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ABSTRACT

Spiking neural networks (SNNs) are energy-efficient brain-inspired models,
which have received increasing attention in recent years. However, existing SNNs
tend to overlook more challenging scenarios with insufficient sample sizes. In
data-scarce scenarios, the spatiotemporal dynamics in SNNs often involve joint
spatiotemporal redundancy, which results in compromised generalization and re-
duced robustness. The information bottleneck principle has demonstrated power-
ful spatial compression in artificial neural networks, but its direct application to
SNNs is nontrivial: the discrete, timing-dependent nature of spikes makes spa-
tiotemporal entropy estimation inherently challenging. To reduce the joint redun-
dancy for data-efficient learning, we propose the spatiotemporal spiking entropic
bottleneck (STSEB) framework that jointly compresses spatial and temporal in-
formation while preserving task-relevant features. Central to STSEB is the spike
time matrix, which records each neuron’s first spiking time to extract the most
critical temporal feature, discard redundant spikes, and align activities across neu-
rons. We further develop a spike-time-matrix-based Rényi’s α-entropy estimator
that captures the intrinsic frequency distribution of spatiotemporal spiking patterns
to drive compression under spatiotemporal bottleneck objective. We prove that
STSEB obtains more compact latent representations than traditional information
bottleneck by average spiking rate and total correlation metrics. The experimental
results show that STSEB achieves superior generalization and robustness com-
pared to SOTA under scarce samples, with higher sample efficiency and reduced
power consumption. The code will be released upon acceptance.

1 INTRODUCTION

Spiking neural networks (SNNs) represent an intriguing class of brain-inspired computational mod-
els, emulating the intricate communication mechanisms of biological neurons through discrete and
sparse spikes Yao et al. (2023b); Li et al. (2021). Their capability for low-power operation and
natural compatibility with neuromorphic hardware has increasingly captured the attention of re-
searchers, highlighting their significant potential in contemporary artificial general intelligence Fang
et al. (2021); Yin et al. (2021). However, despite ongoing theoretical and hardware advancements in
SNNs, challenges remain in their generalization ability and learning efficiency, especially in data-
scarce scenarios. Unlike conventional artificial neural networks (ANNs), the discrete spikes in SNNs
inherently exhibit sparsity and dynamic complexity. While this allows for efficient, event-driven
computation Li et al. (2021); Shen et al. (2025b); Wei et al. (2023), it introduces spatiotemporal
joint redundancy that degrades the generalization and robustness of SNNs, particularly in data-scarce
scenarios. From the perspective of spatial dimension, neighboring neurons are often connected to
adjacent or overlapping input regions, resulting in multiple neurons to encode similar features or
patterns and produce highly similar responses Krunglevicius (2015); Saunders et al. (2019); Vertes
& Duke (2010); Zhou et al. (2024). It induces spatial redundancy resulting from the spatial topolog-
ical correlation and overlapping local receptive fields. From the temporal perspective, certain input
features may persist over time or change slowly, causing neurons to repeatedly spike over consecu-
tive time steps. This induces temporal redundancy resulting from repeated activations in response to
sustained input Yao et al. (2023a); Ponghiran & Roy (2022); Liu et al. (2022); Comşa et al. (2021);

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Before compression

Traditional IB

STSEB
STM

…

First spike

Index 

FST
t1 ...

Neuron #1

Neuron #2

Neuron #m

...

Spatial dimension

Temporal 

dimension

1

2

n

0

0

0 0

0

0

...
...

...

...

...

...

t1

t2

tn

t2 tn

…

STM-REntB

Spatiotemporal 

feature space

Before compression

Spatiotemporal 

feature space

After compression

Spatiotemporal 

feature space

Spatiotemporal 

feature space

After compression

Space

Time

Space

Spatial compression

Spiking patterns

(a)Before compression

Traditional IB

STSEB
STM

…

First spike

Index 

FST
t1 ...

Neuron #1

Neuron #2

Neuron #m

...

Spatial dimension

Temporal 

dimension

1

2

n

0

0

0 0

0

0

...
...

...

...

...

...

t1

t2

tn

t2 tn

…

STM-REntB

Spatiotemporal 

feature space

Before compression

Spatiotemporal 

feature space

After compression

Spatiotemporal 

feature space

Spatiotemporal 

feature space

After compression

Space

Time

Space

Spatial compression

Spiking patterns

(b)

Figure 1: Overall working mechanism of the STSEB method. (a) Traditional IB method with dif-
ficulty in spatiotemporal entropy estimation. (b) STSEB realizes the spatiotemporal compression
by STM-based Rényi’s α-entropy functional estimator, which can achieve a more compact latent
representation.

Vicente-Sola et al. (2025); Kugele et al. (2020). Effectively compressing this spatiotemporal redun-
dancy is crucial for SNNs to improve the generalization and robustness and enable data-efficient
learning.

Information compression seeks to preserve crucial information by eliminating redundant or irrele-
vant data, thus enhancing generalization and robustness Lee et al. (2021); Shwartz Ziv & LeCun
(2024); Hu et al. (2025); Li et al. (2023b). In recent years, the information bottleneck (IB) principle
has garnered significant attention due to its success in providing an elegant theoretical framework
for achieving optimal information compression in deep neural networks Kawaguchi et al. (2023);
Pan et al. (2021). In traditional ANNs that are characterized by continuous and analog signals, this
principle has demonstrated significant advantages Li et al. (2022; 2023a). There have been several
studies on applying IB in SNNs in various types of training schemes, such as ANN-to-SNN con-
version Zhang et al. (2022), supervised direct training by surrogate gradient learning Yang & Chen
(2023a;b), and self-supervised training for optical flow estimation Yang et al. (2024b). It is a pity
that these studies typically use conventional mutual information (MI) estimation methods originally
designed for spatial information compression as illustrated in Figure 1a, which are inadequate for
handling the discrete and timing-dependent spikes.

These challenges of extending the IB principle to SNNs arise from the intrinsic sparseness, discrete-
ness, and timing-dependency of SNNs. First, spikes are discrete binary events that are inherently
sparse and unevenly distributed Rathi & Roy (2024); Ghosh-Dastidar & Adeli (2009); Yao et al.
(2024), which conflicts with the continuous Gaussian distribution assumption that traditional IB
rely on Oh et al. (2018); Chang et al. (2020). Second, spike generation in SNNs depends not only on
which neuron fires but also on when it fires, introducing spatiotemporal dependency Taherkhani et al.
(2020); Eshraghian et al. (2023); Meng et al. (2022). The resulting spatiotemporal joint distributions
are highly complex, and directly computing the entropy of spatiotemporal joint distributions requires
addressing an extremely high-dimensional state space. It makes computation on the spatiotemporal
joint distribution intractable in practical applications, thus making it challenging for traditional IB
to compress the spatiotemporal joint entropy. Consequently, this results in suboptimal compression
effects with IB, potentially distorting critical spiking patterns, with unresolved spatiotemporal joint
redundancy further hindering the efficiency and compactness of information representation within
SNNs.
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To tackle the problems, we propose a novel training method, called spatiotemporal spiking entropic
bottleneck (STSEB), with the key objective of jointly compressing spatial and temporal information
while preserving task-relevant features. To this end, the STSEB method first encodes neuronal spike
trains into a spike time matrix (STM), in which only the first spike time (FST) of each neuron is
recorded, as illustrated in Figure 1b. This provides a natural timestamp that captures the most salient
temporal features while eliminating redundant information caused by repeated spiking, and enables
temporal alignment across spiking neurons. As noted by Thorpe et al. (2001), early spikes tend
to carry the most discriminative information. Timing of the first spike has been shown to be highly
indicative of neuronal sensitivity to input stimuli Thorpe et al. (2001); Han & Roy (2020); Yang et al.
(2023a). Therefore, it establishes a sparse and unified encoding scheme with the dimensionality of
the state space shrunk.

To effectively extract spatiotemporal information from the STM, we design a specialized Rényi’s
α-entropy estimator for spatiotemporal entropy estimation. In this estimator, Rényi’s α-entropy is
employed to deal with the reliance on continuous density estimation by traditional entropy estima-
tion methods, allowing for direct computation of entropy robustly based on the frequency distribu-
tion of the sparse and irregular spiking patterns. Building upon the proposed estimator, we derive
a novel information bottleneck objective from a first principle, termed STM-REntB, yielding spa-
tiotemporal information compression with spatiotemporal joint redundancy reduction. With average
spiking rate and total correlation evaluations, we prove that STSEB enables the latent representa-
tions more compact compared to traditional IB. Based on STSEB, we outperform existing SOTA
SNN direct training methods, as well as the latest information bottleneck approach HOSIB Yang
& Chen (2023a), on the CIFAR-10, CIFAR-100, and DVS-Gesture datasets under varying levels
of training sample scarcity, demonstrating the generalization capability and sample efficiency of
STSEB in data-scarce scenarios. Additionally, after introducing Gaussian noise, as well as black-
box and white-box adversarial attacks to DVS-Gesture, STSEB demonstrates stronger robustness
than SOTA methods across training sets of different scales. Compared to traditional IB, STSEB also
reduced power consumption by 5.39%.

2 RELATED WORK

The problem of information compression represents a critical research focus within the field of
deep neural networks Cheng et al. (2018). Information-theoretic learning can provide fundamental
solutions to information compression challenges Hild et al. (2006); Deng et al. (2016), with the IB
theory standing out as one of its most advanced and representative frameworks. The core principle of
the IB theory is that during the representation learning phase, a network should compress the input
data as much as possible while retaining sufficient information to support the target task, thereby
enhancing the generalization and efficiency Kawaguchi et al. (2023); Hu et al. (2024). There are
three primary approaches to applying the IB in SNNs.

First, IB is integrated with principles from neuroscience, utilizing these principles to derive learning
rules based on neuroscience mechanisms research. IB has been proposed using stochastic spik-
ing neurons with refractory periods Klampfl et al. (2009); Buesing & Maass (2010). By utilizing
IB strategy, three-factor learning rule is proposed with a local Hebbian component and a global
modulatory signal Klampfl et al. (2006); Daruwalla & Lipasti (2024). Moreover, SpiKL-IP applies
information-theoretic approach to intrinsic plasticity by maximizing the entropy of the firing rate
distribution toward a target optimal exponential distribution Zhang & Li (2019).

Second, IB is incorporated into ANN-to-SNN conversion training strategies. The core idea is to first
train a traditional ANNs using an IB loss, and then convert the trained ANN into an SNN model
with structurally and weight-wise equivalent properties. Following this approach, 2O-IB optimizes
the latent representations within the ANN through IB-based training before converting the network
into an SNN Zhang et al. (2022). In theory, this strategy can leverage a wide range of IB techniques
that have been extensively validated in deep learning Ma et al. (2020); Nguyen & Choi (2019);
Ngampruetikorn & Schwab (2022).

Third, there are also some works that apply IB to direct training strategies for SNNs based on surro-
gate gradient learning. Building on this concept, a series of IB methods and their high-order variants
have been proposed, including SIBoLS Yang et al. (2023b), SNIB Yang & Chen (2023b), HOSIB
Yang & Chen (2023a), and HHO-IB Wu et al. (2025). Although IB is not explicitly used, IM-Loss
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introduces an information maximization loss function to address the issues of spike information loss
and accuracy degradation Guo et al. (2022). SMEIL employs the maximum entropy principle to pro-
mote perturbation of the underlying source distribution, thereby increasing the predictive uncertainty
of the current model Yang et al. (2024a).

Although these methods provide valuable insights, we believe further improvements are necessary.
Firstly, the aforementioned approaches typically use the assumption of traditional IB distributions,
which are limited in their application to the sparse spatiotemporal information flow in SNNs. Sec-
ondly, these methods have not explicitly measured the high-dimension spatiotemporal information
and consequently calculated the information entropy, making it challenging to further compress the
redundancy in the spatiotemporal information dimension. In this paper, we will carefully consider
these issues and propose effective solutions.

3 PRELIMINARY

3.1 SPIKING NEURAL NETWORKS

SNNs are computational models inspired by biological neural networks, where neurons communi-
cate through discrete spikes rather than continuous signals. The fundamental unit of SNNs is the
spiking neuron, which generates spikes when the membrane potential surpasses a certain threshold.
This spiking behavior is captured by models like the leaky integrate-and-fire (LIF) neuron model,
which is widely used in SNNs to simulate the dynamics of real neurons.

In the LIF model, the membrane potential V [t] is computed by summing the previous state H[t− 1]
and the input current I[t]. The neuron fires a spike if V [t] exceeds a threshold Vth, with the spiking
behavior represented by a binary function J [t] = Heaviside(V [t] − Vth). If the neuron spikes, its
membrane potential is reset to a resting value Vreset. Otherwise, it maintains the current potential.
The updated membrane potential H[t] is thus computed as:

H[t] = Vreset · J [t] + V [t] · (1− J [t]). (1)

3.2 INFORMATION BOTTLENECK

The IB theory is a fundamental concept in information theory applied to deep learning. Its core idea
is to compress the input while preserving the most relevant features for predicting the output. Given
an input variable X and output variable Y , the theory constructs a Markov chain X → Z → Y ,
where the intermediate variable Z represents a compressed representation of X . The mapping from
X to Z is denoted by the conditional distribution P (Z|X), which induces a marginal distribution
over Z: Z ∼ P (Z) =

∫
PZ|X(z|x)pX(x) dx. The goal of IB is to retain as much information

about Y as possible in Z while minimizing the information flow from X to Z. This trade-off can be
formulated as the following optimization problem:

max
Z∈A

I(Z;Y ) s.t. I(X;Z) ≤ ϵ, (2)

where I(·; ·) denotes MI, and A is the set of all possible mappings Z ∼ P (Z|X). Introducing a
Lagrange multiplier β yields the IB Lagrangian objective as follows:

LIB = max
Z∈A

I(Z;Y )− βI(X;Z), (3)

where β controls the trade-off between compression and prediction. A larger β enforces a stronger
compression constraint. To compute MI, the Kullback–Leibler (KL) divergence is widely used,
which measures the similarity between two distributions. specifically, MI can be approximated as
follows:

IP (X),P (Z|X)(X;Z) =
∑
x,z

PZ|X(z|x)pX(x) log
PZ|X(z|x)
PZ(z)

≈ 1

N

N∑
n=1

DKL(PZ|X(z|xn)∥R(Z)), (4)

where R(Z) is a variational approximation to the marginal distribution P (Z), and N is the number
of training samples.
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4 THE STSEB FRAMEWORK

In IB theory, the objective of the model is to minimize I(X;Z), thereby compressing the redun-
dant information in the input X while retaining the most crucial features. However, for SNNs with
spatiotemporal dimensions, the traditional IB that only compresses I(X;Z) fails to capture the in-
formation entropy along the temporal dimension, thus limiting its ability to effectively compress
spatiotemporal joint redundancy. Moreover, the assumption of continuous signal distributions in IB
is evidently unsuitable for SNNs, where discrete distribution assumptions more accurately capture
the feature information. To address these challenges, we define a Rényi’s α-entropy estimator based
on the STM to characterize the spatiotemporal information of SNNs, and introduce the STSEM
framework, which aligns with the spatiotemporal discrete features of SNNs. Then, we present the
generalization and sample complexity bounds of STSEB and define metrics for spatiotemporal infor-
mation compression and redundancy. We also provide a visualized comparison with the traditional
IB method.

4.1 STM BASED RÉNYI’S α-ENTROPY ESTIMATOR AND STSEB OBJECTIVE

In the STSEB framework, to achieve compression of redundant information along the spatiotemporal
dimension, we first describe the spatiotemporal information. Spike trains in SNNs are inherently
temporal, with the temporal dimension capturing the precise firing times of each neuron. Compared
to the average firing rate, first spikes provide a sparser representation with minimal information
redundancy, preserving the temporal structure. We define the STM TZ based on the first spiking
time of each neuron as follows:

TZ =

T11 · · · T1T

...
. . .

...
TN1 · · · TNT

 ∈ RN×T , (5)

Tnt =

{
min {t ∈ [1, T ] | Ont = 1} if such t exists,
0 else,

(6)

where Ont represents the output of the n-th neuron at the t-th time step in the bottleneck layer.
TZ records the FST for each neuron, capturing fine-grained temporal information. After obtaining
the STM, to achieve compression of spatiotemporal redundant information, it is necessary to mea-
sure the spatiotemporal information content of the intermediate variable Z. In information theory,
Shannon entropy is commonly used to quantify the amount of information contained in a variable.
Rényi’s α-entropy, on the other hand, is a generalization of Shannon entropy, offering improved
numerical stability and extensibility, particularly for high-dimensional information. Based on the
STM, we construct an estimator using Rényi’s α-entropy to represent the spatiotemporal informa-
tion content of intermediate variable Z.

Definition 1 (STM based Rényi’s α-Entropy Estimator) Given a kernel function k : X×X → R
and an unlimited number of kernels, the Gram matrix K for STM TZ can be calculated as
Kij = k(TZi, TZj). The normalised positive semi-definite matrix A can then be computed as
Aij =

Kij√
KiiKjj

. The STM based Rényi-α entropy estimator Hα(TZ) is given by:

Hα(TZ) =
1

1− α
log2 (tr(A

α))

=
1

1− α
log2

(
N∑
i=1

λi(A)α

)
, (7)

where λi(A) denotes the i-th eigenvalue of matrix A.

The STM-based Rényi-α entropy estimator characterizes the spatiotemporal information contained
in the intermediate variable Z, addressing the gap in IB theory where spatiotemporal information is
not considered in SNNs. A smaller value of Hα(TZ) indicates that the spatiotemporal features of
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the intermediate variable Z are more compact. To achieve information compression along the spa-
tiotemporal dimension, we propose the STSEB based on the STM-based Rényi-α entropy estimator,
and define its objective, termed STM-REntB, as presented in Definition 2:

Definition 2 (STSEB Objective: STM-REntB) Given the input X and output Y of SNN, an
intermediate variable Z is constructed, where the MI between X and Z is I(X;Z), and the MI
between Z and Y is I(Z;Y ). Based on Definition 1, the Rényi-α entropy of Z can be computed,
denoted as Hα(TZ). The objective of STSEB aims to compress redundant information as much as
possible in both spatial and spatiotemporal dimensions to obtain effective and compact spatiotem-
poral features. The mathematical form of the objective is as follows:

LSTM-REntB = max
Z∈∆

I(Z;Y )− βI(X;Z)− γHα(TZ), (8)

where β and γ respectively control the extent of compression in the spatial and spatiotemporal
domains.

In the STSEB objective, β and γ serve as trade-off parameters, where larger values correspond to
stronger compression along the respective dimension. By adjusting these hyperparameters, STSEB
achieves a balance between spatial and temporal feature abstraction, resulting in more compact
yet informative representations, and enhancing the generalization and robustness of SNNs. The
pseudocode for STSEB is provided in the Appendix A.5.

4.2 THEORETICAL GUARANTEES AND METRICS OF STSEB

To demonstrate the effectiveness of STSEB, we theoretically derive its objective’s generalization
and sample complexity bounds. Consider an SNN model with input-output pairs denoted as x and
y, where each sample is independently drawn from an unknown distributionD. Let the model family
be F = {Zθ : θ ∈ Θ}, where Zθ : X → Z is a mapping from model inputs to latent variables. Let
ℓ(Z;x, y) denote the loss function. The expected risk is defined as: L(Z) = E(x,y)∼D [ℓ(Z;x, y)] ,

and the empirical risk is: L̂n(Z) = 1
n

∑n
i=1 ℓ(Z;xi, yi). Define the composite loss class as: L◦F =

{(x, y) 7→ ℓ(Z;x, y) : Z ∈ F} . Then the Rademacher complexity of this class is given by:

Rn(L ◦ F) = Eσ,(xi,yi)

[
sup
Z∈F

1

n

n∑
i=1

σiℓ(Z;xi, yi)

]
, (9)

where σi are independent Rademacher random variables. We make the following assumption:

Assumption 4.1. There exists a constant B > 0 such that for all (x, y) and Z ∈ F , the loss function
satisfies:

0 ≤ ℓ(Z;x, y) ≤ B. (10)

In practice, loss functions are bounded and usually decrease during training. Hence, this assumption
is reasonable and commonly satisfied. Based on the above definitions and Assumption 1, we now
present the generalization and sample complexity bounds:

Theorem 1 (Generalization Bound) For any δ > 0, with probability at least 1− δ, the following
holds for all Z ∈ F:

L(Z) ≤ L̂n(Z) + 2Rn(L ◦ F) +B

√
ln(1/δ)

2n
. (11)

Theorem 2 (Sample Complexity Bound) Let Z∗ = argmaxZ L(Z) and Ẑ = argmaxZ L̂n(Z).
If the number of samples n satisfies:

n ≥ C

ϵ2

(
Rn(L ◦ F)2 + ln

1

δ

)
, (12)

for some constant C, then with probability at least 1− δ, we have: L(Z∗)− L(Ẑ) ≤ ϵ.

Theorems 1 and 2 establish the generalization and sample complexity bounds of the STSEB train-
ing algorithm. From Eq. 11, we observe that the gap between the training error and generalization

6
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Figure 2: Comparison of FR with STSEB (left) and traditional
IB (right). STSEB demonstrates a consistently lower FR, evi-
dencing its superior spatiotemporal joint compression capability
compared to traditional IB.
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Epoch
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Figure 3: Evolution of TC(Z)
during training. STSEB exhibits
a lower TC(Z), suggesting its
less redundant information.

error of STSEB is controlled by the Rademacher complexity and the sample size n. A lower model
complexity and larger number of samples lead to a smaller generalization gap, indicating better gen-
eralization performance. Under the same sample size, STSEB compresses information across both
spatial and temporal dimensions, resulting in more compact representations compared to traditional
IB methods. Consequently, it achieves lower model complexity and exhibits improved generaliza-
tion ability. Furthermore, Eq. 12 indicates that STSEB can achieve near-optimal performance as
long as the sample size meets a sufficient threshold. Proofs of the above theorems are provided in
the Appendix A.6.

To quantify and more intuitively assess the spatiotemporal information compression and redundancy
of the latent variable Z in STSEB, and to compare it with the traditional IB method, we propose
corresponding metrics and conduct analysis. For spatiotemporal information compression, we use
the firing rate (FR) of the latent variables as the metric. For redundancy, we use TC(Z) to measure
the redundancy of information contained in the latent variables. The specific definitions can be found
in the Appendix A.7. Figure 2 shows the FR heatmaps for the intermediate layer of STSEB and
traditional IB. It can be observed that STSEB exhibits a lower FR, indicating higher spatiotemporal
compression. Figure 3 demonstrates the changes in TC(Z) for STSEB and traditional IB during
training. It shows that TC(Z) decreases over training and consistently remains lower than that
of IB, proving that the latent variables in STSEB, after spatiotemporal compression, contain less
redundant information.

5 EXPERIMENT

In this section, we perform classification tasks on both static and neuromorphic datasets and con-
duct experiments with different training set sizes to validate the generalization and robustness of
the proposed STSEB, especially in data-scarce scenarios. We compare STSEB with other methods
applied to optimize the SNN training process and also introduce Gaussian noise, black-box, and
white-box adversarial attacks to evaluate the model’s robustness under data-sparse conditions. Fi-
nally, we benchmark the energy consumption performance of STSEB, comparing it with the baseline
SNN model and traditional IB methods. Detailed experimental configurations are provided in the
Appendix A.4.

5.1 PERFORMANCE OF STSEB ON STATIC AND NEUROMORPHIC DATASETS

We test STSEB on the DVS-Gesture, CIFAR-10, and CIFAR-100 datasets with different training
set sizes and compare it with other training optimization methodsZhu et al. (2024); Liang et al.
(2025); Yang & Chen (2023a); Duan et al. (2022), including a comparison with HOSIBYang & Chen
(2023a) to demonstrate the effectiveness of STSEB’s spatiotemporal joint compression. The exper-
imental results, as shown in Figure 4, indicate that our method achieves optimal results, especially
in scenarios with scarce training data, highlighting the data-efficiency of STSEB. Additionally, to
further investigate the advantages of STSEB in compressing spatiotemporal redundant information,
we demonstrate the feature maps of the intermediate variables in STSEB across multiple time steps.
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As shown in Figure 5, in the feature maps corresponding to the intermediate variables in STSEB, the
features at the same time step are sparser compared to traditional IB methods, indicating that STSEB
compresses more redundant information in the spatial dimension. For the same location at different
time steps (T=1 to T=4), STSEB exhibits significantly fewer repeated spikes at adjacent time steps
compared to the traditional IB method. This indicates that STSEB is able to compress more tempo-
ral redundant information caused by repeated spikes from neurons, confirming the effectiveness of
the STM-based Rényi’s α-Entropy Estimator in compressing spatiotemporal joint redundancy.
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Figure 4: Comparison with the SOTA methods on DVS-Gesture, CIFAR-10, and CIFAR-100
datasets under varying training set ratios.

5.2 ROBUSTNESS ANALYSIS OF STSEB

To investigate the improvement in SNN robustness through spatiotemporal joint redundancy com-
pression by STSEB, we conduct experiments on the DVS-Gesture dataset under various noise con-
ditions, including Gaussian noise, black-box, and white-box adversarial attack noise. Detailed infor-
mation about the noise deployment is provided in the Appendix A.8. We compared our method with
TCJA Zhu et al. (2024), which performs second best on the DVS-Gesture dataset as shown in Figure
4. The experimental results under three types of noise are shown in the Table 1. Under all noise
conditions, STSEB consistently achieves higher accuracy, especially under white-box adversarial
attack noise, where the average accuracy improvement (Avg. Imp.) over TCJA reaches 23.73% at
the sample ratio of 0.1. The robustness experiments demonstrate that STSEB, by compressing spa-
tiotemporal information, enables the model to extract more important and compact features, signif-
icantly improving the robustness of SNNs in noisy environments. This improvement is particularly
noticeable in data-scarce scenarios.
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Figure 5: Comparison of feature maps in latent space. STSEB exhibits sparser feature maps com-
pared to traditional IB, indicating the acquisition of more compact spatiotemporal features.
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Table 1: Performance comparison with the SOTA method under different noise types and sample
ratios.

Noise type Method
Sample Ratio

1 0.5 0.2 0.1 0.05

Gaussian
TCJA 56.43% ± 0.042 48.05% ± 0.136 34.55% ± 0.130 22.74% ± 0.027 22.05% ± 0.106

STSEB (ours) 58.51% ± 0.081 51.22% ± 0.125 50.0% ± 0.059 36.15% ± 0.128 39.62% ± 0.045
Avg. Imp. 2.08% ↑ 3.17% ↑ 15.45% ↑ 13.41% ↑ 17.57% ↑

Black-box
TCJA 39.21% ± 0.014 30.4% ± 0.026 35.51% ± 0.019 20.47% ± 0.029 13.35% ± 0.002

STSEB (ours) 51.72% ± 0.0051 30.90% ± 0.005 39.58% ± 0.015 44.2% ± 0.013 29.12% ± 0.006
Avg. Imp. 12.51% ↑ 0.50% ↑ 4.07% ↑ 23.73% ↑ 15.77% ↑

White-box
TCJA 80.38% ± 0.033 71.59% ± 0.001 40.62% ± 0.002 32.16% ± 0.0003 29.58% ± 0.053

STSEB (ours) 81.58% ± 0.0243 72.54% ± 0.01 41.89% ± 0.012 34.31% ± 0.0004 36.79% ± 0.0004
Avg. Imp. 1.20% ↑ 0.95% ↑ 1.27% ↑ 2.15% ↑ 7.21% ↑

5.3 ABLATION STUDY

We conduct the ablation study on the components of STSEB using the DVS-Gesture dataset with
5% of the training set, testing the impact of each component on the generalization and robustness of
the SNN. The experimental results, as shown in Table 2, indicate that the introduction of the STM-
based Rényi’s α-Entropy Estimator improves the model’s accuracy, both on the clean CIFAR-10
dataset and the CIFAR-10 dataset with added Gaussian noise. This demonstrates that the STM-
based Rényi’s α-Entropy Estimator effectively enhances the generalization and robustness of the
SNN model, improving the model’s data efficiency.

Table 2: Ablation study of STSEB on the DVS-Gesture
dataset.

Dataset I(X;Z) Hα(TZ) ACC

DVS-Gesture
with 5% SR

% % 60.15%
! % 60.83%
! ! 63.13%

DVS-Gesture
with 5% SR

under Gaussian noise

% % 22.05%
! % 24.15%
! ! 39.62%
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Figure 6: Energy consumption
comparison. (a) Comparison on
ResNet. (b) Comparison on VGG.

5.4 POWER CONSUMPTION ANALYSIS

Building upon prior works Shen et al. (2025a); Shi et al. (2024), we theoretically assess the energy
efficiency of STSEB by measuring the number of synaptic operations on the Loihi neuromorphic
Davies et al. (2018) . The results, as shown in Figure 6, compare the theoretical energy consump-
tion of the SNN baseline, the traditional IB approach, and STSEB when instantiated on ResNet and
VGG backbones. As illustrated, STSEB achieves markedly higher energy efficiency, an outcome
attributed to its joint spatio-temporal redundancy compression that yields more compact intermedi-
ate representations and concomitantly lowers the spike firing rates across individual neuronal layers.
Detailed derivations of the energy model and numerical data are provided in the Appendix A.9.

6 CONCLUSION

We propose a training paradigm for SNNs called STSEB, which performs joint redundancy sup-
pression along both spatial and temporal dimensions by constructing a STM–based spatiotemporal
matrix and minimizing its Rényi α-entropy, thereby yielding maximally compressed yet informa-
tive representations. Extensive empirical evaluations reveal that STSEB significantly improves SNN
generalization and robustness, enhances data-efficiency in data-scarce scenarios, and concomitantly
reduces energy consumption of SNNs.
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A APPENDIX

A.1 ETHICS STATEMENT

This paper focuses on the study of Spiking Neural Networks (SNNs) with the aim of improving
the compression of spatiotemporal redundant information and optimizing the generalization and
robustness of SNN models. We ensure that all research adheres to the principles outlined in the
ICLR Code of Ethics and does not involve any violations of ethical guidelines.

A.2 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of the results presented in this paper. In Appendix
A2, we provide details of the experimental setup. In Appendix A3, we include the corresponding
pseudocode for the methods. Additionally, we provide some of the code in the supplementary mate-
rials, and once the paper is publicly published, we will release the full code of this work on GitHub
for the community to reproduce.
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A.3 LLM USAGE STATEMENT

The present study was conducted without the use of any Large Language Models or LLM-based
tools throughout its entire process, including conceptualization, experimental design, data process-
ing, result analysis, and manuscript preparation. All text composition, figure generation, and ana-
lytical work were independently performed by the authors, relying solely on conventional academic
methodologies and human expertise. The findings presented herein represent the original contribu-
tions of the research team, without reliance on generative AI systems.

A.4 EXPERIMENTAL DETAILS

Static Datasets. CIFAR-10 and CIFAR-100 Krizhevsky & Hinton (2009) are widely used stan-
dardized static datasets in machine vision and deep learning. Both contain 60,000 32×32 pixel color
images, with 50,000 images for training and 10,000 images for testing. CIFAR-10 covers 10 general
categories (e.g., airplanes, cars, birds), with each category containing 6,000 images. CIFAR-100 ex-
tends the dataset by including 100 categories (e.g., apples, mushrooms, whales), with each category
providing only 600 images.

Neuromorphic Datasets. DVS-Gesture Amir et al. (2017) is a neuromorphic gesture recogni-
tion dataset based on the Dynamic Vision Sensor (DVS), specifically designed for event-driven
spatiotemporal pattern recognition and SNNs. This dataset includes 29 different gesture actions
recorded under varying lighting conditions and background environments, using a DVS camera to
capture asynchronous event stream data. Each sample captures dynamic spatiotemporal features
of gestures with microsecond-level time resolution, represented as a quadruple (timestamp, pixel
coordinates, event polarity), reflecting local changes in brightness during gesture movement. DVS-
Gesture contains 1,342 samples, divided into training and testing sets, emphasizing fine-grained
segmentation and classification of continuous gesture actions. The challenges of this dataset lie
in handling the high sparsity of event streams, noise interference, and temporal dependencies intro-
duced by varying motion speeds. It is widely used to validate the effectiveness of SNNs and supports
performance evaluation on low-power neuromorphic hardware.

Implementation Details. All experiments were conducted using the PyTorch framework on RTX
4090 and A6000 GPUs. For the neuromorphic dataset DVS-Gesture, we adopted the same ar-
chitecture as TCJA-SNN Zhu et al. (2024): 128C3-LIF-MP2-128C3-LIF-MP2-128C3-LIF-MP2-
128C3-LIF-MP2-128C3-LIF-MP2-0.5DP-512FC-LIF-0.5DP-100FC-LIF-Voting. The model was
optimized using Adam with a learning rate of 0.001 and batch size of 64. We employed 10 timesteps
for spiking neurons and trained the network for 1,000 epochs. For static image benchmarks (CIFAR-
10/100), we utilized the MS-ResNet18 architecture Kim et al. (2025) with input resolution 48×48.
The network was trained using SGD with 0.9 momentum and cosine annealing scheduler Loshchilov
& Hutter (2017). We set the batch size to 64, learning rate to 0.1, weight decay to 5e-5, and used 6
timesteps for spiking neuronal dynamics. Parameter configurations are provided in Table 3.

Table 3: Training parameters for different datasets.

Dataset Optimizer Batch size Timestep Initial LR Training epoch
DVS-Gesture Adam 16 20 0.001 1000
CIFAR10 SGD 64 6 0.1 250
CIFAR100 SGD 64 6 0.1 250

A.5 PSEUDOCODE

STSEB quantitatively estimates spatiotemporal information using first-spike-matrix-based Rényi’s
α-entropy based on the first-spike matrix. During the training of the SNN, it compresses spatiotem-
poral redundant information, leading to more compact spatiotemporal features. This enhances SNN
model’s generalization ability and robustness. An overview of this process is described in Algo-
rithm 1.
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Algorithm 1 Training STSEB
Input: Training data X , labels Y , batch size N , number of epochs T ,
hyperparameters β, α, Rényi order αRényi
Output: Trained model parameters θ∗, compressed representation Z

1: for epoch t = 1 to T do
2: Fetch a mini-batch {(x(i), y(i))}Ni=1
3: Z ← SNN Encode(X; θ)
4: for i = 1 to N do
5: for neuron j = 1 to d do
6: TZ [j]← min{t | Z[j][t] = 1}
7: if no spike occurs then
8: TZ [j]← 0
9: end if

10: end for
11: end for
12: Compute Gram matrix K with kernel: Kij = k(TZi, TZj)

13: Normalize Aij =
Kij√
KiiKjj

14: Compute Rényi entropy: HTZ
= 1

1−αRényi
log2 (

∑
i λ

α
i )

15: Estimate I(X;Z) using Laplace KDE
16: Estimate I(Z;Y ) via classifier or variational method
17: Compute loss: LSTSEB = −I(Z;Y ) + βI(X;Z) + αHTZ

18: Compute gradients ∇θLSTSEB
19: Update parameters θ using optimizer
20: end for

A.6 PROOF

Proof of Theorem 1. Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a sample drawn i.i.d. from
the distribution P over X ×Y . For any latent variable Z ∈ F , define the true risk and the empirical
risk as follows:

L(Z) = E(x,y)∼P [ℓ(Z;x, y)], (13)

L̂n(Z) =
1

n

n∑
i=1

ℓ(Z;xi, yi), (14)

where ℓ(Z;x, y) denotes the loss function. To derive the generalization bound for STSEB, we
need to obtain an upper bound for the difference between the true risk L(Z) and the empirical
risk. To do this, we introduce the technique of symmetrization by introducing Rademacher random
variables ξ1, ξ2, . . . , ξn, where each ξi is independent and P(ξi = ±1) = 1/2. We then construct
the symmetrized empirical risk as follows:

L̂∗
n(Z) =

1

n

n∑
i=1

ξiℓ(Z;xi, yi). (15)

Since ξi are independent and symmetrically distributed, we have: E[L̂∗
n(Z)] = 0.

Thus, the expectation of the symmetrized empirical risk is zero, and the randomness is effectively
controlled through the introduction of ξi. Now, for each latent variable Z, we obtain the key in-
equality:

E
[
sup
Z∈F

(
L(Z)− L̂n(Z)

)]
≤ 2Rn(L(F)), (16)

where R(L(F)) is the Rademacher complexity of the function class F . To further control the
deviation between the true risk and the empirical risk, we apply Hoeffding’s inequality. Hoeffding’s
inequality provides a bound on the probability of the deviation between the empirical and true risks
for each loss function ℓ(Z;xi, yi), given that the loss is bounded in the interval [0, B]. Specifically,
for any latent variable Z and any ϵ > 0, we have:

P
(
L̂n(Z)− L(Z) ≥ ϵ

)
≤ exp

(
−2n2ϵ2

B2

)
. (17)
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This inequality controls the deviation between the empirical and true risks, and it shows that as the
sample size increases, the empirical risk converges to the true risk with high probability. For every
latent variable Z ∈ F , we want to control the deviation for all latent variable in the class. We use the
union bound to extend this result to all latent variable in F . Applying the union bound, we obtain:

P

(
sup
Z∈F

|L(Z)− L̂n(Z)| ≥ ϵ

)
≤

∑
Z∈F

P
(
|L(Z)− L̂n(Z)| ≥ ϵ

)
. (18)

After applying Hoeffding’s inequality for each latent variable Z, we get:

P
(
|L(Z)− L̂n(Z)| ≥ ϵ

)
≤ exp

(
−2n2ϵ2

B2

)
. (19)

By combining these results, we finally obtain an upper bound for the generalization error. Com-
bining the symmetrization and union bound, we obtain the following generalization bound for the
difference between the true and empirical risks:

|L(Z)− L̂n(Z)| ≤ 2Rn(L(F)) +B ·
√

ln(1/δ)

2n
, (20)

where R(L(F)) is the contribution from the Rademacher complexity, and
√

ln(1/δ)
2n is the proba-

bilistic bound from Hoeffding’s inequality.

Proof of Theorem 2. Assume Z∗ = argmaxZ L(Z) and Ẑ = argmaxZ L̂n(Z), based on the
optimality of empirical risk minimization, we know that L̂n(Ẑ) ≥ L̂n(Z

∗), therefore, we have

L(Z∗)− L(Ẑ) = (L(Z∗)− L̂n(Z
∗)) + (L̂n(Z

∗)− L̂n(Ẑ)) + (L̂n(Ẑ)− L(Ẑ)).

The middle term L̂n(Z
∗) − L̂n(Ẑ) ≤ 0, which can be ignored. Based on Theorem 1, by using the

error bounds, we have
L(Z∗)− L̂n(Z

∗) ≤ ∆n,

L̂n(Ẑ)− L(Ẑ) ≤ ∆n, (21)
where

∆n = 2Rn +B

√
ln(1/δ)

2n
. (22)

Thus, we conclude that L(Z∗) − L(Ẑ) ≤ 2∆n. To achieve ∆n ≤ ϵ, we obtain the sample size
bound:

n ≥ O

(
ϵ−2

(
R2

n + ln
1

δ

))
, (23)

which ensures the desired generalization bound.

A.7 METRICS FOR STSEB

STSEB compresses redundant information along the spatiotemporal dimension in SNNs, yielding
more compact spatiotemporal features. To quantify the extent of spatiotemporal information com-
pression and redundancy in the intermediate variable Z within STSEB, and to facilitate a compar-
ative analysis with traditional IB methods, we present the corresponding metrics in this section. In
SNNs, LIF neurons function as core computational units, and their sparse firing activity reflects the
information sparsity across layers. Typically, spike activity in higher layers becomes sparser, in-
dicating stronger information compression. To more effectively quantify how STSEB compresses
spatiotemporal information in SNNs and assess its effectiveness in removing redundant information,
we introduce the following two metrics:

Spatiotemporal Compression via FR. Let latent variable Z correspond to N LIF neurons in an
SNN layer. We define the Firing Rate (FR) of Z over a temporal window T as:

FRZ =
1

N · T

N∑
i=1

T∑
t=1

sZi (t), (24)

where sZi (t) ∈ {0, 1} indicates the firing state of the i-th neuron at timestep t. Then under IB
constraint, the FR of Z is inversely proportional to its spatiotemporal compression degree: Lower
FRZ ⇒ Stronger Compression.
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Spatiotemporal Redundancy via TC(Z). Let spatiotemporal variable Z = [Z1, . . . , Zd]
T ∈

M ⊂ RN with latent representation spaceM, its informational redundancy R(Z) satisfies:

R(Z) = α · TC(Z) + β, (25)

where α > 0 and total correlation TC(Z) is defined as:

TC(Z) := DKL

(
d∏

i=1

PZi
∥ PZ

)
. (26)

The redundancy measure R(Z) exhibits strict monotonicity: ∂R
∂TC = α > 0. As TC(Z) increases,

the redundancy increases

A.8 DETAILS ON ROBUSTNESS EXPERIMENTS

In the robustness evaluation section, we introduce Gaussian noise and adversarial noise during the
model testing process to assess its robustness. The Gaussian noise with a mean of µ = 0 and
variance of σ can be expressed mathematically as:

fGaussian(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (27)

where x is a random variable, and µ and σ represent its mean and variance, respectively. Addition-
ally, to better reflect the model’s resistance to interference, we add two types of adversarial noise:
black-box attacks and white-box attacks. For the white-box attack, we use the Fast Gradient Sign
Method (FGSM), which generates adversarial noise by utilizing the gradient of the input data x. The
expression of FGSM-based white-box attacks is:

ηwhite-box = ε · sign(∇xJ(θ, x, y)), (28)

where ε represents the strength of the white-box attack, and J(θ, x, y) corresponds to the model’s
loss function. The black-box attack, occurs when the attacker does not have access to the internal
details of the model and can only observe its input-output behavior. For black-box adversarial at-
tacks, we employ the zero-order optimization method to generate the noise. Given the input sample
xadv = inputs and a random direction vector δ ∼ N(0, I), the loss variation as the input sample
moves in the direction of the vector is:

∆L = L(f(xadv + αδ), target)− L(f(xadv), target), (29)

where α denotes the perturbation strength. Since black-box attacks cannot directly access gradient
information, the loss variation along the perturbation direction is used to estimate the gradient, and
update the adversarial samples as follows:

xadv = xadv + αδ · sign(∆L). (30)

For the generated adversarial samples, we also apply a clipping operation to ensure their similarity to
the original data, which increases the effectiveness of the adversarial attack. Finally, the black-box
attack samples are obtained by applying the clipping operation as follows:

xadv = clip(xadv, inputs− ϵ, inputs + ϵ), (31)

where ϵ denotes the perturbation range set for the pruning operation.

A.9 ENERGY CONSUMPTION

We theoretically analyze the impact of STSEB on SNN energy consumption, comparing it with the
baseline SNN model and the SNN model with traditional IB. In SNNs, due to the pulse characteris-
tics of their spiking neurons, the neurons are not always involved in computation. They only perform
computations when the membrane potential reaches the threshold and outputs a spike. In neuromor-
phic chips, synaptic processing dominates the system’s energy consumption and is the best indicator
for evaluating the overall energy consumption of the model on the chip Furber (2016). Many studies
estimate SNN energy consumption based on SOPs. Although the energy consumption generated by
SOPs does not cover the actual total energy consumption on neuromorphic chips, in some systems
that fully utilize sparsity (such as Loihi Davies et al. (2018)), energy consumption from other aspects
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like memory access and data transmission is relatively small. The total system energy consumption
is approximately proportional to SOPs, making it reasonable to use SOPs for theoretical power con-
sumption calculations. Therefore, for ANN models, we use FLOPs to estimate their theoretical
power consumption, while for SNNs, we use SOPs to evaluate their theoretical power consump-
tion on neuromorphic chips. Specifically, FLOPs represents the number of floating-point operations
per second, which increases as the number of computations and network parameters increase. The
computational formula is as follows:

FLOPsANN(l) = Hout ×Wout × Cin × Cout ×K ×K, (32)

where Hout ×Wout represents the output dimension of the l-th layer, and Cin and Cout are the input
and output channels. The size K corresponds to the size of the convolutional kernel. For ANN, the
input and output channels correspond to the learned weights. Common types of FLOP operations
are multiplication-addition operations (MAC) and simple addition operations (AC). In ANNs, these
operations are typically performed using the MAC method, so the theoretical power consumption
can be calculated as:

EANN =
∑
l

FLOPsANN(l)× EMAC. (33)

For SNNs, we use SOPs and the energy consumption per synaptic operation CE = 23.6pJ on the
Loihi chip for theoretical energy calculation. The specific calculation formula is as follows:

ESNN = CE · SOPs = CE

∑
i

sici, (34)

where CE represents the energy consumption per synaptic operation, and SOPs represents the total
number of synaptic operations. For each neuron i, si represents the total number of spikes emitted
by the neuron, and ci represents the number of synaptic connections of the neuron. Based on this
theoretical estimate, we calculate the power consumption of the same structure for SNN baseline,
SNN with traditional IB, and SNN with STSEB, and compare the results under two different network
structures. The results are shown in Tables 4 and 5. This improvement substantiates STSEB’s
effectiveness in enhancing SNN energy efficiency through spatiotemporal compression.

Table 4: Energy consumption comparison on ResNet model.

Energy consumption (pJ) ANN SNN SNN+IB SNN+STSEB

Layer 1 90,596,966.6 593,913,446.4 593,913,446.4 593,913,446.4
Layer 2 1,902,536,294 750,257,575.8 712,647,321.2 650,722,651.3
Layer 3 135,895,449.6 213,894,538.5 216,868,174.5 213,045,226.7
Layer 4 441,660,211.2 779,589,003.1 755,348,659.5 696,888,632.8

Total 2,570,688,922 2,337,654,563.75 2,278,777,601.65 2,154,569,957.24

Table 5: Energy consumption comparison on VGG model.

Energy consumption (pJ) ANN SNN SNN+IB SNN+STSEB

Layer 1 135,895,449.6 19,735,095.83 18,536,918.22 17,697,371.11
Layer 2 2,174,327,194 408,465,901.66 394,430,605.37 365,232,047.91
Layer 3 543,581,798.4 104,218,570.67 97,531,149.09 94,527,924.56
Layer 4 135,895,449.6 45,297,447.11 44,377,739.69 44,038,021.71
Layer 5 33,973,862.4 25,110,565.45 24,173,545.84 24,088,784.83

Total 3,023,673,754 602,827,580.72 579,049,958.21 545,584,150.11
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