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Abstract

Learning based methods are now ubiquitous for solving inverse problems, but their deploy-
ment in real-world applications is often hindered by the lack of ground truth references for
training. Recent self-supervised learning strategies offer a promising alternative, avoiding
the need for ground truth. However, most existing methods are limited to linear inverse
problems. This work extends self-supervised learning to the non-linear problem of recover-
ing audio and images from clipped measurements, by assuming that the signal distribution
is approximately invariant to changes in amplitude. We provide sufficient conditions for
learning to reconstruct from saturated signals alone and a self supervised loss that can be
used to train reconstruction networks. Experiments on both audio and image data show
that the proposed approach is almost as effective as fully supervised approaches, despite
relying solely on clipped measurements for training.

1 Introduction

Inverse problems appear in various engineering and science applications, such as tomography (Jin et al.,
2016), MRI (Lustig et al., 2007) or phase retrieval (Shechtman et al., 2015). They are described by the
following forward equation:

y = h(x) + ϵ, (1)

where the aim is to recover the ground-truth x ∈ X ⊆ Rn from measurements y ∈ Y ⊆ Rm. The set
X defines the support of the of the signal distribution p(x), which we refer to as the “signal set”. The
function h : Rn 7→ Rm represents the forward operator and ϵ ∈ Rm the noise. These problems are often
ill-posed due to potential information loss induced by h (for example, if m < n) or the existence of an infinite
number of solutions. One way of solving this is to impose prior information on x, such as piecewise constant
assumptions (Rudin et al., 1992). However, choosing the right prior can be challenging and mispecified priors
can introduce biases or give poor approximations of the underlying signals. This problem can be mitigated
by learning the prior or reconstruction function directly from data. Most learning based methods learn the
inverse operator of h on X , f : y 7→ x from a training dataset containing ground truth with their associated
measurements {(xi,yi)}Ni=1 and a neural network fθ that parameterizes the inverse function. The standard
approach computes the parameters θ ∈ Rp by minimizing the mean square error (MSE):

θ̂ = arg min
θ

N∑
i=1

∥fθ(yi) − xi∥2. (2)

Despite the good performance in some applications, this approach suffers from two main drawbacks: (i)
ground-truth images can be particularly difficult or impossible to obtain, e.g., in scientific imaging appli-
cations (Belthangady & Royer, 2019), and (ii) even when we have access to a ground truth dataset, there
might be a significant distribution shift between training and testing.

Self-supervised learning presents an alternative that circumvents some of these limitations (Belthangady &
Royer, 2019). This approach operates without the need for ground-truth training data, making it especially
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advantageous in scenarios where obtaining such datasets is expensive or impractical. Furthermore, self-
supervised learning can be trained on measurement data directly, thus mitigating the challenge of distribution
shift.

Learning from measurement data only is particularly challenging when the forward operator is not invert-
ible (Tachella et al., 2023). If the forward operator is linear, self-supervised learning is possible by assuming
that the underlying set of clean signals is invariant to a set of transformations, such as rotations or trans-
lations (Chen et al., 2021). This also holds for the non-linear problem of reconstructing heavily quantized
signals (1-bit measurements) (Tachella & Jacques, 2023). Here we show that invariance to rotations or
translations is not enough for learning from clipped measurement data alone, and instead prove that in-
variance to amplitude is sufficient for fully self-supervised learning. We propose a self-supervised loss that
enforces equivariance to changes in amplitude, and show throughout a series of experiments that our method
can achieve performance comparable to fully supervised methods. A preliminary version of this work was
presented in Sechaud et al. (2024), and here we generalize to a larger class of signals such as images, and
propose a theoretical framework showing sufficient conditions for learning to recover signals from saturated
measurements alone. In summary, the contributions of this work are threefold:

• We provide necessary conditions for signal recovery under a known signal set, and also demonstrate,
under an invariance assumption, that the signal set can be identified with a sufficient number of
observed measurements;

• We propose a self-supervised loss that can be used to train neural networks for audio declipping and
High-Dynamic Range (HDR) imaging;

• We show that this method can achieve comparable performance to fully supervised methods on both
audio and image data.

The rest of the paper is structured as follows: Section 2 reviews related work concerning self-supervised
learning and state-of-the-art declipping methods. Section 3 introduces our theoretical framework, focusing
on model identification—i.e., determining underlying signal set from observations—and signal recovery. From
there, in Section 4 we describe how one can practically define and minimize a self-supervised cost function
with scale invariance. Section 5 presents experimental results that validate our approach.

2 Related work

2.1 Self-supervised learning for inverse problems

Self-supervised methods allow to train reconstruction networks using only measurement data (Chen et al.,
2021). Existing methods can be separated into two categories: the ones that handle the noise of the problem,
e.g., Noise2X methods (Lehtinen et al., 2018; Krull et al., 2019), and the others that handle non-invertible
forward operators (Tachella et al., 2023). The last set of methods mostly focuses on the case a linear operator
where the loss of information is associated to its nullspace. It is possible to overcome this missing information
by (i) accessing measurements from several operators with different nullspaces (Daras et al., 2023; Tachella
et al., 2023), or (ii) by assuming that the signal distribution is invariant to a set of transformations such as
translations or rotations, a method known as equivariant imaging (EI) (Chen et al., 2021). The EI framework
is well studied for linear inverse problems, both in terms of applications (Scanvic et al., 2024; Chen et al.,
2021) and theory (Tachella et al., 2023). To the best of our knowledge, the only case of nonlinear inverse
problems analyzed using the invariance approach is one-bit compressed sensing (Tachella & Jacques, 2023).

2.2 Audio declipping

Several unsupervised techniques for audio declipping have been proposed (Zaviska et al., 2021; Kitic et al.,
2013; Gaultier et al., 2021), many of which make use of variational methods with priors such as sparsity in
certain bases (e.g. Fourier domain). Both ℓ0 and ℓ1-minimization approaches are commonly employed, often
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solved using dedicated optimization algorithms, with social sparsity as one of the best performing (Sieden-
burg et al., 2014). Learning-based techniques, such as dictionary learning, have also shown to be effective,
where a dictionary is trained from time windows of the clipped signal to represent it as a sparse vector.
Additionally, methods incorporating prior knowledge based on human perception (Defraene et al., 2013), or
using multichannel data (Ozerov et al., 2016; Gaultier et al., 2018), have been used to improve performance.
Diffusion models trained on a supervised way (i.e., with ground-truth references) have also been studied in
the context of declipping. (Moliner et al., 2023).

2.3 High Dynamic Range images

The dynamic range in images refers to the difference between the brightest and darkest values. Since camera
sensors and displays have limitations in capturing and showing both dark and bright regions, this often
results in lost details in these zones. To address this, various techniques are employed to extend the dynamic
range of images. One common method is exposure bracketing (Mertens et al., 2007), which combines multiple
photos at different exposures for higher quality but requires long exposures and a stationary target to avoid
misalignment. Another approach is modulo sensing (Contreras et al.), a promising technique, though it is
still limited by the unavailability of commercial hardware. Finally, supervised deep learning methods, such
as the ones proposed by Eilertsen et al. (2017), utilize a single image to estimate a high dynamic range.
However, these methods require a large dataset of ground truths to train the model effectively, which can
be a significant limitation.

2.4 Signal recovery guarantees for saturated measurements

Some theoretical works have analysed the feasibility of the signal recovery problem from saturated obser-
vations. Following a compressive sensing approach (Candes & Wakin, 2008), Foucart & Needham (2016)
present unique recovery guarantees for the case Gaussian measurements and an ℓ1 minimization approach,
showing that sparse vectors with low magnitude can be uniquely recovered with high probability.

3 Analysis for model identification and signal recovery

3.1 Problem formulation

We consider the forward formulation y = η(x), where η : R → R is the element-wise clipping operator with
threshold levels µ1, µ2:

η(u) =

 µ1 if u ≤ µ1,
u if u ∈ (µ1, µ2),
µ2 if u ≥ µ2.

For our examples with audio and synthetic signals, we use a symmetric threshold µ1 = −µ2 = µ. For
images, we only consider an upper threshold, where µ1 = 0 and µ2 = 1, assuming positive signals x, as
camera sensors do not suffer saturation from below. Indeed, under low-light conditions, the sensor produces
a weaker signal, which may lead to noise or reduced image quality, but not to saturation. We assume
that µ1 and µ2 are known and that we have a dataset of saturated signals {yi}Ni=1. We aim to learn the
reconstruction function fθ using the measurement dataset alone. We will therefore consider the following
two theoretical questions: (i) model identification: can we uniquely identify the signal set given the set of
observations {yi}Ni=1? In other words, we want to know if it is possible to find the support of the signal
distribution X from measurement data alone as N → ∞, and some mild priors on X (e.g. invariance to
transformations). If the set X can be identified, we could then hope to recover the signal x from a single
observation y via the following program:

x̂ ∈ arg min
x∈X

∥h(x) − y∥2. (3)

(ii) Signal recovery: is there a unique solution to the problem in Equation (3)? In other words, can we
uniquely recover the signal x from observations y knowing the set X ? There may be a unique solution
for one, both, or neither of the problems (Tachella et al., 2023). Blind compressed sensing is an example
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where we can have signal recovery if the dictionary is known, but we cannot identify the dictionary from
measurement data alone (Gleichman & Eldar, 2011). On the contrary, we can identify the signal set from
rank-one measurements without being able to recover the signals associated with each measurement. (Chen
et al., 2015). In the following, we will use “identify” only for finding the set X given a measurement set Y,
and “recovery” for finding a vector x given a measurement y.

3.2 Model identification.

In this section, we will focus on the case where the full set of measurements Y is observed, although in
practice we only observe {yi}Ni=1. We thus study the conditions for identifying X from the set of saturated
signals Y = η(X ).

It may be interesting to note that in some situations we can easily identify the signal set. This happens in
the trivial case where the whole signal set is below the saturation threshold.
Example 1. In the symmetric case with threshold level µ, if ∥y∥∞ < µ for all y ∈ Y, then X = Y.
Proposition 1. Without any assumption on X and the presence of saturated signals, we cannot guarantee
model identification. See Remark 1, which can be used as proof of this statement.

We thus need to consider some assumptions on X to identify the signal set from Y. As done in equivariant
imaging (Chen et al., 2021), we can consider the group of transformations G for which the signal set is
invariant. The reason is that the invariance to transformations {Tg}g∈G gives us access to the sets Yg =
η(TgX ) for all g ∈ G. Indeed, we can see Y as a set of measurements associated with the set X for different
forward operators η(Tg·), as we have that:

Yg = η(TgX ) = η(X ) = Y if TgX = X .

We then need to identify which groups of transformations can help in identifying X . We cannot use the
classical groups considered in the linear framework (shift or rotation) as these transformations commute with
the operator η. As shown in the following proposition, if the transformations commute with η, they do not
help to identify the signal set.
Proposition 2. Let G be a group, if we cannot identify X from Y = η(X ) and if for all g ∈ G, the
transformations Tg commute with η(·), then we cannot identify X from Yg = η(TgX ) for all g ∈ G.

Proof. Let G such that for all g ∈ G, Tgη(·) = η(Tg·). We have access to all measurements associated with
the different transformations of the signals:⋃

g∈G
Yg = {yg = η(Tgx) : ∀g ∈ G, ∀x ∈ X } .

As Tg and η commute, we have⋃
g∈G

Yg = {yg = Tgη(x) : ∀g ∈ G, ∀x ∈ X } =
⋃
g∈G

Tgη(X ),

and so we cannot identify X from that set since it doesn’t bring us more information than η(X ); the set of
measurements is a function of η(X ).

Example 1 shows us that the norm of x has an impact on the feasibility of reconstructing the signal, which
gets us to consider the group action of scaling.
Definition 1 (Scale invariance). We say that X is scale invariant if

gX = X for all g ∈ R∗
+. (4)

A set that is scale-invariant is called a cone (Boyd & Vandenberghe, 2004).
Proposition 3. For any two distinct conic sets X ̸= X ′, we have that η(X ) ̸= η(X ′).
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Proof. Let the open set Bµ = {u ∈ Rn : ∥u∥∞ < µ} with radius µ > 0. We recall that we note Y the set
of measurement Y = η(X ). Taking the set of unsaturated signals in X , that is X ∩ Bµ, the operator η has
no impact on them and therefore

X ∩ Bµ = η(X ∩ Bµ).

Moreover, if x is in Bµ, then |η(x)| < µ, therefore

η(X ∩ Bµ) ⊂ Y ∩ Bµ.

But if y is in η(X ) ∩Bµ, then y never reaches the threshold µ or −µ, and there is thus an x in X ∩Bµ such
that y = η(x) = x, i.e.,

(η(X ) ∩ Bµ) ⊂ (X ∩ Bµ)

showing finally that
Y ∩ Bµ = X ∩ Bµ.

Defining X̂ =
{
gy : g ∈ R∗

+, y ∈ Y ∩ Bµ
}

as the conic extension of Y ∩ Bµ. We will show that X̂ = X .

Inclusion X ⊂ X̂ : Let x ∈ X . Then, there exists c > 0 such that y = cx belongs to X ∩ Bµ. Therefore,
x = 1

cy belongs to X̂ , which implies X ⊂ X̂ .

Inclusion X̂ ⊂ X : Let x̂ ∈ X̂ . By definition, there exist g ∈ R∗
+ and y ∈ Y ∩Bµ such that x̂ = gy. Since

Y ∩ Bµ = X ∩ Bµ, we have y ∈ X . As X is a cone, it follows that x̂ = gy ∈ X . Thus, we conclude that
X̂ ⊂ X , completing the proof.

Remark 1. For asymmetric clipping, the same result can be obtained for µ1 ≤ 0 < µ2 and X ⊂ Rn+.
However, we can find a 2-dimensional counter example for 0 < µ1 < µ2: we choose X1 = {ax1 : a ∈ R+}
and X2 = {ax2 : a ∈ R+} with x1 = (µ2,

µ1
2 )⊤ and x2 = (µ2,

µ1
3 )⊤. Then X1 and X2 have the same

measurement set:
Y = {(t, µ1) : t ∈ (µ1, µ2)} ∪ {(µ2, t) : t ∈ (mu1, µ2)} .

3.3 Signal recovery

Sufficient conditions for signal recovery generally depend on the dimension of X (Sauer et al., 1991). Following
previous work in compressed sensing (Sauer et al., 1991; Falconer, 2013), we use the box-counting dimension,
a measure of the complexity of a set which generalizes several notions of dimension.
Definition 2. The upper box-counting dimension of a compact subset X is

dim(X ) = lim sup
ϵ→0

log [NX (ϵ)]
− log(ϵ) ,

where NX (ϵ) is the covering number, i.e., the minimum number of closed balls of radius ϵ (with respect to
the norm ∥ · ∥2) with centres in X needed to cover X .

It can be applied to various structures:

• Vector spaces: The box-counting dimension of a space Rk intersected with the unit ball is k, corre-
sponding to the classical geometrical dimension.

• Manifolds: For a manifold of dimension k, the box-counting dimension is k, consistent with its
geometric dimension.

• Bounded k-sparse sets: In high dimensional spaces, the box-counting dimension reflects the effective
dimension k rather than the ambient dimension n.
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X

η(AX )

X
η(X )

(µ, -µ, µ)

(-µ, -µ, µ)

(-µ, µ, µ)

(µ, µ, µ)

Bµ X η(X ) AX η(AX )

Figure 1: Example in 3 dimensions illustrating Theorem 1. The black set presents a particularly challenging
scenario in which all saturated signals are projected to the same point. In contrast, with high probability on
A, the colored set enables recovery of more signals with moderate norms, as points in X beyond a certain
radius— which is connected to the signal norm when A is Gaussian—are all projected onto a single corner,
showing the non-injectivity beyond this radius.

Thus, the box-counting dimension uniquely determines the dimension of these various objects, providing a
flexible framework for measuring the dimension of objects that can appear in compressive sensing or inverse
problems.

We approach the problem of signal recovery by considering, for a conic signal set X , its normalized version:

SX =
{

x

∥x∥2
: x ∈ X

}
and the open bounded set

XR = {x ∈ X : ∥x∥2 < R} .

When studying the signal recovery problem, one observes that pathological cases where η(x1) = η(x2) for
x1 ̸= x2 may arise even when dim(X ) is small, as illustrated in Figure 1. As the operator η acts as a
projection onto the cube Bµ if the signal set is orthogonal to one of the cube’s faces, it becomes impossible
to recover a signal once it reaches that face. However, we expect such cases to be relatively rare, and
therefore we study the problem by randomizing the orientation. To this end, as it is common signal recovery
analyses (Ahmed et al., 2013), we consider the operator η(A·), where A ∈ Rm×n is a random Gaussian
matrix, which acts as a random rotation of the signal set. An illustration is provided in Figure 1. The
following theorem provides sufficient conditions on the number of measurements and the maximum radius
R to ensure, with high probability, that distances between points in the set XR are approximately preserved
after applying η(A·). Section 5.2.1 provides a simplified example demonstrating how this matrix effectively
addresses degenerate cases.
Theorem 1. If the set SX has a finite upper box-counting dimension dim(SX ) < k and A ∈ Rm×n is
such that Aij ∼ N

(
0, 1

m

)
, then there is an absolute constant C > 0 and a signal set dependent constant

ϵ∗ ∈ (0, 1/2) such that, if m ≥ k log
(

1
ϵ∗

)
, we have for a radius R <

√
mµ

( 1
2 − k+1

m

)
:

P (η(Ax) = η(Au) for some x ̸= u ∈ XR) ≤ 12e−Cm. (5)
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In other words, we measure the probability that the mapping η ◦ A is not injective (and therefore impossible
to invert) over XR.

To consider the initial problem, that is, the forward operator η(·), we may introduce an assumption on X
by considering it as a cone of the form

X = {Az : z ∈ Z} ,

here Z is a cone with SZ of box-dimension k and A ∈ Rn×n is such that Aij ∼ N
(
0, 1

n

)
. We can apply

Theorem 1 in the case of a random rotation m = n, to show that a signal x can be recovered with high
probability if ∥x∥2 < ∥A∥R, where ∥A∥ denotes the norm of the operator A, and in the case of Gaussian
square matrix of variance 1

n , it is close to 2 (Vershynin, 2018).

The proof of the theorem is provided in the Appendix A, and sketched in Figure 1. It consists in showing
that the same measurement vector cannot be associated with two distinct signals, with high probability. The
core idea of the proof is to decompose the probability that the mapping is not injective into two parts: Given
two distinct signals, we control, the probability that the number of common unsaturated measurements is
small (thus making it impossible to differentiate between 2 signals). On the other hand, we control the
probability that two signals have the same common unsaturated measurements given that the number of
saturated measurements is low and so it is acceptable to ignore them.

Let us stress that in Theorem 1 we cannot set an upper bound on the probability in Equation (5) for all
signals in X and need to limit this space to bounded signals from XR. Some signals in X with an excessive
norm cannot be recovered as they have too numerous saturated measurements. In Figure 1, this is illustrated
by the accumulation, after saturation, of signals in the corners of the cube, particularly when signals have
high norms, i.e., far from the cube’s center. When all measurements are saturated, or equivalently when µ
tends to 0, we expect to recover the behavior of 1-bit compressive sensing (Tachella & Jacques, 2023), where
x can only be estimated up to a non-zero error. This is why we focus on signals with low norms. Theorem 1
can be seen as a generalization of Foucart & Needham (2016, Theorem 1), to more general low-dimensional
sets, going beyond sets of k-sparse signals.

4 Self-supervised learning approach

Given the positive theoretical results regarding model identification and signal recovery of the previous
section, we now propose a method for learning from saturated signals {yi = η(xi)}Ni=1. We first introduce
the loss functions used to train the network, then describe the network architecture and implementation
details used for the reconstruction.

4.1 Loss functions

Measurement consistency (MC) loss: in the absence of noise, a good reconstruction method should
provide an estimate that is consistent with the observations, i.e., for all measurements y, we should have

η(fθ(y)) = y.

Measurement consistency means that the reconstructed signal produces the same measurements as those that
were originally observed. Ensuring MC is crucial, as it guarantees that estimates adhere to observations.
However, it does not necessarily mean that the solution is unique since multiple solutions could be consistent
with the same measurements. A straightforward loss function for imposing measurement consistency is

LNMC(θ) =
N∑
i=1

∥yi − η (fθ(yi)) ∥2, (6)

which we will call the naive measurement consistency loss. If at the first training steps, the network predicts
a value x̂j above the threshold, the gradient will be zero due to the η operator and thus get stuck on
this prediction, preventing the network from learning. This is particularly problematic if yj is below the
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threshold, since we know that the true value is xj = yj . We therefore choose to use the MSE where the
signal is not saturated according to the following loss:

LMC(θ) =
N∑
i=1

∥ρ(fθ(yi),yi)∥2 (7)

where ρ is applied element-wise as:

ρ(a, b) = 1{|b|<µ}|b− a| + 1{b=µ}(b− a)+ + 1{b=−µ}(a− b)+,

where 1(·) the indicator function and (·)+ the positive function. See Figure 2 for a comparison of these
functions.

−µ 0.5µ µ

0

2

4

zero gradient

x̂ −µ 0.5µ µ

non zero gradients

x̂

LNMC(x̂) = ∥y − η(x̂)∥2 LMC(x̂) = ∥ρ(x̂, y)∥2

L for y < µ

L for y = µ

Figure 2: LNMC compared to LMC. On the left: Curve of the LNMC in one dimension for two examples in
both cases saturated and not. On the right: Curve of the new LMC for the same two examples.

However, even with this new loss, we cannot hope to learn the correct reconstruction function. Minimizing
LMC allows us to learn a measurement consistent solution fθ, but this solution could be of the form:

fθ(y)j =
{

yj if |yj | ≤ µ
v(yj) if |yj | = µ

(8)

with v being any function lying beyond the threshold level µ i.e., v(yj) belongs to the preimage η−1({−µ, µ}).
For example, the function fθ(y) = y is a minimizer of Equation (7).

Equivariance loss: To effectively learn in the saturated region, we use the amplitude invariance assumption
of the signal set defined above, going beyond the limitations imposed by measurement consistency alone.

To enforce this invariance property on the reconstruction network, we note that since gx ∈ X , the function
fθ must be capable of reconstructing both x and gx for all x in X and g ∈ R+, that is:

fθ (η(gx)) = gx and fθ(η(x)) = x. (9)

Thus, we can conclude that:

fθ

(
η(gx)

)
= gfθ

(
η(x)

)
for all x ∈ X , and g ∈ R+. (10)

Hence, the composition of fθ with η should be equivariant with respect to the multiplicative group (R+, ·).
To ensure this, we propose a loss function that enforces this equivariance property:

LEI(θ) =
N∑
i=1

Eg∼pg

[∥∥gfθ (yi) − fθ

(
η (gfθ (yi))

)∥∥2
]
. (11)
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We can observe a connection with Proposition 3: for N → ∞, after rescaling, the sum becomes an expectation
over a distribution supported on Y, and the expectation over g basically acts as a (restricted) conic extension
of that support.

The expectation is evaluated with respect to a specific distribution pg over the multiplicative group, which, in
principle, could be any unbounded distribution over R+. However, in practical scenarios, signals are typically
limited in amplitude, making it sufficient to use a distribution defined over a finite range [gmin, gmax] (not
necessarily uniform). The parameters (gmin, gmax) were determined empirically: setting gmax too low prevents
the network from learning effectively, while excessively large values cause instability.

We could also extend Equation (11) to include transformations not limited to scale invariance, such as affine
group transformations of the form x → ax + b1, where (a, b) ∈ R+ × R and 1 = (1, . . . , 1)⊤ ∈ Rn.

The final loss function is a combination of the measurement consistency and equivariance losses:

L(θ) = LMC(θ) + λLEI(θ). (12)

The parameter λ is a positive hyperparameter that controls the trade-off between the two losses.

4.2 Network architecture

4.2.1 Core architecture

The proposed self-supervised loss can be used with any network architecture fθ. For most of the experiments
reported here, we choose the well-known U-Net neural network for the reconstruction function fθ (Ron-
neberger et al., 2015), which is well-suited for capturing the relevant (temporal or spatial) correlations in
natural signals. The details of the architecture vary depending on the type of data, audio or image, and are
explained in the experiment section.

4.2.2 Bias-free neural network

We choose a bias-free version of the U-Net, to preserve the scale invariance assumption (Mohan et al., 2020).
This is because a feedforward neural network with ReLU activation functions and without bias defines a
homogeneous function:

fθ(gy) = gfθ(y) ∀g ∈ R+.

This gives fθ(gy) −→
g→0

0, which is particularly necessary for unsaturated signals. Figure 3 shows an example
where a biased network cannot reconstruct an unsaturated signal.

4.3 Masking

A key aspect of the threshold operator is that, by knowing the threshold levels, we can identify the unsatu-
rated, and therefore non-degraded, portion of the signal. While the measurement consistency loss encourages
the network to preserve the unsaturated part, it does not guarantee strict adherence to this constraint. To
address this limitation, we can enforce measurement consistency more rigorously by employing the follow-
ing masking method, comparable to a more structured skip connection architecture. The estimated signals
x̂ are computed using an element-wise linear blending between the outputs of the network fθ(y) and the
measurements, that is

x̂j = (1 − bj)yj + bjfθ(y)j . (13)

By choosing an appropriate blend value bj for all sample points or pixels, the blend works as a mask that
modifies only saturated measurements, avoiding artifacts in the unsaturated parts.

bj =
{

0 if |yj | < µ
1 if |yj | = µ

An example of an image and its associated mask is shown in Figure 4.
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Figure 3: An example where the reconstruction is learned through the bias (third column) which prevents
the reconstruction for low amplitude measurements. On the first row, we consider a signal x, on the second
row x

10 .

y The blending mask b

Figure 4: An image with its associated blending mask. The mask is white where a channel is saturated and
black when none is saturated.

5 Experiments

We begin by presenting experiments on toy datasets, where we can control the properties of the signal
set. The first experiment uses a dataset associated to a one-dimensional vector space that is invariant to
amplitude. The second experiment is performed using various datasets generated by sampling vectors from
random k-dimensional subspaces. To generate these datasets, we first control the dimension of the vector
space, followed by the saturation proportion for each sampled vector. The reconstruction is then evaluated
based on these varying parameters. Next, we conduct experiments on real-world music data, and we compare
our method to several state-of-the-art techniques. Finally, we conclude with experiments on two-dimensional
signals, where we aim to reconstruct HDR images.

5.1 Metrics

Two common metrics for evaluating the quality of reconstructions are the Signal-to-Distortion Ratio (SDR)
and Peak Signal-to-Noise Ratio (PSNR). PSNR is more suitable for image quality assessment, as it incorpo-
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rates a maximum possible pixel value, allowing for a clearer comparison of signal fidelity. SDR, on the other
hand, is generally applied to audio signals because it does not require knowledge of the maximum possible
value. Although we do not know this value for HDR images, we still use PSNR to provide a more relevant
comparison with other works. The PSNR and SDR metrics are defined as follows:

PSNR(x, x̂) = 20 log10

(
1

∥x − x̂∥2

)
, (14)

SDR(x, x̂) = 20 log10

(
∥x∥2

∥x − x̂∥2

)
. (15)

Both metrics are referred to as distortion metrics since they assess the fidelity of the reconstruction process.
In addition to distortion metrics, perception metrics could be used to evaluate the quality of the recon-
struction, offering a more accurate measure of how changes to a signal or image affect human perception.
In this work, we employ the widely adopted metric Perceptual Evaluation of Speech Quality (PESQ) to
evaluate audio signals. For image, we use the Natural Image Quality Evaluator (NIQE), a no-reference
(no ground-truth needed) metric that estimates image quality. While perceptual metrics are particularly
relevant for applications like music audio, where subjective experience plays a key role, they are less suitable
for signals where preserving critical information is essential, as they tend to permit greater hallucination -
introducing elements that were not part of the original signal, potentially compromising the accuracy of the
reconstruction. Blau & Michaeli (2018) study the impossibility of algorithms to optimize both perception
and distortion metrics, known as the perception-distortion tradeoff.

5.2 Toy datasets

5.2.1 MNIST experiment

In this example, we use a toy signal set, generated from a single signal and augmented with its scaled
versions, i.e. X =

{
ex0 : e ∈ R∗

+
}

for x0 fixed. In practice, we take an image x from MNIST and create
the dataset D = {eix0}Ni=1 with ei a realization of a random variable with exponential distribution of mean
2, for i ∈ {1, . . . , N}. This dataset has two interesting properties: it is scale invariant, and we cannot have
unique signal recovery as shown in Figure 5.

x1

x2

η(x1)

η(x2)

η(Ax1)

η(Ax2)

fθ
(
η(x1)

)

fθ
(
η(x2)

)

f
′
θ

(
η(Ax1)

)

f
′
θ

(
η(Ax2)

)

0

µ2

1

Figure 5: Example where two different signals x1,x2 have the same measurement η(x1), η(x2) and so the
network fθ fails to recover them both (the second and fourth columns). Adding randomness implies that
the two measurements are not equal anymore, and so a network f ′

θ can reconstruct the original signal (the
third and fifth columns).

Measurements are obtained by applying the forward function η(A·) with A an orthogonal matrix and thresh-
old levels µ1 = 0, µ2 = 0.4. The matrix A is drawn randomly with respect to the Haar measure (Mezzadri,
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2007). While Figure 5 shows that it is impossible without A to recover the original signals, adding ran-
domness in the forward operator solves this issue, as illustrated in Figure 1. Figure 6 shows that the neural
network trained using the loss function LMC + LEI successfully reconstructs images with a dynamic range
similar to the original images, whereas the network trained with LNMC + LEI as the loss function does not
achieve this. However, both fail when the dynamic range of the original signal becomes excessively high. For
signals with high dynamic range, characterized by a large norm ∥ · ∥2, the network is unable to recover them
as indicated in Theorem 1.
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Figure 6: Plot of the dynamic range of fθ(y) depending on dynamic range of x, where y = η(Ax). Left:
The training is done with the losses LNMC +LEI. Right: The training is done with loss LMC +LEI. A perfect
plot should be the identity line.

5.2.2 Synthetic dataset

First, we generate a random subspace of R100 with dimension k ∈ {1, . . . , 100} using basis vectors whose
coordinates are drawn from a standard normal distribution. Next, we generate N = 1000 vectors {xi}Ni=1
within this subspace, rescaling each vector such that a proportion v ∈ (0, 1) of their components are clipped
with the threshold µ set to 1.

We evaluate the recovery performance as a function of the parameters k and v. Figure 7 illustrates the
network’s ability to reconstruct unsaturated signals as these parameters vary. The performance decreases
as the subspace dimension grows or the proportion of saturated samples increases. Indeed, signals from
higher-dimensional subspaces are more challenging to reconstruct, which is consistent with the result of
Theorem 1.

5.3 Audio

We evaluate the method on a real audio dataset. Specifically, we use the GTZAN dataset, which contains
10 genres (rock, classical, jazz, etc.), each represented by 100 audio files, all 30 seconds long with a sampling
rate of 22,050 Hz. The audio signals are split into 30 segments of 1-second each and then saturated with a
threshold level µ = 0.1. Measurements y without any saturated entries are discarded. This process results
in a training dataset of 21898 audio samples and a testing dataset of 100 samples.

The distribution of pg is set uniformly on the interval [0.1, 2]. Results are compared with a state-of-the-
art variational method called social sparsity (Zaviska et al., 2021; Siedenburg et al., 2014) and supervised
methods. Both the supervised and self-supervised approaches use the same network architecture for training.
We refer to the method trained using only 5% of the whole training dataset as “Supervised 5%”, which is
used to compare the performance of the both approaches under limited ground-truth data acquisition. We
also compare our method with the following methods: unsupervised with loss LMC alone, supervised with
MSE + LEI. As shown in Table 1, the proposed self-supervised method achieves performance comparable
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Figure 7: Average reconstruction performance as a function of saturated part v and signal set dimension k
for both supervised (left) and self-supervised (right) methods. The value indicated corresponds to the mean
SDR over the test dataset.

to the fully supervised approach, although the latter requires significantly less training time: 7 hour 46
mintutes compared to 13 hours 52 mintutes for the self-supervised method. The results further confirm that
training with the MC loss alone does not yield additional information beyond the measurements themselves,
as anticipated in Section 4. In addition, the supervised method with equivariance does not demonstrate any
significant improvement over the standard supervised approach.

Table 1: Reconstruction performance, SDR and PESQ are averaged over all music test dataset.
Methods SDR ↑ PESQ ↓
Identity 4.84 ± 2.12 2.7 ± 0.65

Social Sparsity 9.92 ± 4.46 2.09 ± 0.95
Supervised 11.69 ± 2.25 1.94 ± 0.75

Supervised 5% 9.79 ± 1.59 2.28 ± 0.78
Supervised + LEI 11.72 ± 2.23 1.92 ± 0.74

Proposed self-supervised 10.48 ± 2.20 2.20 ± 0.80
Unsupervised with LMC alone 4.84 ± 2.12 2.68 ± 0.65

Proposed self-supervised with bias 9.27 ± 3.22 2.43 ± 0.90

To demonstrate that a supervised training dataset may not generalize well to a different test set, we conduct
the following experiment: we create a supervised training dataset consisting of only music, while the test
dataset includes both music and voice recordings (Vryzas et al., 2018a;b), with only measurement data
available (no ground truth). The supervised method, trained using the MSE loss (2), learns solely from the
training dataset, whereas the self-supervised method is trained on both the training and test datasets since
it does not require ground truth. Both methods are then evaluated on the test dataset. The results, shown
in Table 2, demonstrate that the self-supervised method is more robust when the training and test datasets
differ.

Table 2: Average SDR performance on the test dataset, which includes both music and voice recordings.
Methods SDR (dB)
Identity 6.54 ± 2.34

Supervised (trained on music) 10.94 ± 2.00
Proposed self-supervised (trained on music and voice) 11.92 ± 2.46

We also compare the self-supervised learning method to a supervised learning approach using diffusion mod-
els (Moliner et al., 2023). The comparison is conducted on a portion of the MAESTRO dataset (Hawthorne
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Table 3: Average SDR and PESQ performance on the test MAESTRO dataset.
Methods SDR ↑ PESQ ↓
Identity 5.00 ± 0 2.9 ± 0.73

Supervised 6.70 ± 1.69 2.22 ± 0.52
Proposed self-supervised 7.78 ± 8.64 2.47 ± 1.12

et al., 2019), used in Moliner’s work, which consists of 200 hours of classical solo piano recordings. The
measurement signals from Moliner et al. (2023) are used as a benchmark; although the saturation threshold
varies for each signal, it consistently corresponds to an SDR value of 5. Each signal is then normalized to
yield a saturation threshold of 0.1, while preserving a constant SDR of 5. This approach enables comparison
between the proposed method, based on a fixed saturation threshold, and Moliner’s trained method. Results
demonstrate that the self-supervised method outperforms the supervised one Table 3. It is important to
note that the proposed self-supervised method focuses on optimizing the distortion metric SDR, whereas
this supervised method aims to optimize a perceptual metric PESQ. Results are then consistent with the
perception-distortion tradeoff seen in Section 5.1.

5.4 HDR

x y x̂supervised x̂self-supervised

x y x̂supervised x̂self-supervised

Figure 8: Image reconstruction on the test dataset. An exposition correction (Wikipedia) is applied to see
details better.

The HDR experiment is inspired by Eilertsen et al. (2017), and its goal is to compare supervised and self-
supervised methods. Results are summarized in Table 4 and in Figure 8. The dataset is composed of 1043
HDR images noted u (Le et al., 2023), which are considered as real scenes. Photos are taken with a virtual
camera calibrated by a camera curve and exposure. For each image, we choose the exposure time to saturate
between 5% and 15% of the pixels. We divide the image by the quantile qv where v is chosen uniformly in
(0.85 , 0.95). Then we have P

(
u
qv
> 1
)

= 1 − v if P is the cumulative histogram of u. The camera curve is
defined as

ω(u)j = (1 + σ)
uβj

uβi + σ
,

We use these functions to fit the database of real camera curves collected by Grossberg & Nayar (2003).
We choose β ∼ N (0.9, 0.1) and σ ∼ N (0.6, 0.1). The images x = ω

(
u
qv

)
represent the ground truth

dataset. They are quantized and clipped to create the measurement dataset. This step is performed with
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Equation (16):

yj = ⌊255 min(1, xj) + 0.5⌋
255 . (16)

We use an unfolded network with a U-Net architecture. It combines traditional iterative optimization with
neural network learning. For each iteration, we replace a part of the optimization step with a neural network.
We choose the Half-Quadratic Splitting (HQS) (Aggarwal et al., 2018) algorithm which aims to minimize
φ(x) + λψ(x), for φ and ψ two generic functions. The iteration step is given by:

uk = proxγφ(xk),
xk+1 = proxσλψ(uk).

In our setting, φ corresponds to the measurement consistency term φ(x) = ∥ρ(x,y)∥2 and proxσλψ(uk) is
replaced by a neural network. The proximal operator of the measurement consistency term is given by:

proxγφ(x)j =
{ xj+γyj

1+γ if |xj | ≤ µ,

xj otherwise

for j ∈ {1, . . . , n}.

Table 4: Reconstruction performance, PSNR is averaged over all test dataset images.
Methods PSNR ↑ NIQE ↓
Identity 29.54 ± 6.95 4.21 ± 1.96

PnP DPIR 32.11 ± 5.80 4.06 ± 1.93
Supervised 36.67 ± 6.19 4.04 ± 1.74

Proposed self-supervised 35.04 ± 6.33 4.10 ± 1.85

In Table 4, we compare our method against two reference approaches: the supervised method from Eilertsen
et al. (2017) and the Plug-and-Play (PnP) method (Venkatakrishnan et al., 2013). The PnP method is an
iterative technique that integrates a denoising module into the optimization process, replacing the proximal
operator. We used the Deep Plug-and-Play Image Restoration (DPIR) method (Zhang et al., 2021), a PnP
approach based on HQS in which the denoising network is a pre-trained DRUNet, and the noise level for
the denoiser is adapted at each iteration. For better results, we modified the initialization of the algorithm
– which is generally set to y – by adding a white Gaussian noise of standard deviation σ = 0.18, which
we found to better avoid local minima close to y. In this way, DPIR outperforms the other PnP methods
tested. Results in Table 4, demonstrate that the self-supervised method performs on par with the supervised
method and significantly outperforms the DPIR approach. As illustrated in Figure 8, both the supervised
and self-supervised methods effectively recover details in the images.

6 Conclusion

In this study, we propose a self-supervised method that uses amplitude invariance to address the nonlinear
declipping problem. We provide a theoretical framework with guarantees for model identification of scale
invariant signal models and unique recovery of the unsaturated signals when the operator involves random
matrices with coefficients following a Gaussian distribution. Experimental results, carried out on audio and
images, indicate that this method can perform on par with the supervised approach, and surpasses variational
methods. This work opens up new possibilities for learning-based methods in nonlinear inverse problems.
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A Appendix: Proof of Thm 1

We recall that the idea of the proof is to upper-bound two probabilities: (i) the probability that the number
of common unsaturated measurements is small; (ii) the probability that two signals have the same common
unsaturated measurements given that the number of saturated measurements is low. Before we begin, we
need to introduce some tools of linear embedding. Theorem 2 allows us to prove Corollary 2.1 used to control
the first targeted probability. Theorem 3 is used to control the second one. We also recall the Hoeffding
inequality for sub-Gaussian random variables, which we will use to verify an assumption for Theorem 2.
Lemma 1. Hoeffding inequality. Let X1, . . . , Xm be independent random variables, where Xi has mean
µi and is σi-sub-Gaussian. Then for all t ≥ 0 we have

P
( ∣∣∣∣∣

m∑
i=0

Xi − µi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2
m∑
i=0

σ2
i

)
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Theorem 2. This theorem is adapted from Puy et al. (2017, Theorem II.2).
Let us assume that the normalized set SX has a finite upper box-counting dimension dim(SX ) which is strictly
bounded by k ≥ 1 i.e. dim(SX ) < k, and so there exists a signal set dependent constant ϵ∗ ∈

(
0, 1

2
)

such that
NSX (ϵ) ≤ ϵ−k for all ϵ ≤ ϵ∗. Let A : Rn → Rm such that Aij ∼ N

(
0, 1

m

)
. Then there exists c1 > 0 such

that, for any ξ, δ ∈ (0, 1), we have sup
x∈SX

|c∥Ax∥1 − 1| ≤ δ with probability at least 1 − ξ provided that

m ≥ C1

c1δ2 max
(
k log

(
1
ϵ∗

)
, log

(
6
ξ

))
,

where C1 is an absolute constant.

The proof of Theorem 2 closely follows that of Puy et al. (2017, Theorem II.2), which uses a general chaining
argument. For more detail see Vershynin (2018, Chapter 8). We still need to prove the following lemma:
Lemma 2. Let c > 0 and h define as

h : Rn → R
x 7→ c∥Ax∥1 − ∥x∥2.

Then there exist a constant c1 ∈ R+ such that for any fixed u,v ∈ SX ∪ {0},

P (|h(u) − h(v)| ≥ λ∥u − v∥) ≤ 2e−c1mλ
2

∀λ ∈ R+.

Proof. We consider h : x 7→ c∥Ax∥1 − ∥x∥2 with c > 0. Restricted to SX , we have h : x 7→ c∥Ax∥1 − 1.
P (|h(u) − h(v)| ≥ λ∥u − v∥) (17)

= P(c|∥Au∥1 − ∥Av∥1| ≥ λ∥u − v∥)

= P

(
c

∣∣∣∣∣
m∑
i=0

|a⊤
i u| − |a⊤

i v|

∣∣∣∣∣ ≥ λ∥u − v∥

)
. (18)

We note Xi = |a⊤
i u| − |a⊤

i v|. Let’s show that Xi is sub-Gaussian: For all q ∈ N and for all i ∈ {1, . . . ,m},

E [|Xi|q] = E
[∣∣|a⊤

i u| − |a⊤
i v|
∣∣q] ≤ E[|a⊤

i (u − v)|q]

by the reverse triangle inequality. As

a⊤
i (u − v) ∼ N

(
0, ∥u − v∥2

2
m

)
,

a⊤
i (u − v) is Gaussian and thus Xi is also sub-Gaussian with parameter σ2

i ≤ ∥u−v∥2
2

m . We can therefore
apply the Lemma 1:

P

(
c

∣∣∣∣∣
m∑
i=0

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2c2
m∑
i=0

σ2
i

)

and thus give an upper bound of Equation (18):
P(|h(u)−h(v)| ≥ λ∥u − v∥)

≤ 2 exp
(

− (λ∥u − v∥)2

2c2
m∑
i=0

σ2
i

)

≤ 2 exp
(

− (λ∥u − v∥)2

2c2
m∑
i=0

∥u−v∥2
2

m

)

≤ 2 exp
(

− λ2

2c2

)
= 2 exp

(
−mc1λ

2).
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We conclude the proof with c1 = 1
2mc2 .

Corollary 2.1. Under assumptions of Theorem 2, we have for all m ≥ k log
(

1
ϵ∗

)
:

P
(
∀x ∈ X : ∥Ax∥1 ≤

√
m∥x∥2

)
> 1 − 6e−Cm.

Proof. By applying Theorem 2 for c = 2√
m

we deduce that with c1 = 1
2mc2 = 1

8 , for any ξ, δ ∈ (0, 1), we have
with probability 1 − ξ,

∀z ∈ SX ,

∣∣∣∣ 2√
m

∥Az∥1 − 1
∣∣∣∣ ≤ δ (19)

as long as

m ≥ C1

c1δ2 max
(
k log

(
1
ϵ∗

)
, log

(
6
ξ

))
.

For all x ∈ X , we obtain by replacing z by x
∥x∥ in Equation (19),

∥Ax∥1 ≤ (δ + 1)
√
m

2 ∥x∥2 (20)

provided that

m ≥ 8C1

δ2 max
(
k log

(
1
ϵ∗

)
, log

(
6
ξ

))
.

By setting C = 1
8C1

, δ = 1 and ξ = 6 exp
(

− Cm
)
, we can verify that the last inequality holds for all

m ≥ k log
(

1
ϵ∗

)
and thus:

P
(
∀x ∈ X : ∥Ax∥1 ≤

√
m∥x∥2

)
> 1 − 6e−Cm.

Theorem 3. Adapted from Robinson (2010, Thm. 4.3) Let a compact set X with finite upper box-counting
dimension dim(X ) < k and A ∈ Rm×n such that Aij ∼ N

(
0, 1

m

)
. If m > 2k then

P (Ax = Au for some x ̸= u ∈ X ) = 0

Note that Robinson’s theorem states that almost every linear map L : RN → Rk (for m > 2k) embeds X
injectively with Hölder distortion |x − y| ≤ C|Lx −Ly|α. By considering the definition of “almost every” in
the sense of measure, we can say that the set of non-injective linear maps has zero measure, and therefore
zero probability.

For the rest of the proof, we will consider

XR = X ∩ B∥.∥2

(
0,

√
mµα

)
with R =

√
mµα and α > 0 to be define latter. We define

Isat(y) = {j : |yj | ≥ µ}
Isat(y) = {j : |yj | < µ}

as the sets of the index of respectively unsaturated and saturated entries of y. We note AI the matrix
represents the row-submatrix of A where only the rows indexed by I are selected.
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Let IA
x,u = Isat(Ax) ∩ Isat(Au) be the intersection of the unsaturated index sets of Ax and Au. Using the

law of total probability we can decompose the probability of Theorem 1 into the two target probabilities.
By considering:

A =
{

∃x,u ∈ XR,x ̸= u : AIA
x,ux = AIA

x,uu
}

B =
{

∀x,u ∈ XR,x ̸= u :
∣∣IA

x,u

∣∣ > (1 − 2α)m
}

where A is the set of events where there exists two signals having the same common unsaturated mea-
surements, B is the set of events where the number of common unsaturated measurements is greater than
(1 − 2α)m for all couple of signals. And taking it into the law of total probability:

P (A) = P (A ∩ B) + P
(
A ∩ B̄

)
= P (A | B) × P (B) + P

(
A | B̄

)
× P

(
B̄
)

≤ P (A | B) + P
(
B̄
)

(21)

as we have that P (B) < 1 and P
(
A|B̄

)
< 1.

P (A | B) and P
(
B̄
)

are respectively the probability that two signals have the same common unsaturated
measurements given that the number of saturated measurements is low, and the probability there exist two
distinct signals whose the number of common unsaturated measurements is low. Next, we upper-bound
separately the two terms P (A | B) and P

(
B̄
)
. We start with the first one:

P
(
A | B

)
= P

({
∃x,u ∈ XR,x ̸= u : AIA

x,ux = AIA
x,uu

}∣∣∣∣∣
{

∀x,u ∈ XR,x ̸= u : |IA
x,u| > (1 − 2α)m

})
≤ P

(
∃ I ⊂ J0 : mK, |I| > (1 − 2α)m, ∃x,u ∈ XR,x ̸= u : AIx = AIu

)
.

And because of X is a cone, we have (Robinson, 2010):

dim(XR) ≤ dim(X ∩ S) + 1 = dim(SX ) + 1 < k + 1

We thus have, as long as (1 − 2α)m > 2(k + 1), and thanks to Theorem 3:

P
(
∃ I ⊂ J0 : mK, |I| > (1 − 2α)m, ∃x,u ∈ XR,x ̸= u : AIx = AIu

)
= 0 (22)

And so the first right-hand side term of Equation (21) is equals 0.

From (1 − 2α)m > 2(k+ 1) which imposes α < 1
2 − k+1

m , we can fix α and therefore fix R <
√
mµ

( 1
2 − k+1

m

)
.

We also note as α > 0, we necessarily have 2(k + 1) < m.
We can now upper-bound the second term appearing in Equation (21):

P
(
∃x,u ∈ XR,x ̸= u :

∣∣IA
x,u

∣∣ ≤ (1 − 2α)m
)
.

By observing that for two set I and J of {1, . . . ,m} with |I ∩J | ≤ (1−2α)m, this means that
∣∣Ī ∪ J̄

∣∣ > 2αm,
which implies that either

∣∣Ī∣∣ > αm or
∣∣J̄∣∣ > αm (since otherwise the union has size < 2αm), therefore

|I| ≤ (1 − α)m or |J | ≤ (1 − α)m, we can deduce:∣∣IA
x,u

∣∣ ≤ (1 − 2α)m
⇔
∣∣Isat(Ax) ∩ Isat(Au)

∣∣ ≤ (1 − 2α)m

⇒

or

∣∣Isat(Ax)
∣∣ ≤

⌊
m+(1−2α)m

2

⌋
≤ (1 − α)m

∣∣Isat(Au)
∣∣ ≤

⌊
m+(1−2α)m

2

⌋
≤ (1 − α)m
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we have

P
(
∃x,u ∈ XR,x ̸= u : |IA

x,u| ≤ (1 − 2α)m
)

≤ P
({

∃x ∈ XR :
∣∣Isat(Ax)

∣∣ ≤ (1 − α)m
}

∪
{

∃u ∈ XR :
∣∣Isat(Au)

∣∣ ≤ (1 − α)m
})

≤ 2P
(
∃x ∈ XR :

∣∣Isat(Ax)
∣∣ ≤ (1 − α)m

)
and if we remark that

∥Ax∥1 =
m∑
i=1

|a⊤
ix| ≥

∑
i∈Isat(Ax)

|a⊤
ix| ≥

∑
i∈Isat(Ax)

µ

we obtain
∥Ax∥1 ≥ |Isat(Ax)|µ.

Thanks to Corollary 2.1 we know that with probability at least 1 − 6e−Cm,

∥Ax∥1 ≤
√
m∥x∥2 ≤ mαµ.

We deduce from these two last inequalities

|Isat(Ax)|µ ≤ mαµ

m−
∣∣Isat(Ax)

∣∣ ≤ mα

(1 − α)m ≤
∣∣Isat(Ax)

∣∣ .
And thus

P
(
∃x ∈ XR :

∣∣Isat(Ax)
∣∣ ≤ (1 − α)m

)
≤ 6e−Cm

as long as
m ≥ k log

(
1
ϵ∗

)
.

Finally,
P
(
B̄
)

≤ 12e−Cm. (23)

we conclude by adding the upper-bound obtain in Equation (22) and Equation (23):

P (∃x,u ∈ XR,x ̸= u : η(Ax) = η (Au)) ≤ P
(

∃x,u ∈ XR,x ̸= u : AIA
x,ux = AIA

x,uu
)

≤ P (A | B) + P
(
B̄
)

≤ 0 + 12e−Cm.
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B Appendix: Hyperparameters and training details

Table 5: Hyperparameters for different experiments.
Section λ pg Architecture Learning rate Epochs Batch size
Section 5.2.1 1 U(0.1, 2) Bias-free U-Net, 4 down +

4 up blocks
5e−4 300 50

Section 5.2.2 1 U(0.5, 1.5) MLP, input size 100, hid-
den size 100, depth 5

1e−4 300 100

Section 5.3 0.1 U(0.1, 2.0) Bias-free U-Net, 5 down +
5 up blocks

5e−4 100 35

Section 5.4 0.1 U(0.2, 1.5) Bias-free U-Net, 4 down +
4 up blocks

5e−5 400 12

0 10 20 30 40 50 60 70 80 90 100
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Figure 9: SDR performance on the evaluation dataset during training for supervised and self-supervised
methods.
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