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Abstract

The scaling of model and data sizes has reshaped the AI landscape, establishing
finetuning pretrained models as the standard paradigm for solving downstream
tasks. However, dominant finetuning methods typically rely on weight adaptation,
often lack interpretability, and depend on heuristically chosen hyperparameters.
In this paper, we take a different perspective and shift the focus from weights
to activation functions, viewing them through the lens of spline operators. We
propose Curvature Tuning (CT), an interpretable and principled steering method
that modulates a model’s decision boundary by injecting a single hyperparameter
into its activation functions. We show that CT provably adjusts model decision
boundary curvature and, more fundamentally, projects a model onto a space of
smooth functions—thereby complementing current finetuning methods, whose
effect lies primarily in feature adaptation. Making this hyperparameter trainable
gives rise to a novel and highly parameter-efficient finetuning method. Empiri-
cally, CT improves both generalization and robustness. For example, it boosts
downstream accuracy of ResNet-50/152 by 8.59%/8.34% over linear probing and
4.64%/1.70% over LoRA across 12 datasets, and improves robust accuracy on the
ℓ∞ benchmark from RobustBench by 1032.64%/1494.46%. Our code is available
at https://github.com/Leon-Leyang/curvature-tuning.

1 Introduction

The scaling of model and data sizes has given rise to foundation models, such as Llama3 [1] for
natural language processing (NLP), DINOv2 [2] for computer vision (CV), CLIP [3] and SigLIP [4]
for multimodal tasks, and OpenVLA [5] for embodied agents. These models have shown remarkable
capabilities, accelerating a paradigm shift in artificial intelligence: transitioning from training task-
specific models from scratch to leveraging models pretrained on large datasets and finetuning them
for downstream applications.

Full finetuning, the process of steering1 a pretrained model by adapting all its parameters to down-
stream datasets, was once the primary approach for transferring knowledge. While it effectively

∗These authors contributed equally to this work.
1In this paper, we use steering as a general term for tuning a model, including both training-based and

non-training-based methods. We use finetuning to refer specifically to steering methods that adapt the model’s
parameters via training.
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Figure 1: Illustration of Curvature Tuning (CT) on classification (top) and regression (bottom) tasks.
The pretrained model for classification is a 3-layer MLP with hidden width 20 trained for 2000
steps; for regression, it is a 9-layer MLP with hidden width 64 trained for 20000 steps. CT steers a
pretrained model by replacing ReLUs with a β-parameterized activation function and tuning β
from 1 to 0, effectively modulating the model’s decision boundary curvature.

enhances generalization [6] and robustness [7], it is computationally expensive at large model scales.
To mitigate this, parameter-efficient finetuning (PEFT) methods such as Serial Adapter [8] and
LoRA [9] have been introduced, which finetune only a small subset of parameters. However, these
approaches usually lack interpretability and principled design. For instance, they treat the model as
a black box, making it unclear how the model is steered for downstream tasks. Consequently, they
usually rely on heuristic choices—such as LoRA’s rank, placement, and initialization—with minimal
theoretical guidance. This leads to a natural question: how can we construct principled steering
solutions addressing both efficiency and interpretability?

In this work, we answer the question by introducing a novel model steering perspective. We observe
that despite differences in specific forms, existing finetuning methods all share a focus on adapting
model weights—either by introducing new ones or updating existing ones. However, one critical
component of the model has been largely overlooked: the activation functions (e.g., ReLU), which
are responsible for the model’s nonlinearity and, ultimately, its expressivity [10, 11].

Grounded in the spline interpretation of deep networks [12, 13], we propose Curvature Tuning
(CT), a steering method (denoted as S-CT) that provably modulates a model’s decision boundary
curvature by injecting a single hyperparameter β into the activation function, as shown in Fig. 1.
Additionally, allowing β to be trained leads to a novel finetuning method (denoted as T-CT). We
highlight four key advantages of CT below:

CT is more interpretable and principled. We show that CT provably modulates the curvature of
the model’s decision boundary with as few as only one hyperparameter.

CT complements current finetuning methods. More essentially, while current finetuning methods
adapt features, CT projects the model to a space of smooth functions.

CT is highly parameter-efficient. As a steering method, S-CT introduces only one (hyper)parameter
per network. As a finetuning method, T-CT still uses significantly fewer parameters than LoRA with
rank one, requiring only 0.58% to 59.09% of the parameters used by LoRA in our experiments.

CT improves both generalization and robustness. For example, T-CT boosts transfer accu-
racy of ResNet-50/152 by 8.59%/8.34% over linear probing and 4.64%/1.70% over LoRA with
rank one across 12 downstream datasets. S-CT improves robust accuracy of ResNet-50/152 by
1032.64%/1494.46% on the ℓ∞ benchmark from RobustBench.

In summary, our key contributions are both theoretical and empirical. Theoretically, we propose
CT and show that it provably modulates the model’s decision boundary curvature, by projecting
the model onto a space of smooth functions. Empirically, we introduce S-CT as a steering method
and T-CT as a finetuning method, demonstrating improved generalization across six models and 12
downstream datasets, as well as robustness gains on the RobustBench benchmark [14].
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The remainder of this paper is organized as follows: Section 2 reviews current finetuning techniques
and introduces relevant spline concepts, the foundation for our method. Section 3 details our
proposed method and its theoretical guarantees. Section 4 presents experimental results, and Section 5
summarizes our findings and potential future directions.

2 Background

This section first reviews current finetuning techniques and their limitations (Section 2.1), then
introduces spline theory and its connections to deep networks as the foundation for CT (Section 2.2).

2.1 Current finetuning techniques and limitations

Finetuning refers to steering a pretrained model to improve its performance on downstream tasks
through training. Initially, the common practice was to continue training all model parameters—a
process known as full finetuning. Notable examples include GPT [6] and DINO [15]. However, as
model sizes have grown, full finetuning has become increasingly costly and often impractical, partic-
ularly when downstream datasets are small. Given these challenges, parameter-efficient finetuning
(PEFT) methods were developed to mitigate the cost while maintaining effectiveness.

We follow the categorization of Han et al. [16], which groups PEFT methods into four main categories.
Additive PEFT introduces additional trainable parameters to the pretrained model, training only these
new parameters during finetuning. Examples include Serial Adapter [8], Prefix-tuning [17], (IA)3
[18], and RoAd [19]. Selective PEFT identifies a subset of existing parameters for finetuning, with
examples such as U-Diff pruning and S-Diff pruning [20]. Reparameterized PEFT decomposes
pretrained weights into low-rank matrices, finetuning only the low-rank components, which are
converted back during inference; examples include LoRA [9] and DyLoRA [21]. Hybrid PEFT
combines multiple PEFT strategies, such as UniPELT [22] and S4 [23].

While PEFT methods differ in the parameters they update, they all adapt model weights and operate
on learned features—an approach that often relies on heuristic tuning. For example, LoRA requires
decisions about adapter placement [24], rank [21, 25], scaling [26], and initialization [27]. In contrast,
as described in Section 3, CT introduces only a single hyperparameter into the activation functions
that provably modulates the decision boundary curvature, offering a more interpretable alternative
that instead operates on the model’s underlying function space without changing model weights.

2.2 The spline formulation of deep networks

In this subsection, we review relevant concepts in splines, which provide a mathematical framework
for understanding the relationship between piecewise-affine functions and deep networks (DN).

A spline function is a continuous function s : RD → R defined piecewise by polynomials. An affine
spline function is a special case where each piece is defined by an affine mapping. Such a function
can be parameterized by three components: a matrix A ∈ RR×D representing the slopes of the affine
mappings, a vector b ∈ RR representing the offsets, and a partition Ω ≜ {ω1, . . . , ωR} of the input
space RD into R regions. For an input x ∈ RD, the affine spline function is defined as:

s[A,b,Ω](x) =

R∑
r=1

(
⟨Ar,·,x⟩+ br

)
1{x∈ωr}, (1)

where 1{x∈ωr} is an indicator function that equals 1 if x belongs to region ωr and 0 otherwise.

A max-affine spline function is a special case of an affine spline function that does not need explicit
knowledge of Ω. Instead, its output is computed as the maximum value over the affine mappings:

s[A,b](x) = max
r=1...R

(
⟨Ar,·,x⟩+ br

)
. (2)

The key result underpinning our study is that many DN layers—such as fully connected and convolu-
tional layers, and convex piecewise-affine activations (e.g., ReLU, max pooling, and maxout)—can
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(a) Baseline (b) LoRA (c) CT

Figure 2: Toy example illustrating how modulating model’s activation functions steers decision
boundaries curvature. The model is a 2-layer MLP with hidden width 7; (a) baseline trained for 4000
steps, then fine-tuned for another 4000 steps using (b) LoRA (r = 1, α = 1) and (c) Trainable CT.
CT achieves near-optimal approximation by smoothing the decision boundary of the pretrained
model, whereas LoRA only operates on the model parameters, without changing the model’s
underlying geometry.

be exactly represented as max-affine spline operators2, and that DNs composed of such layers can be
represented as affine spline operators [13] (further details in Appendix A).

Now that we have reviewed existing finetuning methods and their limitations, and introduced the
necessary spline-based foundations, we proceed to present our proposed method in Section 3.

3 Curvature Tuning (CT): a provable method for model steering

In this section, we introduce our proposed method, Curvature Tuning (CT). We begin by motivating
the benefits of modulating decision boundaries as a model steering technique. Then, we dive into
CT’s construction in Section 3.1 with implementation details in Section 3.2. Additional theoretical
intuition is provided in Section 3.3. Extensive experimental validation is presented in Section 4.

Motivating example. Consider a toy binary classification problem in R2, whereby the optimal
decision boundary separating two classes is given by the unit circle S1 = {x ∈ R2 : ∥x∥2 = 1},
parameterized by the curve γ : t 7→ (cos 2πt, sin 2πt), for t ∈ [0, 1]. Let σ(z) = exp(z)

1+exp(z)

be the sigmoid. By definition of decision boundary, an optimal network f : R2 → R should
predict both classes with equal probability σ(f(γ(t))) = 0.5,∀t ∈ [0, 1] ⇐⇒ f(γ(t)) = 0,∀t.
Focusing on the decision boundary, the approximation error e is given by the line integral e =∫
γ
|f(x)|dx =

∫ 1

0
|f(γ(t))|∥γ′(t)∥dt. For a ReLU network (Eq. (1)), computing the error over

the regions Ωγ = Ω ∩ S1 yields e = 2π
r′∑

k=0

(
(−1)zk(tk) [grk(t)]

sk
tk

+ (−1)zk(tk+1) [grk(t)]
tk+1

sk

)
for

r′ = |Ωγ |, where tk are the spline breakpoints pulled-back from R2 to [0, 1], rk denotes which
spline region the k-th segment [tk, tk+1] falls into, zk(t) := 1{Ark,·γ(t)+brk

<0}, sk ∈ [tk, tk+1] is
the value flip point of zk(t) and grk(t) = Ark,1

sin 2πt
2π − Ark,2

cos 2πt
2π + brkt (full derivations in

Appendix C.2). Assuming the network considered attains the optimal approximation error, then it is
clear that e → 0 ⇐⇒ tk+1 → tk, which can only happen when the number of neurons grows to
infinity. Importantly, reducing approximation error by adapting the model’s weights (either through
PEFT or training a larger model from scratch) will still result in an affine spline operator, for which
e > 0. This paper explores an orthogonal approach: by modulating the model’s activation functions,
one can efficiently control its curvature and, in turn, that of its decision boundaries, thereby steering
them toward optimality—without modifying the model’s weights. Fig. 2 illustrates this phenomenon:
methods such as LoRA implicitly tune the spline slopes and breakpoints, whereas modulating model
nonlinearities changes the model’s underlying geometry.

2Here, operator simply refers to a mapping between vector spaces (i.e., a function f : RD → RK ) obtained
by concatenating K functions like s.
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3.1 The β-Vector-Quantization (VQ) inference framework

This section builds upon the max-affine spline formulation from Eq. (2) to construct a model steering
method operating on the model’s activation functions. By inspecting Eq. (2), we observe that the
mapping remains affine within each (implicitly defined) region where the pointwise maximum does
not change. Specifically, for any input x where argmaxr=1...R

(
⟨Ar,·,x⟩+ br

)
remains constant,

all such inputs belong to the same region, as they share the same affine mapping. The nonlinearity of
the function arises when transitioning between these regions.

Smoothing the nonlinearity by smoothing the spline region assignment process. Instead of going
from one affine mapping to another in an abrupt fashion (whenever crossing that hyperplane), one
may consider a smoother transition. There are two common practices to achieve that goal.

We know that each unit of a layer is a max-affine spline. The inference process of each unit can thus
be decomposed into two steps:
1. VQ Inference Step (region selection): Determine the affine transformation that maximizes the
output, which can be viewed as a VQ process. The decision is encoded in a one-hot selection variable
t ∈ RR, where R is the number of input region partitions of the max-affine spline function, and the
r∗-th entry is set to 1, where:

r∗ = arg max
r∈{1,...,R}

(
⟨Ar,·,x⟩+ br

)
. (3)

2. Computation Step (affine transformation): Compute the output of the neuron based on the
selection variable t:

f(x) =

R∑
r=1

tr ·
(
⟨Ar,·,x⟩+ br

)
. (4)

As discussed, the affine transformation is selected in a hard manner, where only the transformation
that maximizes the output is chosen. Alternatively, a soft selection can be employed, in which the
selection variable t is no longer a one-hot vector but is inferred probabilistically. To formalize this,
we follow the probabilistic formulation from [28] and introduce the following regularized region
selection problem, where the new selection variable tβ is computed as below:

tβ = arg max
t∈∆R

[
β

R∑
r=1

tr · (⟨Ar,·,x⟩+ br) + (1− β)H(t)

]
, (5)

where H(t) denotes the Shannon entropy of the selection variable, and ∆R is the probability simplex
in RR. The optimal solution tβ has the closed-form:

tβr =
exp

(
β(⟨Ar,·,x⟩+br)

1−β

)
∑R

i=1 exp
(

β(⟨Ai,·,x⟩+bi)
1−β

) for r = 1, . . . , R. (6)

Using the computation step in Eq. (4) and a ReLU activation function, switching from β = 1 to
β = 0.5 is provably equivalent to replacing ReLU with the Sigmoid Linear Unit (SiLU). In the limit
as β → 0, the activation function becomes linear—thus making the entire input-output mapping of
the network linear as well. [28]

Smoothing the nonlinearity by smoothing the max. As previously mentioned, there is an alternative
way to smooth the max-affine spline mapping from Eq. (2). Instead of relying on a soft region
assignment, we can instead directly smooth the maximum function. It is already well known that
smoothing the maximum operator leads to the log-sum-exp operator (i.e. Softplus). Hence, the
mapping from Eq. (2) now becomes

(1− β) ln

[
R∑

r=1

exp

(
⟨Ar,·,x⟩+ br

1− β

)]
, (7)

where we parameterized the mapping so that its behavior is akin to Eq. (5), a value of β → 1 recovers
the original affine spline activation, e.g., ReLU.

The crucial observation we make is that both parameterizations tend to shift the mean of the output
of the unit either by a negative factor (for Eq. (5)) or a positive factor (for Eq. (7)). This means
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that in very deep models, varying β with either parameterization produces a shift in the decision
boundary or regression that cannot be recovered unless the parameters are trained once again, which
we are trying to avoid. As a result, as detailed in Section 3.2, our implementation combines the two
parameterizations in a weighted manner to mitigate this bias, as Fig. S1 illustrates.

3.2 Implementation of CT

We begin by presenting the core activation that gives CT its expressive power—referred to as CT Unit
(CTU). The activation is obtained by combining the two parameterizations discussed in Section 3.1,
in order to mitigate the mean shift introduced by each parameterization individually:

φβ,c(x) = c · σ
(

βx

1− β

)
· x+ (1− c) · ln

[
1 + exp

(
x

1− β

)]
· (1− β), (8)

where β ∈ [0, 1]3 modulates the curvature, c ∈ [0, 1] is the mixing coefficient, and σ(·) denotes the
sigmoid function. This is essentially a convex combination of reparameterized SiLU and Softplus:

SiLU(x) = σ(ηx) · x, η =
β

1− β
; Softplus(x) =

1

γ
· ln [1 + exp (γx)] , γ =

1

1− β
. (9)

Steering vs Trainable CT. We provide two implementations of CT differing in how CTU is applied.
The first, denoted Steering CT (S-CT), replaces all ReLUs in the network with CTUs using a fixed
c = 0.5 and a shared β ∈ [0, 1]. This version is highly parameter-efficient—introducing only a single
hyperparameter—and does not require backpropagation, making it suitable as a steering method.

The second, referred to as Trainable CT (T-CT), also replaces all ReLUs with CTUs but assigns each
output neuron its own trainable pair (β, c), optimized via backpropagation. This version serves as a
finetuning method: while it introduces additional parameters, the increase is modest compared to
methods like LoRA and it yields competitive performance, as shown in Section 4.2. Code for both
implementations is provided in Appendix D.

It is worth noting that while the above describes how CT is applied to ReLU-based networks, the
formulation of the CTU in Eq. (8) naturally extends to a broader family of models. In particular,
CTU can exactly recover activation functions such as SiLU (c = 1) and Softplus (c = 0), and closely
approximate GELU with c = 1 and β = 0.64.

3.3 Curvature Tuning operates as a projection

This section provides a characterization of CT, by casting it as a projection of a ReLU network to a
space of smooth functions. All proofs are deferred to Appendix C.1.
Theorem 3.1 (Informal). For a ReLU network f : RD → R with parameter W (collecting all
weights and biases), for fixed c ∈ [0, 1] and β ∈ [0, 1), replacing every instance of ReLU with a
CTU (Eq. (8) with hyperparameters β, c is equivalent to projecting f to a smooth function fβ,c with
bounded gradients and curvature, while keeping W fixed. Importantly, for 0 < β < 1, fβ,c enjoys
higher local expressivity than f for the same parameter W, due to non-vanishing local curvature.

To conclude, we observe how varying β modulates the curvature of the whole model function f and, in
turn, of the model’s decision boundaries. We begin by noting that for a deep network f : RD → RK ,
the decision boundary between any class i and j is given by {x ∈ RD : g(x) := fi(x)− fj(x) = 0},
for any i, j = 1, . . . ,K with i ̸= j. Particularly, g is itself a deep network, sharing the same
parameters as f up until the penultimate layer, after which the parameters are the vector WL

i −WL
j

and the bias bL
i − bL

j . Importantly, when varying β while keeping all model parameters fixed, the
Jacobian ∇xg(x) and the Hessian ∇2

xg(x) are respectively given by the gradients and Hessian of
zL−1(x) – corresponding to the post-activation output of the L−1-th layer—weighted by WL

i −WL
j .

Hence, modulating the nonlinearity of activation functions via β directly controls the curvature of
both model function and its decision boundaries.4

3In practice, for numerical stability we use η = β
1−β+ε

and γ = 1
1−β+ε

, where ε = 10−6 allows the method
to remain well-defined at β = 1.

4In the following, unless specified, we will thus refer interchangeably to the curvature of a DN mapping and
that of its decision boundaries whenever modulating nonlinearities via CT.
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Particularly, for c = 1 (Eq. (8)), as β → 0, the activation becomes linear. Since modern DNs (e.g.
MLP, CNN, RNN) are composed of activation functions interleaved with affine layers, it follows
directly that the entire input-output mapping becomes affine when β → 0. In this setting, the curvature
of the mapping—defined as the norm of its Hessian—becomes zero. As a result, transitioning from
the original DN mapping (β = 1) to the linear setting effectively modulates the network decision
boundary curvature, reducing it continuously to zero in the limit. For c < 1, as β → 0, the model
retains non-vanishing local curvature, while the mapping becomes smooth.

4 Enhancing model generalization and robustness with CT

In this section, we empirically validate the effectiveness of CT across multiple settings. We first
demonstrate that S-CT improves generalization (Section 4.1), while T-CT achieves improvement
comparable to LoRA with substantially fewer parameters (Section 4.2). Then we show that CT can
improve the robustness of models through its implicit bias (Section 4.3). Finally, we demonstrate
CT’s effectiveness on transformers despite only partial guarantees (Section 4.4). GPU and seed
details are provided in Appendix B.

4.1 Improving generalization on downstream datasets with S-CT

In this subsection, we evaluate the effectiveness of S-CT in improving model generalization on a
variety of downstream datasets. Specifically, we transfer ImageNet-pretrained ResNet-18, ResNet-50,
ResNet-152 and VGG-11 models to 12 downstream tasks, including Arabic Characters [29], Arabic
Digits [30], Beans [31], CUB-200-2011 [32], DTD [33], FashionMNIST [34], FGVC-Aircraft [35],
Flowers102 [36], Food101 [37], and three subsets from MedMNIST—PathMNIST, OCTMNIST, and
DermaMNIST [38]. Each dataset is split into training/validation/test sets (details in Appendix B.1).

To apply S-CT, we replace all ReLUs in the backbone with CTUs, freeze the model, and train a linear
classifier on the penultimate layer. The optimal β is selected via grid search over β ∈ [0.7, 1] (step
size 0.01) using validation accuracy, and the corresponding test accuracy is reported. For the baseline,
we train a linear classifier on the frozen original model and report the test accuracy of the checkpoint
that performs best on the validation set. All linear classifiers use the same training setup detailed in
Appendix B.1.

Table 1: Mean accuracy (%) over three runs of ImageNet-pretrained ResNet-18/50 when transferred
to 12 downstream datasets. The second row under each method indicates the number of trainable
parameters (excluding the linear classifier). S-CT outperforms linear probing on the frozen
backbone, and T-CT surpasses LoRA (rank 1). Full results (± std) in Table S1.

ResNet-18 ResNet-50

Dataset Frozen S-CT LoRA T-CT Frozen S-CT LoRA T-CT
(0) (1) (35923) (3968) (0) (1) (79443) (45440)

Arabic Characters 81.91 87.65 93.37 93.76 80.65 83.66 94.21 95.67
Arabic Digits 97.93 98.77 99.08 99.03 98.33 98.37 99.08 99.16
Beans 87.76 90.36 93.23 94.01 89.58 91.93 94.79 95.57
CUB-200 62.84 63.18 54.83 64.30 65.23 64.62 66.17 71.03
DTD 62.80 62.66 54.36 63.62 67.34 66.91 64.70 65.07
FashionMNIST 88.63 88.70 91.65 91.07 90.05 90.34 92.19 92.78
FGVC-Aircraft 36.80 38.68 29.19 46.44 38.03 41.16 41.99 55.70
Flowers102 80.86 81.97 67.53 86.55 84.00 83.84 82.58 87.62
Food101 61.41 62.27 64.40 66.04 68.06 68.02 71.42 73.60
DermaMNIST 74.83 75.05 74.21 77.66 75.94 75.89 75.73 78.02
OCTMNIST 65.03 67.27 74.27 69.53 67.53 68.00 75.90 74.13
PathMNIST 86.77 87.51 87.62 87.17 90.08 90.26 85.43 87.33

Average 73.96 75.34 73.64 78.26 76.24 76.92 78.68 81.31

Tables 1 and S1 show mean accuracy over three runs for linear probing with and without S-CT on 12
downstream datasets using ResNet-18/50/152 and VGG-11 backbones. S-CT consistently improves
generalization, with average relative gains of 1.97%, 1.16%, 0.02%, and 0.71% respectively. We
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also report the average optimal β across datasets: 0.84 for ResNet-18, 0.94 for ResNet-50, 0.96 for
ResNet-152 and 0.90 for VGG-11 (full results in Table S2). These values are consistently close to 1,
suggesting the search range can be narrowed for efficiency. Example accuracy curves in Fig. S2 show
that accuracy varies smoothly with β and typically peaks in the middle of the search range.

Additionally, we conduct ablation experiments on the choice of c = 0.5 for S-CT under the same
settings. As shown in Table S3, setting c = 0.5 yields better performance than c = 1 (SiLU) or c = 0
(Softplus) by 1.99% and 0.56% respectively on ResNet-18, and by 0.94% and 0.57% on ResNet-50,
while performing slightly worse by 0.05% and 0.73% on ResNet-152.

4.2 T-CT is comparable to LoRA with fewer parameters

In this subsection, we show that T-CT further improves generalization, achieving performance
comparable to LoRA with fewer parameters. We conduct experiments using the same setup as
in Section 4.1, evaluating both T-CT and LoRA. For both methods, we replace the original linear
classifier in each model with an appropriate one, and apply the respective method to the pretrained
backbone. In T-CT, we initialize all β parameters to 0.8 and all c parameters to 0.5. For LoRA, we
apply it to all convolutional and linear layers in the backbone (implementation details in Appendix E).
And we set the rank r = 1 and scale α = 1, so that it has a comparable number of parameters to
T-CT. Refer to Appendix B.2 for training configurations applied to the two methods. Here we report
the test accuracy of the best checkpoint on the validation set.

The results, summarized in Tables 1 and S1, show that T-CT achieves the best performance across all
methods, with average relative improvements on ResNet-18/50/152 and VGG-11 of 6.75%, 8.59%,
8.34% and 5.53% over the baseline; 4.62%, 7.13%, 8.35% and 4.73% over S-CT; and 10.20%,
4.64%, 1.70% and 4.05% over LoRA. Importantly, T-CT achieves better performance than LoRA
with fewer parameters. As reported in Tables 1 and S1, the number of trainable parameters (excluding
the classifier) used by T-CT amounts to only 11.05%, 57.20%, 59.09% and 36.39% of that used
by LoRA on the four models respectively—even with LoRA operating at its lowest-rank setting
(r = 1). This highlights the parameter efficiency of our approach. We further compare T-CT and
LoRA with varying ranks (r ∈ {1, 2, 4}) and scaling factors (α ∈ {r, 2r, 4r}) in Table S4. For each
dataset and LoRA rank, we report the best test accuracy achieved among the candidate scaling factors.
As shown, T-CT can still outperform LoRA under this more challenging setting, achieving relative
improvements of 9.65%, 6.56%, and 3.34% over the three ranks on ResNet-18; 4.18%, 2.27%, and
0.19% on ResNet-50; and 1.22%, –0.91%, and –1.84% on ResNet-152, further demonstrating the
effectiveness and parameter efficiency of T-CT.

To better understand how T-CT behaves during training, we analyze the distributions of learned β
and c values (full statistics provided in Tables S5 and S6). We observe a high degree of within-model
variation, with standard deviations ranging from 0.31 to 0.38, while the means remain remarkably
stable across architectures: 0.69 to 0.79 for β and 0.57 to 0.61 for c. These mean values are close to
those used in S-CT, though the learned β values tend to be smaller than the optimal shared β found in
S-CT (0.84 to 0.96), while the learned c values are larger than the fixed c = 0.5. We further visualize
the distributions in Figs. S3 and S4. In most datasets, as shown in Fig. S3 (OCTMNIST), both β
and c exhibit a sharp U-shaped distribution—concentrating near 0 and 1 with a flat middle. This
suggests that T-CT leverages its parameter flexibility to assign values at the extremes, producing an
effective average close to the manually chosen settings in S-CT, rather than concentrating around the
mean values themselves.5 In a few datasets, we observe deviations from this trend, as exemplified
in Fig. S4 (DTD). Nonetheless, a consistent pattern is that for any given dataset, the distributions
remain visually similar across models.

4.3 Improving model robustness through CT’s implicit bias

In this subsection, we demonstrate that CT exhibits an implicit bias toward enhancing model robust-
ness, using benchmarks from RobustBench [14]. We evaluate the robustness of ResNet-18/50/152 on
CIFAR-10/100 and ImageNet using the official ℓ2 and ℓ∞ adversarial benchmarks from RobustBench
[14] and the common corruption benchmark [39]. See Appendix B.3 for more details.

5This behavior may in part be influenced by the sigmoid-based parameterization used in our implementation
of T-CT to constrain β and c during training.

8



More specifically, we first show that S-CT can improve robustness without any robustness-oriented
objective, by applying it to pretrained models, performing a grid search over β ∈ [0.7, 1] with a step
size of 0.01, and reporting the best robust accuracy achieved. We then show that T-CT, when used
for finetuning (from ImageNet to CIFAR-10/100 following the same training configurations as in
Sections 4.1 and 4.2), also enhances robustness despite the absence of a robustness objective—the
finetuned models achieve stronger robustness than those trained with linear probing or LoRA (r = 1).

Table 2: Mean robust accuracy (%) over three runs of ImageNet-pretrained ResNet-18/50/152
under ℓ2/ℓ∞ attacks and corruptions on CIFAR-10/100 and ImageNet. S-CT yields substantial
improvements under ℓ∞ attacks, with the selected β values close to 1. Full results (± std) in
Table S7.

ℓ2 ℓ∞ Corruption

Model Dataset Frozen S-CT β Frozen S-CT β Frozen S-CT β

ResNet18
CIFAR10 53.67 53.67 1.00 11.17 14.93 0.90 77.73 77.73 1.00

CIFAR100 24.30 25.50 0.92 4.47 6.90 0.92 51.81 51.95 0.94
ImageNet 23.37 23.37 1.00 0.00 7.00 0.89 33.11 33.32 0.92

Average 33.78 34.18 0.97 5.21 9.61 0.90 54.22 54.33 0.95

ResNet50
CIFAR10 55.10 56.53 0.97 10.10 12.08 0.90 77.26 77.26 1.00

CIFAR100 23.83 25.80 0.96 4.43 7.90 0.93 53.91 53.93 0.98
ImageNet 31.90 31.90 1.00 0.30 9.30 0.93 39.64 39.64 1.00

Average 36.94 38.08 0.98 4.94 9.76 0.94 56.94 56.94 0.99

ResNet152
CIFAR10 56.27 56.27 1.00 11.47 15.00 0.99 78.82 78.83 0.99

CIFAR100 27.90 28.23 0.98 5.40 7.70 0.99 56.12 56.12 1.00
ImageNet 42.50 42.50 1.00 0.30 13.53 0.97 45.47 45.47 0.99

Average 42.22 42.33 0.99 5.72 12.08 0.98 60.14 60.14 0.99

Table 3: Mean robust accuracy (%) over three runs of ImageNet-pretrained ResNet-18/50/152
transferred to CIFAR-10/100 under ℓ2, ℓ∞ attacks, and corruptions. T-CT improves ℓ∞ robustness
significantly compared to linear probing and LoRA. Full results (± std) in Table S8.

ℓ2 ℓ∞ Corruption

Model Dataset Frozen LoRA T-CT Frozen LoRA T-CT Frozen LoRA T-CT

ResNet18
CIFAR10 8.47 5.93 8.93 0.30 0.70 1.57 21.34 13.59 16.83

CIFAR100 1.57 0.77 1.10 0.03 0.07 0.17 5.10 2.96 4.62

Average 5.02 3.35 5.01 0.16 0.38 0.87 13.22 8.28 10.72

ResNet50
CIFAR10 6.23 4.57 6.83 0.20 0.33 2.43 16.23 11.69 12.68

CIFAR100 0.70 0.37 0.47 0.00 0.03 0.07 3.47 2.04 1.61

Average 3.47 2.47 3.65 0.10 0.18 1.25 9.85 6.86 7.14

ResNet152
CIFAR10 8.03 4.63 8.00 0.43 0.20 5.10 13.82 11.33 9.83

CIFAR100 0.90 0.47 0.50 0.17 0.00 0.00 2.07 2.13 1.72

Average 4.46 2.55 4.25 0.30 0.10 2.55 7.94 6.73 5.78

For S-CT, as summarized in Table 2, it is particularly effective against ℓ∞ attacks, achieving sub-
stantial relative improvements of 44.01%, 1032.64%, and 1494.46% for ResNet-18, ResNet-50, and
ResNet-152.6 Improvements under ℓ2 attacks and common corruptions are comparatively moderate.
The corresponding optimal β values, also shown in Table 2, are consistently close to 1, suggesting
that modest curvature modulation suffices to improve robustness—further highlighting the practical
efficiency of S-CT. For T-CT, as shown in Table 3, it likewise enhances ℓ∞ robustness significantly,
achieving average relative improvements over linear probing of 445.00%, 1115.00%, and 493.02%,
and over LoRA of 133.57%, 384.85%, and 2450.00%. These results collectively demonstrate CT’s
implicit bias toward robustness enhancement, further validating its effectiveness beyond standard
generalization improvements.

6We exclude from relative-improvement computation any cases where the baseline robust accuracy is 0.
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4.4 CT shows promise on transformers

In this subsection, we investigate the effectiveness of T-CT in improving the generalization of
transformer architectures. Unlike ResNets, transformers include attention layers that fall outside the
max-affine spline framework and typically employ non-ReLU activation functions (e.g., GELU),
which weakens our theoretical guarantees.

Concretely, we apply T-CT to ImageNet-pretrained Swin-T and Swin-S models, both of which use
GELU activations in their feed-forward blocks. As before, we transfer these models to the same 12
downstream datasets and compare T-CT against linear probing on the frozen backbone and LoRA
(r = 1, α = 1). Additional training details are provided in Appendix B.4.

Table 4: Mean accuracy (%) over three runs of ImageNet-pretrained Swin-T/S when transferred
to 12 downstream datasets. The second row under each method indicates the number of trainable
parameters (excluding the linear classifier). T-CT improves over linear probing but underperforms
LoRA. Full results (± std) in Table S9.

Swin-T Swin-S

Dataset Frozen LoRA T-CT Frozen LoRA T-CT
(0) (74832) (532) (0) (148560) (868)

Arabic Characters 83.48 93.24 85.02 83.83 94.38 86.65
Arabic Digits 98.14 99.19 98.47 98.28 99.19 98.39
Beans 88.28 94.01 89.06 90.89 95.05 91.41
CUB-200 73.42 78.73 74.33 72.66 79.45 73.40
DTD 70.66 70.99 71.45 69.77 71.56 72.43
FashionMNIST 89.89 93.15 90.23 89.75 93.52 89.85
FGVC-Aircraft 48.06 48.29 47.58 44.36 51.94 45.72
Flowers102 86.66 90.22 85.35 83.24 87.67 85.08
Food101 77.05 83.69 78.90 77.59 85.17 79.45
DermaMNIST 75.83 76.71 75.86 76.64 78.15 77.14
OCTMNIST 69.97 76.30 67.97 66.90 76.97 69.07
PathMNIST 89.14 92.26 91.73 89.74 92.79 92.13

Average 79.22 83.06 79.66 78.64 83.82 80.06

The results, presented in Table 4, show that T-CT yields average relative improvements over linear
probing of 0.48% and 1.94% on Swin-T and Swin-S, respectively. However, it underperforms
LoRA in this setting, trailing by 4.01% and 4.76% on the two models. Nonetheless, as shown in
Table 4, T-CT requires only 0.71% and 0.58% as many trainable parameters as LoRA on Swin-T and
Swin-S—a much lower ratio than in the ResNet experiments. Thus, despite its lower performance,
the results still highlight its potential for transformer architectures. It is also worth noting that in the
current implementation, CT is applied only to the feed-forward blocks, which constitute a relatively
small portion of the transformer, while the attention layers make up the majority. Extending CT
to modulate the curvature within attention mechanisms—such as by tuning the temperature in the
softmax of the attention block—is an interesting future work.

5 Conclusion

In this paper, we propose Curvature Tuning (CT), an interpretable and principled model steering
method that provably modulates a network’s decision boundary through a single parameter injected
into its activation functions—without altering the model weights. Theoretically, we show that CT
adjusts a model’s nonlinearities and effectively projects it onto a space of smoother functions, offering
a complementary perspective to existing PEFT methods. Practically, we introduce two variants: a
steering form with fixed parameters (S-CT) and a finetuning form with learnable ones (T-CT). Both
improve model generalization and exhibit an implicit bias toward enhancing model robustness.

While promising, CT also presents open questions for future work. In particular, exploring how
to integrate it more effectively with popular components such as attention mechanisms remains an
exciting direction.
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Broader impacts

This paper presents work whose goal is to advance the field of deep learning. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The last paragraph of the conclusion section discusses the limitations of the
work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The main text clearly states the assumptions and the complete proof is in
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describe all experiment details needed to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper releases the code in the supplementary.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper clearly specifies all training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper plots mean and standard deviations in the figures clearly.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The paper currently only reports the type of GPUs used in the experiments and
will add further details after acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is consistent with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no clear societal impact of the work performed as the work is about
general deep learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites each dataset properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The remainder of the paper presents complementary background, experimental validation, and
theoretical derivations that support our main results. The appendix is organized as follows.

1. Appendix A briefly connects several deep network architectures to affine spline operators.
2. Appendix B details our experimental setup and results.
3. Appendix C provides theoretical intuition behind CT.
4. Appendix D provides pseudocode for S-CT and T-CT.
5. Appendix E provides pseudocode for LoRA, describing how the method was applied

throughout our experiments.

A Spline theory

The spline theory of deep learning establishes that a large class of deep network (DN) layers can be
modeled as Max Affine Spline Operators (MASO). More precisely:
Theorem A.1. (Propositions 1-4 in [13]) Any DN layer comprising a linear operator (e.g., fully
connected or convolutional layer) followed by a convex and piecewise affine nonlinear operator (e.g.,
ReLU, leaky-ReLU, absolute value activation, max/average/channel pooling, maxout; with or without
skip connections) is a MASO.

Consequently, a deep network (e.g., MLP, CNN, RNN, ResNet) composed of such linear operators
and convex, piecewise affine nonlinear operators is a composition of MASOs. However, it is important
to note that the network as a whole is not a MASO but an Affine Spline Operator (ASO). In other
words, conditioned on the input, such deep networks are equivalent to an affine operator, but globally,
the induced mapping is not convex.
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Figure S1: Visualization of nonlinearity smoothing through region assignment smoothing, max
smoothing, and their combination. For a ReLU network, the combined approach mitigates the
opposing biases introduced by the individual methods.

Building on the MASO interpretation, curvature tuning proposes to smoothen nonlinearities (e.g.
ReLU) of a DN as a novel form of model steering that avoids retraining or finetuning the learned
layers. By recalling Section 3.1, when smoothing is performed by applying Eq. (5) or Eq. (7) to a
DN layer (interpreted as a MASO), the layer’s output is statistically biased by either a negative or a
positive factor, respectively. In order to counter the bias without retraining, a convex combination of
the two equations is used, as shown in Fig. S1 for different values of β.

B Supplementary experimental details

This section provides additional experimental setup details and results, organized to correspond with
the subsections in Section 4.

All experiments were conducted using 8 RTX 3090 GPUs and one L40 GPU, with runs performed
under random seeds 42, 43, and 44.
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B.1 Improving generalization on downstream datasets with S-CT (Section 4.1)

For each of the 12 downstream datasets, we split the data into training, validation, and test sets. If
a dataset does not include a validation set, we hold out 20% of the training data using stratified
sampling. Otherwise, we use the original validation split provided.

All linear classifiers are trained for 20 epochs using the Adam optimizer with a learning rate of 10−3.
We apply linear warm-up during the first epoch and decay the learning rate by a factor of 10 after
epoch 10.

Additional results are provided as follows:

• Table S1: mean accuracy (± std) over three runs of ImageNet-pretrained ResNet-18/50/152
and VGG-11 when transferred to 12 downstream datasets, comparing linear probing with
and without S-CT.

• Table S2: mean optimal β values (± std) of S-CT across three runs.

• Table S3: ablation experiments on the choice of c = 0.5 for S-CT.

• Fig. S2: example validation accuracy vs. β curves over three runs for S-CT.
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Figure S2: Validation accuracy (%) of S-CT during the β search, averaged over three runs. The
accuracy curve varies smoothly and typically peaks in the middle of the β range.

B.2 T-CT is comparable to LoRA with fewer parameters (Section 4.2)

Both T-CT and LoRA are trained for 20 epochs using the Adam optimizer. To ensure proper
convergence, we use different learning rates: for T-CT, a learning rate of 10−1 is applied to the (β, c)
parameters and 10−3 to the linear classifier; for LoRA, a learning rate of 10−4 is used for both the
adapter parameters and the classifier. As before, we apply linear warm-up during the first epoch and
decay the learning rate by a factor of 10 after epoch 10.

Additional results are provided as follows:

• Table S1: mean accuracy (± std) over three runs of ImageNet-pretrained ResNet-18/50/152
and VGG-11 when transferred to 12 downstream datasets, comparing LoRA and T-CT.

• Table S4: additional experiments on LoRA with rank r ∈ {1, 2, 4} and scaling factors
α ∈ {r, 2r, 4r}.

• Tables S5 and S6: mean (± std) of the learned β and c values of T-CT across three runs.

• Figs. S3 and S4: example distributions of β and c values in T-CT, illustrating commonly
and uncommonly observed patterns.

B.3 Improving model robustness through CT’s implicit bias (Section 4.3)

Due to computational constraints, we evaluate each benchmark using 1,000 samples. For adversarial
evaluations, we follow the official RobustBench settings: ε2 = 0.5 for ℓ2 attacks and ε∞ = 8

255 for
ℓ∞ attacks.

Additional results are provided as follows:
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Figure S3: Common distributions of β (top) and c (bottom) in T-CT across ResNet-18/50/152,
averaged over three runs (OCTMNIST shown as a representative dataset). Both β and c consistently
exhibit sharp U-shaped distributions that appear similar across all models.
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Figure S4: Uncommon distributions of β (top) and c (bottom) in T-CT across ResNet-18/50/152,
averaged over three runs (DTD shown as an example dataset). While the overall shape is dataset-
specific, the distributions of both β and c remain consistent across models.
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• Table S7: mean robust accuracy (± std) over three runs of ImageNet-pretrained ResNet-
18/50/152 under ℓ∞/ℓ2 attacks and corruptions on CIFAR-10/100 and ImageNet.

• Table S8: mean robust accuracy (± std) over three runs of ImageNet-pretrained ResNet-
18/50/152 transferred to CIFAR-10/100 under ℓ∞, ℓ2 attacks, and corruptions.

B.4 CT shows promise on transformers (Section 4.4)

In this experiment, LoRA is applied to all QKV projection layers. For all three methods—linear
probing, LoRA, and T-CT—we perform a grid search over the learning rate and select the model
achieving the best validation accuracy for testing. The learning rate is selected from 10−2, 10−3, 10−4

for linear probing, from 10−3, 10−4, 10−5 for LoRA, and for T-CT, we fix the learning rate of the
linear classifier to 10−3 while searching over 10−1, 10−2, 10−3, 10−4 for the (β, c) parameters. All
other training configurations follow those described in Appendices B.1 and B.2.

Additional results are provided as follows:

• Table S9: mean accuracy (± std) over three runs of ImageNet-pretrained Swin-T/S when
transferred to 12 downstream datasets.
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Table S1: Mean accuracy (%) ± standard deviation over three runs of ImageNet-pretrained ResNet-
18/50/152 and VGG-11 when transferred to 12 downstream datasets. The second row under each
method indicates the number of trainable parameters (excluding the linear classifier). S-CT outper-
forms linear probing on the frozen backbone, and T-CT surpasses LoRA (rank 1).

(a) ResNet-18

Dataset Frozen S-CT LoRA T-CT
(0) (1) (35923) (3968)

Arabic Characters 81.91 ± 0.15 87.65 ± 0.18 93.37 ± 0.31 93.76 ± 0.22
Arabic Digits 97.93 ± 0.08 98.77 ± 0.01 99.08 ± 0.05 99.03 ± 0.01
Beans 87.76 ± 2.05 90.36 ± 1.19 93.23 ± 0.37 94.01 ± 0.37
CUB-200 62.84 ± 0.29 63.18 ± 0.28 54.83 ± 0.37 64.30 ± 0.16
DTD 62.80 ± 0.42 62.66 ± 0.24 54.36 ± 0.31 63.62 ± 0.67
FashionMNIST 88.63 ± 0.13 88.70 ± 0.10 91.65 ± 0.12 91.07 ± 0.16
FGVC-Aircraft 36.80 ± 0.37 38.68 ± 0.05 29.19 ± 1.00 46.44 ± 0.49
Flowers102 80.86 ± 0.29 81.97 ± 0.26 67.53 ± 0.76 86.55 ± 0.21
Food101 61.41 ± 0.07 62.27 ± 0.25 64.40 ± 0.08 66.04 ± 0.17
DermaMNIST 74.83 ± 0.23 75.05 ± 0.60 74.21 ± 0.50 77.66 ± 0.29
OCTMNIST 65.03 ± 0.69 67.27 ± 0.23 74.27 ± 0.49 69.53 ± 1.11
PathMNIST 86.77 ± 0.04 87.51 ± 0.05 87.62 ± 0.12 87.17 ± 0.66

Average 73.96 75.34 73.64 78.26

(b) ResNet-50

Dataset Frozen S-CT LoRA T-CT
(0) (1) (79443) (45440)

Arabic Characters 80.65 ± 0.07 83.66 ± 0.41 94.21 ± 0.28 95.67 ± 0.03
Arabic Digits 98.33 ± 0.02 98.37 ± 0.06 99.08 ± 0.00 99.16 ± 0.03
Beans 89.58 ± 0.74 91.93 ± 0.90 94.79 ± 0.74 95.57 ± 0.74
CUB-200 65.23 ± 0.43 64.62 ± 0.32 66.17 ± 0.51 71.03 ± 0.64
DTD 67.34 ± 0.16 66.91 ± 0.14 64.70 ± 0.42 65.07 ± 0.37
FashionMNIST 90.05 ± 0.07 90.34 ± 0.23 92.19 ± 0.17 92.78 ± 0.06
FGVC-Aircraft 38.03 ± 0.32 41.16 ± 0.32 41.99 ± 0.03 55.70 ± 0.76
Flowers102 84.00 ± 0.06 83.84 ± 0.13 82.58 ± 0.47 87.62 ± 0.28
Food101 68.06 ± 0.11 68.02 ± 0.11 71.42 ± 0.14 73.60 ± 0.13
DermaMNIST 75.94 ± 0.12 75.89 ± 0.03 75.73 ± 0.72 78.02 ± 0.50
OCTMNIST 67.53 ± 0.21 68.00 ± 0.17 75.90 ± 0.33 74.13 ± 1.65
PathMNIST 90.08 ± 0.22 90.26 ± 0.20 85.43 ± 1.99 87.33 ± 0.74

Average 76.24 76.92 78.68 81.31

(c) ResNet-152

Dataset Frozen S-CT LoRA T-CT
(0) (1) (243283) (143744)

Arabic Characters 79.86 ± 0.12 79.21 ± 0.55 95.96 ± 0.21 96.47 ± 0.39
Arabic Digits 98.07 ± 0.05 98.15 ± 0.10 99.15 ± 0.04 99.10 ± 0.05
Beans 87.50 ± 1.10 87.50 ± 0.78 93.75 ± 1.91 96.35 ± 1.33
CUB-200 67.68 ± 0.54 68.15 ± 0.62 70.59 ± 0.72 73.04 ± 0.19
DTD 66.95 ± 0.03 66.97 ± 0.05 66.63 ± 0.07 63.39 ± 0.34
FashionMNIST 90.37 ± 0.11 90.44 ± 0.16 92.77 ± 0.04 93.39 ± 0.12
FGVC-Aircraft 38.74 ± 0.16 38.51 ± 0.14 48.84 ± 0.54 58.16 ± 0.31
Flowers102 82.98 ± 0.16 83.28 ± 0.25 84.40 ± 0.74 83.43 ± 1.01
Food101 71.11 ± 0.09 71.13 ± 0.08 74.66 ± 0.08 76.08 ± 0.15
DermaMNIST 75.68 ± 0.47 76.23 ± 0.14 76.91 ± 0.79 77.94 ± 0.60
OCTMNIST 69.27 ± 0.98 69.10 ± 1.47 76.43 ± 0.54 75.17 ± 2.10
PathMNIST 89.91 ± 0.12 89.82 ± 0.09 84.94 ± 1.27 83.60 ± 0.42

Average 76.51 76.54 80.42 81.34
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(d) VGG-11

Dataset Frozen S-CT LoRA T-CT
(0) (1) (60315) (21888)

Arabic Characters 81.19 ± 0.33 83.04 ± 0.35 88.88 ± 0.37 93.04 ± 0.50
Arabic Digits 97.97 ± 0.03 98.19 ± 0.01 98.76 ± 0.05 99.01 ± 0.04
Beans 91.67 ± 0.97 90.89 ± 0.37 93.75 ± 1.69 92.45 ± 1.95
CUB-200 61.04 ± 0.29 60.97 ± 0.68 59.22 ± 0.14 63.13 ± 0.32
DTD 65.07 ± 0.45 65.05 ± 0.16 63.46 ± 0.76 65.25 ± 0.56
FashionMNIST 89.44 ± 0.11 89.35 ± 0.19 90.52 ± 0.15 90.49 ± 0.16
FGVC-Aircraft 39.48 ± 0.09 41.34 ± 0.40 39.29 ± 1.02 47.79 ± 0.23
Flowers102 80.32 ± 0.21 80.44 ± 0.30 78.38 ± 0.59 84.31 ± 0.20
Food101 61.03 ± 0.22 60.94 ± 0.03 64.22 ± 0.43 66.43 ± 0.05
DermaMNIST 75.94 ± 0.29 76.24 ± 0.06 74.06 ± 0.22 77.97 ± 0.38
OCTMNIST 67.33 ± 0.92 68.13 ± 0.12 72.13 ± 1.18 70.77 ± 0.45
PathMNIST 86.85 ± 0.14 87.55 ± 0.03 89.23 ± 0.43 88.90 ± 0.53

Average 74.78 75.18 75.99 78.30

Table S2: Mean β ± standard deviation of S-CT over three runs of ImageNet-pretrained ResNet-
18/50/152 and VGG-11 when transferred to 12 downstream datasets. The average optimal β values
are consistently high, ranging from 0.84 to 0.96 across models.

Dataset ResNet-18 ResNet-50 ResNet-152 VGG-11

Arabic Characters 0.77 ± 0.01 0.89 ± 0.01 0.96 ± 0.00 0.88 ± 0.02
Arabic Digits 0.75 ± 0.01 0.93 ± 0.04 0.95 ± 0.01 0.85 ± 0.01
Beans 0.76 ± 0.02 0.94 ± 0.01 0.98 ± 0.02 0.76 ± 0.00
CUB-200 0.91 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.86 ± 0.02
DTD 0.88 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 0.93 ± 0.01
FashionMNIST 0.92 ± 0.01 0.95 ± 0.00 0.97 ± 0.02 0.98 ± 0.02
FGVC-Aircraft 0.82 ± 0.02 0.90 ± 0.00 0.98 ± 0.03 0.82 ± 0.04
Flowers102 0.84 ± 0.02 0.96 ± 0.01 0.95 ± 0.00 0.92 ± 0.02
Food101 0.87 ± 0.01 0.98 ± 0.00 0.99 ± 0.01 0.97 ± 0.02
DermaMNIST 0.94 ± 0.08 0.95 ± 0.00 0.95 ± 0.00 0.93 ± 0.02
OCTMNIST 0.80 ± 0.00 0.94 ± 0.01 0.99 ± 0.01 0.96 ± 0.00
PathMNIST 0.83 ± 0.00 0.98 ± 0.01 0.92 ± 0.00 0.91 ± 0.00

Average 0.84 0.94 0.96 0.90
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Table S3: Mean accuracy (%) ± standard deviation over three runs of ImageNet-pretrained ResNet-
18/50/152 and VGG-11 when transferred to 12 downstream datasets. The second row under each
method indicates the number of trainable parameters (excluding the linear classifier). By setting
c = 0.5, S-CT performs better than SiLU (c = 1) and Softplus (c = 0) on ResNet-18 and
ResNet-50, but slightly worse on ResNet-152.

(a) ResNet-18

Dataset Frozen S-CT SiLU Softplus
(0) (1) (1) (1)

Arabic Characters 81.91 ± 0.15 87.65 ± 0.18 81.91 ± 0.19 84.89 ± 0.12
Arabic Digits 97.93 ± 0.08 98.77 ± 0.01 97.95 ± 0.11 98.64 ± 0.06
Beans 87.76 ± 2.05 90.36 ± 1.19 88.80 ± 1.19 88.02 ± 1.19
CUB-200 62.84 ± 0.29 63.18 ± 0.28 62.90 ± 0.33 63.08 ± 0.11
DTD 62.80 ± 0.42 62.66 ± 0.24 62.89 ± 0.33 63.24 ± 0.23
FashionMNIST 88.63 ± 0.13 88.70 ± 0.10 88.63 ± 0.16 88.93 ± 0.09
FGVC-Aircraft 36.80 ± 0.37 38.68 ± 0.05 36.29 ± 0.24 37.44 ± 0.68
Flowers102 80.86 ± 0.29 81.97 ± 0.26 80.86 ± 0.35 83.14 ± 0.03
Food101 61.41 ± 0.07 62.27 ± 0.25 61.37 ± 0.05 62.76 ± 0.06
DermaMNIST 74.83 ± 0.23 75.05 ± 0.60 74.63 ± 0.19 75.13 ± 0.22
OCTMNIST 65.03 ± 0.69 67.27 ± 0.23 65.10 ± 0.82 66.57 ± 0.75
PathMNIST 86.77 ± 0.04 87.51 ± 0.05 86.77 ± 0.05 87.84 ± 0.25
Average 73.96 75.34 74.01 74.97

(b) ResNet-50

Dataset Frozen S-CT SiLU Softplus
(0) (1) (1) (1)

Arabic Characters 80.65 ± 0.07 83.66 ± 0.41 86.46 ± 0.03 81.10 ± 0.21
Arabic Digits 98.33 ± 0.02 98.37 ± 0.06 98.56 ± 0.11 98.41 ± 0.15
Beans 89.58 ± 0.74 91.93 ± 0.90 86.46 ± 1.19 91.15 ± 0.90
CUB-200 65.23 ± 0.43 64.62 ± 0.32 65.12 ± 0.53 65.61 ± 0.50
DTD 67.34 ± 0.16 66.91 ± 0.14 67.27 ± 0.08 67.06 ± 0.62
FashionMNIST 90.05 ± 0.07 90.34 ± 0.23 89.96 ± 0.01 90.35 ± 0.11
FGVC-Aircraft 38.03 ± 0.32 41.16 ± 0.32 38.03 ± 0.39 40.09 ± 0.02
Flowers102 84.00 ± 0.06 83.84 ± 0.13 84.09 ± 0.11 83.94 ± 0.14
Food101 68.06 ± 0.11 68.02 ± 0.11 68.14 ± 0.06 67.90 ± 0.15
DermaMNIST 75.94 ± 0.12 75.89 ± 0.03 75.79 ± 0.12 75.79 ± 0.32
OCTMNIST 67.53 ± 0.21 68.00 ± 0.17 67.33 ± 0.15 67.00 ± 0.20
PathMNIST 90.08 ± 0.22 90.26 ± 0.20 89.95 ± 0.13 89.99 ± 0.14

Average 76.24 76.92 76.43 76.53

(c) ResNet-152

Dataset Frozen S-CT SiLU Softplus
(0) (1) (1) (1)

Arabic Characters 79.86 ± 0.12 79.21 ± 0.55 80.24 ± 0.44 79.83 ± 0.27
Arabic Digits 98.07 ± 0.05 98.15 ± 0.10 98.20 ± 0.18 97.98 ± 0.01
Beans 87.50 ± 1.10 87.50 ± 0.78 88.80 ± 1.97 88.80 ± 2.39
CUB-200 67.68 ± 0.54 68.15 ± 0.62 67.68 ± 0.66 69.80 ± 0.32
DTD 66.95 ± 0.03 66.97 ± 0.05 66.86 ± 0.23 66.95 ± 0.03
FashionMNIST 90.37 ± 0.11 90.44 ± 0.16 90.28 ± 0.26 90.60 ± 0.03
FGVC-Aircraft 38.74 ± 0.16 38.51 ± 0.14 38.74 ± 0.20 39.20 ± 0.38
Flowers102 82.98 ± 0.16 83.28 ± 0.25 82.97 ± 0.19 83.54 ± 0.13
Food101 71.11 ± 0.09 71.13 ± 0.08 71.11 ± 0.11 71.19 ± 0.08
DermaMNIST 75.68 ± 0.47 76.23 ± 0.14 74.76 ± 0.69 76.16 ± 0.10
OCTMNIST 69.27 ± 0.98 69.10 ± 1.47 69.47 ± 1.29 69.90 ± 0.50
PathMNIST 89.91 ± 0.12 89.82 ± 0.09 89.91 ± 0.15 90.75 ± 0.06
Average 76.51 76.54 76.59 77.06

27



Table S4: Mean accuracy (%) ± standard deviation over three runs of ImageNet-pretrained ResNet-
18/50/152 when transferred to 12 downstream datasets. The second row under each method indicates
the number of trainable parameters (excluding the linear classifier). For each dataset and LoRA rank
r, we report the best test accuracy achieved among the candidate scaling factors α ∈ {r, 2r, 4r}.
T-CT can still outperform LoRA under this more challenging setting.

(a) ResNet-18

Dataset T-CT LoRA (r = 1) LoRA (r = 2) LoRA (r = 4)
(3968) (35923) (71846) (143692)

Arabic Characters 93.76 ± 0.22 94.23 ± 0.13 95.30 ± 0.18 96.26 ± 0.12
Arabic Digits 99.03 ± 0.01 99.12 ± 0.02 99.21 ± 0.05 99.23 ± 0.03
Beans 94.01 ± 0.37 94.01 ± 0.74 95.83 ± 0.37 95.83 ± 1.33
CUB-200 64.30 ± 0.16 54.83 ± 0.37 56.11 ± 0.26 57.47 ± 0.51
DTD 63.62 ± 0.67 54.36 ± 0.31 56.17 ± 0.22 57.93 ± 0.43
FashionMNIST 91.07 ± 0.16 92.03 ± 0.11 92.83 ± 0.04 93.50 ± 0.05
FGVC-Aircraft 46.44 ± 0.49 29.50 ± 0.92 32.94 ± 0.40 39.13 ± 0.32
Flowers102 86.55 ± 0.21 67.53 ± 0.76 69.68 ± 0.89 73.30 ± 0.46
Food101 66.04 ± 0.17 64.40 ± 0.08 65.96 ± 0.32 66.97 ± 0.35
DermaMNIST 77.66 ± 0.29 75.54 ± 0.20 76.79 ± 0.77 76.72 ± 0.51
OCTMNIST 69.53 ± 1.11 74.83 ± 0.17 76.37 ± 0.66 76.47 ± 0.26
PathMNIST 87.17 ± 0.66 87.78 ± 0.18 88.08 ± 1.15 88.85 ± 0.48
Average 78.26 74.01 75.44 76.80

(b) ResNet-50

Dataset T-CT LoRA (r = 1) LoRA (r = 2) LoRA (r = 4)
(45440) (79443) (158886) (317772)

Arabic Characters 95.67 ± 0.03 94.38 ± 0.22 95.67 ± 0.34 96.30 ± 0.04
Arabic Digits 99.16 ± 0.03 99.09 ± 0.01 99.22 ± 0.09 99.22 ± 0.02
Beans 95.57 ± 0.74 96.35 ± 0.37 96.09 ± 1.69 95.31 ± 0.64
CUB-200 71.03 ± 0.64 66.17 ± 0.51 67.91 ± 0.53 68.93 ± 0.23
DTD 65.07 ± 0.37 64.79 ± 0.30 64.91 ± 0.49 67.07 ± 0.31
FashionMNIST 92.78 ± 0.06 92.19 ± 0.17 92.90 ± 0.14 93.59 ± 0.13
FGVC-Aircraft 55.70 ± 0.76 42.12 ± 0.17 47.46 ± 0.19 52.64 ± 0.47
Flowers102 87.62 ± 0.28 82.58 ± 0.47 83.39 ± 0.35 84.63 ± 0.29
Food101 73.60 ± 0.13 71.42 ± 0.14 73.01 ± 0.24 74.89 ± 0.05
DermaMNIST 78.02 ± 0.50 76.21 ± 0.27 77.26 ± 0.36 77.39 ± 0.47
OCTMNIST 74.13 ± 1.65 76.23 ± 0.09 76.07 ± 1.19 77.83 ± 0.82
PathMNIST 87.33 ± 0.74 87.29 ± 0.67 86.04 ± 0.23 87.44 ± 0.16
Average 81.31 79.07 79.99 81.27

(c) ResNet-152

Dataset T-CT LoRA (r = 1) LoRA (r = 2) LoRA (r = 4)
(143744) (243283) (486566) (973132)

Arabic Characters 96.47 ± 0.39 96.00 ± 0.16 96.43 ± 0.02 96.87 ± 0.11
Arabic Digits 99.10 ± 0.05 99.16 ± 0.03 99.21 ± 0.03 99.25 ± 0.01
Beans 96.35 ± 1.33 94.53 ± 1.10 97.92 ± 0.37 97.14 ± 0.74
CUB-200 73.04 ± 0.19 70.75 ± 0.59 70.94 ± 0.15 71.72 ± 0.43
DTD 63.39 ± 0.34 66.63 ± 0.07 67.66 ± 0.50 68.28 ± 0.51
FashionMNIST 93.39 ± 0.12 92.77 ± 0.04 93.49 ± 0.04 93.98 ± 0.14
FGVC-Aircraft 58.16 ± 0.31 49.06 ± 0.26 55.82 ± 1.04 59.98 ± 0.26
Flowers102 83.43 ± 1.01 84.51 ± 0.58 84.83 ± 0.17 86.24 ± 0.04
Food101 76.08 ± 0.15 74.66 ± 0.08 76.00 ± 0.16 76.86 ± 0.10
DermaMNIST 77.94 ± 0.60 77.02 ± 0.69 77.31 ± 0.75 77.46 ± 0.16
OCTMNIST 75.17 ± 2.10 77.90 ± 0.36 78.23 ± 1.32 78.63 ± 0.21
PathMNIST 83.60 ± 0.42 86.75 ± 0.86 88.33 ± 0.33 86.81 ± 1.95

Average 81.34 80.81 82.18 82.77
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Table S5: Distribution of β values in T-CT, computed over all β parameters across all three runs of
ImageNet-pretrained ResNet-18/50/152 and VGG-11 when transferred to 12 downstream datasets.
The mean and standard deviation of β are similar across models (means between 0.69–0.79,
stds between 0.31–0.37), suggesting consistent tuning behavior at the model level, while the
relatively large standard deviations indicate substantial variation of β within each network.

Dataset ResNet-18 ResNet-50 ResNet-152 VGG-11

Arabic Characters 0.72 ± 0.34 0.65 ± 0.41 0.68 ± 0.39 0.73 ± 0.39
Arabic Digits 0.70 ± 0.43 0.62 ± 0.48 0.62 ± 0.47 0.73 ± 0.43
Beans 0.72 ± 0.26 0.76 ± 0.23 0.77 ± 0.19 0.79 ± 0.20
CUB-200 0.81 ± 0.17 0.76 ± 0.29 0.79 ± 0.29 0.75 ± 0.31
DTD 0.78 ± 0.19 0.77 ± 0.25 0.79 ± 0.24 0.80 ± 0.24
FashionMNIST 0.72 ± 0.41 0.65 ± 0.46 0.63 ± 0.46 0.81 ± 0.37
FGVC-Aircraft 0.75 ± 0.23 0.70 ± 0.33 0.74 ± 0.32 0.74 ± 0.31
Flowers102 0.75 ± 0.16 0.75 ± 0.21 0.79 ± 0.17 0.74 ± 0.22
Food101 0.80 ± 0.30 0.71 ± 0.43 0.76 ± 0.40 0.88 ± 0.27
DermaMNIST 0.74 ± 0.34 0.70 ± 0.39 0.70 ± 0.37 0.81 ± 0.33
OCTMNIST 0.67 ± 0.45 0.62 ± 0.48 0.63 ± 0.47 0.83 ± 0.35
PathMNIST 0.69 ± 0.43 0.65 ± 0.47 0.61 ± 0.48 0.82 ± 0.37

Average 0.74 ± 0.31 0.69 ± 0.37 0.71 ± 0.35 0.79 ± 0.32

Table S6: Distribution of c values in T-CT, computed over all c parameters across all three runs of
ImageNet-pretrained ResNet-18/50/152 and VGG-11 when transferred to 12 downstream datasets.
The mean and standard deviation of c are similar across models (means between 0.57–0.61,
stds between 0.32–0.38), suggesting consistent tuning behavior at the model level, while the
relatively large standard deviations indicate substantial variation of c within each network.

Dataset ResNet-18 ResNet-50 ResNet-152 VGG-11

Arabic Characters 0.63 ± 0.39 0.61 ± 0.39 0.57 ± 0.37 0.65 ± 0.33
Arabic Digits 0.59 ± 0.43 0.57 ± 0.42 0.55 ± 0.41 0.62 ± 0.38
Beans 0.61 ± 0.29 0.54 ± 0.25 0.53 ± 0.23 0.55 ± 0.21
CUB-200 0.60 ± 0.37 0.63 ± 0.37 0.60 ± 0.34 0.67 ± 0.31
DTD 0.59 ± 0.31 0.60 ± 0.32 0.57 ± 0.30 0.59 ± 0.27
FashionMNIST 0.55 ± 0.44 0.60 ± 0.42 0.56 ± 0.42 0.61 ± 0.38
FGVC-Aircraft 0.61 ± 0.36 0.63 ± 0.37 0.58 ± 0.35 0.66 ± 0.31
Flowers102 0.58 ± 0.26 0.54 ± 0.26 0.54 ± 0.23 0.60 ± 0.22
Food101 0.46 ± 0.47 0.63 ± 0.44 0.60 ± 0.43 0.58 ± 0.40
DermaMNIST 0.58 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.56 ± 0.30
OCTMNIST 0.55 ± 0.45 0.60 ± 0.42 0.57 ± 0.42 0.62 ± 0.39
PathMNIST 0.51 ± 0.45 0.58 ± 0.43 0.57 ± 0.42 0.58 ± 0.40

Average 0.57 ± 0.38 0.59 ± 0.37 0.57 ± 0.36 0.61 ± 0.32
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Table S7: Mean robust accuracy (%) ± standard deviation over three runs of ImageNet-pretrained
ResNet-18/50/152 under ℓ2/ℓ∞ attacks and corruptions on CIFAR-10/100 and ImageNet. S-CT
yields substantial improvements under ℓ∞ attacks, with the selected β values close to 1.

Robustness Model Dataset Frozen S-CT β

ℓ2

ResNet-18

CIFAR-10 53.67 ± 0.32 53.67 ± 0.32 1.00 ± 0.00
CIFAR-100 24.30 ± 0.10 25.50 ± 0.00 0.92 ± 0.00
ImageNet 23.37 ± 0.06 23.37 ± 0.06 1.00 ± 0.00
Average 33.78 34.18 0.97

ResNet-50

CIFAR-10 55.10 ± 0.10 56.53 ± 0.21 0.97 ± 0.00
CIFAR-100 23.83 ± 0.06 25.80 ± 0.20 0.96 ± 0.00
ImageNet 31.90 ± 0.00 31.90 ± 0.00 1.00 ± 0.00
Average 36.94 38.08 0.98

ResNet-152

CIFAR-10 56.27 ± 0.23 56.27 ± 0.23 1.00 ± 0.00
CIFAR-100 27.90 ± 0.10 28.23 ± 0.12 0.98 ± 0.00
ImageNet 42.50 ± 0.00 42.50 ± 0.00 1.00 ± 0.00
Average 42.22 42.33 0.99

ℓ∞

ResNet-18

CIFAR-10 11.17 ± 0.06 14.93 ± 0.06 0.90 ± 0.00
CIFAR-100 4.47 ± 0.06 6.90 ± 0.00 0.92 ± 0.00
ImageNet 0.00 ± 0.00 7.00 ± 0.10 0.89 ± 0.00
Average 5.21 9.61 0.90

ResNet-50

CIFAR-10 10.10 ± 0.17 14.83 ± 0.06 0.95 ± 0.00
CIFAR-100 4.43 ± 0.06 7.90 ± 0.00 0.93 ± 0.00
ImageNet 0.30 ± 0.00 9.30 ± 0.17 0.93 ± 0.00
Average 4.94 9.76 0.94

ResNet-152

CIFAR-10 11.47 ± 0.06 15.00 ± 0.20 0.99 ± 0.00
CIFAR-100 5.40 ± 0.00 7.70 ± 0.17 0.99 ± 0.00
ImageNet 0.30 ± 0.00 13.53 ± 0.06 0.97 ± 0.01
Average 5.72 12.08 0.98

Corruptions

ResNet-18

CIFAR-10 77.73 ± 0.00 77.73 ± 0.00 1.00 ± 0.00
CIFAR-100 51.81 ± 0.00 51.95 ± 0.00 0.94 ± 0.00
ImageNet 33.11 ± 0.00 33.32 ± 0.00 0.92 ± 0.00
Average 54.22 54.33 0.95

ResNet-50

CIFAR-10 77.26 ± 0.00 77.26 ± 0.00 1.00 ± 0.00
CIFAR-100 53.91 ± 0.00 53.93 ± 0.00 0.98 ± 0.00
ImageNet 39.64 ± 0.00 39.64 ± 0.00 1.00 ± 0.00
Average 56.94 56.94 0.99

ResNet-152

CIFAR-10 78.82 ± 0.00 78.83 ± 0.00 0.99 ± 0.00
CIFAR-100 56.12 ± 0.00 56.12 ± 0.00 1.00 ± 0.00
ImageNet 45.47 ± 0.00 45.47 ± 0.00 0.99 ± 0.00
Average 60.14 60.14 0.99
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Table S8: Mean robust accuracy (%) ± standard deviation over three runs of ImageNet-pretrained
ResNet-18/50/152 transferred to CIFAR-10/100 under ℓ2, ℓ∞ attacks, and corruptions. T-CT im-
proves ℓ∞ robustness significantly compared to linear probing and LoRA.

Robustness Model Dataset Frozen LoRA T-CT

ℓ2

ResNet18
CIFAR10 8.47 ± 0.26 5.93 ± 1.65 8.93 ± 0.37
CIFAR100 1.57 ± 0.21 0.77 ± 0.33 1.10 ± 0.45

Average 5.02 3.35 5.01

ResNet50
CIFAR10 6.23 ± 0.34 4.57 ± 1.32 6.83 ± 1.48
CIFAR100 0.70 ± 0.08 0.37 ± 0.26 0.47 ± 0.31

Average 3.47 2.47 3.65

ResNet152
CIFAR10 8.03 ± 0.52 4.63 ± 2.01 8.00 ± 1.22
CIFAR100 0.90 ± 0.08 0.47 ± 0.26 0.50 ± 0.08

Average 4.46 2.55 4.25

ℓ∞

ResNet18
CIFAR10 0.30 ± 0.00 0.70 ± 0.71 1.57 ± 0.74
CIFAR100 0.03 ± 0.05 0.07 ± 0.05 0.17 ± 0.12

Average 0.16 0.38 0.87

ResNet50
CIFAR10 0.20 ± 0.08 0.33 ± 0.29 2.43 ± 1.54
CIFAR100 0.00 ± 0.00 0.03 ± 0.05 0.07 ± 0.09

Average 0.10 0.18 1.25

ResNet152
CIFAR10 0.43 ± 0.09 0.20 ± 0.14 5.10 ± 2.97
CIFAR100 0.17 ± 0.05 0.00 ± 0.00 0.00 ± 0.00

Average 0.30 0.10 2.55

Corruptions

ResNet18
CIFAR10 21.34 ± 0.29 13.59 ± 0.30 16.83 ± 2.36
CIFAR100 5.10 ± 0.15 2.96 ± 1.05 4.62 ± 0.68

Average 13.22 8.28 10.72

ResNet50
CIFAR10 16.23 ± 0.21 11.69 ± 0.90 12.68 ± 2.06
CIFAR100 3.47 ± 0.09 2.04 ± 0.36 1.61 ± 0.13

Average 9.85 6.86 7.14

ResNet152
CIFAR10 13.82 ± 0.49 11.33 ± 1.22 9.83 ± 2.07
CIFAR100 2.07 ± 0.12 2.13 ± 0.22 1.72 ± 0.51

Average 7.94 6.73 5.78
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Table S9: Mean accuracy (%) ± standard deviation over three runs of ImageNet-pretrained Swin-T/S
when transferred to 12 downstream datasets. The second row under each method indicates the number
of trainable parameters (excluding the linear classifier). T-CT improves over linear probing but
underperforms LoRA.

(a) Swin-T

Dataset Frozen LoRA T-CT
(0) (74832) (532)

Arabic Characters 83.48 ± 0.15 93.24 ± 0.13 85.02 ± 0.30
Arabic Digits 98.14 ± 0.07 99.19 ± 0.01 98.47 ± 0.04
Beans 88.28 ± 1.10 94.01 ± 0.37 89.06 ± 1.10
CUB-200 73.42 ± 0.17 78.73 ± 0.28 74.33 ± 0.14
DTD 70.66 ± 0.13 70.99 ± 0.61 71.45 ± 0.31
FashionMNIST 89.89 ± 0.04 93.15 ± 0.13 90.23 ± 0.03
FGVC-Aircraft 48.06 ± 0.32 48.29 ± 0.46 47.58 ± 0.99
Flowers102 86.66 ± 0.17 90.22 ± 0.34 85.35 ± 0.20
Food101 77.05 ± 0.03 83.69 ± 0.11 78.90 ± 0.11
DermaMNIST 75.83 ± 0.27 76.71 ± 0.43 75.86 ± 0.11
OCTMNIST 69.97 ± 0.62 76.30 ± 1.66 67.97 ± 1.01
PathMNIST 89.14 ± 0.23 92.26 ± 0.12 91.73 ± 0.19

Average 77.69 82.23 78.53

(b) Swin-S

Dataset Frozen LoRA T-CT
(0) (148560) (868)

Arabic Characters 83.83 ± 0.05 94.38 ± 0.34 86.65 ± 0.50
Arabic Digits 98.28 ± 0.03 99.19 ± 0.05 98.39 ± 0.04
Beans 90.89 ± 1.95 95.05 ± 1.47 91.41 ± 0.64
CUB-200 72.66 ± 0.56 79.45 ± 0.52 73.40 ± 0.10
DTD 69.77 ± 0.44 71.56 ± 0.66 72.43 ± 0.13
FashionMNIST 89.75 ± 0.03 93.52 ± 0.05 89.85 ± 0.08
FGVC-Aircraft 44.36 ± 0.21 51.94 ± 0.60 45.72 ± 0.27
Flowers102 83.24 ± 0.05 87.67 ± 3.41 85.08 ± 0.25
Food101 77.59 ± 0.06 85.17 ± 0.23 79.45 ± 0.14
DermaMNIST 76.64 ± 0.22 78.15 ± 0.67 77.14 ± 0.02
OCTMNIST 66.90 ± 0.29 76.97 ± 0.45 69.07 ± 0.60
PathMNIST 89.74 ± 0.38 92.79 ± 0.33 92.13 ± 0.15

Average 78.06 82.90 79.24
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C Theoretical intuition

This section provides theoretical intuition behind Curvature Tuning. Section C.1 casts CT as a
projection over a space of smooth functions, while Section C.2 provides a toy example illustrating
how CT can improve approximation of a target function of non-vanishing curvature, upon an ideal
baseline ReLU network.

C.1 CT operates as a projection

At its core, Curvature Tuning operates by modulating the nonlinearity of the activation functions of a
trained model, providing a novel approach to model steering. In order to formalize the effect of CT,
the following briefly introduces the notion of spaces of smooth functions.

Sobolev spaces Let f : Rd → R be a function and Ω ⊆ Rd be a bounded domain. For 1 ≤ p < ∞,
define Lp(Ω) as the space of functions f : Ω → R such that the Lp norm is finite, i.e.

∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|pdx
) 1

p

< ∞ (10)

Let α = (α1, . . . , αd) denote a multi-index, with |α| :=
∑d

i αi, and αi ∈ N,∀i = 1, . . . , d. Let
q ∈ N∗. For |α| > 0, define the Sobolev semi-norm

|f |W q,p(Ω) :=

 ∑
|α|≤q

∥Dαf∥pLp(Ω)

 1
p

(11)

with Dαf := ∂|α|f

∂x
α1
1 ...∂x

αd
d

denoting |α|-th order partial derivatives of f . Define the Sobolev norm

∥f∥W q,p(Ω) :=
(
∥f∥pLp(Ω) + |f |pW q,p(Ω)

) 1
p

(12)

and the Sobolev space W q,p(Ω) := {f : Ω → R s.t. ∥f∥pLp(Ω) + |f |pW q,p(Ω) < ∞}.

For a finite set D = {xi}ni=1, the Sobolev semi-norm becomes

|f |W q,p(D) :=

 ∑
|α|≤q

1

n

n∑
i=1

∥Dαf(xi)∥pp

 1
p

(13)

Finally, for x ∈ Rd, let ∥x∥p denote the p-norm, corresponding to the Euclidean norm for p = 2.

Curvature Tuning acts as a Sobolev Projection To characterize Curvature Tuning, we are inter-
ested in the space W 2,2(Ω), equipped with the Sobolev semi-norm

|f |2W 2,2(Ω) = ∥∇xf∥2L2(Ω) + ∥∇2
xf∥2L2(Ω) (14)

We begin by considering the Sobolev semi-norm of a ReLU network (equivalent to the case of Eq. (8)
with β → 1). For each x ∈ Rd, the gradient of a ReLU network

f(x) =
(
WL ◦ φ ◦ . . . ◦ φ ◦W 1

)
(x) (15)

with [φ(a)]i := max(0, ai) for a ∈ Rm and i ∈ [1,m], is given by

∇xf(x) = WL
1∏

ℓ=L−1

Dℓ(x)W ℓ (16)

where Dℓ(x) is a diagonal matrix with Dℓ
ii(x) = 1{zℓ

i>0}, with zℓi = W ℓ
i φ(z

ℓ−1) + bℓ
i denoting the

pre-activation of the ℓ-th layer, for ℓ = 1, . . . , L, with z0 := x.

We make the following observations:
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O1 Since ReLU networks are differentiable a. e., the gradients ∇xf(x) are bounded in norm by
the network’s Lipschitz constant, which can be defined as C = supx∈Ω ∥∇xf(x)∥2. Hence,
for Ω = D, the Lipschitz constant provides an upper bound on the first-order term of the
Sobolev semi-norm in Equation 14.

O2 Finally, we observe that since ReLU networks express piece-wise affine functions, the
Hessian norm vanishes a.e. (i.e. wherever the Hessian is well defined), providing a bound on
the second-order term of Equation 14.

Equipped with the above observations, in the following we characterize CT by formally restating and
proving Theorem 3.1.
Theorem C.1. Let f : Rd → R denote a ReLU network, with model parameter W collecting all
weights and biases. For c ∈ [0, 1] and fixed β ∈ [0, 1), replacing every instance of ReLU with
a CTU (Equation 8) with hyperparameters β, c is equivalent to projecting f to a smooth function
fβ,c ∈ W 2,2(Ω) in the Sobolev space W 2,2(Ω), with bounded Sobolev semi-norm.

Particularly, it holds ∥∇2
xf(x)∥L2(Ω) ≤ ∥∇2

xfβ,c(x)∥L2(Ω), from which fβ,c enjoys higher local
expressivity (non-vanishing curvature), while retaining the same model parameter W.

Before proving Theorem C.1, we state the following Lemma, bounding the derivative of a CTU.
Lemma C.2. Let φβ,c(x) be defined according to Eq. (8), for β ∈ [0, 1) and c ∈ [0, 1]. Then

φ′
β,c(x) = c (σ(bx) + bxσ(bx)(1− σ(bx))) + (1− c)σ

(
bx

β

)
(17)

where b := β
1−β and σ(x) = exp x

1+exp x is the sigmoid activation.

Furthermore, ∃ hb ∈ R+ such that

−chb ≤ φ′
β,c(x) ≤ 1 + chb ∀x ∈ R, β ∈ [0, 1) (18)

Proof. We recall that, since ∀x ∈ R, φβ,c(x) is defined as the convex combination of the SiLU
activation function (c = 1) and the Softplus activation (c = 0), we can bound φ′

β,c(x) by the convex
combination of individual bounds obtained for the cases c = 0 and c = 1.

Softplus. If c = 0, then φ′
β,0(x) = σ

(
x

1−β

)
and 0 ≤ φ′

β,0(x) ≤ 1 ∀x, since the derivative is defined
as a sigmoid.

SiLU. If c = 1, φ′
β,1(x) = σ(bx) + bxσ(bx)(1− σ(bx)). The first term in the sum is bounded by

definition of sigmoid. For the second term, we note that σ(bx)(1 − σ(bx)) is also bounded, and
achieves it maximum at x = 0, for which 0 ≤ σ(bx)(1 − σ(bx)) ≤ 1

4 . Furthermore, in the limit
x → +∞, it holds φ′

β,1(x) → 1, while φ′
β,1(x) → 0 for x → −∞.

In the non-asympototic regime, σ(bx)(1 − σ(bx)) > 0, and so the maximum value of
bxσ(bx)(1− σ(bx)) also depends on bx. To bound φ′

β,c in this case, let us first consider x > 0. By
defining hb = maxbx≥0 bxσ(bx)(1− σ(bx)), then we finally obtain 0 ≤ φ′

β,1(x) ≤ 1 + hb.

For the case x < 0, by using the identity σ(x) = 1− σ(−x), we have that −hb ≤ φ′
β,1(x) ≤ 1. By

combining the results, we have

−hb ≤ φ′
β,1(x) ≤ 1 + hb ∀x ∈ R, β ∈ [0, 1) (19)

In conclusion, by convex combination of cases c = 0 and c = 1, Eq. (19) holds uniformly in x.

We can now prove Theorem C.1. To do so, for fβ,c we have to show that

1. fβ,c is smooth in x, for x ∈ Ω

2. ∥fβ,c∥W 2,2(Ω) < ∞

for a network fβ,c obtained by replacing every ReLU φ with a CTU φβ,c, while keeping all learned
parameters W fixed.
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Proof. We provide a proof for Ω = D = {xi}ni=1, under the common i.i.d. assumption on D.

To prove the first point, we observe that for β ∈ [0, 1), the CTU activation function is smooth, i.e.
φβ,c ∈ C∞(R), thus making the whole network fβ,c smooth.

We now consider the Sobolev semi-norm |fβ,c|W 2,2(Ω). Starting with the first-order gradient, by
recalling that CT replaces each occurrence of ReLU with the CTU activation function (Equation 8),
the input gradient of CT is given by

∇xfβ,c(x) = WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ (20)

where Dℓ
β,c(z

ℓ) = diag(φ′
β,c(z

ℓ)) with φ′
β,c(z

ℓ)i := φ′
β,c(z

ℓ
i) according to Eq. (17).

To bound the Jacobian norm, we observe that

∥∇xfβ,c(x)∥ = ∥WL
1∏

ℓ=L−1

Dℓ
β,c(z

ℓ)W ℓ∥ (21)

≤ ∥WL∥
1∏

ℓ=L−1

∥Dℓ
β,c(z

ℓ)∥∥W ℓ∥ (22)

≤ ∥WL∥
1∏

ℓ=L−1

√
dℓ(1 + chb)∥W ℓ∥ < ∞ (Lemma C.2) (23)

independent of x, for W ℓ ∈ Rdℓ×dℓ−1 , with d0 := d.

We now bound the second order term. By recalling that, for every x ∈ Rd, the Hessian H(x) =
∇2

xfβ,c(x) is symmetric positive-definite, then for Ω = D it holds

∥∇2
xfβ,c∥2L2(D) =

1

n

n∑
i=1

∥H(xi)∥22 ≤ max
1≤i≤n

λ2
max(H(xi))dℓ < ∞ (24)

with λmax(H(xi)) denoting the largest singular value of H(xi).

Importantly, since a ReLU network f has vanishing curvature a.e., then for 0 ≤ β < 1, we have

∥∇2
xf(x)∥ ≤ ∥∇2

xfβ,c(x)∥.

Lastly, we note that, whenever Ω is a finite discrete set D, fβ,c is measurable, ensuring that
∥fβ,c∥W 2,2(Ω) < ∞, concluding the proof.

Theorem C.1 shows that CT operates by projecting a ReLU network f to a smooth function fβ,c in
a restricted Sobolev space. Crucially, fβ,c enjoys bounded gradients (and so is well behaved), and
non-vanishing local-curvature for 0 < β < 1, making it locally more expressive than the affine spline
f , for fixed W.

Furthermore, for fixed (β, c), CT indeed operates as a projection, since replacing every ReLU with
φβ,c is idempotent. Importantly, while for the original ReLU network f ∈ W 2,2(Ω) the derivatives
Dαf are understood in a weak-sense, for c ∈ [0, 1] and β ∈ [0, 1), fβ,c belongs to a Sobolev space
W 2,2

str (Ω) ⊂ W 2,2(Ω) of smooth functions, whereby the derivative Dαfβ,c are understood in the
strong (i.e. classical) sense.

We leave for future work extending our result to T-CT, which is associated with a non-convex
optimization problem of finding optimal (β, c) for every neuron in the network. An additional
important direction is to more closely compare ∥∇xf∥ and ∥∇xfβ,c∥, which may reveal more
precise Lipschitz behaviour for CT, potentially better guiding the search for β and c.

C.2 Toy example

We conclude the discussion by providing the full derivation for the motivating example in Section 3.
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Consider a binary classification problem in R2, whereby one is given two classes
{x ∈ R2 : ∥x∥2 ≤ 1

2} and {x ∈ R2 : 3
2 ≤ ∥x∥2 ≤ 2}. The decision boundary maximizing the mar-

gin between the two classes is given by S1 = {x ∈ R2 : ∥x∥ = 1}.

For a ReLU network f : R2 → R, the maximum margin boundary is recovered by assigning
f(x) = 0 ∀x ∈ S1, for which σ(f(x)) = 0.5. To measure the approximation error e, the boundary
is parameterized by γ(t) = (cos 2πt, sin 2πt), for t ∈ [0, 1].

Then, the error is expressed by the line integral e =
∫
γ
|f |dx =

∫ 1

0
|f(γ(t))|∥γ′(t)∥dt. Since

f is an Affine Spline Operator, and each linear region in Ω is convex, then the integral along γ
can be broken down into the integral along the intersection of γ with the spline partition Ω, i.e.
Ωγ := Ω ∩ S1. Importantly, this allows us to pull back the affine spline breakpoints from Ωγ to
[0, 1], so that 0 ≤ t1 ≤ . . . ≤ tr′ ≤ 1, where r′ = |Ωγ |. And we augment the breakpoints with the
end points so that 0 = t0 ≤ t1 ≤ . . . ≤ tr′ ≤ tr′+1 = 1. Then,

e =

∫ 1

0

|f(γ(t))|∥γ′(t)∥dt (25)

= 2π

r′∑
k=0

∫ tk+1

tk

|Ark,·γ(t) + brk |dt (26)

= 2π

r′∑
k=0

∫ tk+1

tk

(−1)zk(t) (Ark,·γ(t) + brk) dt (27)

with zk(t) := 1{Ark,·γ(t)+brk
<0}, where rk denotes which spline region the k-th segment [tk, tk+1]

falls into. Then,

e = 2π

r′∑
k=0

∫ tk+1

tk

(−1)zk(t) (Ark,1 cos 2πt+Ark,2 sin 2πt+ brk) dt (28)

= 2π

r′∑
k=0

(∫ sk

tk

(−1)zk(t)g′rk(t)dt+

∫ tk+1

sk

(−1)zk(t)g′rk(t)dt

)
(29)

= 2π

r′∑
k=0

(
(−1)zk(tk) [grk(t)]

sk
tk

+ (−1)zk(tk+1) [grk(t)]
tk+1

sk

)
(30)

where
g′rk(t) = Ark,1 cos 2πt+Ark,2 sin 2πt+ brk ,

grk(t) = Ark,1
sin 2πt

2π
−Ark,2

cos 2πt

2π
+ brkt,

and sk ∈ [tk, tk+1] is defined so zk(t) holds the same value for t ∈ [tk, sk] and the opposite for
t ∈ (sk, tk+1]. If for t ∈ [tk, tk+1], zk(t) holds the same value, then simply set sk = tk.

Then since both (−1)zk(tk) [grk(t)]
sk
tk

and (−1)zk(tk+1) [grk(t)]
tk+1

sk
are non-negative, it is clear

e → 0 ⇐⇒ tk+1 → tk ∀k.

Hence, assuming the ReLU network considered attained optimal approximation error e > 0, reducing
the error further requires increasing the number of breakpoints of the ASO, in turn requiring a degree
of retraining (either through PEFT or training from scratch). With this view, Curvature Tuning opens
an additional avenue for model adaptation: steering the model’s decision boundaries by modulating
the nonlinearity of the activation function, allowing to tune a model towards optimality without
expensive retraining. To this end, it is important to note that modulating decision boundaries is
orthogonal to feature adaptation and finetuning, since it allows to change the shape of decision
boundaries while keeping the model parameter W fixed.
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D Curvature Tuning (CT) implementation

The following code provides the Python implementation for S-CT and T-CT:

• SCTU & TCTU: classes that define the CTU module used in S-CT and T-CT, respectively.

• replace_module & replace_module_dynamic: functions that apply the appropriate
module replacement to integrate S-CT or T-CT into a model.

import torch
from torch import nn
import torch.nn.functional as F

class SCTU(nn.Module):
"""
CTU for Steering CT.
"""
def __init__(self , shared_raw_beta , shared_raw_coeff , threshold
=20):

super().__init__ ()
self.threshold = threshold
self._raw_beta = shared_raw_beta
self._raw_coeff = shared_raw_coeff
self._raw_beta.requires_grad = False
self._raw_coeff.requires_grad = False

@property
def beta(self):

return torch.sigmoid(self._raw_beta)

@property
def coeff(self):

return torch.sigmoid(self._raw_coeff)

def forward(self , x):
beta = torch.sigmoid(self._raw_beta)
coeff = torch.sigmoid(self._raw_coeff)
one_minus_beta = 1 - beta + 1e-6
x_scaled = x / one_minus_beta

return (coeff * torch.sigmoid(beta * x_scaled) * x +
(1 - coeff) * F.softplus(x_scaled , threshold=self.
threshold) * one_minus_beta)

class TCTU(nn.Module):
"""
CTU for Trainable CT.
"""
def __init__(self , num_input_dims , out_channels , raw_beta =1.386 ,
raw_coeff =0.0, threshold =20):

super().__init__ ()
self.threshold = threshold

# Decide channel dim based on input shape
if num_input_dims == 2 or num_input_dims == 3: # (B, C) or (B
, L, D)

channel_dim = -1
elif num_input_dims == 4: # (B, C, H, W)

channel_dim = 1
else:

raise NotImplementedError(f"Unsupported input dimension {
num_input_dims}")
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param_shape = [1] * num_input_dims
param_shape[channel_dim] = out_channels

# Init beta
self._raw_beta = nn.Parameter(torch.full(param_shape , float(
raw_beta)))

# Init coeff
self._raw_coeff = nn.Parameter(torch.full(param_shape , float(
raw_coeff)))

@property
def beta(self):

return torch.sigmoid(self._raw_beta)

@property
def coeff(self):

return torch.sigmoid(self._raw_coeff)

def forward(self , x):
beta = torch.sigmoid(self._raw_beta)
coeff = torch.sigmoid(self._raw_coeff)
one_minus_beta = 1 - beta + 1e-63
x_scaled = x / one_minus_beta

return (coeff * torch.sigmoid(beta * x_scaled) * x +
(1 - coeff) * F.softplus(x_scaled , threshold=self.
threshold) * one_minus_beta)

def replace_module(model , old_module=nn.ReLU , new_module=SCTU , **
kwargs):

"""
Replace all instances of old_module in the model with new_module.
"""
device = next(model.parameters (), torch.tensor ([])).device #
Handle models with no parameters

# Replace modules
for name , module in model.named_modules ():

if isinstance(module , old_module):
ct = new_module (** kwargs).to(device)

# Replace module in the model
names = name.split(".")
parent = model
for n in names [:-1]:

if n.isdigit ():
parent = parent[int(n)] # for Sequential/
ModuleList

else:
parent = getattr(parent , n)

last_name = names[-1]
if last_name.isdigit ():

parent[int(last_name)] = ct # for Sequential/
ModuleList

else:
setattr(parent , last_name , ct)

return model

def replace_module_dynamic(model , input_shape , old_module=nn.ReLU ,
new_module=TCTU , ** kwargs):

"""
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Replace all instances of old_module in the model with new_module
that’s dynamically created based on the number of output channels.
"""
device = next(model.parameters (), torch.tensor ([])).device
dummy_input = torch.randn(* input_shape).to(device)

module_metadata = {} # name -> (num_input_dims , out_channels)
hooks = []

def make_hook(name):
def hook(module , input , output):

num_input_dims = input [0]. dim()
if num_input_dims in (2, 3): # (B, C) or (B, L, D)

out_channels = output.shape [-1]
elif num_input_dims == 4: # (B, C, H, W)

out_channels = output.shape [1]
else:

raise NotImplementedError(f"Unsupported output shape {
output.shape} in {name}")

module_metadata[name] = (num_input_dims , out_channels)

return hook

# Register hooks to all modules of the target type
for name , module in model.named_modules ():

if isinstance(module , old_module):
hooks.append(module.register_forward_hook(make_hook(name))
)

# Run dummy forward pass
model(dummy_input)

# Clean up hooks
for hook in hooks:

hook.remove ()

# Replace modules
for name , module in model.named_modules ():

if isinstance(module , old_module) and name in module_metadata:
num_input_dims , out_channels = module_metadata[name]
ct = new_module(num_input_dims=num_input_dims ,
out_channels=out_channels , ** kwargs).to(device)

# Replace module in the model
names = name.split(".")
parent = model
for n in names [:-1]:

if n.isdigit ():
parent = parent[int(n)] # for Sequential/
ModuleList

else:
parent = getattr(parent , n)

last_name = names[-1]
if last_name.isdigit ():

parent[int(last_name)] = ct # for Sequential/
ModuleList

else:
setattr(parent , last_name , ct)

return model
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E LoRA implementation

The following code provides the Python implementation of LoRA used in Section 4:

• LoRALinear & LoRAConv2d: classes that define LoRA-enhanced versions of the Linear
and Conv2d modules.

• get_lora_model: a function that replaces all Linear and Conv2d modules in a model
with their corresponding LoRA versions.

import torch
from torch import nn as nn
from torch.nn import functional as F

class LoRALinear(nn.Module):
"""
A Linear layer that applies LoRA to a frozen , pretrained Linear.
"""

def __init__(self , original_layer: nn.Linear , r: int = 4, alpha:
float = 1.0):

super().__init__ ()
self.in_features = original_layer.in_features
self.out_features = original_layer.out_features
self.r = r
self.alpha = alpha

# Freeze the original layer ’s parameters
self.weight = nn.Parameter(original_layer.weight.data ,
requires_grad=False)
if original_layer.bias is not None:

self.bias = nn.Parameter(original_layer.bias.data ,
requires_grad=False)

else:
self.bias = None

# LoRA parameters B and A
# B: [out_features , r]
# A: [r, in_features]
self.B = nn.Parameter(torch.zeros((self.out_features , r)))
self.A = nn.Parameter(torch.zeros((r, self.in_features)))

# Initialize LoRA weights
nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)
nn.init.zeros_(self.A)

def forward(self , x):
# Normal forward with the frozen weight
result = F.linear(x, self.weight , self.bias)

# LoRA path: B @ A
# shape of BA = [out_features , in_features]
# Then F.linear with BA
lora_update = F.linear(x, (self.alpha / self.r) * (self.B @
self.A))

return result + lora_update

class LoRAConv2d(nn.Module):
"""
A Conv2d layer that applies LoRA to a frozen , pretrained Conv2d.
"""
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def __init__(self , original_layer: nn.Conv2d , r: int = 4, alpha:
float = 1.0):

super().__init__ ()

self.out_channels = original_layer.out_channels
self.in_channels = original_layer.in_channels
self.kernel_size = original_layer.kernel_size
self.stride = original_layer.stride
self.padding = original_layer.padding
self.dilation = original_layer.dilation
self.groups = original_layer.groups
self.bias_available = (original_layer.bias is not None)

self.r = r
self.alpha = alpha

# Freeze original parameters
self.weight = nn.Parameter(original_layer.weight.data ,
requires_grad=False)
if self.bias_available:

self.bias = nn.Parameter(original_layer.bias.data ,
requires_grad=False)

else:
self.bias = None

# Flattened shape for weight is [out_channels , in_channels *
k_h * k_w]
k_h , k_w = self.kernel_size
fan_in = self.in_channels * k_h * k_w # Flattened input dim

# Define LoRA parameters: B and A
# B: [out_channels , r]
# A: [r, fan_in]
self.B = nn.Parameter(torch.zeros((self.out_channels , r)))
self.A = nn.Parameter(torch.zeros((r, fan_in)))

# Initialize LoRA weights
nn.init.kaiming_uniform_(self.B, a=5 ** 0.5)
nn.init.zeros_(self.A)

def forward(self , x):
# Standard (frozen) convolution
result = F.conv2d(

x,
self.weight ,
bias=self.bias ,
stride=self.stride ,
padding=self.padding ,
dilation=self.dilation ,
groups=self.groups

)

# Compute LoRA update
# 1) Flatten conv kernel in the same manner as above
# 2) Multiply B and A -> shape [out_channels , in_channels *
k_h * k_w]
# 3) Reshape it back to [out_channels , in_channels , k_h , k_w]
BA = self.B @ self.A # shape [out_channels , fan_in]

# Reshape to conv kernel
k_h , k_w = self.kernel_size
lora_weight = BA.view(

self.out_channels ,
self.in_channels ,
k_h ,
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k_w
) * (self.alpha / self.r)

# Perform conv2d with the LoRA weight (no extra bias term for
LoRA)
lora_update = F.conv2d(

x,
lora_weight ,
bias=None ,
stride=self.stride ,
padding=self.padding ,
dilation=self.dilation ,
groups=self.groups

)

return result + lora_update

def get_lora_model(model: nn.Module , r: int = 4, alpha: float = 1.0):
"""
Recursively replace all Conv2d and Linear modules in model with
LoRA -enabled versions. Freezes original weights and adds LoRA
parameters.
"""
for name , child in list(model.named_children ()):

# If child is a Conv2d , replace it with LoRAConv2d
if isinstance(child , nn.Conv2d):

lora_module = LoRAConv2d(child , r=r, alpha=alpha)
setattr(model , name , lora_module)

# If child is a Linear , replace it with LoRALinear
elif isinstance(child , nn.Linear):

lora_module = LoRALinear(child , r=r, alpha=alpha)
setattr(model , name , lora_module)

else:
# Recursively traverse children
get_lora_model(child , r=r, alpha=alpha)

return model
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