

000 SPATIOTEMPORAL SPIKING ENTROPIC BOTTLENECK: 001 DATA-EFFICIENT LEARNING WITH JOINT REDUN- 002 DANCY REDUCTION IN SPIKING NEURAL NETWORKS 003

004 **Anonymous authors**
005

006 Paper under double-blind review
007

008 ABSTRACT 009

010 Spiking neural networks (SNNs) are energy-efficient brain-inspired models,
011 which have received increasing attention in recent years. However, existing SNNs
012 tend to overlook more challenging scenarios with insufficient sample sizes. In
013 data-scarce scenarios, the spatiotemporal dynamics in SNNs often involve joint
014 spatiotemporal redundancy, which results in compromised generalization and re-
015 duced robustness. The information bottleneck principle has demonstrated power-
016 ful spatial compression in artificial neural networks, but its direct application to
017 SNNs is nontrivial: the discrete, timing-dependent nature of spikes makes spa-
018 tiotemporal entropy estimation inherently challenging. To reduce the joint redun-
019 dancy for data-efficient learning, we propose the spatiotemporal spiking entropic
020 bottleneck (STSEB) framework that jointly compresses spatial and temporal in-
021 formation while preserving task-relevant features. Central to STSEB is the spike
022 time matrix, which records each neuron’s first spiking time to extract the most
023 critical temporal feature, discard redundant spikes, and align activities across neu-
024 rons. We further develop a spike-time-matrix-based Rényi’s α -entropy estimator
025 that captures the intrinsic frequency distribution of spatiotemporal spiking patterns
026 to drive compression under spatiotemporal bottleneck objective. We prove that
027 STSEB obtains more compact latent representations than traditional information
028 bottleneck by average spiking rate and total correlation metrics. The experimental
029 results show that STSEB achieves superior generalization and robustness com-
030 pared to SOTA under scarce samples, with higher sample efficiency and reduced
031 power consumption. The code will be released upon acceptance.
032

033 1 INTRODUCTION 034

035 Spiking neural networks (SNNs) represent an intriguing class of brain-inspired computational mod-
036 els, emulating the intricate communication mechanisms of biological neurons through discrete and
037 sparse spikes Yao et al. (2023b); Li et al. (2021). Their capability for low-power operation and
038 natural compatibility with neuromorphic hardware has increasingly captured the attention of re-
039 searchers, highlighting their significant potential in contemporary artificial general intelligence Fang
040 et al. (2021); Yin et al. (2021). However, despite ongoing theoretical and hardware advancements in
041 SNNs, challenges remain in their generalization ability and learning efficiency, especially in data-
042 scarce scenarios. Unlike conventional artificial neural networks (ANNs), the discrete spikes in SNNs
043 inherently exhibit sparsity and dynamic complexity. While this allows for efficient, event-driven
044 computation Li et al. (2021); Shen et al. (2025b); Wei et al. (2023), it introduces spatiotemporal
045 joint redundancy that degrades the generalization and robustness of SNNs, particularly in data-scarce
046 scenarios. From the perspective of spatial dimension, neighboring neurons are often connected to
047 adjacent or overlapping input regions, resulting in multiple neurons to encode similar features or
048 patterns and produce highly similar responses Krunglevicius (2015); Saunders et al. (2019); Vertes
049 & Duke (2010); Zhou et al. (2024). It induces spatial redundancy resulting from the spatial topolog-
050 ical correlation and overlapping local receptive fields. From the temporal perspective, certain input
051 features may persist over time or change slowly, causing neurons to repeatedly spike over consecu-
052 tive time steps. This induces temporal redundancy resulting from repeated activations in response to
053 sustained input Yao et al. (2023a); Ponghiran & Roy (2022); Liu et al. (2022); Comsa et al. (2021);

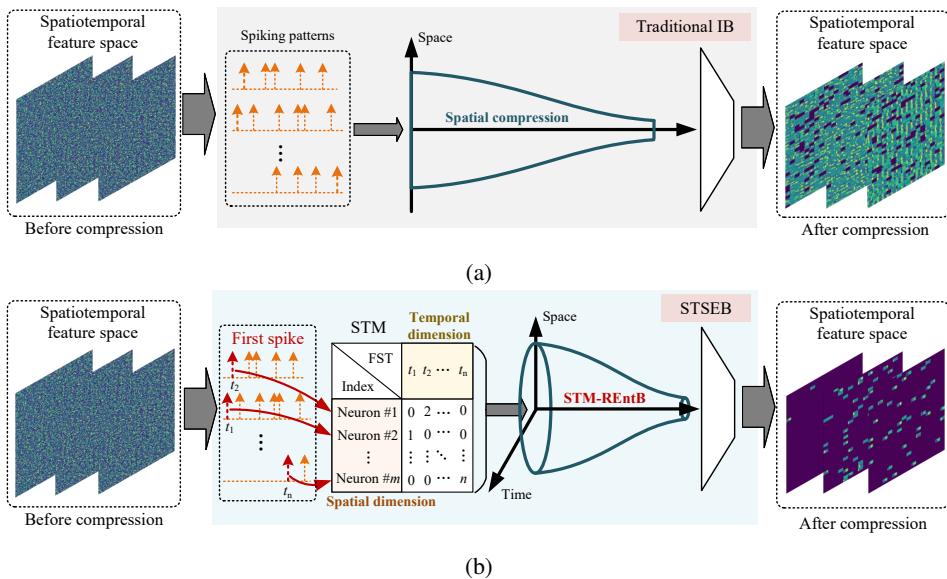


Figure 1: Overall working mechanism of the STSEB method. (a) Traditional IB method with difficulty in spatiotemporal entropy estimation. (b) STSEB realizes the spatiotemporal compression by STM-based Rényi's α -entropy functional estimator, which can achieve a more compact latent representation.

Vicente-Sola et al. (2025); Kugele et al. (2020). Effectively compressing this spatiotemporal redundancy is crucial for SNNs to improve the generalization and robustness and enable data-efficient learning.

Information compression seeks to preserve crucial information by eliminating redundant or irrelevant data, thus enhancing generalization and robustness Lee et al. (2021); Shwartz Ziv & LeCun (2024); Hu et al. (2025); Li et al. (2023b). In recent years, the information bottleneck (IB) principle has garnered significant attention due to its success in providing an elegant theoretical framework for achieving optimal information compression in deep neural networks Kawaguchi et al. (2023); Pan et al. (2021). In traditional ANNs that are characterized by continuous and analog signals, this principle has demonstrated significant advantages Li et al. (2022; 2023a). There have been several studies on applying IB in SNNs in various types of training schemes, such as ANN-to-SNN conversion Zhang et al. (2022), supervised direct training by surrogate gradient learning Yang & Chen (2023a;b), and self-supervised training for optical flow estimation Yang et al. (2024b). It is a pity that these studies typically use conventional mutual information (MI) estimation methods originally designed for spatial information compression as illustrated in Figure 1a, which are inadequate for handling the discrete and timing-dependent spikes.

These challenges of extending the IB principle to SNNs arise from the intrinsic sparseness, discreteness, and timing-dependency of SNNs. First, spikes are discrete binary events that are inherently sparse and unevenly distributed Rathi & Roy (2024); Ghosh-Dastidar & Adeli (2009); Yao et al. (2024), which conflicts with the continuous Gaussian distribution assumption that traditional IB rely on Oh et al. (2018); Chang et al. (2020). Second, spike generation in SNNs depends not only on which neuron fires but also on when it fires, introducing spatiotemporal dependency Taherkhani et al. (2020); Eshraghian et al. (2023); Meng et al. (2022). The resulting spatiotemporal joint distributions are highly complex, and directly computing the entropy of spatiotemporal joint distributions requires addressing an extremely high-dimensional state space. It makes computation on the spatiotemporal joint distribution intractable in practical applications, thus making it challenging for traditional IB to compress the spatiotemporal joint entropy. Consequently, this results in suboptimal compression effects with IB, potentially distorting critical spiking patterns, with unresolved spatiotemporal joint redundancy further hindering the efficiency and compactness of information representation within SNNs.

108 To tackle the problems, we propose a novel training method, called spatiotemporal spiking entropic
 109 bottleneck (STSEB), with the key objective of jointly compressing spatial and temporal information
 110 while preserving task-relevant features. To this end, the STSEB method first encodes neuronal spike
 111 trains into a spike time matrix (STM), in which only the first spike time (FST) of each neuron is
 112 recorded, as illustrated in Figure 1b. This provides a natural timestamp that captures the most salient
 113 temporal features while eliminating redundant information caused by repeated spiking, and enables
 114 temporal alignment across spiking neurons. As noted by Thorpe et al. (2001), early spikes tend
 115 to carry the most discriminative information. Timing of the first spike has been shown to be highly
 116 indicative of neuronal sensitivity to input stimuli Thorpe et al. (2001); Han & Roy (2020); Yang et al.
 117 (2023a). Therefore, it establishes a sparse and unified encoding scheme with the dimensionality of
 118 the state space shrunk.

119 To effectively extract spatiotemporal information from the STM, we design a specialized Rényi’s
 120 α -entropy estimator for spatiotemporal entropy estimation. In this estimator, Rényi’s α -entropy is
 121 employed to deal with the reliance on continuous density estimation by traditional entropy estima-
 122 tion methods, allowing for direct computation of entropy robustly based on the frequency distribu-
 123 tion of the sparse and irregular spiking patterns. Building upon the proposed estimator, we derive
 124 a novel information bottleneck objective from a first principle, termed STM-REntB, yielding spa-
 125 tiotemporal information compression with spatiotemporal joint redundancy reduction. With average
 126 spiking rate and total correlation evaluations, we prove that STSEB enables the latent representa-
 127 tions more compact compared to traditional IB. Based on STSEB, we outperform existing SOTA
 128 SNN direct training methods, as well as the latest information bottleneck approach HOSIB Yang
 129 & Chen (2023a), on the CIFAR-10, CIFAR-100, and DVS-Gesture datasets under varying levels
 130 of training sample scarcity, demonstrating the generalization capability and sample efficiency of
 131 STSEB in data-scarce scenarios. Additionally, after introducing Gaussian noise, as well as black-
 132 box and white-box adversarial attacks to DVS-Gesture, STSEB demonstrates stronger robustness
 133 than SOTA methods across training sets of different scales. Compared to traditional IB, STSEB also
 134 reduced power consumption by 5.39%.

135 2 RELATED WORK

136 The problem of information compression represents a critical research focus within the field of
 137 deep neural networks Cheng et al. (2018). Information-theoretic learning can provide fundamental
 138 solutions to information compression challenges Hild et al. (2006); Deng et al. (2016), with the IB
 139 theory standing out as one of its most advanced and representative frameworks. The core principle of
 140 the IB theory is that during the representation learning phase, a network should compress the input
 141 data as much as possible while retaining sufficient information to support the target task, thereby
 142 enhancing the generalization and efficiency Kawaguchi et al. (2023); Hu et al. (2024). There are
 143 three primary approaches to applying the IB in SNNs.

144 First, IB is integrated with principles from neuroscience, utilizing these principles to derive learning
 145 rules based on neuroscience mechanisms research. IB has been proposed using stochastic spik-
 146 ing neurons with refractory periods Klampfl et al. (2009); Buesing & Maass (2010). By utilizing
 147 IB strategy, three-factor learning rule is proposed with a local Hebbian component and a global
 148 modulatory signal Klampfl et al. (2006); Daruwalla & Lipasti (2024). Moreover, SpiKL-IP applies
 149 information-theoretic approach to intrinsic plasticity by maximizing the entropy of the firing rate
 150 distribution toward a target optimal exponential distribution Zhang & Li (2019).

151 Second, IB is incorporated into ANN-to-SNN conversion training strategies. The core idea is to first
 152 train a traditional ANNs using an IB loss, and then convert the trained ANN into an SNN model
 153 with structurally and weight-wise equivalent properties. Following this approach, 2O-IB optimizes
 154 the latent representations within the ANN through IB-based training before converting the network
 155 into an SNN Zhang et al. (2022). In theory, this strategy can leverage a wide range of IB techniques
 156 that have been extensively validated in deep learning Ma et al. (2020); Nguyen & Choi (2019);
 157 Ngampruetikorn & Schwab (2022).

158 Third, there are also some works that apply IB to direct training strategies for SNNs based on surro-
 159 gate gradient learning. Building on this concept, a series of IB methods and their high-order variants
 160 have been proposed, including SIBoLS Yang et al. (2023b), SNIB Yang & Chen (2023b), HOSIB
 161 Yang & Chen (2023a), and HHO-IB Wu et al. (2025). Although IB is not explicitly used, IM-Loss

162 introduces an information maximization loss function to address the issues of spike information loss
 163 and accuracy degradation Guo et al. (2022). SMEIL employs the maximum entropy principle to pro-
 164 mote perturbation of the underlying source distribution, thereby increasing the predictive uncertainty
 165 of the current model Yang et al. (2024a).

166 Although these methods provide valuable insights, we believe further improvements are necessary.
 167 Firstly, the aforementioned approaches typically use the assumption of traditional IB distributions,
 168 which are limited in their application to the sparse spatiotemporal information flow in SNNs. Sec-
 169 ondly, these methods have not explicitly measured the high-dimension spatiotemporal information
 170 and consequently calculated the information entropy, making it challenging to further compress the
 171 redundancy in the spatiotemporal information dimension. In this paper, we will carefully consider
 172 these issues and propose effective solutions.
 173

174 3 PRELIMINARY

175 3.1 SPIKING NEURAL NETWORKS

178 SNNs are computational models inspired by biological neural networks, where neurons communi-
 179 cate through discrete spikes rather than continuous signals. The fundamental unit of SNNs is the
 180 spiking neuron, which generates spikes when the membrane potential surpasses a certain threshold.
 181 This spiking behavior is captured by models like the leaky integrate-and-fire (LIF) neuron model,
 182 which is widely used in SNNs to simulate the dynamics of real neurons.

183 In the LIF model, the membrane potential $V[t]$ is computed by summing the previous state $H[t-1]$
 184 and the input current $I[t]$. The neuron fires a spike if $V[t]$ exceeds a threshold V_{th} , with the spiking
 185 behavior represented by a binary function $J[t] = \text{Heaviside}(V[t] - V_{th})$. If the neuron spikes, its
 186 membrane potential is reset to a resting value V_{reset} . Otherwise, it maintains the current potential.
 187 The updated membrane potential $H[t]$ is thus computed as:

$$189 \quad H[t] = V_{\text{reset}} \cdot J[t] + V[t] \cdot (1 - J[t]). \quad (1)$$

191 3.2 INFORMATION BOTTLENECK

193 The IB theory is a fundamental concept in information theory applied to deep learning. Its core idea
 194 is to compress the input while preserving the most relevant features for predicting the output. Given
 195 an input variable X and output variable Y , the theory constructs a Markov chain $X \rightarrow Z \rightarrow Y$,
 196 where the intermediate variable Z represents a compressed representation of X . The mapping from
 197 X to Z is denoted by the conditional distribution $P(Z|X)$, which induces a marginal distribution
 198 over Z : $Z \sim P(Z) = \int P_{Z|X}(z|x)p_X(x) dx$. The goal of IB is to retain as much information
 199 about Y as possible in Z while minimizing the information flow from X to Z . This trade-off can be
 formulated as the following optimization problem:

$$200 \quad \max_{Z \in \mathcal{A}} I(Z; Y) \quad \text{s.t.} \quad I(X; Z) \leq \epsilon, \quad (2)$$

202 where $I(\cdot; \cdot)$ denotes MI, and \mathcal{A} is the set of all possible mappings $Z \sim P(Z|X)$. Introducing a
 203 Lagrange multiplier β yields the IB Lagrangian objective as follows:

$$204 \quad L_{\text{IB}} = \max_{Z \in \mathcal{A}} I(Z; Y) - \beta I(X; Z), \quad (3)$$

206 where β controls the trade-off between compression and prediction. A larger β enforces a stronger
 207 compression constraint. To compute MI, the Kullback–Leibler (KL) divergence is widely used,
 208 which measures the similarity between two distributions. Specifically, MI can be approximated as
 209 follows:

$$210 \quad I_{P(X), P(Z|X)}(X; Z) = \sum_{x, z} P_{Z|X}(z|x)p_X(x) \log \frac{P_{Z|X}(z|x)}{P_Z(z)} \\ 211 \\ 212 \quad \approx \frac{1}{N} \sum_{n=1}^N D_{\text{KL}}(P_{Z|X}(z|x_n) \| R(Z)), \quad (4)$$

215 where $R(Z)$ is a variational approximation to the marginal distribution $P(Z)$, and N is the number
 216 of training samples.

216 **4 THE STSEB FRAMEWORK**
 217

218 In IB theory, the objective of the model is to minimize $I(X; Z)$, thereby compressing the redundant information in the input X while retaining the most crucial features. However, for SNNs with
 219 spatiotemporal dimensions, the traditional IB that only compresses $I(X; Z)$ fails to capture the information entropy along the temporal dimension, thus limiting its ability to effectively compress
 220 spatiotemporal joint redundancy. Moreover, the assumption of continuous signal distributions in IB
 221 is evidently unsuitable for SNNs, where discrete distribution assumptions more accurately capture
 222 the feature information. To address these challenges, we define a Rényi’s α -entropy estimator based
 223 on the STM to characterize the spatiotemporal information of SNNs, and introduce the STSEM
 224 framework, which aligns with the spatiotemporal discrete features of SNNs. Then, we present the
 225 generalization and sample complexity bounds of STSEB and define metrics for spatiotemporal infor-
 226 mation compression and redundancy. We also provide a visualized comparison with the traditional
 227 IB method.
 228

230 **4.1 STM BASED RÉNYI’S α -ENTROPY ESTIMATOR AND STSEB OBJECTIVE**
 231

232 In the STSEB framework, to achieve compression of redundant information along the spatiotemporal
 233 dimension, we first describe the spatiotemporal information. Spike trains in SNNs are inherently
 234 temporal, with the temporal dimension capturing the precise firing times of each neuron. Compared
 235 to the average firing rate, first spikes provide a sparser representation with minimal information
 236 redundancy, preserving the temporal structure. We define the STM T_Z based on the first spiking
 237 time of each neuron as follows:

$$238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad T_Z = \begin{bmatrix} T_{11} & \cdots & T_{1T} \\ \vdots & \ddots & \vdots \\ T_{N1} & \cdots & T_{NT} \end{bmatrix} \in \mathbb{R}^{N \times T}, \quad (5)$$

$$244 \quad 245 \quad 246 \quad T_{nt} = \begin{cases} \min \{t \in [1, T] \mid O_{nt} = 1\} & \text{if such } t \text{ exists,} \\ 0 & \text{else,} \end{cases} \quad (6)$$

247 where O_{nt} represents the output of the n -th neuron at the t -th time step in the bottleneck layer.
 248 T_Z records the FST for each neuron, capturing fine-grained temporal information. After obtaining
 249 the STM, to achieve compression of spatiotemporal redundant information, it is necessary to mea-
 250 sure the spatiotemporal information content of the intermediate variable Z . In information theory,
 251 Shannon entropy is commonly used to quantify the amount of information contained in a variable.
 252 Rényi’s α -entropy, on the other hand, is a generalization of Shannon entropy, offering improved
 253 numerical stability and extensibility, particularly for high-dimensional information. Based on the
 254 STM, we construct an estimator using Rényi’s α -entropy to represent the spatiotemporal infor-
 255 mation content of intermediate variable Z .
 256

256 **Definition 1 (STM based Rényi’s α -Entropy Estimator)** *Given a kernel function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
 257 and an unlimited number of kernels, the Gram matrix K for STM T_Z can be calculated as
 258 $K_{ij} = k(T_{Zi}, T_{Zj})$. The normalised positive semi-definite matrix A can then be computed as
 259 $A_{ij} = \frac{K_{ij}}{\sqrt{K_{ii}K_{jj}}}$. The STM based Rényi- α entropy estimator $H_\alpha(T_Z)$ is given by:*
 260

$$261 \quad 262 \quad 263 \quad 264 \quad 265 \quad H_\alpha(T_Z) = \frac{1}{1 - \alpha} \log_2 (\text{tr}(A^\alpha)) \\ = \frac{1}{1 - \alpha} \log_2 \left(\sum_{i=1}^N \lambda_i(A)^\alpha \right), \quad (7)$$

266 where $\lambda_i(A)$ denotes the i -th eigenvalue of matrix A .
 267

268 The STM-based Rényi- α entropy estimator characterizes the spatiotemporal information contained
 269 in the intermediate variable Z , addressing the gap in IB theory where spatiotemporal information is
 not considered in SNNs. A smaller value of $H_\alpha(T_Z)$ indicates that the spatiotemporal features of

270 the intermediate variable Z are more compact. To achieve information compression along the spa-
 271 totemporal dimension, we propose the STSEB based on the STM-based Rényi- α entropy estimator,
 272 and define its objective, termed STM-REntB, as presented in Definition 2:
 273

274 **Definition 2 (STSEB Objective: STM-REntB)** *Given the input X and output Y of SNN, an
 275 intermediate variable Z is constructed, where the MI between X and Z is $I(X; Z)$, and the MI
 276 between Z and Y is $I(Z; Y)$. Based on Definition 1, the Rényi- α entropy of Z can be computed,
 277 denoted as $H_\alpha(T_Z)$. The objective of STSEB aims to compress redundant information as much as
 278 possible in both spatial and spatiotemporal dimensions to obtain effective and compact spatiotem-
 279 poral features. The mathematical form of the objective is as follows:*

$$\mathcal{L}_{\text{STM-REntB}} = \max_{Z \in \Delta} I(Z; Y) - \beta I(X; Z) - \gamma H_\alpha(T_Z), \quad (8)$$

282 where β and γ respectively control the extent of compression in the spatial and spatiotemporal
 283 domains.

284 In the STSEB objective, β and γ serve as trade-off parameters, where larger values correspond to
 285 stronger compression along the respective dimension. By adjusting these hyperparameters, STSEB
 286 achieves a balance between spatial and temporal feature abstraction, resulting in more compact
 287 yet informative representations, and enhancing the generalization and robustness of SNNs. The
 288 pseudocode for STSEB is provided in the Appendix A.5.

290 4.2 THEORETICAL GUARANTEES AND METRICS OF STSEB

292 To demonstrate the effectiveness of STSEB, we theoretically derive its objective’s generalization
 293 and sample complexity bounds. Consider an SNN model with input-output pairs denoted as x and
 294 y , where each sample is independently drawn from an unknown distribution \mathcal{D} . Let the model family
 295 be $\mathcal{F} = \{Z_\theta : \theta \in \Theta\}$, where $Z_\theta : \mathcal{X} \rightarrow \mathcal{Z}$ is a mapping from model inputs to latent variables. Let
 296 $\ell(Z; x, y)$ denote the loss function. The expected risk is defined as: $L(Z) = \mathbb{E}_{(x, y) \sim \mathcal{D}} [\ell(Z; x, y)]$,
 297 and the empirical risk is: $\hat{L}_n(Z) = \frac{1}{n} \sum_{i=1}^n \ell(Z; x_i, y_i)$. Define the composite loss class as: $\mathcal{L} \circ \mathcal{F} =$
 298 $\{(x, y) \mapsto \ell(Z; x, y) : Z \in \mathcal{F}\}$. Then the Rademacher complexity of this class is given by:

$$\mathcal{R}_n(\mathcal{L} \circ \mathcal{F}) = \mathbb{E}_{\sigma, (x_i, y_i)} \left[\sup_{Z \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i \ell(Z; x_i, y_i) \right], \quad (9)$$

302 where σ_i are independent Rademacher random variables. We make the following assumption:

303 **Assumption 4.1.** There exists a constant $B > 0$ such that for all (x, y) and $Z \in \mathcal{F}$, the loss function
 304 satisfies:

$$0 \leq \ell(Z; x, y) \leq B. \quad (10)$$

307 In practice, loss functions are bounded and usually decrease during training. Hence, this assumption
 308 is reasonable and commonly satisfied. Based on the above definitions and Assumption 1, we now
 309 present the generalization and sample complexity bounds:

310 **Theorem 1 (Generalization Bound)** *For any $\delta > 0$, with probability at least $1 - \delta$, the following
 311 holds for all $Z \in \mathcal{F}$:*

$$313 L(Z) \leq \hat{L}_n(Z) + 2\mathcal{R}_n(\mathcal{L} \circ \mathcal{F}) + B\sqrt{\frac{\ln(1/\delta)}{2n}}. \quad (11)$$

316 **Theorem 2 (Sample Complexity Bound)** *Let $Z^* = \arg \max_Z L(Z)$ and $\hat{Z} = \arg \max_Z \hat{L}_n(Z)$.
 317 If the number of samples n satisfies:*

$$319 n \geq \frac{C}{\epsilon^2} \left(\mathcal{R}_n(\mathcal{L} \circ \mathcal{F})^2 + \ln \frac{1}{\delta} \right), \quad (12)$$

321 for some constant C , then with probability at least $1 - \delta$, we have: $L(Z^*) - L(\hat{Z}) \leq \epsilon$.

322 Theorems 1 and 2 establish the generalization and sample complexity bounds of the STSEB train-
 323 ing algorithm. From Eq. 11, we observe that the gap between the training error and generalization

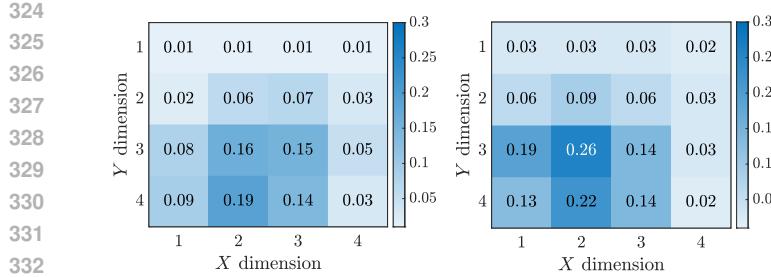


Figure 2: Comparison of FR with STSEB (left) and traditional IB (right). STSEB demonstrates a consistently lower FR, evidencing its superior spatiotemporal joint compression capability compared to traditional IB.

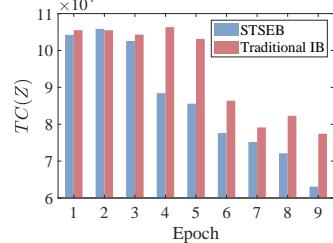


Figure 3: Evolution of $TC(Z)$ during training. STSEB exhibits a lower $TC(Z)$, suggesting its less redundant information.

error of STSEB is controlled by the Rademacher complexity and the sample size n . A lower model complexity and larger number of samples lead to a smaller generalization gap, indicating better generalization performance. Under the same sample size, STSEB compresses information across both spatial and temporal dimensions, resulting in more compact representations compared to traditional IB methods. Consequently, it achieves lower model complexity and exhibits improved generalization ability. Furthermore, Eq. 12 indicates that STSEB can achieve near-optimal performance as long as the sample size meets a sufficient threshold. Proofs of the above theorems are provided in the Appendix A.6.

To quantify and more intuitively assess the spatiotemporal information compression and redundancy of the latent variable Z in STSEB, and to compare it with the traditional IB method, we propose corresponding metrics and conduct analysis. For spatiotemporal information compression, we use the firing rate (FR) of the latent variables as the metric. For redundancy, we use $TC(Z)$ to measure the redundancy of information contained in the latent variables. The specific definitions can be found in the Appendix A.7. Figure 2 shows the FR heatmaps for the intermediate layer of STSEB and traditional IB. It can be observed that STSEB exhibits a lower FR, indicating higher spatiotemporal compression. Figure 3 demonstrates the changes in $TC(Z)$ for STSEB and traditional IB during training. It shows that $TC(Z)$ decreases over training and consistently remains lower than that of IB, proving that the latent variables in STSEB, after spatiotemporal compression, contain less redundant information.

5 EXPERIMENT

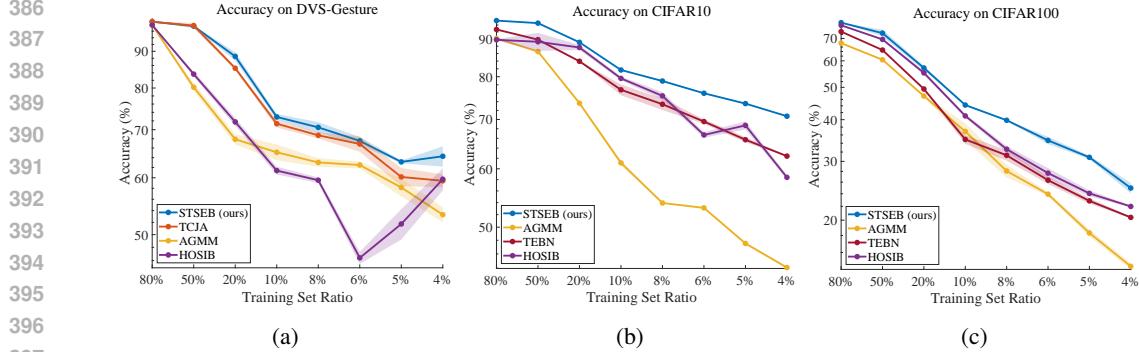
In this section, we perform classification tasks on both static and neuromorphic datasets and conduct experiments with different training set sizes to validate the generalization and robustness of the proposed STSEB, especially in data-scarce scenarios. We compare STSEB with other methods applied to optimize the SNN training process and also introduce Gaussian noise, black-box, and white-box adversarial attacks to evaluate the model’s robustness under data-sparse conditions. Finally, we benchmark the energy consumption performance of STSEB, comparing it with the baseline SNN model and traditional IB methods. Detailed experimental configurations are provided in the Appendix A.4.

5.1 PERFORMANCE OF STSEB ON STATIC AND NEUROMORPHIC DATASETS

We test STSEB on the DVS-Gesture, CIFAR-10, and CIFAR-100 datasets with different training set sizes and compare it with other training optimization methods Zhu et al. (2024); Liang et al. (2025); Yang & Chen (2023a); Duan et al. (2022), including a comparison with HOSIB Yang & Chen (2023a) to demonstrate the effectiveness of STSEB’s spatiotemporal joint compression. The experimental results, as shown in Figure 4, indicate that our method achieves optimal results, especially in scenarios with scarce training data, highlighting the data-efficiency of STSEB. Additionally, to further investigate the advantages of STSEB in compressing spatiotemporal redundant information, we demonstrate the feature maps of the intermediate variables in STSEB across multiple time steps.

378 As shown in Figure 5, in the feature maps corresponding to the intermediate variables in STSEB, the
 379 features at the same time step are sparser compared to traditional IB methods, indicating that STSEB
 380 compresses more redundant information in the spatial dimension. For the same location at different
 381 time steps (T=1 to T=4), STSEB exhibits significantly fewer repeated spikes at adjacent time steps
 382 compared to the traditional IB method. This indicates that STSEB is able to compress more tempo-
 383 ral redundant information caused by repeated spikes from neurons, confirming the effectiveness of
 384 the STM-based Rényi’s α -Entropy Estimator in compressing spatiotemporal joint redundancy.

385



396

397

398 Figure 4: Comparison with the SOTA methods on DVS-Gesture, CIFAR-10, and CIFAR-100
 399 datasets under varying training set ratios.

400

401

402

5.2 ROBUSTNESS ANALYSIS OF STSEB

404

405 To investigate the improvement in SNN robustness through spatiotemporal joint redundancy com-
 406 pression by STSEB, we conduct experiments on the DVS-Gesture dataset under various noise con-
 407 ditions, including Gaussian noise, black-box, and white-box adversarial attack noise. Detailed infor-
 408 mation about the noise deployment is provided in the Appendix A.8. We compared our method with
 409 TCJA Zhu et al. (2024), which performs second best on the DVS-Gesture dataset as shown in Figure
 410 4. The experimental results under three types of noise are shown in the Table 1. Under all noise
 411 conditions, STSEB consistently achieves higher accuracy, especially under white-box adversarial
 412 attack noise, where the average accuracy improvement (Avg. Imp.) over TCJA reaches 23.73% at
 413 the sample ratio of 0.1. The robustness experiments demonstrate that STSEB, by compressing spa-
 414 tiotemporal information, enables the model to extract more important and compact features, signif-
 415 icantly improving the robustness of SNNs in noisy environments. This improvement is particularly
 416 noticeable in data-scarce scenarios.

417

418

419

420

421

422

423

424

425

426

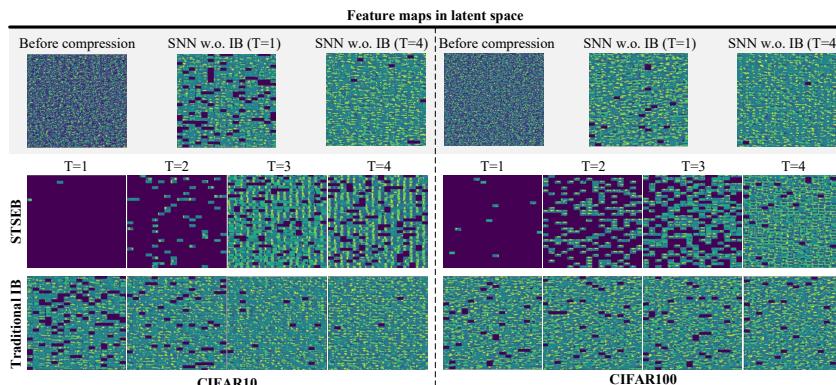
427

428

429

430

431



432 Figure 5: Comparison of feature maps in latent space. STSEB exhibits sparser feature maps com-
 433 pared to traditional IB, indicating the acquisition of more compact spatiotemporal features.

432
433 Table 1: Performance comparison with the SOTA method under different noise types and sample
434 ratios.

435 436 Noise type	437 438 439 440 441 442 443 Method	444 Sample Ratio				
		445 1	446 0.5	447 0.2	448 0.1	449 0.05
450 451 452 453 454 Gaussian	455 TCJA	456 56.43% \pm 0.042	457 48.05% \pm 0.136	458 34.55% \pm 0.130	459 22.74% \pm 0.027	460 22.05% \pm 0.106
	461 STSEB (ours)	462 58.51% \pm 0.081	463 51.22% \pm 0.125	464 50.0% \pm 0.059	465 36.15% \pm 0.128	466 39.62% \pm 0.045
	467 Avg. Imp.	468 2.08% \uparrow	469 3.17% \uparrow	470 15.45% \uparrow	471 13.41% \uparrow	472 17.57% \uparrow
473 474 475 476 477 Black-box	478 TCJA	479 39.21% \pm 0.014	480 30.4% \pm 0.026	481 35.51% \pm 0.019	482 20.47% \pm 0.029	483 13.35% \pm 0.002
	484 STSEB (ours)	485 51.72% \pm 0.0051	486 30.90% \pm 0.005	487 39.58% \pm 0.015	488 44.2% \pm 0.013	489 29.12% \pm 0.006
	490 Avg. Imp.	491 12.51% \uparrow	492 0.50% \uparrow	493 4.07% \uparrow	494 23.73% \uparrow	495 15.77% \uparrow
496 497 498 499 500 White-box	501 TCJA	502 80.38% \pm 0.033	503 71.59% \pm 0.001	504 40.62% \pm 0.002	505 32.16% \pm 0.0003	506 29.58% \pm 0.053
	507 STSEB (ours)	508 81.58% \pm 0.0243	509 72.54% \pm 0.01	510 41.89% \pm 0.012	511 34.31% \pm 0.0004	512 36.79% \pm 0.0004
	513 Avg. Imp.	514 1.20% \uparrow	515 0.95% \uparrow	516 1.27% \uparrow	517 2.15% \uparrow	518 7.21% \uparrow

455
456 5.3 ABLATION STUDY
457

458 We conduct the ablation study on the components of STSEB using the DVS-Gesture dataset with
459 5% of the training set, testing the impact of each component on the generalization and robustness of
460 the SNN. The experimental results, as shown in Table 2, indicate that the introduction of the STM-
461 based Rényi’s α -Entropy Estimator improves the model’s accuracy, both on the clean CIFAR-10
462 dataset and the CIFAR-10 dataset with added Gaussian noise. This demonstrates that the STM-
463 based Rényi’s α -Entropy Estimator effectively enhances the generalization and robustness of the
464 SNN model, improving the model’s data efficiency.

465
466 Table 2: Ablation study of STSEB on the DVS-Gesture
467 dataset.

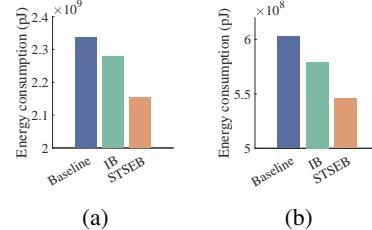
468 Dataset	469 $I(X; Z)$	470 $H_\alpha(T_Z)$	471 ACC
472 473 474 475 476 DVS-Gesture with 5% SR	477 \times	478 \times	479 60.15%
	480 \checkmark	481 \times	482 <u>60.83%</u>
	483 \checkmark	484 \checkmark	485 63.13%
DVS-Gesture with 5% SR under Gaussian noise	\times	\times	22.05%
	\checkmark	\times	24.15%
	\checkmark	\checkmark	39.62%

468
469 5.4 POWER CONSUMPTION ANALYSIS

470 Building upon prior works Shen et al. (2025a); Shi et al. (2024), we theoretically assess the energy
471 efficiency of STSEB by measuring the number of synaptic operations on the Loihi neuromorphic
472 Davies et al. (2018) . The results, as shown in Figure 6, compare the theoretical energy consump-
473 tion of the SNN baseline, the traditional IB approach, and STSEB when instantiated on ResNet and
474 VGG backbones. As illustrated, STSEB achieves markedly higher energy efficiency, an outcome
475 attributed to its joint spatio-temporal redundancy compression that yields more compact interme-
476 diate representations and concomitantly lowers the spike firing rates across individual neuronal layers.
477 Detailed derivations of the energy model and numerical data are provided in the Appendix A.9.

478
479 6 CONCLUSION
480

481 We propose a training paradigm for SNNs called STSEB, which performs joint redundancy sup-
482 pression along both spatial and temporal dimensions by constructing a STM-based spatiotemporal
483 matrix and minimizing its Rényi α -entropy, thereby yielding maximally compressed yet informa-
484 tive representations. Extensive empirical evaluations reveal that STSEB significantly improves SNN
485 generalization and robustness, enhances data-efficiency in data-scarce scenarios, and concomitantly
486 reduces energy consumption of SNNs.

487
488 Figure 6: Energy consumption
489 comparison. (a) Comparison on
490 ResNet. (b) Comparison on VGG.

486 REFERENCES
487

488 Arnon Amir, Brian Taba, David Berg, Thomas Melano, Jeffrey McKinstry, Christian Di Nolfo,
489 Nabil Nayak, Alexander Andreopoulos, Guillaume Garreau, Chiara Bartolozzi, and et al. A low
490 power, fully event-based gesture recognition system. In *Proceedings of the IEEE Conference on*
491 *Computer Vision and Pattern Recognition (CVPR)*, pp. 7243–7252. IEEE, 2017.

492 L. Buesing and W. Maass. A spiking neuron as information bottleneck. *Neural Computation*, 22(8):
493 1961–1992, 2010.

494 Jie Chang, Zhonghao Lan, Changmao Cheng, and Yichen Wei. Data uncertainty learning in face
495 recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recog-*
496 *nition*, pp. 5710–5719, 2020.

497 Y. Cheng, D. Wang, P. Zhou, et al. Model compression and acceleration for deep neural networks:
498 The principles, progress, and challenges. *IEEE Signal Processing Magazine*, 35(1):126–136,
499 2018.

500 I. M. Comsa, K. Potempa, L. Versari, et al. Temporal coding in spiking neural networks with alpha
501 synaptic function: learning with backpropagation. *IEEE Transactions on Neural Networks and*
502 *Learning Systems*, 33(10):5939–5952, 2021.

503 K. Daruwalla and M. Lipasti. Information bottleneck-based hebbian learning rule naturally ties
504 working memory and synaptic updates. *Frontiers in Computational Neuroscience*, 18:1240348,
505 2024.

506 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
507 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
508 manycore processor with on-chip learning. *Ieee Micro*, 38(1):82–99, 2018.

509 Y. Deng, F. Bao, X. Deng, et al. Deep and structured robust information theoretic learning for image
510 analysis. *IEEE Transactions on Image Processing*, 25(9):4209–4221, 2016.

511 C. Duan, J. Ding, S. Chen, et al. Temporal effective batch normalization in spiking neural networks.
512 In *Advances in Neural Information Processing Systems*, volume 35, pp. 34377–34390, 2022.

513 J. K. Eshraghian, M. Ward, E. O. Neftci, et al. Training spiking neural networks using lessons from
514 deep learning. *Proceedings of the IEEE*, 111(9):1016–1054, 2023.

515 W. Fang, Z. Yu, Y. Chen, et al. Deep residual learning in spiking neural networks. In *Advances in*
516 *Neural Information Processing Systems*, volume 34, pp. 21056–21069, 2021.

517 Steve Furber. Large-scale neuromorphic computing systems. *Journal of neural engineering*, 13(5):
518 051001, 2016.

519 S. Ghosh-Dastidar and H. Adeli. Spiking neural networks. *International journal of neural systems*,
520 19(04):295–308, 2009.

521 Y. Guo, Y. Chen, L. Zhang, et al. Im-loss: information maximization loss for spiking neural net-
522 works. In *Advances in Neural Information Processing Systems*, volume 35, pp. 156–166, 2022.

523 B. Han and K. Roy. Deep spiking neural network: Energy efficiency through time based coding. In
524 *European Conference on Computer Vision*, pp. 388–404. Springer International Publishing, 2020.

525 K. E. Hild, D. Erdogmus, K. Torkkola, et al. Feature extraction using information-theoretic learning.
526 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(9):1385–1392, 2006.

527 Dou Hu, Lingwei Wei, Wei Zhou, and Songlin Hu. An information-theoretic multi-task repre-
528 sentation learning framework for natural language understanding. In *Proceedings of the AAAI*
529 *Conference on Artificial Intelligence*, volume 39, pp. 17276–17286, 2025.

530 S. Hu, Z. Lou, X. Yan, et al. A survey on information bottleneck. *IEEE Transactions on Pattern*
531 *Analysis and Machine Intelligence*, 2024.

540 K. Kawaguchi, Z. Deng, X. Ji, et al. How does information bottleneck help deep learning? In
 541 *International Conference on Machine Learning*, pp. 16049–16096. PMLR, 2023.
 542

543 M. Kim, M. Kim, and X. Yang. Dta: Dual temporal-channel-wise attention for spiking neural
 544 networks. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*,
 545 pp. 9700–9710, 2025.

546 S. Klampfl, W. Maass, and R. Legenstein. Information bottleneck optimization and independent
 547 component extraction with spiking neurons. In *Advances in Neural Information Processing Sys-
 548 tems*, volume 19, 2006.

549

550 S. Klampfl, R. Legenstein, and W. Maass. Spiking neurons can learn to solve information bottleneck
 551 problems and extract independent components. *Neural Computation*, 21(4):911–959, 2009.

552

553 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
 554 Technical report, University of Toronto.

555

556 D. Krunglevicius. Competitive stdp learning of overlapping spatial patterns. *Neural Computation*,
 557 27(8):1673–1685, 2015.

558

559 A. Kugele, T. Pfeil, M. Pfeiffer, et al. Efficient processing of spatio-temporal data streams with
 560 spiking neural networks. *Frontiers in Neuroscience*, 14:512192, 2020.

561

562 Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer. Compressive
 563 visual representations. *Advances in Neural Information Processing Systems*, 34:19538–19552,
 564 2021.

565

566 B. Li, Y. Shen, Y. Wang, et al. Invariant information bottleneck for domain generalization. In
 567 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 7399–7407, 2022.

568

569 H. Li, C. Zhu, Y. Zhang, et al. Task-specific fine-tuning via variational information bottleneck for
 570 weakly-supervised pathology whole slide image classification. In *Proceedings of the IEEE/CVF
 571 Conference on Computer Vision and Pattern Recognition*, pp. 7454–7463, 2023a.

572

573 Y. Li, Y. Guo, S. Zhang, et al. Differentiable spike: Rethinking gradient-descent for training spiking
 574 neural networks. In *Advances in Neural Information Processing Systems*, volume 34, pp. 23426–
 575 23439, 2021.

576

577 Yunan Li, Huizhou Chen, Guanwen Feng, and Qiguang Miao. Learning robust representations with
 578 information bottleneck and memory network for rgb-d-based gesture recognition. In *Proceedings
 579 of the IEEE/CVF International Conference on Computer Vision*, pp. 20968–20978, 2023b.

580

581 Yu Liang, Wenjie Wei, Ammar Belatreche, Honglin Cao, Zijian Zhou, Shuai Wang, Malu Zhang,
 582 and Yang Yang. Towards accurate binary spiking neural networks: Learning with adaptive gra-
 583 dient modulation mechanism. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 584 volume 39, pp. 1402–1410, 2025.

585

586 F. Liu, W. Zhao, Y. Chen, et al. Dynsnn: A dynamic approach to reduce redundancy in spiking
 587 neural networks. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
 588 Signal Processing (ICASSP)*, pp. 2130–2134, 2022.

589

590 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In *In-
 591 ternational Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=Skq89Scxx>.

592

593 W. D. K. Ma, J. P. Lewis, and W. B. Kleijn. The hsic bottleneck: Deep learning without back-
 594 propagation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp.
 595 5085–5092, 2020.

596

597 Q. Meng, M. Xiao, S. Yan, et al. Training high-performance low-latency spiking neural networks by
 598 differentiation on spike representation. In *Proceedings of the IEEE/CVF Conference on Computer
 599 Vision and Pattern Recognition*, pp. 12444–12453, 2022.

594 V. Ngampruetikorn and D. J. Schwab. Information bottleneck theory of high-dimensional regression:
 595 relevancy, efficiency and optimality. In *Advances in Neural Information Processing Systems*,
 596 volume 35, pp. 9784–9796, 2022.

597

598 T. T. Nguyen and J. Choi. Markov information bottleneck to improve information flow in stochastic
 599 neural networks. *Entropy*, 21(10):976, 2019.

600 Seong Joon Oh, Kevin Murphy, Jiyan Pan, Joseph Roth, Florian Schroff, and Andrew Gallagher.
 601 Modeling uncertainty with hedged instance embedding. *arXiv preprint arXiv:1810.00319*, 2018.

602

603 Z. Pan, L. Niu, J. Zhang, et al. Disentangled information bottleneck. In *Proceedings of the AAAI
 604 Conference on Artificial Intelligence*, volume 35, pp. 9285–9293, 2021.

605

606 W. Ponghiran and K. Roy. Spiking neural networks with improved inherent recurrence dynamics for
 607 sequential learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 608 pp. 8001–8008, 2022.

609 N. Rathi and K. Roy. Lite-snn: Leveraging inherent dynamics to train energy-efficient spiking neural
 610 networks for sequential learning. *IEEE Transactions on Cognitive and Developmental Systems*,
 611 2024.

612 D. J. Saunders, D. Patel, H. Hazan, et al. Locally connected spiking neural networks for unsuper-
 613 vised feature learning. *Neural Networks*, 119:332–340, 2019.

614

615 Jiangrong Shen, Qi Xu, Gang Pan, and Badong Chen. Improving the sparse structure learn-
 616 ing of spiking neural networks from the view of compression efficiency. *arXiv preprint
 617 arXiv:2502.13572*, 2025a.

618

619 S. Shen, C. Wang, R. Huang, et al. Spikingssms: Learning long sequences with sparse and parallel
 620 spiking state space models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 621 volume 39, pp. 20380–20388, 2025b.

622 Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neu-
 623 ral networks: An unstructured pruning framework. In *The Twelfth International Conference on
 624 Learning Representations*, 2024.

625

626 R. Shwartz Ziv and Y. LeCun. To compress or not to compress—self-supervised learning and infor-
 627 mation theory: A review. *Entropy*, 26(3):252, 2024.

628

629 A. Taherkhani, A. Belatreche, Y. Li, et al. A review of learning in biologically plausible spiking
 630 neural networks. *Neural Networks*, 122:253–272, 2020.

631

632 S. Thorpe, A. Delorme, and R. Van Rullen. Spike-based strategies for rapid processing. *Neural
 633 Networks*, 14(6-7):715–725, 2001.

634

635 P. E. Vertes and T. Duke. Effect of network topology on neuronal encoding based on spatiotemporal
 636 patterns of spikes. *HFSP Journal*, 4(3-4):153–163, 2010.

637

638 A. Vicente-Sola, D. L. Manna, P. Kirkland, et al. Spiking neural networks for event-based action
 639 recognition: A new task to understand their advantage. *Neurocomputing*, 611:128657, 2025.

640

641 W. Wei, M. Zhang, H. Qu, et al. Temporal-coded spiking neural networks with dynamic firing
 642 threshold: Learning with event-driven backpropagation. In *Proceedings of the IEEE/CVF Inter-
 643 national Conference on Computer Vision*, pp. 10552–10562, 2023.

644

645 K. Wu, E. Shunzhuo, N. Yang, et al. A novel approach to enhancing biomedical signal recognition
 646 via hybrid high-order information bottleneck driven spiking neural networks. *Neural Networks*,
 647 183:106976, 2025.

648

649 Q. Yang, M. Zhang, J. Wu, et al. Lc-ttfs: Toward lossless network conversion for spiking neural
 650 networks with ttfs coding. *IEEE Transactions on Cognitive and Developmental Systems*, 16(5):
 651 1626–1639, 2023a.

648 S. Yang and B. Chen. Effective surrogate gradient learning with high-order information bottleneck
 649 for spike-based machine intelligence. *IEEE Transactions on Neural Networks and Learning Sys-*
 650 *tems*, 2023a.

651

652 S. Yang and B. Chen. Snib: improving spike-based machine learning using nonlinear information
 653 bottleneck. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 53(12):7852–7863,
 654 2023b.

655 S. Yang, H. Wang, and B. Chen. Sibols: robust and energy-efficient learning for spike-based ma-
 656 chine intelligence in information bottleneck framework. *IEEE Transactions on Cognitive and*
 657 *Developmental Systems*, 16(5):1664–1676, 2023b.

658

659 S. Yang, Q. He, Y. Lu, et al. Maximum entropy intrinsic learning for spiking networks towards
 660 embodied neuromorphic vision. *Neurocomputing*, 610:128535, 2024a.

661 S. Yang, B. Linares-Barranco, Y. Wu, et al. Self-supervised high-order information bottleneck learn-
 662 ing of spiking neural network for robust event-based optical flow estimation. *IEEE Transactions*
 663 *on Pattern Analysis and Machine Intelligence*, 2024b.

664

665 M. Yao, J. Hu, G. Zhao, et al. Inherent redundancy in spiking neural networks. In *Proceedings of*
 666 *the IEEE/CVF International Conference on Computer Vision*, pp. 16924–16934, 2023a.

667 M. Yao, G. Zhao, H. Zhang, et al. Attention spiking neural networks. *IEEE Transactions on Pattern*
 668 *Analysis and Machine Intelligence*, 45(8):9393–9410, 2023b.

669

670 Y. Yao, X. Zhao, and B. Gu. Exploring vulnerabilities in spiking neural networks: Direct adversarial
 671 attacks on raw event data. In *European Conference on Computer Vision*, pp. 412–428. Springer
 672 Nature Switzerland, 2024.

673 B. Yin, F. Corradi, and S. M. Bohté. Accurate and efficient time-domain classification with adaptive
 674 spiking recurrent neural networks. *Nature Machine Intelligence*, 3(10):905–913, 2021.

675

676 A. Zhang, Y. Niu, Y. Gao, et al. Second-order information bottleneck based spiking neural networks
 677 for semg recognition. *Information Sciences*, 585:543–558, 2022.

678

679 W. Zhang and P. Li. Information-theoretic intrinsic plasticity for online unsupervised learning in
 680 spiking neural networks. *Frontiers in Neuroscience*, 13:31, 2019.

681 C. Zhou, L. Ye, H. Peng, et al. A parallel convolutional network based on spiking neural systems.
 682 *International Journal of Neural Systems*, 34(05):2450022, 2024.

683

684 R. J. Zhu, M. Zhang, Q. Zhao, et al. Tcja-snn: Temporal-channel joint attention for spiking neural
 685 networks. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.

686

687

688 **A APPENDIX**

689

690 **A.1 ETHICS STATEMENT**

691 This paper focuses on the study of Spiking Neural Networks (SNNs) with the aim of improving
 692 the compression of spatiotemporal redundant information and optimizing the generalization and
 693 robustness of SNN models. We ensure that all research adheres to the principles outlined in the
 694 ICLR Code of Ethics and does not involve any violations of ethical guidelines.

695

696 **A.2 REPRODUCIBILITY STATEMENT**

697

698 We have made efforts to ensure the reproducibility of the results presented in this paper. In Appendix
 699 A2, we provide details of the experimental setup. In Appendix A3, we include the corresponding
 700 pseudocode for the methods. Additionally, we provide some of the code in the supplementary mate-
 701 rials, and once the paper is publicly published, we will release the full code of this work on GitHub
 for the community to reproduce.

702 A.3 LLM USAGE STATEMENT
703

704 The present study was conducted without the use of any Large Language Models or LLM-based
705 tools throughout its entire process, including conceptualization, experimental design, data process-
706 ing, result analysis, and manuscript preparation. All text composition, figure generation, and ana-
707 lytical work were independently performed by the authors, relying solely on conventional academic
708 methodologies and human expertise. The findings presented herein represent the original contribu-
709 tions of the research team, without reliance on generative AI systems.

710
711 A.4 EXPERIMENTAL DETAILS
712

713 **Static Datasets.** CIFAR-10 and CIFAR-100 Krizhevsky & Hinton (2009) are widely used stan-
714 dardized static datasets in machine vision and deep learning. Both contain 60,000 32×32 pixel color
715 images, with 50,000 images for training and 10,000 images for testing. CIFAR-10 covers 10 general
716 categories (e.g., airplanes, cars, birds), with each category containing 6,000 images. CIFAR-100 ex-
717 tends the dataset by including 100 categories (e.g., apples, mushrooms, whales), with each category
718 providing only 600 images.

719 **Neuromorphic Datasets.** DVS-Gesture Amir et al. (2017) is a neuromorphic gesture recogni-
720 tion dataset based on the Dynamic Vision Sensor (DVS), specifically designed for event-driven
721 spatiotemporal pattern recognition and SNNs. This dataset includes 29 different gesture actions
722 recorded under varying lighting conditions and background environments, using a DVS camera to
723 capture asynchronous event stream data. Each sample captures dynamic spatiotemporal features
724 of gestures with microsecond-level time resolution, represented as a quadruple (timestamp, pixel
725 coordinates, event polarity), reflecting local changes in brightness during gesture movement. DVS-
726 Gesture contains 1,342 samples, divided into training and testing sets, emphasizing fine-grained
727 segmentation and classification of continuous gesture actions. The challenges of this dataset lie
728 in handling the high sparsity of event streams, noise interference, and temporal dependencies intro-
729 duced by varying motion speeds. It is widely used to validate the effectiveness of SNNs and supports
730 performance evaluation on low-power neuromorphic hardware.

731 **Implementation Details.** All experiments were conducted using the PyTorch framework on RTX
732 4090 and A6000 GPUs. For the neuromorphic dataset DVS-Gesture, we adopted the same ar-
733 chitecture as TCJA-SNN Zhu et al. (2024): 128C3-LIF-MP2-128C3-LIF-MP2-128C3-LIF-MP2-
734 128C3-LIF-MP2-128C3-LIF-MP2-0.5DP-512FC-LIF-0.5DP-100FC-LIF-Voting. The model was
735 optimized using Adam with a learning rate of 0.001 and batch size of 64. We employed 10 timesteps
736 for spiking neurons and trained the network for 1,000 epochs. For static image benchmarks (CIFAR-
737 10/100), we utilized the MS-ResNet18 architecture Kim et al. (2025) with input resolution 48×48.
738 The network was trained using SGD with 0.9 momentum and cosine annealing scheduler Loshchilov
739 & Hutter (2017). We set the batch size to 64, learning rate to 0.1, weight decay to 5e-5, and used 6
740 timesteps for spiking neuronal dynamics. Parameter configurations are provided in Table 3.

741
742 Table 3: Training parameters for different datasets.
743

744 Dataset	745 Optimizer	746 Batch size	747 Timestep	748 Initial LR	749 Training epoch
750 DVS-Gesture	751 Adam	752 16	753 20	754 0.001	755 1000
756 CIFAR10	757 SGD	758 64	759 6	760 0.1	761 250
762 CIFAR100	763 SGD	764 64	765 6	766 0.1	767 250

770 A.5 PSEUDOCODE
771

772 STSEB quantitatively estimates spatiotemporal information using first-spike-matrix-based Rényi’s
773 α -entropy based on the first-spike matrix. During the training of the SNN, it compresses spatiotem-
774 poral redundant information, leading to more compact spatiotemporal features. This enhances SNN
775 model’s generalization ability and robustness. An overview of this process is described in Algo-
776 rithm 1.

756 **Algorithm 1** Training STSEB

757 **Input:** Training data X , labels Y , batch size N , number of epochs T ,
 758 hyperparameters β, α , Rényi order $\alpha_{\text{Rényi}}$
 759 **Output:** Trained model parameters θ^* , compressed representation Z

760 1: **for** epoch $t = 1$ to T **do**
 761 2: Fetch a mini-batch $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$
 762 3: $Z \leftarrow \text{SNN_Encode}(X; \theta)$
 763 4: **for** $i = 1$ to N **do**
 764 5: **for** neuron $j = 1$ to d **do**
 765 6: $T_Z[j] \leftarrow \min\{t \mid Z[j][t] = 1\}$
 766 7: **if** no spike occurs **then**
 767 8: $T_Z[j] \leftarrow 0$
 768 9: **end if**
 769 10: **end for**
 770 11: **end for**
 771 12: Compute Gram matrix K with kernel: $K_{ij} = k(T_{Zi}, T_{Zj})$
 772 13: Normalize $A_{ij} = \frac{K_{ij}}{\sqrt{K_{ii}K_{jj}}}$
 773 14: Compute Rényi entropy: $H_{T_Z} = \frac{1}{1-\alpha_{\text{Rényi}}} \log_2 (\sum_i \lambda_i^\alpha)$
 774 15: Estimate $I(X; Z)$ using Laplace KDE
 775 16: Estimate $I(Z; Y)$ via classifier or variational method
 776 17: Compute loss: $L_{\text{STSEB}} = -I(Z; Y) + \beta I(X; Z) + \alpha H_{T_Z}$
 777 18: Compute gradients $\nabla_\theta L_{\text{STSEB}}$
 778 19: Update parameters θ using optimizer
 779 20: **end for**

781 A.6 PROOF

782
 783 **Proof of Theorem 1.** Let $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ be a sample drawn i.i.d. from
 784 the distribution P over $\mathcal{X} \times \mathcal{Y}$. For any latent variable $Z \in \mathcal{F}$, define the true risk and the empirical
 785 risk as follows:

786
$$L(Z) = \mathbb{E}_{(x,y) \sim P} [\ell(Z; x, y)], \quad (13)$$

787
$$\hat{L}_n(Z) = \frac{1}{n} \sum_{i=1}^n \ell(Z; x_i, y_i), \quad (14)$$

788 where $\ell(Z; x, y)$ denotes the loss function. To derive the generalization bound for STSEB, we
 789 need to obtain an upper bound for the difference between the true risk $L(Z)$ and the empirical
 790 risk. To do this, we introduce the technique of symmetrization by introducing *Rademacher random*
 791 *variables* $\xi_1, \xi_2, \dots, \xi_n$, where each ξ_i is independent and $\mathbb{P}(\xi_i = \pm 1) = 1/2$. We then construct
 792 the symmetrized empirical risk as follows:

793
$$\hat{L}_n^*(Z) = \frac{1}{n} \sum_{i=1}^n \xi_i \ell(Z; x_i, y_i). \quad (15)$$

794 Since ξ_i are independent and symmetrically distributed, we have: $\mathbb{E}[\hat{L}_n^*(Z)] = 0$.

795 Thus, the expectation of the symmetrized empirical risk is zero, and the randomness is effectively
 796 controlled through the introduction of ξ_i . Now, for each latent variable Z , we obtain the key in-
 797 equality:

798
$$\mathbb{E} \left[\sup_{Z \in \mathcal{F}} (L(Z) - \hat{L}_n(Z)) \right] \leq 2\mathcal{R}_n(L(\mathcal{F})), \quad (16)$$

799 where $\mathcal{R}(L(\mathcal{F}))$ is the Rademacher complexity of the function class \mathcal{F} . To further control the
 800 deviation between the true risk and the empirical risk, we apply *Hoeffding's inequality*. Hoeffding's
 801 inequality provides a bound on the probability of the deviation between the empirical and true risks
 802 for each loss function $\ell(Z; x_i, y_i)$, given that the loss is bounded in the interval $[0, B]$. Specifically,
 803 for any latent variable Z and any $\epsilon > 0$, we have:

804
$$P \left(\hat{L}_n(Z) - L(Z) \geq \epsilon \right) \leq \exp \left(-\frac{2n^2\epsilon^2}{B^2} \right). \quad (17)$$

This inequality controls the deviation between the empirical and true risks, and it shows that as the sample size increases, the empirical risk converges to the true risk with high probability. For every latent variable $Z \in \mathcal{F}$, we want to control the deviation for all latent variable in the class. We use the *union bound* to extend this result to all latent variable in \mathcal{F} . Applying the union bound, we obtain:

$$P \left(\sup_{Z \in \mathcal{F}} |L(Z) - \hat{L}_n(Z)| \geq \epsilon \right) \leq \sum_{Z \in \mathcal{F}} P \left(|L(Z) - \hat{L}_n(Z)| \geq \epsilon \right). \quad (18)$$

After applying Hoeffding's inequality for each latent variable Z , we get:

$$P \left(|L(Z) - \hat{L}_n(Z)| \geq \epsilon \right) \leq \exp \left(-\frac{2n^2\epsilon^2}{B^2} \right). \quad (19)$$

By combining these results, we finally obtain an upper bound for the generalization error. Combining the symmetrization and union bound, we obtain the following generalization bound for the difference between the true and empirical risks:

$$|L(Z) - \hat{L}_n(Z)| \leq 2\mathcal{R}_n(L(\mathcal{F})) + B \cdot \sqrt{\frac{\ln(1/\delta)}{2n}}, \quad (20)$$

where $\mathcal{R}(L(\mathcal{F}))$ is the contribution from the Rademacher complexity, and $\sqrt{\frac{\ln(1/\delta)}{2n}}$ is the probabilistic bound from Hoeffding's inequality.

Proof of Theorem 2. Assume $Z^* = \arg \max_Z L(Z)$ and $\hat{Z} = \arg \max_Z \hat{L}_n(Z)$, based on the optimality of empirical risk minimization, we know that $\hat{L}_n(\hat{Z}) \geq \hat{L}_n(Z^*)$, therefore, we have

$$L(Z^*) - L(\hat{Z}) = (L(Z^*) - \hat{L}_n(Z^*)) + (\hat{L}_n(Z^*) - \hat{L}_n(\hat{Z})) + (\hat{L}_n(\hat{Z}) - L(\hat{Z})).$$

The middle term $\hat{L}_n(Z^*) - \hat{L}_n(\hat{Z}) \leq 0$, which can be ignored. Based on Theorem 1, by using the error bounds, we have

$$\begin{aligned} L(Z^*) - \hat{L}_n(Z^*) &\leq \Delta_n, \\ \hat{L}_n(\hat{Z}) - L(\hat{Z}) &\leq \Delta_n, \end{aligned} \quad (21)$$

where

$$\Delta_n = 2\mathcal{R}_n + B \sqrt{\frac{\ln(1/\delta)}{2n}}. \quad (22)$$

Thus, we conclude that $L(Z^*) - L(\hat{Z}) \leq 2\Delta_n$. To achieve $\Delta_n \leq \epsilon$, we obtain the sample size bound:

$$n \geq O \left(\epsilon^{-2} \left(\mathcal{R}_n^2 + \ln \frac{1}{\delta} \right) \right), \quad (23)$$

which ensures the desired generalization bound.

A.7 METRICS FOR STSEB

STSEB compresses redundant information along the spatiotemporal dimension in SNNs, yielding more compact spatiotemporal features. To quantify the extent of spatiotemporal information compression and redundancy in the intermediate variable Z within STSEB, and to facilitate a comparative analysis with traditional IB methods, we present the corresponding metrics in this section. In SNNs, LIF neurons function as core computational units, and their sparse firing activity reflects the information sparsity across layers. Typically, spike activity in higher layers becomes sparser, indicating stronger information compression. To more effectively quantify how STSEB compresses spatiotemporal information in SNNs and assess its effectiveness in removing redundant information, we introduce the following two metrics:

Spatiotemporal Compression via FR. Let latent variable Z correspond to N LIF neurons in an SNN layer. We define the Firing Rate (FR) of Z over a temporal window T as:

$$\text{FR}_Z = \frac{1}{N \cdot T} \sum_{i=1}^N \sum_{t=1}^T s_i^Z(t), \quad (24)$$

where $s_i^Z(t) \in \{0, 1\}$ indicates the firing state of the i -th neuron at timestep t . Then under IB constraint, the FR of Z is inversely proportional to its spatiotemporal compression degree: Lower $\text{FR}_Z \Rightarrow$ Stronger Compression.

864 **Spatiotemporal Redundancy via $TC(Z)$.** Let spatiotemporal variable $Z = [Z_1, \dots, Z_d]^T \in$
 865 $\mathcal{M} \subset \mathbb{R}^N$ with latent representation space \mathcal{M} , its informational redundancy $R(Z)$ satisfies:
 866

$$867 \quad R(Z) = \alpha \cdot TC(Z) + \beta, \quad (25)$$

868 where $\alpha > 0$ and total correlation $TC(Z)$ is defined as:
 869

$$870 \quad TC(Z) := D_{\text{KL}} \left(\prod_{i=1}^d P_{Z_i} \parallel P_Z \right). \quad (26)$$

873 The redundancy measure $R(Z)$ exhibits strict monotonicity: $\frac{\partial R}{\partial TC} = \alpha > 0$. As $TC(Z)$ increases,
 874 the redundancy increases
 875

876 A.8 DETAILS ON ROBUSTNESS EXPERIMENTS

877 In the robustness evaluation section, we introduce Gaussian noise and adversarial noise during the
 878 model testing process to assess its robustness. The Gaussian noise with a mean of $\mu = 0$ and
 879 variance of σ can be expressed mathematically as:
 880

$$881 \quad f_{\text{Gaussian}}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad (27)$$

883 where x is a random variable, and μ and σ represent its mean and variance, respectively. Additionally,
 884 to better reflect the model's resistance to interference, we add two types of adversarial noise:
 885 black-box attacks and white-box attacks. For the white-box attack, we use the Fast Gradient Sign
 886 Method (FGSM), which generates adversarial noise by utilizing the gradient of the input data x . The
 887 expression of FGSM-based white-box attacks is:
 888

$$889 \quad \eta_{\text{white-box}} = \varepsilon \cdot \text{sign}(\nabla_x J(\theta, x, y)), \quad (28)$$

890 where ε represents the strength of the white-box attack, and $J(\theta, x, y)$ corresponds to the model's
 891 loss function. The black-box attack, occurs when the attacker does not have access to the internal
 892 details of the model and can only observe its input-output behavior. For black-box adversarial at-
 893 tacks, we employ the zero-order optimization method to generate the noise. Given the input sample
 894 $x_{\text{adv}} = \text{inputs}$ and a random direction vector $\delta \sim N(0, I)$, the loss variation as the input sample
 895 moves in the direction of the vector is:
 896

$$897 \quad \Delta L = L(f(x_{\text{adv}} + \alpha\delta), \text{target}) - L(f(x_{\text{adv}}), \text{target}), \quad (29)$$

898 where α denotes the perturbation strength. Since black-box attacks cannot directly access gradient
 899 information, the loss variation along the perturbation direction is used to estimate the gradient, and
 900 update the adversarial samples as follows:
 901

$$902 \quad x_{\text{adv}} = x_{\text{adv}} + \alpha\delta \cdot \text{sign}(\Delta L). \quad (30)$$

903 For the generated adversarial samples, we also apply a clipping operation to ensure their similarity to
 904 the original data, which increases the effectiveness of the adversarial attack. Finally, the black-box
 905 attack samples are obtained by applying the clipping operation as follows:
 906

$$907 \quad x_{\text{adv}} = \text{clip}(x_{\text{adv}}, \text{inputs} - \epsilon, \text{inputs} + \epsilon), \quad (31)$$

908 where ϵ denotes the perturbation range set for the pruning operation.
 909

910 A.9 ENERGY CONSUMPTION

911 We theoretically analyze the impact of STSEB on SNN energy consumption, comparing it with the
 912 baseline SNN model and the SNN model with traditional IB. In SNNs, due to the pulse characteris-
 913 tics of their spiking neurons, the neurons are not always involved in computation. They only perform
 914 computations when the membrane potential reaches the threshold and outputs a spike. In neuromor-
 915 phic chips, synaptic processing dominates the system's energy consumption and is the best indicator
 916 for evaluating the overall energy consumption of the model on the chip Furber (2016). Many studies
 917 estimate SNN energy consumption based on SOPs. Although the energy consumption generated by
 918 SOPs does not cover the actual total energy consumption on neuromorphic chips, in some systems
 919 that fully utilize sparsity (such as Loihi Davies et al. (2018)), energy consumption from other aspects

like memory access and data transmission is relatively small. The total system energy consumption is approximately proportional to SOPs, making it reasonable to use SOPs for theoretical power consumption calculations. Therefore, for ANN models, we use FLOPs to estimate their theoretical power consumption, while for SNNs, we use SOPs to evaluate their theoretical power consumption on neuromorphic chips. Specifically, FLOPs represents the number of floating-point operations per second, which increases as the number of computations and network parameters increase. The computational formula is as follows:

$$\text{FLOPs}_{\text{ANN}}(l) = H_{\text{out}} \times W_{\text{out}} \times C_{\text{in}} \times C_{\text{out}} \times K \times K, \quad (32)$$

where $H_{\text{out}} \times W_{\text{out}}$ represents the output dimension of the l -th layer, and C_{in} and C_{out} are the input and output channels. The size K corresponds to the size of the convolutional kernel. For ANN, the input and output channels correspond to the learned weights. Common types of FLOP operations are multiplication-addition operations (MAC) and simple addition operations (AC). In ANNs, these operations are typically performed using the MAC method, so the theoretical power consumption can be calculated as:

$$E_{\text{ANN}} = \sum_l \text{FLOPs}_{\text{ANN}}(l) \times E_{\text{MAC}}. \quad (33)$$

For SNNs, we use SOPs and the energy consumption per synaptic operation $C_E = 23.6 \text{ pJ}$ on the Loihi chip for theoretical energy calculation. The specific calculation formula is as follows:

$$E_{\text{SNN}} = C_E \cdot \text{SOPs} = C_E \sum_i s_i c_i, \quad (34)$$

where C_E represents the energy consumption per synaptic operation, and SOPs represents the total number of synaptic operations. For each neuron i , s_i represents the total number of spikes emitted by the neuron, and c_i represents the number of synaptic connections of the neuron. Based on this theoretical estimate, we calculate the power consumption of the same structure for SNN baseline, SNN with traditional IB, and SNN with STSEB, and compare the results under two different network structures. The results are shown in Tables 4 and 5. This improvement substantiates STSEB's effectiveness in enhancing SNN energy efficiency through spatiotemporal compression.

Table 4: Energy consumption comparison on ResNet model.

Energy consumption (pJ)	ANN	SNN	SNN+IB	SNN+STSEB
Layer 1	90,596,966.6	593,913,446.4	593,913,446.4	593,913,446.4
Layer 2	1,902,536,294	750,257,575.8	712,647,321.2	650,722,651.3
Layer 3	135,895,449.6	213,894,538.5	216,868,174.5	213,045,226.7
Layer 4	441,660,211.2	779,589,003.1	755,348,659.5	696,888,632.8
Total	2,570,688,922	2,337,654,563.75	2,278,777,601.65	2,154,569,957.24

Table 5: Energy consumption comparison on VGG model.

Energy consumption (pJ)	ANN	SNN	SNN+IB	SNN+STSEB
Layer 1	135,895,449.6	19,735,095.83	18,536,918.22	17,697,371.11
Layer 2	2,174,327,194	408,465,901.66	394,430,605.37	365,232,047.91
Layer 3	543,581,798.4	104,218,570.67	97,531,149.09	94,527,924.56
Layer 4	135,895,449.6	45,297,447.11	44,377,739.69	44,038,021.71
Layer 5	33,973,862.4	25,110,565.45	24,173,545.84	24,088,784.83
Total	3,023,673,754	602,827,580.72	579,049,958.21	545,584,150.11