θt)−∇L(θt)

)∥∥∥+

∥∥∥∥(c1 + c2
2

− 1

)
∇L(θt)

∥∥∥∥
=
c1
2
∥∇L(θt)∥+

c2
2
∥∇L(θt)∥+

∣∣∣∣c1 + c2
2

− 1

∣∣∣∣ ∥∇L(θt)∥
=

(
c1 + c2

2
+

∣∣∣∣c1 + c2
2

− 1

∣∣∣∣) ∥∇L(θt)∥ (A.10)

= ∥∇L(θt)∥.
where we have used c1 + c2 = 1 for obtaining the last inequality. Therefore, the condition (i) is
satisfied.

15

We further suppose that ⟨∇L(θt), ∇Lb(θt)⟩ < 0. Then, gdual
t = ∇tL∥L⊥

b
. Let ϕt be the angle

between∇Lb(θt) and∇Lr(θt), and ψt be the angle between gdual
t and∇L(θt). Note that ϕt ≤ π−α

where α is conflict threshold. Otherwise, the algorithm stops when π − α < ϕt ≤ π (see Algo. 2).
Then, since ψt = ϕt − π

2 , we have

∥gdual
t ∥ = ∥∇tL∥L⊥

b
∥

= ∥∇L(θt)∥ cos(ψt)

= ∥∇L(θt)∥ cos
(
ϕt −

π

2

)
≥ ∥∇L(θt)∥ cos

(π
2
− α

)
.

Thus, by choosing M = cos
(
π
2 − α

)
, the condition (ii) is satisfied. We repeat the same analysis for

the case when ⟨∇L(θt), ∇Lb(θt)⟩ < 0.

2. DCGD (Average): Similarly to DCGD (Projection), we focus on the case where DCGD
(Average) specifies c1 = c2 = 1

2 , given by

gdual
t =

1

2

(
∇tL∥∇L⊥

r
+∇tL∥∇L⊥

b

)
,

when ∇L(θt) /∈ K∗
t . Eq A.10 with c1 = c2 = 1/2 directly leads to

∥gdual
t −∇L(θt)∥ ≤ ∥∇L(θt)∥,

implying that the condition (i) is satisfied.

Next, suppose ⟨∇L(θt), ∇Lb(θt)⟩ < 0. Then, the condition (ii) is satisfied withM = 1
2 cos

(
π
2 − α

)
since

∥gdual
t ∥ =

1

2

∥∥∥∇tL∥L⊥
r
+∇tL∥L⊥

b

∥∥∥
≥ 1

2
∥∇tL∥L⊥

b
∥

=
1

2
∥∇L(θt)∥ cos

(
ϕt −

π

2

)
≥ 1

2
cos

(π
2
− α

)
∥∇L(θt)∥.

When ⟨∇L(θt), ∇Lr(θt)⟩ < 0, the condition (ii) is also satisfied with M = 1
2 cos

(
π
2 − α

)
.

3. DCGD (Center): the updated vector of DCGD (Center) is given by

gdual
t =

⟨gct , ∇L(θt)⟩
∥gct∥2

gct

where gct = ∇Lb(θt)
∥∇Lb(θt)∥ + ∇Lr(θt)

∥∇Lr(θt)∥ . Since gdual
t is the angle bisector of ∇Lr(θt) and ∇Lb(θt) (see

Proof of Proposition 4.6), ψt, the angle between ∇L(θt) and gdual
t , is less or equal to ϕt/2, i.e.,

ψt ≤ ϕt

2 ≤
π
2 . From the fact that gdual

t is the projection of∇L(θt) onto gct , we have

∥∇L(θt)− gdual
t ∥ = ∥∇L(θt)∥ sin(ψt)

≤ ∥∇L(θt)∥ sin
(
ϕt
2

)
≤ ∥∇L(θt)∥ sin

(
π − α
2

)
≤ ∥∇L(θt)∥,

16

and

∥gdual
t ∥ = ∥∇L(θt)∥ cos(ψt)

≥ ∥∇L(θt)∥ cos
(
ϕt
2

)
≥ ∥∇L(θt)∥ cos

(
π − α
2

)
.

Consequently, the conditions (i) and (ii) are satisfied for DCGD (Center).

Remark A.1. Suppose that one employs a decaying scheme for the conflict threshold αt such that
αt = O(t−γ) with where 0 ≤ γ < 1, for example, αt = t−γ . In this case, the convergence rate of
the DCGD algorithm to a stationary point becomes O

(
1

T 1−γ

)
, as M in condition (ii) may depend on

the conflict threshold αt. For all our experiments, we set α to be fixed.

B Unification of MTL algorithms within the DCGD framework

In this section, we prove that several MTL algorithms can be understood as special cases of the
DCGD framework under the PINN’s formulation.

Proof. 1. MGAD [40]: The updated gradient gMGDA
t of MGDA is defined by selecting the minimum-

norm element from the convex combinations of ∇Lr(θt) and ∇Lb(θt) if there is gradient conflict
⟨∇Lr(θt), ∇Lb(θt)⟩ < 0:

gMGDA
t := argmin

α1,α2≥0
∥u∥, s.t. u = α1∇Lr(θt) + α2∇Lb(θt), α1 + α2 = 1.

One can easily show that ⟨gMGDA
t , gMGDA

t ⟩ = ⟨gMGDA
t , ∇Lr(θt)⟩ = ⟨gMGDA

t , ∇Lb(θt)⟩ ≥ 0. Thus,

gMGDA
t ∈ K∗

t .

2. PCGrad [37]: PCGrad uses the same update direction with DCGD (Average) when
⟨∇Lr(θt), ∇Lb(θt)⟩ < 0,

gPCGrad
t =

1

2

(
∇tL∥∇L⊥

r
+∇tL∥∇L⊥

b

)
∈ K∗

t .

and takes ∇Lr(θt) +∇Lb(θt) when ⟨∇Lr(θt), ∇Lb(θt)⟩ ≥ 0. The latter case is also contained in
K∗

t . Therefore, gPCGrad
t ∈ K∗

t .

3. Nash-MTL [43]: Nash-MTL considers a Nash bargaining solution to balance the loss gradients.
The update gradient gNash-MTL

t is be defined by

gNash-MTL
t := Gtvt, (B.1)

s.t. G⊤
t Gtvt = v−1

t . (B.2)

where Gt = [∇Lr(θt),∇Lb(θt)]. We can find the solution vt satisfying Eq. (B.2) as following. By

letting vt =
[
v1
v2

]
, we have

[
∥∇Lr(θt)∥2 ⟨∇Lr(θt), ∇Lb(θt)⟩

⟨∇Lr(θt), ∇Lb(θt)⟩ ∥∇Lb(θt)∥2
] [
v1
v2

]
=

[1
v1
1
v2

]
,

which is equivalent to {
∥∇Lr(θt)∥2v21 + ⟨∇Lr(θt), ∇Lb(θt)⟩v1v2 = 1

∥∇Lb(θt)∥2v22 + ⟨∇Lr(θt), ∇Lb(θt)⟩v1v2 = 1
. (B.3)

17

Therefore, we can derive v2 = ∥∇Lr(θt)∥
∥∇Lb(θt)∥v1. Substituting v2 = ∥∇Lr(θt)∥

∥∇Lb(θt)∥v1 back into the first
equation of Eq. (B.3) leads to

∥∇Lr(θt)∥2v21 + ∥∇Lr(θt)∥2 cos(ϕt)v21 = 1

⇔ v1 =

√
1

1 + cosϕt

1

∥∇Lr(θt)∥

⇔ v2 =
∥∇Lr(θt)∥
∥∇Lb(θt)∥

v1 =

√
1

1 + cosϕt

1

∥∇Lb(θt)∥

⇔ Gtvt =

√
1

1 + cosϕt

(
∇Lr(θt)

∥∇Lr(θt)∥
+
∇Lb(θt)

∥∇Lb(θt)∥

)

where ϕt is the angle between∇Lr(θt) and∇Lb(θt). Thus, the update gradient gNash-MTL
t has same

direction with DCGD (Center). That is, gNash-MTL
t ∈ K∗

t .

C Experimental details

C.1 Software and hardware environments

We conduct all experiments with PYTHON 3.10.9 and PYTORCH 1.13.1, CUDA 11.6.2, NVIDIA
Driver 510.10 on Ubuntu 22.04.1 LTS server which equipped with AMD Ryzen Threadripper PRO
5975WX, NVIDIA A100 80GB and NVIDIA RTX A6000.

C.2 Toy example

We slightly modify the toy example in [41] to show our proposed method can expand the region
of initial points that converge to the Pareto set. Consider the following loss functions with θ =
(θ1, θ2) ∈ R2:

L0(θ) = L1(θ) + L2(θ) where
L1(θ) = 2c1(θ)f1(θ) + c2(θ)g1(θ) and L2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ),

f1(θ) = log(max(0.5(−θ1 − 7)− tanh(−θ2), 0.000005)) + 6,

f2(θ) = log(max(0.5(−θ1 + 3)− tanh(−θ2) + 2, 0.000005)) + 6,

g1(θ) = ((−θ1 + 7)2 + 0.1 · (−θ2 − 8)2)/10− 20,

g2(θ) = ((−θ1 − 7)2 + 0.1 · (−θ2 − 8)2)/10− 20,

c1(θ) = max(tanh(0.5 · θ2), 0),
c2(θ) = max(tanh(−0.5 · θ2), 0).

The landscape and contour map of above loss function are shown in Figure 8. The Pareto set is
highlighted in gray in Figure 8b. We solve the above problem using ADAM, DCGD (Projection),
DCGD (Average), DCGD (Center) for 100,000 epochs with different initial points. The initial points
are selected as 1, 600 uniform grid points within [−10, 10]× [−10, 10]. Then, we mark with a red
dot the point at which the optimizer fails to converge to the Pareto set.

C.3 Details for Figure 2, Figure 1, and Figure 5

In this experiment, we use the 7-layer fully connected neural network with 20 neurons per layer and a
hyperbolic tangent activation function. We train PINN models using SGD with the learning rate of
0.01 for 10, 000 epochs. In addition, 100 data points are sampled in boundaries and 10,000 points in
the domain.

18

1

8
0

8

2
8

0

8

20

10

0

10

(a) Loss landscape

10 5 0 5 10
1

10

5

0

5

10

2

(b) Contour map

Figure 8: The loss landscape and contour map of the toy example.

C.4 Details for Section 5.1

Benchmark equations We consider Helmholtz equation, viscous Burgers’ equation, and Klein-
Gordon equation as the benchmark equations.

The Helmholtz equation is described by

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
Ω = [−1, 1]× [−1, 1].

The solution is given by u∗(x, y) = sin(a1πx) sin(a2πy) where

f(x, y) = (k2 − a21π2 − a22π2) sin(a1πx) sin(a2πy)

In our experiment, we choose parameters: k = 1, a1 = 1, a2 = 4 as in [30].

The Viscous Burgers’ equation is given by

ut(t, x) + uux(t, x)− νuxx(t, x) = 0, (x, t) ∈ [0, 1]× Ω,

u(0, x) = − sin(πx), x ∈ Ω,

u(t,−1) = u(t, 1) = 0, t ∈ [0, 1],

Ω = [−1, 1]

where ν = 0.01
π .

The Klein-Gordon equation is

∆u(t, x) + γuk(t, x) = f(t, x), (t, x) ∈ [0, T]× Ω,

u(0, x) = g1(x), x ∈ Ω

ut(0, x) = g2(x), x ∈ Ω

u(t, x) = h(t, x), (t, x) ∈ [0, T]× ∂Ω
Ω = [0, 1]

We set parameters to k = 3, γ = 1, T = 1 and the initial conditions, g1(x) = x, g2(x) = 0 for all
x ∈ Ω following [30]. Then we can use the solution u∗(t, x) = x cos(5πt) + (tx)3 where f(t, x) is
derived by given equation .

We employ a 3-layer fully connected neural network with 50 neurons per layer and use the hyperbolic
tangent activation function for all experiments in Section 5.1. At each iteration, 128 points are
randomly sampled in boundaries and 10 times more points in the domain as the collocation points.
We just randomly sample the points in the boundaries if there exists an analytic solution, otherwise
the points were resampled from a pre-generated set for each iteration. More specifically, for the case

19

of Viscous Burger’s equation, there is pre-determined 456 boundary points and we randomly sample
in this set of points. We train PINNs for 50,000 epochs with Glorot normal initialization [48] using
DCGD algorithms, ADAM [45], LRA [30], NTK [31], PCGrad [37], MultiAdam [34], and DPM
[35].

We search for the initial learning rate among λ = {10−3, 10−4, 10−5} and use a exponential decay
scheduler with a decay rate of 0.9 and a decay step = 1, 000. For ADAM, we use the default
parameters: β1 = 0.9, β2 = 0.999, ϵ = 10−8 as in [45]. For LRA, we set α = 0.1, which is the best
hyperparameter reported in [30]. For MultiAdam, we use β1, β2 = 0.99 as recommended in [34].
For DPM, we test δ = {10−1, 10−2, 10−3}, ϵ = {10−1, 10−2, 10−3}, w = {1, 1.01, 1.001}.
To compute the effectiveness of various optimization algorithms, we evaluate the accuracy of the
PINN solutions u(·; θ) using the relative L2-error defined as:

Relative L2 error =

√∑N
i=1 |u(xi; θ)− u(xi)|2√∑N

i=1 |u(xi)|2

where u(·) is the true solution and {xi}Ni=1 is the set of test samples. Unless the equation has an
analytic solution, we use the numerical reference solution for u(x), which solved by finite element
method [1].

In Table 3, we report the best and worst-case relative L2 errors of each method across 10 independent
trials (3 independent trials for two high-dimensional PDEs).

Equation Helmholtz Burgers’ Klein-Gordon Heat (5D) Helmholtz (5D)

Optimizer Max Min Max Min Max Min Max Min Max Min

ADAM 0.1053 0.0315 0.1413 0.0413 0.1586 0.0376 0.01985 0.0046 0.8990 0.4072
LRA 0.0108 0.0032 0.0391 0.0080 0.0166 0.0037 0.0131 0.0011 0.0991 0.0693
NTK 0.0532 0.0225 0.0358 0.0148 0.0581 0.0078 0.0044 0.0016 0.7743 0.2177
PCGrad 0.0170 0.0070 0.0322 0.0091 0.0399 0.0156 0.0149 0.0034 0.2907 0.1861
MGDA 1.0000 0.3441 1.0617 0.9037 1.0245 0.2168 - - 1.0053 0.9577
CAGrad 0.1550 0.0330 0.0485 0.0235 0.2845 0.0872 0.0063 0.0024 1.0070 0.3070
Aligned-MTL 0.7784 0.5062 0.0640 0.0152 0.9133 0.2922 0.0018 0.0007 1.0001 0.8453
MultiAdam 0.0249 0.0149 0.1506 0.0537 0.0273 0.0160 0.0018 0.0003 0.7843 0.7768
DCGD (Center) 0.0038 0.0019 0.0016 0.0096 0.0112 0.0042 0.0012 0.0006 0.1007 0.0428

DCGD (Center) + LRA 0.0036 0.0013 0.0150 0.0056 0.0068 0.0036 0.0019 0.0007 0.1686 0.0515
DCGD (Center) + NTK 0.0157 0.0033 0.0175 0.0065 0.0079 0.0035 0.0015 0.0006 0.7276 0.1411

Table 3: Maximum and minimum of relative L2 errors in 10 independent trials (3 independent trials
for two high-dimensional PDEs) for each algorithm.

We plot the exact solution, PINN solution, and its error for each benchmark equation in Figures 10,
11, and 9

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.75

0.50

0.25

0.00

0.25

0.50

0.75

(a) Exact solution

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Prediction

1 0 1
x1

1.0

0.5

0.0

0.5

1.0

x 2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(c) Absolute error

Figure 9: Helmholtz equation: approximated solution versus the reference solution.

20

0.0 0.2 0.5 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x
-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

(a) Exact solution

0.0 0.2 0.5 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

(b) Prediction

0.0 0.2 0.5 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

x

0.02

0.04

0.06

0.08

0.10

0.12

(c) Absolute error

Figure 10: Burgers’ equation: approximated solution versus the reference solution.

0.0 0.5 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

0.5

0.0

0.5

1.0

1.5

(a) Exact solution

0.0 0.5 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

0.5

0.0

0.5

1.0

1.5

(b) Prediction

0.0 0.5 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

x

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(c) Absolute error

Figure 11: Klein-Gordon equation: approximated solution versus the reference solution.

High-dimensional equations We consider the following 3-dimensional Helmholtz equation

∆u(x, y, z) + k2u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,
Ω = [−1, 1]3.

The solution is given by u∗(x, y) = sin(a1πx) sin(a2πy) sin(a3πz) where

f(x, y, z) = (k2 − a21π2 − a22π2 − a23π2) sin(a1πx) sin(a2πy) sin(a3πz)

with k = 1, a1 = 4, a2 = 4, a3 = 3.

We employ a 5-layer fully connected neural network with 128 neurons per layer and use the hyperbolic
tangent activation function. At each iteration, 128 points are randomly sampled in boundaries and
500 times more points in the domain as the collocation points. We train PINNs for 30,000 epochs
with Glorot normal initialization.

We use initial learning rate among λ = 10−3 and use a exponential decay scheduler with a decay rate
of 0.9 and a decay step = 1, 000.

For 5-dimensional Heat equation, we follow the experiment setting in Hao et al. [49]. The PDE can
be expressed as following:

ut = k∆u+ f(x, t), x ∈ Ω× [0, 1]

n · ∇u = g(x, t), x ∈ ∂Ω× [0, 1]

u(x, 0) = g(x, 0), x ∈ Ω

where the geometric domain Ω = {x : ||x|| ≤ 1} and

f(x, t) := −1

d
||x||2 exp

(
−1

2
||x||2 + t

)
g(x, t) := exp

(
−1

2
||x||2 + t

)

21

C.5 Details for Section 5.2

Double pendulum problem Consider the double pendulum which have two point mass pendulums
with masses m1,m2, two rod with length l1, l2. Let θ1, θ2 is the angle that the pendulums each make
with the vertical and ∆θ = θ1 − θ2. Set the gravitational acceleration g = 9.81. (see Figure 12)

Figure 12: Simple double pendulum example

Then the dynamics of double pendulum can be described by following nonlinear differential equation
system with y = [θ1, θ2]

T :

y′′ =

[
f1(y, y

′)
f2(y, y

′)

]
subject to y(t0) =

[
θ1(t0)
θ2(t0)

]
, y′(t0) =

[
ω1(t0)
ω2(t0)

]
, (C.1)

where
ω1 = θ̇1,

ω2 = θ̇2,

f1(y, y
′′) =

m2l1ω
2
1 sin(2∆θ) + 2m2l2ω

2
2 sin∆θ + 2gm2 cos θ2 sin∆θ + 2gm1 sin θ1

2l1(m1 +m2 sin
2 ∆θ)

,

f2(y, y
′′) =

m2l2ω
2
2 sin(2∆θ) + 2(m1 +m2)l1ω

2
1 sin∆θ + 2g(m1 +m2) cos θ1 sin∆θ

2l2(m1 +m2 sin
2 ∆θ)

.

In this experiment, the initial conditions are θ1(t0) = θ2(t0) = θ0 = 150◦, ω1(t0) = ω2(t0) = 0.

We replicate the experiment setup done in [32]. We use a six-layer feed-forward network of 30
neurons on each layer with the swish activation function. We train this model with ADAM optimizer
with the default hyperparameters for 20,000 epochs. We also train the same model using DCGD
(Center). Figure 13 shows the training curves of ADAM and DCGD.

0 2500 5000 7500 10000 12500 15000 17500 20000
epochs

10 3

10 2

10 1

100

Ltrain

LF 1
LF 2
LIC

(a) ADAM

0 2500 5000 7500 10000 12500 15000 17500 20000
epochs

10 7

10 5

10 3

10 1

101

Ltrain

LF 1
LF 2
LIC

(b) DCGD (Center)

Figure 13: Loss trajectory of each method in the double pendulum problem.

Convection equation We train PINNsFormer in Liu et al. [15] to solve convection equation which
can expressed as following:

ut + βux = 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

u(x, 0) = sin(x),

u(0, t) = u(2π, t)

Where β = 50. we follow the default setting of [15] and train the model by 500 epochs.

22

chotic Kuramoto-Sivashinsky equation We use causal training in Wang et al. [22] to solve chaotic
Kuramoto-Sivashinsky equation. We use 5 layers modifed-MLP with 64 neurons per layer. and train
this model 50,000 epochs for each tolerance.

ut + αuux + βuxx + γuxxxx = 0, ∀x ∈ [0, 2π], t ∈ [0, 0.5]

u(0, x) = cos(x)(1 + sin(x))

where α = 100/16, β = 100/162, γ = 100/164.

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Exact solution

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Prediction

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.01

0.02

0.03

0.04

0.05

0.06

(c) Absolute error

Figure 14: Convection equation: approximated solution versus the reference solution.

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) Exact solution

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Prediction

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.02

0.02

(c) Absolute error

Figure 15: 2D-Volterra equation: approximated solution versus the reference solution.

Auxiliary-PINN: Nonlinear integro-differential equation A-PINN is a variant of PINNs, de-
signed to solve integro-differential equations [9]. We apply our DCGD algorithms to A-PINN for
solving the following nonlinear 2-dimensional Volterra IDE:

∂2u(t, x)

∂t2
=
∂u(t, x)

∂x
− ∂u(t, x)

∂t
− u(t, x) + g(t, x) + λ

∫ x

0

∫ t

0

f cos(y1 − y2)u(y1, y2)dy1dy2

where the boundary conditions are u(0, x) = x, ∂u(0,x)
∂t = sin(x), and u(t, 0) = t sin(t), 0 ≤ t, x ≤

1. The analytic solution is u∗(t, x) = x+ t sin(t+ x) with λ = 1 where g(t, x) is derived by given
equation.

Within the framework of A-PINN, it converts the above integral equation into the following equation
by representing integrals as auxiliary output variables:

∂2u(t, x)

∂t2
=
∂u(t, x)

∂x
− ∂u(t, x)

∂t
− u(t, x) + g(t, x) + λv(t, x),

∂v(t, x)

∂x
=

∫ t

0

f cos(y1 − x)u(y1, x)dy1 = tw(t, x),

∂w(t, x)

∂t
= cos(t− x)u(t, x),

where the new variables v and w satisfies the boundary condition v(t, 0) = 0, w(0, x) = 0.

23

For A-PINNs, we employ a 3-layer fully connected neural network with 50 neurons per layer and a
hyperbolic tangent activation function. For training, 128 points are randomly sampled in boundaries
and 10 times more points in the domain as the collocation points in each epochs. We train A-PINN
models for 5, 000 epochs.

Separable PINN: 3-dimensional Helmholtz equation SPINN is a a novel architecture designed
to effectively reduce the computational cost of PINNs, especially when addressing high-dimensional
PDEs [17]. To test the performance of DCGD for SPINNs, we consider the following 3-dimensional
Helmholtz equation

∆u(x, y, z) + k2u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,
Ω = [−1, 1]3.

The solution is given by u∗(x, y) = sin(a1πx) sin(a2πy) sin(a3πz) where

f(x, y, z) = (k2 − a21π2 − a22π2 − a23π2) sin(a1πx) sin(a2πy) sin(a3πz)

with k = 1, a1 = 4, a2 = 4, a3 = 3.

We follow the optimal hyperparameter setting reported in [17]. For ADAM and DCGD (Center),
the learning rate is 0.001. The input points are resampled every 100 epochs. Regarding model
architecture, we use the SOTA model, so called (SPINN + Modified MLP). We record the mean
and standard deviation of relative L2 errors from 3 independent trials in Table 4, indicating that the
performance of SPINN can be significantly improved when trained with DCGD for a varying number
of collocation points.

Method Nc Relative L2 error Training speed

SPINN

163 0.0578 (0.0039) 1.65 (ms/iter)
323 0.0352 (0.0035) 1.78 (ms/iter)
643 0.0280 (0.0066) 2.38 (ms/iter)
1283 0.0294 (0.0123) 2.71 (ms/iter)
2563 0.0319 (0.0026) 5.12 (ms/iter)

SPINN + DCGD (Center)

163 0.0447 (0.0176) 1.76 (ms/iter)
323 0.0104 (0.0048) 1.90 (ms/iter)
643 0.0032 (0.0002) 2.59 (ms/iter)
1283 0.0015 (0.0003) 2.85 (ms/iter)
2563 0.0020 (0.0009) 5.34 (ms/iter)

Table 4: Helmholtz Equation (3d): Relative L2 errors and training speed. Nc is the number of
collocation points.

(a) Exact solution (b) Prediction (c) Absolute error

Figure 16: 3D-Helmholtz equation: approximated solution versus the reference solution.

24

D Supplemental results

D.1 Ablation study

In Section 4.3, we introduce three specific algorithms: DCGD (Projection), DCGD (Average),
and DCGD (Center). We conduct an ablation study to investigate the impact of different updated
gradient schemes within the dual cone region. More specifically, we compare the performance of
these three algorithms on five benchmark equations. Detailed experimental settings can be found in
Appendices C.4.

Tables 5 and 6 demonstrate that DCGD (Center) outperforms the other DCGD algorithms across all
experiments. Therefore, we consider DCGD (Center) as the default DCGD algorithm.

Equation Helmholtz Burgers’ Klein-Gordon Heat (5D) Helmholtz (3D)

Optimizer Mean (std) Mean (std) Mean (std) Mean (std) Mean (std)

Projection 0.0089 (0.0022) 0.0139 (0.0035) 0.0216 (0.0130) 0.0074 (0.0049) 0.1251 (0.0044)
Average 0.0166 (0.0124) 0.0156 (0.0032) 0.0292 (0.0088) 0.0051 (0.0008) 0.3161 (0.0911)
Center 0.0029 (0.0005) 0.0124 (0.0046) 0.0069 (0.0027) 0.0008 (0.0003) 0.0774 (0.0250)

Table 5: Average and standard deviation of relative L2 errors in 10 independent trials (3 independent
trials for two high-dimensional PDEs) for each DCGD algorithm.

Equation Helmholtz Burgers’ Klein-Gordon Heat (5D) Helmholtz (3D)

Optimizer Max Min Max Min Max Min Max Min Max Min

Projection 0.0138 0.0062 0.0217 0.0097 0.0573 0.0120 0.0144 0.0036 0.1286 0.1189
Average 0.0469 0.0078 0.0209 0.0115 0.0442 0.0178 0.0060 0.0040 0.3942 0.1883
Center 0.0038 0.0019 0.0163 0.0096 0.0112 0.0042 0.0163 0.0096 0.1007 0.0428

Table 6: Min and Max Relative L2 errors in 10 independent trials (3 independent trials for two
high-dimensional PDEs) for each DCGD algorithm.

D.2 Computational cost

In this section, we acknowledge that our proposed method incurs higher computational costs due to
the need for backpropagation for each individual loss. Nonetheless, through a comparison of training
speeds, we empirically demonstrate that DCGD achieves superior performance with computational
costs comparable to those of existing competitors.

PDE equation

Optimizer Heat (5D) Helmholtz (3D)

ADAM 11.1 (iter/s) 9.05 (iter/s)
L-BFGS 0.53 (iter/s) 1.19 (iter/s)
LRA 3.39 (iter/s) 5.43 (iter/s)
NTK 3.92 (iter/s) 7.49 (iter/s)
MultiAdam 4.10 (iter/s) 6.85 (iter/s)
PCGrad 5.98 (iter/s) 8.94 (iter/s)
MGDA 3.46 (iter/s) 6.16 (iter/s)
CAGrad 4.22 (iter/s) 8.80 (iter/s)
Aligned-MTL 4.10 (iter/s) 7.97 (iter/s)
DCGD (Average) 3.78 (iter/s) 5.42 (iter/s)
DCGD (Projection) 3.70 (iter/s) 5.64 (iter/s)
DCGD (Center) 4.35 (iter/s) 8.90 (iter/s)

Table 7: Training speed in higher dimensional equations example

25

E Pseudo codes of algorithms

This section provides pseudo codes for the proposed DCGD algorithms.

Firstly, DCGD (Projection) uses the projection of the total gradient∇L(θt) onto Gt when∇L(θt) /∈
K∗

t . Otherwise,∇L(θt) is used. Then the update vector gdual
t can be defined as follow:

DCGD (Projection) gdual
t =

∇L(θt), if∇L(θt) ∈ K∗

t

∇tL∥∇L⊥
r
, if∇L(θt) /∈ K∗

t and ⟨∇L(θt), ∇Lr(θt) < 0⟩
∇tL∥∇L⊥

b
. if∇L(θt) /∈ K∗

t and ⟨∇L(θt), ∇Lb(θt) < 0⟩
(E.1)

Secondly, DCGD (Average) uses the the average of∇tL∥∇L⊥
r

and∇tL∥∇L⊥
b

when the total gradient
is outside K∗

t . Otherwise, ∇L(θt) is used. The update vector gdual
t of DCGD (Average) is defined as

follow:

DCGD (Average) gdual
t =

{
∇L(θt) if∇L(θt) ∈ K∗

t
1
2 (∇tL∥∇L⊥

r
+∇tL∥∇L⊥

b
), if∇L(θt) /∈ K∗

t
(E.2)

Thirdly, DCGD (Center) employs the following update vector gdual
t , regardless of whether the total

gradient∇L(θt) is included in K∗
t :

DCGD (Center) gdual
t =

⟨gct , ∇L(θt)⟩
∥gct∥2

gct where gct =
∇Lb(θt)

∥∇Lb(θt)∥
+
∇Lr(θt)

∥∇Lr(θt)∥
(E.3)

Here, pseudo codes of these algorithms are summarized in Algorithms 2, 3, and 4. Note that we
introduce a conflict threshold α as a stopping condition for DCGD algorithms, as they can reach a
Pareto-stationary point characterized by ϕt = π. That is, the algorithm stops when the parameter
converges close to a Pareto-stationary point such that | cos(ϕt)−π| < α. Throughout our experiments,
we set α = 10−8.

Algorithm 2 DCGD (Projection)

Require: learning rate λ, max epoch T , initial point θ0, gradient threshold ε, conflict threshold α
for t = 1 to T do

if π − α < ϕt ≤ π or ∥∇L(θt)∥ < ε then
break

end if
if ∇L(θt) /∈ K∗ then
gdualt = ∇L(θt)

else if∇L(θt) ∈ K∗ and ⟨∇L(θt), ∇Lr(θt)⟩ < 0 then
gdualt = ∇tL∥∇L⊥

r

else if∇L(θt) ∈ K∗ and ⟨∇L(θt), ∇Lb(θt)⟩ < 0 then
gdualt = ∇tL∥∇L⊥

b

end if
end for

DCGD algorithms can be easily combined with other optimizers or strategies thanks to its flexible
framework. For example, one can design a DCGD algorithm combined with ADAM to leverage
advantages of adaptive gradient methods, see Algo. 5. For our experiments, we consider the DCGD
(center) combined with ADAM as the default. Algorithm 6 presents the psedo code for DCGD
combined with a loss balancing method such as LRA and NTK.

26

Algorithm 3 DCGD (Average)

Require: learning rate λ, max epoch T , initial point θ0, gradient threshold ε, conflict threshold α
for t = 1 to T do

if π − α < ϕt ≤ π or ∥∇L(θt)∥ < ε then
break

end if
if ∇L(θt) /∈ K∗ then
gdualt = 1

2∇tL∥∇L⊥
r
+ 1

2∇tL∥∇L⊥
b

else
gdualt = ∇L(θt)

end if
θt = θt−1 − λgdualt

end for

Algorithm 4 DCGD (Center)

Require: learning rate λ, max epoch T , initial point θ0, gradient threshold ε, conflict threshold α
for t = 1 to T do

if π − α < ϕt ≤ π or ∥∇L(θt)∥ < ε then
break

end if
gct = ∇Lb(θt)

∥∇Lb(θt)∥ + ∇Lr(θt)
∥∇Lr(θt)∥

gdualt =
⟨gc

t ,∇L(θt)⟩
∥gc

t∥2 gct
θt = θt−1 − λgdualt

end for

Algorithm 5 DCGD with ADAM

Require: learning rate λ, max epoch T , betas β1, β2, DCGD operator DCGD(·)
for t = 1 to T do
gdualt = DCGD(Lr(θ),Lb(θ))
gt ← gdualt
mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t
m̂t ← mt

1−βt
1

θt ← θt−1 − γt m̂t√
v̂t+ϵ

end for

Algorithm 6 DCGD with a loss balancing method

Require: learning rate λ, max epoch T , loss balancing operator LB(·)
for t = 1 to T do
(βr, βb)t = LB(Lr(θt),Lb(θt))
Lb(θt)← βbLb(θt)
Lr(θt)← βrLr(θt)
Choose gdual

t ∈ K∗
t

θt = θt−1 − λgdual
t

end for

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] Our abstract and introduction accurately reflect the paper’s contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] We have discussed the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] We have stated the explicit assumptions and provide complete proofs for
main results in Appendix A.
Guidelines:

28

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] The pseudo code of our algorithms can be found in Appendix E, and we
have stated detailed instructions in Appendix C. We have also provided code to reproduce
the results of main experiments in supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] We have provided our code to reproduce the results of main experiments in
supplementary material.

29

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] All experimental setting is explained in Appendix C including hyperparame-
ter choices, training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
We repeated the main experiments in several times and reported several statistics including
min, max, and the standard deviations for our numerical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] See Application C.1 for details of resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

31

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] The overall experiments followed the existing experimental setup which have
cited, and the code and data are available for use under the MIT license. For CausalPINNs
in [22], the code is available under the CC-BY-NC-SA 4.0 license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Guidelines:

32

paperswithcode.com/datasets

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Preliminaries
	Empirical Observations and Issues in Training PINNs
	Methodology
	Dual Cone Region
	Convergence Analysis
	Dual Cone Gradient Descent: Projection, Average, and Center
	Benefits of the DCGD framework

	Numerical Experiment
	Comparison on benchmark equations
	Failure mode of PINNs and Complex P(I)DEs
	Compatibility of DCGD with existing methods

	Conclusion and Discussion
	Proofs for Section 4
	Unification of MTL algorithms within the DCGD framework
	Experimental details
	Software and hardware environments
	Toy example
	Details for Figure 2, Figure 1, and Figure 5
	Details for Section 5.1
	Details for Section 5.2

	Supplemental results
	Ablation study
	Computational cost

	Pseudo codes of algorithms

