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ABSTRACT

Text-to-Image diffusion models have achieved remarkable progress under the
guidance of “Scaling Laws”, but further performance gains are increasingly hin-
dered by diminishing returns from scaling model size and data volume. To bypass
this bottleneck, Test-Time Scaling (TTS) has emerged as a promising alternative.
However, the lack of interpretable signals in the early denoising steps forces exist-
ing TTS approaches to perform nearly complete denoising process for every candi-
date—resulting in high computational cost. In this work, we propose FarsightAl-
ign TTS, a novel and efficient TTS method that leverages the rich semantic signals
embedded in early cross-attention maps. With just a few denoising steps, Farsigh-
tAlign TTS can extract structured semantic information, such as object presence,
layout, and attributes. It then leverages a lightweight scorer to prune unaligned
candidates before committing to the final generation. This design significantly
reduces computational cost while improving alignment with user’s prompts. The
experimental results demonstrate the effectiveness of our method. Furthermore,
FarsightAlign TTS can function as a plug-and-play module, significantly boost-
ing the semantic alignment capabilities of other advanced TTS frameworks with
minimal additional computational overhead.

1 INTRODUCTION

The remarkable progress of Text-to-Image (T2I) diffusion models largely stems from “Scaling
Laws”—enhancing performance by increasing model parameters and training data (Hoffmann et al.,
2022; |Kaplan et al., 2020). However, this approach encounters a significant bottleneck. As com-
putational investment during training continues to grow, the improvements in model performance
exhibit diminishing marginal returns. A fundamental reason for this trend is that merely increasing
data and parameter counts is insufficient for models to acquire a deep understanding of complex
logic, physical commonsense, and causal relationships. Consequently, even the largest models often
fail to precisely align with nuanced human intent when faced with complex prompts (Agarwal et al.,
2025; Manas et al., 2024]).

In contrast to allocating massive resources for marginal gains in training, users in practical applica-
tions have adopted a highly cost-effective strategy to overcome model limitations: generating mul-
tiple candidate images from the same prompt and manually selecting the best one. This widespread
“Best-of-N" practice demonstrates that adding extra computation during inference time can signif-
icantly improve the final output quality (Brown et al.,[2024). Inspired by this strategy, we shift our
research focus from expensive model training to the more flexible and low-cost inference stage.

This perspective aligns with Test-Time Scaling (TTS) proposed in the domain of Large Language
Models (LLMs) (Zhang et al., 2025a). In LLMs, to overcome the limitations of greedy decoding,
researchers employ more complex search algorithms like beam search (Snell et al., [2024) or tree
search (Xie et al.,[2024) in test time. These algorithms actively explore a wider range of generation
paths during inference, thereby producing higher-quality response with superior logical consistency
and contextual coherence.

However, directly applying TTS to diffusion models is challenging. LLMs generate discrete to-
kens that can be decoded and evaluated at each step, whereas diffusion models operate in a high-
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Figure 1: Latent Decoding vs. Attention Maps. In the early steps of diffusion, decoding interme-
diate latents (top row) produces perceptually blurry, semantically ambiguous images. In contrast,
cross-attention maps (bottom row) already form a clear and accurate “blueprint” of the final scene,
revealing precise object shape and location from the very beginning.

dimensional, non-interpretable latent noise space. The evaluation process for existing TTS methods
in T2I tasks (Li et al., [2025b; [Zhang et al.| 2025c¢)) requires decoding intermediate latents into full
images. However, this presents a dilemma: decoding latents from early denoising stages yields
blurry and uninformative images (as illustrated in Figure[T]and analyzed in Section [4.1)), while de-
coding them from later stages incurs substantial computational cost due to the extensive number of
denoising steps required. Furthermore, these methods focus only on general image quality, while
overlooking whether the generated image truly aligns with the user’s prompt (Agarwal et al.| [2025).

These limitations demonstrate that an ideal TTS method requires farsight—the ability to discern
a candidate’s potential from the very early denoising steps. This capability can be leveraged to
enhance T2I semantic alignment. Accordingly, we propose FarsightAlign TTS, a novel method
built upon a key empirical observation: the cross-attention maps in the very early denoising steps
already contain the critical semantic information that determines the final image composition (as
shown in Figure|[I).

FarsightAlign TTS operates by first sampling a large pool of initial noises. It then performs only
a few denoising steps (just 5 steps) and, instead of costly decoding, directly extracts structured
semantic features (object confidence, spatial location, attribute binding) from the early-stage cross-
attention maps. A lightweight LLM scorer then rapidly prunes unpromising candidates based on
their alignment with the prompt, allowing only the best to proceed to full generation.

Experimental results demonstrate that our method significantly outperforms existing TTS ap-
proaches on two mainstream benchmarks across three key evaluation metrics. The performance
improvement is particularly pronounced in scenarios with limited computational resources.

Furthermore, the noise-filtering mechanism of FarsightAlign TTS is highly modular. We integrate
this mechanism as a plug-and-play preprocessing module into other advanced diffusion TTS frame-
works. Results show that with a negligible additional NFE cost, it can significantly boost their
performance in semantic alignment.

To sum up, our main contributions are as follows:
e We propose FarsightAlign TTS, a computationally efficient TTS method that achieves
strong semantic alignment with user prompts.

e As a plug-and-play module, FarsightAlign TTS seamlessly integrates with existing TTS
methods, boosting performance with negligible computational overhead.

e Through extensive experiments, we prove that FarsightAlign TTS effectively utilizes test-
time computation to consistently improve T2I performance, achieving a state-of-the-art
comprehensive performance that surpasses all existing TTS methods.
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2 RELATED WORKS

2.1 TEXT-TO-IMAGE DIFFUSION MODELS

In the field of T2I generation, early research primarily centered on GANs (Reed et al., 2016} Tao
et al., [2022; [ Xu et al., 2018} Zhu et al.| [2019) and autoregressive models (Ding et al., |2021}; |Gafni
et al. 2022; Ramesh et al., [2021; [Yu et al., 2022)). As the scale of model parameters and train-
ing datasets has continued to expand, diffusion models have demonstrated powerful capabilities in
image generation tasks (Balaji et al., 2022; Hoogeboom et al., 2023} |[Nichol et al., 2022; Ramesh
et al., [2022; [Saharia et al.| [2022a)). To mitigate the substantial computational costs associated with
high-resolution image synthesis, Latent Diffusion Models have been introduced (Rombach et al.,
2022). They enhance efficiency by performing the diffusion process within a low-dimensional latent
space constructed by an autoencoder. For better alignment with the textual conditions, models like
Stable Diffusion (Rombach et al., |2022; [Podell et al., 2024; [Esser et al., 2024) further incorporate
cross-attention mechanisms (Chefer et al., [2023} |[Kim et al.| [2025} Zhang et al., 2024b)) to inject tex-
tual information. However, as we have highlighted in our introduction, despite their success, these
models exhibit fundamental limitations in precisely follow complex prompts.

2.2 TEST-TIME SCALING

TTS improves model performance by leveraging extra computational resources during inference,
typically through two approaches: 1) Generating diverse candidate outputs to increase the likelihood
of high-quality results (Brown et al.| 2024} [Nguyen et al., 2024} [Chen et al. 2024; Wang et al.,
2023; Qiu et al.| [2024}; Zhang et al., 2025b)), such as through Best-of-N sampling or self-consistency
methods; 2) Extending reasoning depth, for example, using Chain-of-Thought prompting to guide
step-by-step problem-solving for complex tasks (Wei et al.l 2022} [Madaan et al.| [2023; [Li et al.}
2025a; [Lightman et al), 2024; Xu et al., [2025). To further refine the outputs, researchers often
combine intermediate-reward models (Yao et al.| 2023} Zhang et al., [2024a} Xie et al., [2023)) with
search strategies (Xie et al., [2024; Zhou et al.l 2024} |Deng & Raftell |2023) to dynamically guide
and select among generation paths. However, due to the differences in architecture and generation
mechanisms between diffusion models and LLMs, directly migrating TTS methods from LLM to
T2I generation poses significant challenges.

2.3 TTS FOR T2I MODEL

A dominant implementation of TTS for T2I models is search-based guidance. This class of methods
frames the multi-step denoising process as a decision tree, where each node represents an intermedi-
ate latent state, and employs search algorithms to explore the optimal generation path. For instance,
researchers have successfully applied strategies like Dynamic Search (Li et al.|[2025b)), classic algo-
rithms such as A* (Zhang et al.,[2025c), and evolutionary algorithms (He et al.,2025). The core idea
is to periodically assess the quality of intermediate nodes and prune low-quality branches, thereby
focusing computation on more promising paths. Nevertheless, these approaches are computationally
expensive due to the need to decode intermediate latents, and they also struggle to achieve precise
semantic alignment with user prompts.

3 PRELIMINARIES

3.1 DENOISING PROCESS IN LATENT DIFFUSION MODELS

Diffusion models generate images by iteratively denoising a random latent vector, zp ~ N(0, I). At
each step ¢, a network ey predicts the noise eg(zs, ¢, ¢) conditioned on a text prompt c. A scheduler
then computes the preceding latent z; 1 using this prediction:

zi—1 = Sz, €0(2, 1, €)). €))

This process repeats until the final latent zg is reached, which a decoder D maps to the final image
o — D(Zo)
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3.2 CROSS-ATTENTION MAPS

Cross-attention layers align image generation with a text prompt by treating intermediate image
features ¢(z;) as the Query (@), and text embeddings 7(c) as the Key (KX) and Value (V). At a
timestep ¢, the attention matrix A is calculated as:

T
A = softmax <Q\/IC% ) . 2)

Each column of A is an attention map for a specific text token. For our method, we create a single,
unified attention map per token by extracting its map from all cross-attention layers, upsampling
each to 64 x 64, and averaging the results. This aggregated map represents the token’s total spatial
influence and is the key signal we leverage for early-stage evaluation.

3.3 TEST-TIME SCALING

To extend the performance limits of the model in test time, a common strategy is to generate [V
candidates in parallel for a single prompt c. This is achieved by initializing a batch of independent
latent vectors, {24}V ;, to launch NV parallel generation trajectories.

A reward function, R(-), is used to evaluate the quality of each trajectory. This evaluation can target
the final image xj, or intermediate states during the denoising process, enabling assessment and
guidance of the generation.

The final output is the image xé* from the trajectory with the highest camulative reward score, .S;.
The optimal index ¢* is found by:
i* = argmax S;. 3)
i€{1,....,N}

4 METHOD

4.1 ATTENTION MAPS VS. DECODED LATENTS

0.8 5 Aifaciion HopiLoss A pivotal challenge for TTS in diffusion models lies

I Decoded Latent Loss in identifying a reliable signal at a very early denois-

0.6 - ing stage to avoid the high cost of a full denoising

" H process for each candidate. A prevalent approach
Q 04 relies on decoding intermediate latents z; into im-
ages x; and then using reward models for evalua-

0.2 T tion. However, the critical flaw in this method is that

P oo e mn—o—o | early-stage decoded images are perceptually blurry

0.0 and semantically ambiguous, as illustrated in Fig-
T3 5 7 9 1 13 15 M7 19 ure [I] (Top). This ambiguity prevents reward mod-
Denoise Step els from reliably assessing alignment with the text

Figure 2: Attention Map Loss vs. Decoded prompt, making the evaluation signal unreliable.
Latent Loss. Attention maps (blue) pro- ) ] )
vide a stable, low-error signal for object posi- 10 address this, we propose using cross-attention
tion throughout the denoising process, unlike Maps directly as the evaluation proxy. We find that

the initially high and unstable decoded latent due to the inherent coupling between text tokens and
loss (orange). their spatial layout, these maps form a clear seman-

tic blueprint of the final image’s object composition
from the earliest denoising stages, as shown in Figure [T] (Bottom). This provides a far more stable
and informative early signal.

To quantitatively compare these two proxies, we measure their positional error against a ground-
truth position, which we obtain from the final image D(zo). We define Mg (-) as an operator that
returns the center coordinate of the detected object’s bounding box.

The Decode Loss, Lgecode (1), is the Euclidean distance between the position predicted from the in-
termediate image D(z;) and the ground truth. The Attention Map Loss, L, (%), similarly measures
the distance from the attention map’s centroid to the ground truth. The losses are formulated as:

Edecode(t) = ||Mdet(D(Zt)) - Mdet(D(ZO))”Q “4)
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Figure 3: An overview of FarsightAlign TTS. To efficiently improve generation quality, we ini-
tiate multiple parallel candidates. Instead of costly full decoding for each candidate, we analyze
their cross-attention maps at an early denoising stage. From these maps, we extract key semantic
information including object confidence, position, and attribute binding scores. This information is
used to score each candidate’s alignment with the prompt, allowing us to select the highest-scoring
candidate for the full generation process while discarding the rest.

Cofidencegyyp gign = max (Ai,k(x'y))

e o =

Lan(t) = ||Centroid(A;) — Mae(D(20))]]2 (5)

As shown in Figure |2} the results are definitive. L,,(t) (blue line) is minimal and stable from the
outset, whereas Lgecode(t) (orange line) starts at a high value and diminishes slowly through the
early denoising step. This stark divergence confirms that attention maps are a far superior early-
stage proxy. This finding is the cornerstone of our method, enabling the efficient selection of an
optimal initial latent z7 by sidestepping the need for costly denoising steps.

4.2 FARSIGHTALIGN TTS

Similar to other TTS approaches, we first initialize a pool of N initial noises for a given text prompt.
After applying a few denoising steps to each, we extract the corresponding batch of attention maps,
which are then processed in parallel to distill key semantic information.

4.2.1 ADAPTIVE OBJECT EXTRACTION FROM ATTENTION MAPS

A straightforward approach to segmenting attention maps would be to apply a simple threshold.
However, we find this method to be unreliable, as the optimal threshold—whether a fixed value or
a percentile—varies dramatically across different tokens and denoising steps. To address this, we
propose an adaptive method that requires no manually-tuned hyperparameters.

Our approach is based on the observation that the intensity distribution of an attention map typically
exhibits a distinct bimodal structure, as shown in Figure[3] This bimodality is a natural consequence
of the cross-attention mechanism; dot-product similarity scores, when transformed by the softmax
function, inherently partition pixels into high-activation (object) and low-activation (background)
groups.

Leveraging this property, we propose to explicitly model this structure by decomposing the dis-
tribution into two Normal Distribution representing the object and background, respectively. The
parameters for this mixture are estimated via the Expectation-Maximization, providing a principled
method for pixel-level segmentation. The probability density function for a pixel intensity x; is
given by:

P | 6) = o N(; | 1oy02) + (1 - @) - Nz, | 1y, 03) (6)

here,(410,02) and (up,0f) are the mean and variance for the high-activation object and low-

activation background components, respectively, and « is the object’s mixture proportion. Upon



Under review as a conference paper at ICLR 2026

fitting the model, each pixel is assigned to the component—object or background—with the higher
posterior probability. This results in a binary mask R; ;, representing the extracted object region for
token j in candidate 7.

Appendix [A.2.3] provides a detailed performance comparison against fixed-thresholding segmenta-
tion approaches.

4.2.2 OBJECT GENERATION CONFIDENCE

With the object region R; ; extracted, we first quantify its generation confidence. A well-generated
object corresponding to token j should manifest as a concentrated region of high activation in its
attention map (validated in Appendix[A.2.T)). We therefore define the object’s generation confidence
as the peak intensity value within its object region R; ;. This provides a direct measure of how
strongly the model focuses on the object. The confidence score is given by:

R W 7

where P; ; is the generation confidence for token j in candidate ¢, and A, ; (z,y) is the attention
intensity at pixel coordinate (z, y).

4.2.3 POSITIONAL INFORMATION

Beyond confidence, we determine the object’s location by computing the center of mass (centroid)
of the high-activation region R; ;. This is a weighted average of the pixel coordinates, where the
weights are the attention intensities, providing a robust estimate of the object’s spatial position. The

centroid coordinates (Pos’. ., Pos’ .) are computed as:

z,J° Y,J

Pos’ . — Z(may)GRi,j a - Aij(@,y) Posi . — z(ryy)GRi,j y-Aij(z,y) ®)
o Z(w,y)ERzJ Ai,j(xvy) Y Z(@y)g’]{i‘j Ai,j(xay)

where the summation is performed over all pixels within the high-activation region R; ;.

4.2.4 ATTRIBUTE BINDING

Quantifying the binding between an object o and an adjective a requires measuring how precisely
the attribute’s attention is focused on the object. Naive overlap metrics are insufficient as they ignore
attention intensity. We therefore introduce a directional binding score, B,_,,, defined as the mean
attention intensity of the adjective’s map, A,, over the object’s pre-segmented region, R,. Formally,
this is expressed as:

1
Biso = 1 > Ad(z,y) ©)
! (z)ER,

where |R,| is the area of the object’s region. A higher B,_,, score signifies a stronger semantic
binding, indicating that the attribute is more precisely associated with the object.

4.2.5 LLM-GUIDED CANDIDATE SELECTION

For each of the IV initial candidates, we aggregate the extracted semantic metrics—object confi-
dence, position, and attribute binding—into a structured JSON object. This creates a batch of N
JSONG, each serving as a compact semantic summary of a potential outcome (see Figure [3] for an
example).

This collection of semantic summaries is then scored by an LLM acting as a high-level semantic
judge. We employ batch-processing to optimize for latency; the LLM evaluates a batch of candidate
summaries against the original user prompt in each forward pass, assigning a holistic alignment
score to each. For a detailed description of the LLM scorer, please refer to Appendix [A.1.4]

Finally, the candidate with the highest score is selected for the full denoising process, while the
remaining N — 1 candidates are discarded.
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Figure 4: FarsightAlign TTS outperforms baselines on the Geneval. The plots (left) show supe-
rior quantitative performance across three metrics, while the images (right) demonstrate improved
adherence to complex prompts. See Appendix@for additional qualitative comparisons.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Our tests are performed on two mainstream benchmarks, Geneval Benchmark (Ghosh et al.} [2023))
and DrawBench (Saharia et all 2022b), using two distinct model architectures: the U-Net-based
SDXL (Podell et al., [2024) and DiT-based SD3 (Esser et al., 2024). For both models, we use 50
denoising steps with other hyperparameters remaining as the default.

We compare our method against three representative TTS baselines. The first is Best-of-N (BoN),
a straightforward approach that selects the best image from a pool of fully generated candidates
via a reward model. The second is FK Steering (Singhal et all, [2025), a particle-sampling method
that iteratively refines a set of candidates throughout the denoising process. The third is Zero-Order
Search (Z-O Search) 2025)), an algorithm that finds an optimal solution through iterative
neighborhood sampling and evaluation. Finally, to ensure an absolutely fair assessment, the metrics
used for our final performance measurement—including Geneval Score, ImageReward Score

2023), and Clip Score (Hessel et al, 2021)—are not integrated into FarsightAlign TTS’s

reward function.

5.2 RESULT ANALYSIS

5.2.1 COMPARATIVE ADVANTAGES OVER EXISTING TTS METHODS

We first evaluate FarsightAlign TTS on the Geneval benchmark, measuring its test-time computation
by the Number of Function Evaluations (NFE).

As illustrated in Figure[d] our method’s performance consistently improves with increasing NFE, and
outperforming other TTS methods. By eliminating unpromising candidates early in the denoising
process, our method avoids wasting NFE on low-quality generation paths. This advantage is most
significant in low-NFE scenarios, which align with practical usage constraints.



Under review as a conference paper at ICLR 2026

—@- FarsightAlign TTS BoN (Clip Score) BoN (ImageReward) Fk Steering Zero-Order Search
1.4
34.0
33.5 1.2
°
g 33.0 gl.O
O
A 32.5 &J
o 0.8
. 32.0 o)
o ©
B Eos
31.0
30.5 04
0548 16 24 32 40 48 56 64 054 8 16 24 32 40 48 56 64
NFE(102) NFE(10?)

Figure 5: Performance comparison on the DrawBench. We also conduct experiments on the
DrawBench using CLIP Score (left) and ImageReward (right).

Furthermore, we observe a critical phenomenon: while many existing TTS methods achieve stable
gains on metrics they are directly optimized for (e.g., ClipScore and ImageReward), they exhibit
significant performance volatility on the unseen metric: Geneval Score. This strongly suggests that
these methods may be overfitting to specific reward models, failing to genuinely enhance the T2I
model’s ability to generate images that align with human semantics.

To further validate the generalization capabilities of our approach, we also conduct experiments
on the DrawBench, using Clip Score and ImageReward as metrics. The results, illustrated in Fig-
ure [} reaffirm that FarsightAlign TTS maintains a significant performance lead, demonstrating its
robustness across different benchmarks.

5.2.2 ANALYSIS OF EFFICIENCY

The core of our method’s efficiency lies in its
ability to extract informative attention maps at
a very early stage of the denoising process. To
quantify this advantage and identify the optimal
pruning point, we conduct an ablation study.
Under a fixed total computational budget of 400
NFE, we evaluate the final performance when
0.62 —@— FarsightAlign TTS using attention maps extracted at different de-

1 2 3 4 5 6 7T 8 9 10 noising steps (from 1 to 10) for pruning.
Denoise Step

Figure 6: Relationship between the Geneval As shown in Figure [ performance gains sat-
Score and the denoising step chosen for prun- urate after just 4 steps, indicating that we can
ing. Performance gains saturate after just 4 steps.  effectively screen a candidate for only 4 NFE.

In stark contrast, conventional TTS methods re-
quire the full generation process ( 50 NFE) to evaluate a single candidate, making our approach
nearly 13 times more cost-effective. This drastic efficiency gap allows our method to explore a
vastly larger search space of initial noises within the same NFE budget.

0.70

Geneval Score

5.2.3 SYNERGY AS A PLUG-AND-PLAY MODULE

Existing TTS methods often struggle in low-NFE scenarios, as the initial random sample pool may
lack high-potential candidates. Leveraging the insight that initial noise critically shapes the final
image (Mao et al., |2024), we propose FarsightAlign TTS as a plug-and-play pre-filtering module.
It efficiently prunes a large set of initial noises at a minimal computational cost, providing a high-
quality subset of candidates for a subsequent TTS search algorithm. This pre-filtering ensures the
search begins with semantically aligned candidates, preventing wasted computation on poor initial-
izations (see Appendix [A.T.3]for implementation details).

To validate this synergy, we integrated our module with several baseline TTS methods. As shown
in Figure (7] this integration substantially boosts performance on the Geneval benchmark. The aug-
mented methods show the most significant gains in the low-NFE regime, confirming our approach’s
effectiveness.



Under review as a conference paper at ICLR 2026

0.73 0.73
)
0.70 1 0.70 1
1+0.07 1 +0.06
v 0.68 ! L 0.68 i
o \ o v
& 0.65 & 0.65
T 0.62 % 0.62
]
5 0.60 $ 0.60
(O] 0.58 FarsightAlign TTS + Fk Steering o 0.58 FarsightAlign TTS + Z-O Search
’ Fk Steering ’ Zero-Order Search
0.55 Improvement Area 0.55 Improvement Area
05438 16 24 32 40 48 56 64 0548 16 24 32 40 48 56 64
NFE(102) NFE(102)

Figure 7: Synergy with existing Test-Time Sampling methods. FarsightAlign TTS significantly
improves the Geneval Score of Fk Steering and Zero-Order Search, particularly at lower NFE.
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5.2.4 GENERALIZABILITY ACROSS ARCHITECTURES

To further validate the architecture-agnostic nature and generalization capability of our method, we
extend its application from the U-Net-based SDXL to the SD3, which is built upon DiT architec-
ture. As shown in Figure[8] FarsightAlign TTS demonstrates superior performance on the Geneval
benchmark with SD3 as well. Notably, with a computational budget of just 200 NFE (equivalent
to generating 4 images), its performance even surpasses the powerful closed-source model, GPT-40

(OpenAl 2023).

5.2.5 MAINTAINING GENERATION DIVERSITY

A significant pitfall of TTS methods is “reward hacking,” where over-reliance on reward models
leads to reduced diversity 2025). We evaluate this on the Geneval benchmark by measur-
ing the diversity of 8 generated images (400 NFE budget) per prompt, quantified as the average .2
distance between their CLIP features. As shown in Figure 0] FarsightAlign TTS maintains signifi-
cantly higher diversity than its competitors. We attribute this success to our pruning strategy, which
relies on fundamental semantic alignment rather than external, potentially biased reward models that
can hinder diversity.

6 CONCLUSION

We propose FarsightAlign TTS, a test-time scaling method that improves semantic alignment in
Text-to-Image diffusion models. Instead of relying on costly full-image decoding, our approach
extracts semantic cues—such as object presence and layout—from early-stage cross-attention maps,
allowing efficient candidate pruning via a lightweight LLM scorer.

Through extensive experiments, we demonstrate that FarsightAlign TTS consistently surpasses ex-
isting TTS methods across multiple benchmarks, especially in low-computation settings. As a mod-
ular plug-in, it also enhances other TTS frameworks with minimal overhead.
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JSON

| Umbrella :

umbrella

Umbrella Red

Prompt: a red umbrella Cofidence:0.88,
and a blue couch. Position: (0.5,0.4),
Attribute Binding:
{
Red: 0.85,
Blue: 0.09
}
}

Couch Blue JSON¢ouch
Couch :
{
Cofidence:0.98,
Position: (0.5,0.8),
Attribute Binding:
{

Red: 0.12,
Blue: 0.91

Figure 10: Information Extraction Pipeline. An illustration of how FarsightAlign processes cross-
attention maps to produce a structured JSON summary. This summary quantifies object confidence,
position, and attribute bindings, forming the basis for our efficient, early-stage candidate pruning.

Geneval Benchmark: An object-centric framework to evaluate T2I models on complex prompts. It
contains 500 prompts across four categories: attribute binding, object relationships, spatial reason-
ing, and multi-object composition. Geneval provides a more granular, instance-level analysis than
holistic metrics like FID, helping to identify specific model failure modes.

DrawBench: A diverse benchmark with 200 challenging prompts designed to probe the limits of
T2I models. It specifically tests difficult aspects like compositionality, negation, and unusual object
interactions.

A.1.2 EVALUATION METRICS

We employed three metrics for a multi-dimensional comparison. For a fair evaluation, none were
used to guide the FarsightAlign TTS process.

CLIP Score: Measures semantic consistency between the prompt and the image using the cosine
similarity of CLIP embeddings (ViT-B/32).

ImageReward: A reward model trained on human preferences to evaluate overall quality, including
image aesthetics, realism, and text-to-image alignment.

Geneval Score: The native, object-centric eva luation suite for the Geneval benchmark. It performs
fine-grained, automated verification of semantic elements (e.g., presence, attributes, position) using
a vision-based pipeline. This provides a strict measure of prompt fidelity, less susceptible to reward
hacking than holistic scores.

A.1.3 PLUG-AND-PLAY PIPELINE IMPLEMENTATION

In this section, we provide a detailed description of the implementation for integrating FarsightAlign
TTS as a plug-and-play module. We outline the two-stage pipeline that enables FarsightAlign TTS
to act as an efficient pre-filtering stage, thereby optimizing the initial candidate pool for subsequent
complex search algorithms like FK Steering and Zero-Order Search.

Stage 1: FarsightAlign Pre-filtering. The process begins by sampling a large pool of 8 * N initial
noise latents {z7;}8*\V. Instead of a full denoising process, we perform only a small number of
denoising steps, Tpune (typically 5 steps), for all 8 x N candidates. At step 1" — Tjrupne, We extract
the cross-attention maps for each candidate and use our scorer to evaluate its semantic alignment
with the prompt. We then rank all candidates by their scores and select the initial noise latents of the

top-/V candidates, forming a high-potential subset {z}}7 ;V:l.
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Prompt: A cow left of a stop sign.

Prompt: a red umbrella and a blue couch.

Cow Umbrella Red
Cow: This contradicts the prompt's Umbrella :
{ 'left of instruction. Pruning
- Cofidence:0.98, this candidate. Red: 0.72,
Position: (0.6,0.6), Blue: 0.18 @
} =) X
Stop sign Couch Blue o= -
> Stop sign: Couch : P 4
{ { ==
Cofidence:0.92, Red: 0.79, The couch is incorrectly bound to
Positian: (0.1,0.2), Blue: 0.21 'Red’ (0.79) instead of
} 'Blue'. Rejecting this candidate.
Cow ; Umbrella Red .
o Umbrella : Red is bound to Umbrella
{ { (0.85), Blue is bound to Couch
Cofidence:0.9, Red: 0.85, (0.91). Approved for generation.
Position: (0.3,0.5), Blue: 0.09
}
Stop sign Couch Blue

Stop sign:

Cofidence:0.86,
Position: (0.8,0.3),

The spatial relationship matches
the prompt. Confidence is

Couch :

Red: 0.12,
Blue: 0.91

high. Approved for generation!

Figure 11: Early-Stage Pruning Mechanism. Our method successfully identifies and prunes seman-
tically flawed candidates at an early stage by reasoning over structured data derived from attention
maps. It correctly rejects candidates with incorrect spatial layouts (left) and mismatched attribute
bindings (right), while approving logically sound ones.

Stage 2: Main TTS Method Execution. This pre-screened, high-potential subset of N initial
latents is then passed as the starting candidate pool to the main TTS method (e.g., FK Steering or Z-
O Search). The main method then executes its full, more computationally intensive algorithm—be
it iterative particle refinement or neighborhood search—but its exploration is now confined to this
semantically strong set of candidates.

A.1.4 LLM SCORER IMPLEMENTATION

The LLM scorer is the high-level reasoning engine of FarsightAlign TTS. Its primary role is to
interpret the structured semantic data extracted from early-stage attention maps and evaluate its
alignment with the complex, compositional intent of the user’s prompt.

For each candidate, the extracted metrics—object confidence, position, and attribute binding
scores—are aggregated into a structured JSON object. This “semantic summary”, as illustrated
in Figure[I0] provides a compact, machine-readable representation of the potential image.

To optimize resource consumption and minimize latency, we aggregate the summaries from multiple
candidates into a single batch and feed them to the LLM in one forward pass. The model then returns
a corresponding batch of evaluation scores.

To balance high throughput with model performance, we process the semantic summaries in batches.
A primary constraint is the context length of the LLM, as excessively long inputs can degrade reason-
ing quality. We therefore set our batch size to 64. This choice is calibrated based on the capabilities
of powerful models such as QwQ, which have been shown to maintain excellent performance even
with context lengths approaching 8192 tokens (Team), 2025)). A batch of 64 JSON summaries (total-
ing approximately 6000 tokens) remains comfortably within this high-performance range, ensuring
both processing efficiency and reliable evaluation.

To elicit the reasoning shown in our examples (as shown in Figure[IT)), we use the specific zero-shot
system prompt detailed in Figure[I2} This template, which defines the LLM’s role, evaluation logic,
and required output format, is applied to each candidate’s summary within the batch.

A.2 ABLATION STUDIES AND COMPONENT ANALYSIS
A.2.1 VALIDATION OF OBJECT GENERATION CONFIDENCE
This section provides the visual evidence for our core claim in Section[#.2.2} that the peak intensity

of an early-stage attention map is a highly reliable predictor of whether a corresponding object will
be successfully generated.
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You are an expert evaluator for a Text-to-Image
model. Your task is to evaluate a LIST of
candidate semantic summaries against a single
user prompt. For each summary in the list, you
must evaluate it across three distinct criteria,
providing a score from 1 to 10 for each.

Your evaluation criteria for EACH candidate are:

1. Object Presence: Are all key objects present
with high confidence?

2. Spatial Relationships: Are spatial instructions
(e.g., 'left of') correctly represented?

3. Attribute Bindings: Are attributes (e.g., 'red'
correctly assigned to the right objects?

USER PROMPT:
{user prompt}

LIST OF CANDIDATE SUMMARIES (JSON ARRAY):
{list _of json summaries}

Based on your evaluation, provide a JSON array.
Each object in the array should contain the three
scores for the corresponding candidate summary.
The order of objects in your output array MUST
match the order of the summaries in the input
array. Your output must be only the JSON array.

Example Output (for a batch of 2):
l
{
"object presence score": 8,
"spatial relations_score": 9,
"attribute binding_score": 10

"object presence_score": 10,
"spatial relations_score": 2,
"attribute binding_score": 7

]
JSON ARRAY OUTPUT:

Figure 12: The prompt template for batched, factorized scoring. It instructs the LLM to process a list
of candidate summaries and return a corresponding list of JSON objects containing the evaluation
scores, ensuring high throughput and parsable output.

Figure [T3] demonstrates this direct correlation by contrasting two sets of outcomes. The key dis-
tinction is not merely the quality of the final image, but whether the prompted object is present or
absent—a factor dictated by the strength of its attention map.

* Top Row (Low Peak Intensity — Failed Generation): This row illustrates cases where
the model failed to generate a key object. For instance, the relevant concepts required by
the prompt (e.g., “cow” or “dog”) are malformed, incoherent, or entirely absent in the final
images. Their corresponding attention maps are visibly diffuse, scattered, and lack any
distinct high-intensity peak. This weak, unfocused attention signals the model’s failure
to ground the concept, directly leading to the object’s failed generation in the final output.

* Bottom Row (High Peak Intensity — Successful Generation): In stark contrast, this
row showcases successful generations where all prompted objects are accurately rendered.
The attention maps corresponding to these objects—such as the “cow” or “dog”’—exhibit
a sharp, localized, and high-intensity peak. This focused activation indicates that the
model has confidently materialized the concept onto the canvas, directly resulting in a well-
formed and clearly recognizable object.
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Prompt: a red umbrella and a green cow. Prompt: a green tennis racket and a black dog.
_Max(AttnMapcow): 197.625 Max(AttnMapcow): 185.875 Max(AttnMapy,g): 182.875 Max(AttnMapg,g): 166.750
- - i ol A t -

: I
H

Max(AttnMapcow): 252.125

-

: ,,nii. 8

Max(AttnMapdog): 227.125

[

Figure 13: Visual Evidence for FarsightAlign’s Confidence Metric. A comparison showing that
successfully generated objects (bottom row) correspond to early-stage attention maps with high-
intensity, focused peaks, while failed generations (top row) correspond to diffuse, low-intensity
maps.

Method Geneval Score (%)
w/o TTS 20.03
BoN (Clip Score) 28.99
BoN (Peak Intensity) 28.90

Table 1: Performance on GenEval Benchmark (Color Attribution). Comparison of our BoN
approach using peak intensity as a reward signal against a baseline model.

Comparing the attention peaks of the top and bottom rows reveals that the peaks for the successfully
generated targets in the bottom row are significantly higher than those in the top row.

Furthermore, we conducted a supplementary study to further validate the efficacy of attention peak
intensity as a predictor of generation success. In this experiment, we employed peak intensity as a
reward signal within a BoN sampling strategy.

For each prompt, we generated 32 candidate samples. We then calculated the early-stage attention
peak intensity for the specified object in each sample and selected the image with the highest peak
intensity as the final output. This methodology was evaluated on the GenEval benchmark, with
a particular focus on the ”Color Attribution” category of prompts, which are notoriously prone to
object omission.

As shown in Table [T} our method demonstrates a significant improvement on the GenEval bench-
mark (Color Attribution), achieving performance comparable to BoN guided by CLIP scores. Crit-
ically, our approach provides this competitive performance without requiring the computationally
expensive step of full image denoising for candidate selection.

In summary, these experiments demonstrate that early-stage attention peak intensity is a powerful
and efficient metric. The visual evidence confirms it is a reliable predictor of successful object
generation. Furthermore, when applied as a reward signal, it becomes a computationally cheap
optimization tool that improves output quality without the need to fully generate every candidate
image, unlike more costly methods such as CLIP-based scoring.

A.2.2 ABLATION ON SCORER CHOICE

To determine the optimal LLM scorer for our framework, we conducted an ablation study to evaluate
the impact of different models on final generation quality.

The study was performed under a fixed computational budget of NFE=400 for the generation pro-
cess, ensuring a fair comparison where the primary variable was the scorer model. We evaluated
four distinct models:

¢ QwQ-32B (Full Precision)
* QwQ-32B (8-bit Quantized)
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Scorer Model Geneval Score
Qwen2.5-7B 0.685
Qwen3-30B-A3B 0.723
QwQ-32B (Full Prec.) 0.720
QwQ-32B (8-bit Quant.) 0.716

Table 2: Ablation study on scorer model choice under a fixed NFE=400 budget. Performance is
measured by the final Geneval Score. The 8-bit quantized QwQ-32B provides the best balance of
performance and efficiency.

¢ Qwen2.5-7B
¢ Qwen3-30B-A3B

The results, summarized in Table [2] reveal several key insights. Interestingly, most of the larger
models (QwQ-32B, QwQ-32B 8-bit, and Qwen3-30B-A3B) yielded comparable final generation
quality, with only marginal differences in performance metrics. The smallest model, Qwen2.5-7B,
performed slightly worse, suggesting that a certain threshold of reasoning capability is necessary for
the task.

Crucially, the 8-bit quantized version of QwQ-32B achieved performance nearly identical to its full-
precision counterpart. This demonstrates that for our specific task of evaluating structured JSSON
data, the quantization process does not lead to a significant degradation in the model’s critical rea-
soning abilities. Based on this analysis, we selected the 8-bit quantized QwQ-32B as the final scorer.

A.2.3 ANALYSIS OF ADAPTIVE OBJECT EXTRACTION

As stated in the main paper (Section 4.2), a core component of our framework is the ability to
reliably segment an object’s region from its cross-attention map. This section provides the detailed
performance comparison that justifies our choice of an adaptive segmentation method over simpler
thresholding techniques.

To comprehensively evaluate the quality of our adaptive segmentation method, we designed two
distinct experiments. The first assesses the positional accuracy of the extracted masks at an early
stage, while the second measures the downstream impact of the segmentation method on the final
image generation quality.

Experiment 1: Positional Accuracy of Extracted Objects A high-quality segmentation should
accurately predict the final position of an object, even from an early denoising step. To measure this,
we designed the following evaluation:

1. At an early denoising step (5 step), we use each segmentation method to extract the object
mask and compute its geometric center (centroid).

2. After the full denoising process is complete, we run a object detector on the final generated
image to obtain the ground-truth bounding box for the object.

3. We then calculate the Mean Positional Error, defined as the average Euclidean distance
between the predicted centroid from the early stage and the center of the final ground-truth
bounding box.

The results, averaged over the Geneval benchmark, are presented in Table[3] A lower error indicates
that the segmentation method provides a more accurate and stable localization signal early on. Our
adaptive method achieves a significantly lower positional error, demonstrating its superior ability to
pinpoint the object’s final location.

Experiment 2: Impact on Final Generation Quality To assess how segmentation quality affects
the end-to-end performance of our framework, we conducted a direct comparison. We integrated
both the Percentile Thresholding and our Adaptive method into the full FarsightAlign pipeline
and evaluated their final output on the Geneval benchmark under a fixed computational budget of
NFE=400.
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Segmentation Method Mean Positional Error
Fixed Threshold (T=200) 0.38
Percentile Threshold (P=90%) 0.15
Ours 0.07

Table 3: Positional accuracy of different segmentation methods. The error is the L2 distance between
the centroid predicted at an early stage and the final object center. Lower is better.

Segmentation Method Geneval Score
Percentile Threshold (P=90%) 0.697
Ours 0.716

Table 4: End-to-end performance of FarsightAlign using different segmentation modules under a
fixed NFE=400 budget. Higher is better.

As shown in Table[d] the choice of segmentation method has a direct and notable impact on the final
result. By providing more accurate semantic information to the LLM scorer, our adaptive approach
leads to a clear improvement in the final Geneval Score.

A.3 QUALITATIVE RESULTS

We present extensive qualitative results below. We compare FarsightAlign TTS against competing
TTS methods on Geneval benchmark (Figures [T4] and [T5) and DrawBench (Figures [16] and [T7).
Across these scenarios, our method consistently selects candidates that exhibit superior semantic
alignment.
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Prompt: A yellow bird and a black motorcycle.
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Figure 14: Qualitative comparison on the Geneval benchmark.
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Figure 15: Qualitative comparison on the Geneval benchmark.
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Prompt: A photo of a confused grizzly bear in
calculus class.
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Figure 16: Qualitative comparison on the DrawBench benchmark.
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Prompt A stack of 3 books. A green book is on the top,
sitting on a red book. The red book is in the middle,
sitting on a blue book. The blue book is on the bottom.
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Figure 17: Qualitative comparison on the DrawBench benchmark.
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