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ABSTRACT

Restoring facial details from low-quality (LQ) images has remained challenging
due to the nature of the problem caused by various degradations in the wild. The
codebook prior has been proposed to address the ill-posed problems by leveraging
an autoencoder and learned codebook of high-quality (HQ) features, achieving
remarkable quality. However, existing approaches in this paradigm frequently
depend on a single encoder pre-trained on HQ data for restoring HQ images,
disregarding the domain gap and distinct feature representations between LQ and
HQ images. As a result, encoding LQ inputs with the same encoder could be
insufficient, resulting in imprecise feature representation and leading to suboptimal
performance. To tackle this problem, we propose a novel dual-branch framework
named DAEFR. Our method introduces an auxiliary LQ branch that extracts domain-
specific information from the LQ inputs. Additionally, we incorporate association
training to promote effective synergy between the two branches, enhancing code
prediction and restoration quality. We evaluate the effectiveness of DAEFR on
both synthetic and real-world datasets, demonstrating its superior performance in
restoring facial details. Project page: https://liagm.github.io/DAEFR/.

1 INTRODUCTION

Blind face restoration presents a formidable challenge as it entails restoring facial images that are
degraded by complex and unknown sources of degradation. This degradation process often results
in the loss of valuable information. It introduces a significant domain gap, making it arduous to
restore the facial image to its original quality with high accuracy. The task itself is inherently ill-
posed, and prior works rely on leveraging different priors to enhance the performance of restoration
algorithms. Notably, the codebook prior emerges as a promising solution, showcasing its effectiveness
in generating satisfactory results within such challenging scenarios. By incorporating a codebook
prior, these approaches demonstrate improved performance in blind face restoration tasks.

Existing codebook methods (Zhou et al., 2022; Gu et al., 2022; Wang et al., 2022b) address the
inclusion of low-quality (LQ) images by adjusting the encoder, which is pre-trained on high-quality
(HQ) data, as depicted in Fig. 1(a). However, this approach introduces domain bias due to a
domain gap and overlooks the distinct feature representations between the encoder and LQ images.
Consequently, employing the pre-trained encoder to encode LQ information may potentially result
in imprecise feature representation and lead to suboptimal performance in the restoration process.
Furthermore, these approaches neglect the LQ domain’s inherent visual characteristics and statistical
properties, which provide valuable information for enhancing the restoration process.

To overcome these limitations, we present a novel framework called DAEFR, which incorporates
a dedicated auxiliary branch for LQ information encoding (Fig. 1(b)). This auxiliary branch is
exclusively trained on LQ data, alleviating domain bias and acquiring a precise feature representation
of the LQ domain. By integrating the auxiliary branch into our framework, we effectively harness the
enhanced LQ representation of identity and content information from the original LQ images, which
can supplement the lost information. DAEFR utilizes both HQ and auxiliary LQ encoders to capture
domain-specific information, thereby enhancing the representation of image content.

The core idea of our method is to effectively fuse visual information from two branches. If we
naively combine the HQ and LQ features, the existing domain gap causes misalignment in feature
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(a) Framework of existing methods (b) Our proposed framework

Association

Figure 1: Comparison to existing framework. (a) Existing codebook prior approaches learn an
encoder in the first stage. During the restoration stage, these approaches utilize LQ images to fine-tune
the encoder using pre-trained weights obtained from HQ images. However, this approach introduces
a domain bias due to a domain gap and overlooks the distinct feature representations between the
encoder and LQ input images. (b) In the codebook learning stage, we propose the integration of
an auxiliary branch specifically designed for encoding LQ information. This auxiliary branch is
trained exclusively using LQ data to address domain bias and obtain precise feature representation.
Furthermore, we introduce an association stage and feature fusion module to enhance the integration
of information from both encoders and assist our restoration pipeline.
representation, rendering them challenging to utilize effectively. Similar to CLIP (Radford et al.,
2021), we incorporate an association stage after extracting features from both branches. This stage
aligns the features to a shared domain, effectively bridging the gap between LQ and HQ features and
facilitating a more comprehensive and integrated representation of feature information. To ensure the
effective fusion of information, we employ a multi-head cross-attention module after acquiring the
associated encoders that can adequately represent both the HQ and LQ domains. This module enables
us to merge the features from these associated encoders and generate fused features. Through the
fusion process, where the features from the associated encoders are combined with the LQ domain
information, our approach effectively mitigates the challenges of domain gap and information loss
and leverages the complementary aspects of the HQ and LQ domains, leading to improved restoration
results. The main contributions of this work are:

• We introduce an auxiliary LQ encoder to construct a more precise feature representation that adeptly
captures the unique visual characteristics and statistical properties inherent to the LQ domain.

• By incorporating information from a hybrid domain, our association and feature fusion methods
effectively use the representation from the LQ domain and address the challenge of domain gap
and information loss in image restoration, resulting in enhanced outcomes.

• We propose a novel approach, DAEFR, to address the challenging face restoration problem under
severe degradation. We evaluate our method with extensive experiments and ablation studies and
demonstrate its effectiveness with superior quantitative and qualitative performances.

2 RELATED WORK

Face Restoration. Blind face restoration techniques commonly exploit the structured characteristics
of facial features and incorporate geometric priors to achieve desirable outcomes. Numerous methods
propose the use of facial landmarks (Chen et al., 2018; Kim et al., 2019; Ma et al., 2020; Zhang & Wu,
2022), face parsing maps (Chen et al., 2021; Shen et al., 2018; Yang et al., 2020), facial component
heatmaps (Wang et al., 2019; Chen et al., 2021; 2020; Kalarot et al., 2020), or 3D shapes (Hu et al.,
2020; Ren et al., 2019; Zhu et al., 2022; Hu et al., 2021). However, accurately acquiring prior
information from degraded faces poses a significant challenge, and relying solely on geometric priors
may not yield adequate details for HQ face restoration.

Various reference-based methods have been developed to address these limitations (Dogan et al.,
2019; Li et al., 2020; 2018). These methods typically rely on having reference images that share
the same identity as the degraded input face. However, obtaining such reference images is often
impractical or not readily available. Other approaches, such as DFDNet (Li et al., 2020), construct
HQ facial component features dictionaries. However, these component-specific dictionaries may lack
the necessary information to restore certain facial regions, such as skin and hair.
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To address this issue, approaches utilize generative facial priors from pre-trained generators, such as
StyleGAN2 (Karras et al., 2019). These priors are employed through iterative latent optimization
for GAN inversion (Gu et al., 2020; Menon et al., 2020) or direct latent encoding of degraded
faces (Richardson et al., 2021). However, preserving high fidelity in the restored faces becomes
challenging when projecting degraded faces into the continuous infinite latent space.

On the other hand, GLEAN (Chan et al., 2021; 2022), GPEN (Yang et al., 2021), GFPGAN (Wang
et al., 2021), GCFSR (He et al., 2022), and Panini-Net (Wang et al., 2022a) incorporate generative
priors into encoder-decoder models, utilizing additional structural information from input images as
guidance. Although these methods improve fidelity, they heavily rely on the guidance of the inputs,
which can introduce artifacts when the images are severely corrupted.

Most recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have been developed
for generating HQ content. Several approaches (Yue & Loy, 2022; Wang et al., 2023) exploit the
effectiveness of the diffusion prior to restore LQ face images. However, these methods do not preserve
the identity information present in the LQ images well.
Vector Quantized Codebook Prior. A vector-quantized codebook is introduced in the VQ-VAE
framework (Van Den Oord et al., 2017). Unlike continuous outputs, the encoder network in this
approach generates discrete outputs, and the codebook prior is learned rather than static. Subsequent
research proposes various enhancements to codebook learning. VQVAE2 (Razavi et al., 2019)
introduces a multi-scale codebook to improve image generation capabilities. On the other hand,
VQGAN (Esser et al., 2021) trains the codebook using an adversarial objective, enabling the codebook
to achieve high perceptual quality.

Recently, codebook-based methods (Wang et al., 2022b; Gu et al., 2022; Zhou et al., 2022; Zhao et al.,
2022) explore the use of learned HQ dictionaries or codebooks that contain more generic and detailed
information for face restoration. CodeFormer (Zhou et al., 2022) employs a transformer to establish
the appropriate mapping between LQ features and code indices. Subsequently, it uses the code index
to retrieve the corresponding feature in the codebook for image restoration. RestoreFormer (Wang
et al., 2022b) and VQFR (Gu et al., 2022) attempt to directly incorporate LQ information with the
codebook information based on the codebook prior. However, these methods may encounter severe
degradation limitations, as the LQ information can negatively impact the HQ information derived
from the codebook.

3 METHOD

Our primary objective is to mitigate the domain gap and information loss that emerge while restoring
HQ images from LQ images. This challenge has a substantial impact on the accuracy and effectiveness
of the restoration process. To address this issue, we propose an innovative framework with an auxiliary
LQ encoder incorporating domain-specific information from the LQ domain. Furthermore, we utilize
feature association techniques between the HQ and LQ encoders to enhance restoration.

In our framework, we first create discrete codebooks for both the HQ and LQ domains and utilize
vector quantization (Esser et al., 2021; Van Den Oord et al., 2017) to train a quantized autoencoder
via self-reconstruction (Sec. 3.1). Then, we introduce a feature association technique in a way
similar to the CLIP model (Radford et al., 2021) to associate two encoders and aim to reduce the
domain gap between the two domains (Sec. 3.2). In the next stage, a feature fusion module is trained
using a multi-head cross-attention (MHCA) technique to combine the features extracted from the two
associated encoders (EA

H and EA
L ). We employ the transformer to perform the code prediction process

using the integrated information from both encoders, which predicts the relevant code elements in the
HQ codebook. Subsequently, the decoder utilizes the restored code features to generate HQ images
(Sec. 3.3). Our framework is illustrated in Fig. 2.

3.1 DISCRETE CODEBOOK LEARNING STAGE

Similar to VQGAN (Esser et al., 2021), our approach involves encoding domain-specific information
through an autoencoder and codebook, enabling the capture of domain characteristics during the
training phase. Both HQ and LQ paths are trained using the same settings to ensure consistency in
feature representation. Here, we present the HQ reconstruction path as an illustrative example, noting
that the LQ reconstruction path follows an identical procedure.
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Figure 2: Proposed DAEFR framework. (a) Initially, we train the autoencoder and discrete
codebook for both HQ and LQ image domains through self-reconstruction. (b) Once we obtain
both encoders (EH and EL), we divide the feature (Zh and Zl) into patches (PH

i and PL
i ) and

construct a similarity matrix Massoc that associates HQ and LQ features while incorporating spatial
information. To promote maximum similarity between patch features, we employ a cross-entropy
loss function to maximize the diagonal of the matrix. (c) After obtaining the associated encoders
(EA

H and EA
L ), we use a multi-head cross-attention module (MHCA) to merge the features (ZA

h and
ZA
l ) from the associated encoders, generating fused features ZA

f . We then input the fused feature
ZA
f to the transformer T, which predicts the corresponding code index s for the HQ codebook Ch.

Finally, we use the predicted code index to retrieve the features and feed them to the HQ decoder DH

to restore the image.

The process shown in Fig. 2(a) involves the encoding of the HQ face image Ih ∈ RH×W×3 into
a compressed feature Zh ∈ Rm×n×d by the encoder EH . This step is carried out by replacing
each feature vector of Zh with the nearest code item in the learnable codebook Ch = ck ∈ RdN−1

k=0 .
Consequently, we obtain the quantized feature Zc

h ∈ Rm×n×d:

Z
c(i,j)
h = arg min

ck∈Ch

∥Z(i,j)
h − ck∥2, k ∈ [0, ..., N − 1], (1)

where Z
c(i,j)
h and Z

(i,j)
h are the feature vectors on the position (i, j) of Zc

h and Zh. ∥ · ∥2 is the
L2-norm. After obtaining the quantized feature Zc

h, the decoder DH then proceeds to reconstruct the
HQ face image I rec

h ∈ RH×W×3 using Zc
h.

Training Objectives. Similar to the prior arts (Gu et al., 2022; Zhou et al., 2022; Wang et al., 2022b;
Esser et al., 2021) setting, We incorporate four distinct losses for training, which includes three
image-level reconstruction losses (i.e., L1 loss L1, perceptual loss Lper (Zhang et al., 2018; Johnson
et al., 2016), and adversarial loss Ladv (Isola et al., 2017)) and one code-level loss Lcode (Esser et al.,
2021; Van Den Oord et al., 2017):

L1 = ∥Ih − I rec
h ∥1, Lper = ∥Φ(Ih)− Φ(I rec

h )∥22, Ladv = [logD(Ih) + log(1−D(I rec
h ))],

Lcode = ∥sg(Zh)− Zc
h∥22 + β∥Zh − sg(Zc

h)∥22,
(2)

where the feature extractor of VGG19 (Simonyan & Zisserman, 2014) is represented by Φ, D is a
patch-based discriminator (Isola et al., 2017), and sg(·) denotes the stop-gradient operator. The value
of β is set at 0.25. The final loss Lcodebook is:

Lcodebook = L1 + λper · Lper + λadv · Ladv + Lcode, (3)

where we set λper = 1.0 and λadv = 0.8 in our setting.
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3.2 ASSOCIATION STAGE

In this work, we reduce the domain gap between the HQ and LQ domains, allowing the two encoders
to encompass a greater range of information from both domains. Once we obtain the domain encoders
from the codebook learning stage, we take inspiration from the CLIP model (Radford et al., 2021)
and propose a feature patch association algorithm. This technique involves applying the feature
patch association on the output from the two encoders. By utilizing this approach, we aim to further
minimize the domain gap between the HQ and LQ domains.

As shown in Fig. 2(b), after obtaining the HQ and LQ domain encoder (EH and EL) from the
previous stage, we proceed to flatten the output features (Zh and Zl ∈ Rm×n×d) into corresponding
patches (PH

i and PL
i , i ∈ [1, ...,m× n]). This flattening enables us to construct a similarity matrix

(Massoc ∈ RN×N , N = m × n), which we use to quantify the similarity between different patch
features. Specifically, we calculate the cosine similarity for each patch feature and constrain them
to maximize the similarity along the diagonal of the matrix. By applying this constraint, the two
encoders are prompted to connect patch features close in both spatial location and feature level,
preserving their spatial relationship throughout the association process. Combining the patch features
from both encoders results in two associated encoders, denoted as EA

H and EA
L , that integrate specific

domain information, which will be utilized in the subsequent stage.
Training Objectives. We perform joint training on the HQ and LQ reconstruction paths, incorpo-
rating the association part. To facilitate the feature association process, we adopt the cross-entropy
loss (LH

CE and LL
CE) to effectively constrain the similarity matrix Massoc:

LH
CE = − 1

N

N∑
i=1

C∑
j=1

yi,j log(p
h
i,j), LL

CE = − 1

N

N∑
i=1

C∑
j=1

yi,j log(p
l
i,j), (4)

where N denotes the patch size, and C represents the number of classes, which, in our specific case,
is equal to N . The ground truth label is denoted as yi,j , whereas the cosine similarity score in the
similarity matrix Massoc in the HQ axis is represented as phi,j . Conversely, the score in the LQ axis is
defined as pli,j . The final objective of the feature association part is:

Lassoc = L1 + λper · Lper + λadv · Ladv + Lcode + (LH
CE + LL

CE)/2, (5)

where we integrate the same losses and weights used in the codebook learning stage to maintain the
representation of features.

3.3 FEATURE FUSION & CODE PREDICTION STAGE

After obtaining the two associated encoders EA
H and EA

L from the feature association stage, we use
both encoders to encode the LQ image Il, as shown in Fig. 2(c). Specifically, we extract feature
information ZA

h ∈ Rm×n×d and ZA
l ∈ Rm×n×d from the LQ image Il using each encoder EA

H

and EA
L , separately. Similar to (Vaswani et al., 2017; Wang et al., 2022b), we use a multi-head

cross-attention (MHCA) module to merge the feature information from both encoders and generate a
fused feature ZA

f ∈ Rm×n×d that incorporates the LQ domain information. This fused feature ZA
f

is expected to contain useful information from both HQ and LQ domains: ZA
f = MHCA(ZA

h , ZA
l ).

The MHCA mechanism lets the module focus on different aspects of the feature space and better
capture the relevant information from both encoders.

Once the fused feature ZA
f is obtained using the feature fusion technique with MHCA, we utilize

a transformer-based classification approach (Zhou et al., 2022), to predict the corresponding class
as code index s. Initially, we flatten the fused feature ZA

f ∈ Rm×n×d as ẐA
f ∈ R(m·n)×d and

input the flattened fused feature ẐA
f into the transformer and obtain the predicted code index s ∈

{0, · · · , N − 1}m·n. During this process, the HQ codebook Ch and HQ decoder DH from the
codebook learning stage are frozen. We then use the predicted code index s to locate the corresponding
feature in the HQ codebook Ch and feed the resulting feature Zc

f to the decoder DH to generate
HQ images Ires, as depicted in Fig. 2(c). This step efficiently enhances the image restoration by
incorporating information from the hybrid domain.
Training Objectives. We utilize two losses to train the MHCA and transformer module effectively
to ensure proper feature fusion and code index prediction learning. The first loss is an L2 loss Lfeat

code,
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which encourages the fused feature ZA
f to closely resemble the quantized feature Zc

h from the HQ
codebook Ch. This loss helps ensure that the features are properly combined and maintains the
relevant information from both the HQ and LQ domains. The second loss is a cross-entropy loss
Lindex

code for code index prediction, enabling the model to accurately predict the corresponding code
index s in the HQ codebook Ch.

Lfeat
code = ∥ZA

f − sg(Zc
h)∥22, Lindex

code =

mn−1∑
i=0

−ŝi log(si), (6)

where we obtain the ground truth feature Zc
h and code index ŝ from the codebook learning stage,

which we retrieve the quantized feature Zc
h from the HQ codebook Ch using the code index ŝ. The

final objective of the feature fusion and code prediction is:

Lpredict = λfeat · Lfeat
code + Lindex

code , (7)
where we set the L2 loss weight λfeat = 10 in our experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. In our implementation, the size of the input face image is 512 × 512 × 3,
and the size of the quantized feature is 16 × 16 × 256. The codebooks contain N = 1,024 code items,
and the channel of each item is 256. Throughout the entire training process, we employ the Adam
optimizer (Kingma & Ba, 2014) with a batch size 32 and set the learning rate to 1.44 × 10−4. The
HQ and LQ reconstruction codebook priors are trained for 700K and 400K iterations, respectively,
and the feature association part is trained for 70K iterations. Finally, the feature fusion and code
prediction stage is trained for 100K iterations. The proposed method is implemented in Pytorch and
trained with eight NVIDIA Tesla A100 GPUs.
Training Dataset. We train our model on the FFHQ dataset (Karras et al., 2019), which contains
70,000 high-quality face images. For training, we resize all images from 1024 × 1024 to 512 × 512.
To generate the paired data, we synthesize the degraded images on the FFHQ dataset using the same
procedure as the compared methods (Li et al., 2018; 2020; Wang et al., 2021; 2022b; Gu et al., 2022;
Zhou et al., 2022). First, the HQ image Ihigh is blurred (convolution operator ⊗) by a Gaussian kernel
kσ. Subsequently, a downsampling operation ↓ with a scaling factor r is performed to reduce the
image’s resolution. Next, additive Gaussian noise nδ is added to the downsampled image. JPEG
compression with a quality factor q is applied to further degrade image quality. The resulting image
is then upsampled ↑ with a scaling factor r to a resolution of 512 × 512 to obtain the degraded Ilow
image. In our experiment setting, we randomly sample σ, r, δ, and q from [0.1, 15], [0.8, 30], [0, 20],
and [30, 100], respectively. The procedure can be formulated as follows:

Ilow = {[(Ihigh ⊗ kσ) ↓r + nδ] JPEGq} ↑r. (8)

Testing Dataset. Our evaluation follows the settings in prior literature (Wang et al., 2022b; Gu
et al., 2022; Zhou et al., 2022), and includes four datasets: the synthetic dataset CelebA-Test and
three real-world datasets, namely, LFW-Test, WIDER-Test, and BRIAR-Test. CelebA-Test comprises
3,000 images selected from the CelebA-HQ testing partition (Karras et al., 2018). LFW-Test consists
of 1,711 images representing the first image of each identity in the validation part of the LFW
dataset (Huang et al., 2008). Zhou et al. (Zhou et al., 2022) collected the WIDER-Test from the
WIDER Face dataset (Yang et al., 2016), which comprises 970 face images. Lastly, the BRIAR-Test
contains 2,120 face images selected from the BRIAR dataset (Cornett et al., 2023). The BRIAR-Test
dataset provides a wider range of challenging and diverse degradation levels that enable the evaluation
of the generalization and robustness of face restoration methods (All subjects shown in the paper
have consented to publication.).
Metrics. In evaluating our method’s performance on the CelebA-Test dataset with ground truth, we
employ PSNR, SSIM, and LPIPS (Zhang et al., 2018) as evaluation metrics. We utilize the commonly
used non-reference perceptual metrics, FID (Heusel et al., 2017) and NIQE (Mittal et al., 2012) to
evaluate real-world datasets without ground truth. Similar to prior work (Gu et al., 2022; Wang et al.,
2022b; Zhou et al., 2022), we measure the identity of the generated images by using the embedding
angle of ArcFace (Deng et al., 2019), referred to as “IDA”. To better measure the fidelity of generated
facial images with accurate facial positions and expressions, we additionally adopt landmark distance
(LMD) as the fidelity metric.
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Table 1: Quantitative comparisons. Red and blue indicate the best and second-best, respectively.
(a) Real-world datasets.

Dataset LFW-Test WIDER-Test BRIAR-Test
Methods FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓
Input 137.587 11.003 199.972 13.498 201.061 10.784
PSFRGAN 49.551 4.094 49.857 4.033 196.774 3.979
GFP-GAN 50.057 3.966 39.730 3.885 97.360 5.281
GPEN 51.942 3.902 46.359 4.104 91.653 5.166
RestoreFormer 48.412 4.168 49.839 3.894 107.654 5.064
CodeFormer 52.350 4.482 38.798 4.164 98.134 5.018
VQFR 50.712 3.589 44.158 3.054 92.072 4.970
DR2 46.550 5.150 45.726 5.188 96.968 5.417
DAEFR (Ours) 47.532 3.552 36.720 3.655 90.032 4.649

(b) The synthetic CelebA-Test dataset.
Methods FID↓ LPIPS↓ NIQE↓ IDA↓ LMD↓ PSNR↑ SSIM↑
Input 337.013 0.528 19.287 1.426 17.016 20.833 0.638
PSFRGAN 66.367 0.450 3.811 1.260 7.713 20.303 0.536
GFP-GAN 46.130 0.453 4.061 1.268 9.501 19.574 0.522
GPEN 55.308 0.425 3.913 1.141 7.259 20.545 0.552
RestoreFormer 54.395 0.467 4.013 1.231 8.883 20.146 0.494
CodeFormer 62.021 0.365 4.570 1.049 5.381 21.449 0.575
VQFR 54.010 0.456 3.328 1.237 9.128 19.484 0.472
DR2 63.675 0.409 5.104 1.215 7.890 20.327 0.595
DAEFR (Ours) 52.056 0.388 4.477 1.071 5.634 19.919 0.553

Input PSFRGAN GFP-GAN GPEN RestoreFormer CodeFormer VQFR DAEFR (Ours)
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Figure 3: Qualitative comparison on real-world datasets. The BRIAR-Test dataset contains original
identity clean images, allowing us to ascertain that the individual in this image is not wearing glasses.
Our DAEFR method exhibits robustness in restoring high-quality faces even under heavy degradation.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare the proposed method, DAEFR, with state-of-the-art methods: PSFRGAN (Chen et al.,
2021), GFP-GAN (Wang et al., 2021), GPEN (Yang et al., 2021), RestoreFormer (Wang et al., 2022b),
CodeFormer (Zhou et al., 2022), VQFR (Gu et al., 2022), and DR2 (Wang et al., 2023).

Evaluation on Real-world Datasets. As shown in Table 1(a), our proposed DAEFR outperforms
other methods regarding perceptual quality metrics, evidenced by the lowest FID scores on the
WIDER-Test and BRIAR-Test dataset and second-best scores on the LFW-Test dataset, indicating
the statistical similarity between the distributions of real and generated images. Regarding NIQE
scores, which assess the perceptual quality of images, our method achieves the highest score on the
LFW-Test dataset and the second-highest on the WIDER-Test and BRIAR-Test datasets.

Visual comparisons in Fig. 3 further demonstrate the robustness of our method against severe
degradation, resulting in visually appealing outcomes. In contrast, RestoreFormer (Wang et al., 2022b)
and VQFR (Gu et al., 2022) exhibit noticeable artifacts in their results, while CodeFormer (Zhou
et al., 2022) and DR2 (Wang et al., 2023) tend to produce smoothed outcomes, losing intricate facial
details. DAEFR, however, effectively preserves the identity of the restored images, producing natural
results with fine details. This preservation of identity can be attributed to the design of our model,
which emphasizes the retention of original facial features during the restoration process. These
observations underscore the strong generalization ability of our method.

Evaluation on the Synthetic Dataset. We compare DAEFR quantitatively with existing approaches
on the synthetic CelebA-Test dataset in Table 1(b). Our method demonstrates competitive performance
in image quality metrics, namely FID and LPIPS, achieving the second-best scores among the
evaluated methods. These metrics represent the distribution and visual similarity between the restored
and original images. Moreover, our approach effectively preserves identity information, as evidenced
by comparable IDA and LMD scores. These metrics assess how well the model preserves the identity
and facial structure of the original image.

To further illustrate these points, we provide a qualitative comparison in Fig. 4. Our method
demonstrates the ability to generate high-quality restoration results with fine facial details, surpassing
the performance of the other methods. This ability to restore fine facial details results from our model’s
capacity to extract and utilize high-frequency information from the degraded images, contributing to
its overall performance. We provide more visual comparisons in the appendix and supplementary.
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Input PSFRGAN GFP-GAN GPEN RestoreFormer CodeFormer VQFR GTDAEFR (Ours)DR2

Figure 4: Qualitative comparison on the synthetic CelebA-Test dataset. Our DAEFR method
exhibits robustness in restoring high-quality faces even under heavy degradation.

Table 2: Ablation studies of variant networks and association methods on the CelebA-Test. The
terms “HQ encode” and “LQ encoder” refer to the encoders used for encoding LQ images. “w/o” and
“with” in the association part indicate whether the encoder undergoes the feature association process.
The fusion types “Linear” and “MHCA” in the feature fusion module represent linear projection with
three fully connected layers or multi-head cross attention, respectively.

Encoder (Sec. 3.1) Association (Sec. 3.2) Feature Fusion (Sec. 3.3) Metrics
Exp. HQ encoder LQ encoder w/o with Linear MHCA LPIPS↓ LMD↓ NIQE↓
(a) ✓ 0.344 4.170 4.394
(b) ✓ 0.343 4.265 4.510
(c) ✓ ✓ ✓ ✓ 0.349 4.258 4.297
(d) ✓ ✓ ✓ ✓ 0.343 4.197 4.290

(e) (Ours) ✓ ✓ ✓ ✓ 0.351 4.019 3.815

4.3 ABLATION STUDY

Number of Encoders. In our research, we conduct an initial investigation to examine the impact of
the number of encoders on the overall performance. We present this analysis in Exp. (a) to (c) as
detailed in Table 2. The results of our investigation indicate that utilizing two encoders as the input
source yields better performance than using a single encoder. This conclusion is supported by the
superior NIQE score achieved in the experiments. This ablation study confirms that including an
additional LQ encoder can provide domain-specific information, aiding image restoration. To provide
further insights, we show the visual results of Exp. (a) to (c) in Fig. 5.
Association Stage. Furthermore, we evaluate the effectiveness of our association stage through
Exp. (c) and (d), as depicted in Table 2. The results indicate that utilizing associated encoders as our
input source leads to superior performance across all evaluation metrics compared to non-associated
encoders. This empirical evidence validates that our association stage effectively enhances the
encoder’s capability to retrieve information from the alternative domain and effectively reduces the
domain gap between HQ and LQ. To provide visual evidence of the improvements achieved by our
approach, we present the visual results of Exp. (c) and (d) in Fig. 5. These visual comparisons further
support the superiority of our method.
Feature Fusion Module. Finally, we assess the effectiveness of our feature fusion module, com-
paring two different approaches: a baseline method employing linear projection with three fully
connected layers and our proposed multi-head cross-attention module (MHCA). The experimental
results are presented in Table 2, specifically under Exp. (d) and Exp. (e). We aim to determine which
approach yields better performance regarding both LMD and NIQE scores. The results demonstrate a
notable improvement when utilizing the MHCA compared to the straightforward linear projection
method for feature fusion. This indicates that our MHCA can effectively fuse domain-specific
information from both the HQ and LQ domains while preserving crucial identity information. To
provide a visual representation of the results, we showcase the outcomes of Exp. (d) and Exp. (e)
in Fig. 5. These visual representations further support our findings and demonstrate the superior
performance of our proposed MHCA in enhancing the image restoration process.
Effectiveness of Low-Quality Feature from Auxiliary Branch. To demonstrate the effectiveness
of our auxiliary LQ branch, we conduct validated experiments of fusing LQ features with feature Zc

f

in the feature fusion and code prediction stage. These experiments involve extracting LQ features
from the LQ codebook and adding a control module (Wang et al., 2018; Zhou et al., 2022) to fuse the
LQ feature and feature Zc

f before feeding to the HQ decoder.
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Input Exp. (a) Exp. (b) Exp. (c) Exp. (d) Exp. (e) Ours GT

Figure 5: Ablation studies. The experimental index in accordance with the Table 2 configuration is
utilized. Our method successfully produces intricate facial details and closely resembles the ground
truth, even when the input undergoes severe degradation. Importantly, we effectively retain the
identity information from the degraded input.
Table 3: Quantitative evaluation for the effectiveness of LQ feature on the CelebA-Test. The LQ
feature scale s indicates the fusion scalar with feature Zc

f . The performance becomes better when we
increase the scalar slq , and the experimental results prove the effectiveness of our LQ feature, which
encodes essential visual attributes and domain-specific statistical characteristics.

LQ Feature Scale slq=0 slq=0.2 slq=0.4 slq=0.6 slq=0.8 slq=1.0

LPIPS ↓ 0.399 0.389 0.378 0.370 0.364 0.363
PSNR ↑ 20.040 20.367 20.727 21.074 21.348 21.488
SSIM ↑ 0.558 0.571 0.585 0.600 0.612 0.616

Our quantitative evaluation employs quality metrics, including LPIPS, PSNR, and SSIM. We conduct
these experiments on the CelebA-Test dataset. Our quantitative results clearly prove the positive
impact when we increase the scale of LQ feature scalar slq, as shown in Table. 3. This experiment
underscores the practical advantages of our LQ branch and shows the LQ features effectively encode
essential visual attributes and domain-specific characteristics, enhancing the image restoration process.
We place the detailed experiment setting and visual comparison in the appendix and supplementary.
Table 4: Quantitative evaluation on the face recognition task. We conduct the quantitative
experiments on the LFW dataset (Huang et al., 2008) of the face recognition task with the official
ArcFace (Deng et al., 2019) model with Verification performance (%) as our evaluation metric. The
degradation parameters ranging from 10,000 to 40,000 correspond to varying levels of degradation.

Methods Origin 10000 (Slight) 20000 30000 40000 (Severe)

CodeFormer (Zhou et al., 2022) 98.23 97.35 91.28 81.25 71.67
DAEFR (Ours) 98.51 97.86 92.15 82.69 73.78

Validation on Downstream Face Recognition Task. We conduct a downstream face recognition
task using the proposed restoration method on the LFW (Huang et al., 2008) face recognition
validation split set (with 12,000 images). We use the unseen atmospheric turbulence degradation to
simulate diverse degradation levels, employing the methodology outlined in (Chimitt & Chan, 2020)
for degradation generation. The degradation parameters ranging from 10,000 to 40,000 correspond to
varying levels of degradation, spanning from slight to severe. We provide the dataset samples in the
appendix and supplementary material.

We employ the official ArcFace (Deng et al., 2019) model with Verification performance (%) as our
evaluation metric to evaluate the restored images. The experimental results, presented in Table 4,
demonstrate the superior performance of our method across various degradation levels. Particularly
noteworthy is the widening performance gap between CodeFormer and our method as the degradation
severity escalates. These findings validate the efficacy of our additional LQ encoder, which captures
valuable information from the LQ domain, thus significantly augmenting the restoration process.

5 CONCLUSION

In this paper, we propose DAEFR to effectively tackle the challenge of blind face restoration,
generating high-quality facial images from low-quality ones despite the domain gap and information
loss between HQ and LQ image types. We introduce an auxiliary LQ encoder that captures the LQ
domain’s specific visual characteristics and statistical properties. We also employ feature association
techniques between the HQ and LQ encoders to alleviate the domain gap. Furthermore, we leverage
attention mechanisms to fuse the features extracted from the two associated encoders, enabling
them to contribute to the code prediction process and produce high-quality results. Our experiments
show that DAEFR produces promising results in both synthetic and real-world datasets with severe
degradation, demonstrating its effectiveness in blind face restoration.
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Appendix

A OVERVIEW

This supplementary material presents additional results to complement the main manuscript. First,
we describe the detailed network architecture in Section B. Then, we conduct more ablation studies
to demonstrate the effectiveness of the association stage and our auxiliary LQ branch in Section C.
Finally, we show more visual comparisons with state-of-the-art methods in Section D.

B NETWORK ARCHITECTURE

The detailed structures of the encoder and decoder are shown in Table 5. Our restoration process
employs an identical encoder and decoder structure for both the HQ and LQ paths. We use a
transformer (Vaswani et al., 2017) module consisting of nine self-attention blocks for the structure.
Additionally, we enhance its expressiveness by incorporating sinusoidal positional embedding (Carion
et al., 2020; Cheng et al., 2022) on query Q and keys K. This modification aids in capturing positional
information effectively within the transformer. In the feature fusion stage, we employ a multi-head
cross-attention module (MHCA) to effectively merge the HQ and LQ features extracted from the
encoders, which is inspired by (Wang et al., 2022b; Vaswani et al., 2017). The implementation of
MHCA is:

Q = ZA
l Wq + bq, K = ZA

h Wk + bk, V = ZA
h Wv + bv, (9)

where we utilize feature ZA
l as queries Q and feature ZA

h as keys K and values V. These features
are multiplied by their respective learnable weights Wq/k/v ∈ Rd×d and biased by bq/k/v ∈ Rd.

ZA
f = MHCA(ZA

h , ZA
l ) = FFN(LN(ZA

h , ZA
l )), (10)

where LN is the layer normalization, and FFN is the feed-forward network composed of two convolu-
tion layers.

Table 5: Detailed architecture of our encoder and decoder. GN: GroupNorm; c: channels; C is the
length of the features in the HQ codebook. ↓ and ↑ mean the feature pass direction in the table.

Input size Encoder ↓ Decoder ↑

512×512

{
{Residual block: 32-GN, 64-c} × 2

}
× 2

{
{Residual block: 32-GN, 64-c} × 2

}
× 3

Bilinear downsampling 2×
Conv 3× 3, 64-c

Conv 3× 3, 128-c
Bilinear upsampling 2×

256×256

{
{Residual block: 32-GN, 128-c} × 2

}
× 2

{
{Residual block: 32-GN, 128-c} × 2

}
× 3

Bilinear downsampling 2×
Conv 3× 3, 128-c

Conv 3× 3, 128-c
Bilinear upsampling 2×

128×128

{
{Residual block: 32-GN, 128-c} × 2

}
× 2

{
{Residual block: 32-GN, 128-c} × 2

}
× 3

Bilinear downsampling 2×
Conv 3× 3, 128-c

Conv 3× 3, 256-c
Bilinear upsampling 2×

64×64

{
{Residual block: 32-GN, 256-c} × 2

}
× 2

{
{Residual block: 32-GN, 256-c} × 2

}
× 3

Bilinear downsampling 2×
Conv 3× 3, 256-c

Conv 3× 3, 256-c
Bilinear upsampling 2×

32×32

{
{Residual block: 32-GN, 256-c} × 2

}
× 2

{
{Residual block: 32-GN, 256-c} × 2

}
× 3

Bilinear downsampling 2×
Conv 3× 3, 256-c

Conv 3× 3, 512-c
Bilinear upsampling 2×

16×16

{
{Residual block: 32-GN, 512-c} × 2

}
× 2

{
{Residual block: 32-GN, 512-c} × 2

}
× 3

Conv out
Conv 3× 3, 512-c →C-c Conv 3× 3, C-c → 512-c

C MORE ABLATION STUDIES

In this section, we delve into further ablation studies concerning the association stage and our auxiliary
LQ branch, focusing on architecture design and various loss designs. In our proposed approach,
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we aim to demonstrate the association stage’s effectiveness and our auxiliary LQ branch. Through
these studies, we provide detailed analysis and evidence to support the impact and contribution of the
association stage and our auxiliary LQ branch in improving the overall performance of the image
restoration process.

Domain Gap before Association Stage We thoroughly investigate the domain gap in three distinct
pathways: HQ path, LQ path, and Hybrid path. All three pathways involve the utilization of LQ
images as input. Specifically, the LQ image is inputted into the LQ encoder in the Hybrid path,
and the resulting features are subsequently forwarded to the HQ codebook. The HQ codebook is
employed to identify the closest feature, which is then utilized for reconstruction using the HQ
decoder. As illustrated in Figure 6, both the HQ path and Hybrid path exhibit limitations in effectively
reconstructing or restoring the LQ image due to the domain gap. Notably, the Hybrid path fails to
generate any facial features.

(a) HQ Image (b) LQ Image (c) HQ Path (d) LQ Path (e) Hybrid Path

Figure 6: Domain gap. We utilize LQ images as input to evaluate the reconstruction ability of
various path types. The significant domain gap between HQ and LQ images significantly affects the
ability to reconstruct the images. (Hybrid Path: LQ encoder + HQ codebook + HQ decoder)

Different Association Architecture We explore various network architectures to enhance the
capabilities of the LQ encoder, as depicted in Fig.7. However, our experimental results demonstrated
that solely enabling the LQ encoder to learn from the HQ encoder did not effectively address the
domain gap issue. Furthermore, the less constrained HQ feature representation did not align well
with LQ features, leading to the generation of non-face images, as depicted in Fig.8(c). Therefore,
we opt for a joint optimization approach, incorporating both the HQ and LQ paths, to preserve the
feature representation. This approach aims to empower both encoders to capture more comprehensive
information from both domains and reduce the domain gap.
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Figure 7: Different association architectures. (a) Force the LQ encoder to learn information from
the HQ encoder. (b) Joint optimization for both the HQ and LQ paths.
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(a) HQ Image (b) LQ Image (c) Learn from HQ (d) Joinly Associate

Figure 8: Visual results for different association architectures. We utilize LQ images as input.
(c) is the result of only letting the LQ encoder learn the information from the HQ encoder. (d) is the
result of jointly optimizing both paths.

(a) HQ Image (b) LQ Image (c) L1 Loss (e) CE Loss(c) L2 Loss

Figure 9: Visual results for different loss settings. We utilize LQ images as input. (c) (d) The L1
and L2 loss fails to associate the features of the two domains effectively and loses certain original
information. (e) The utilization of cross-entropy loss enhances the association between the features
of the two domains, resulting in the preservation of a greater amount of original information.

Different Loss Settings We explore various types of loss functions to address the similarity between
HQ and LQ features. We investigate using the L1 and L2 loss to enforce an exact match between the
HQ and LQ features. However, the experimental results demonstrate that this approach does not yield
satisfactory outcomes, as shown in Fig. 9. We also present the quantitative results of our CelebA
validation dataset in Table 6.

Drawing inspiration from the CLIP model (Radford et al., 2021), we construct a similarity matrix and
utilize the cross-entropy loss to constrain the feature similarity. As depicted in Fig. 9, we configure
our experiments to use the LQ image as input and employ the LQ encoder to generate features. These
features are then processed through the HQ codebook to identify the nearest matching feature and
then decoded using the HQ decoder.

By incorporating the cross-entropy loss, we effectively establish associations between the HQ and
LQ features, enhancing the overall performance of our approach.
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Table 6: Quantitative evaluation. We conduct the quantitative experiments with different association
loss setting on our CelebA validation set.

Losses FID↓ LPIPS↓
Input 143.991 0.444
L1 Loss 70.717 0.403
L2 Loss 138.212 0.552
Cross-Entropy Loss 41.230 0.361
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Figure 10: Detailed network architecture for the experiment of controlling the scale of LQ
features. We conduct validated experiments of fusing LQ features in the feature fusion and code
prediction stage. Given a feature control module and feature scalar slq, we can control the scale of
the LQ feature Zc

l to fuse with the feature Zc
f before feeding to the HQ decoder.

Effectiveness of Low-Quality Feature from Auxiliary Branch. To demonstrate the effectiveness
of our auxiliary LQ branch, we conduct validated experiments of fusing LQ features with feature Zc

f

in the feature fusion and code prediction stage. These experiments involve extracting LQ features Zc
l

from the LQ codebook and adding a control module (Wang et al., 2018; Zhou et al., 2022). Given a
feature control module and feature scalar slq, we can control the scale of the LQ feature Zc

l to fuse
with the feature Zc

f before feeding to the HQ decoder. The network architecture is shown in Fig. 10.

We conduct these experiments on the CelebA-Test dataset. Our visual results clearly prove the
positive impact when we increase the scale of LQ feature scalar slq, as shown in Fig. 11. This
experiment underscores the practical advantages of our LQ branch and shows the LQ features
effectively encode essential visual attributes and domain-specific characteristics, enhancing the image
restoration process.

Input 𝑠𝑙𝑞= 0.0 GT𝑠𝑙𝑞= 0.2 𝑠𝑙𝑞= 0.4 𝑠𝑙𝑞= 0.6 𝑠𝑙𝑞= 0.8 𝑠𝑙𝑞= 1.0

Figure 11: Visual comparison with different LQ feature scalar. We compare the visual results with
different LQ feature scalar slq , showing that the LQ features indeed encode essential visual attributes
and domain-specific characteristics, even when the input is severely degraded.

Validation on Downstream Face Recognition Task We conduct a comprehensive downstream
face recognition task with the following procedure. We utilize the LFW (Huang et al., 2008) Face
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Origin 10000 20000 30000 40000

Figure 12: Visualization for face recognition validation dataset. We choose the unseen atmospheric
turbulence degradation to simulate diverse degradation levels, employing the methodology outlined
in (Chimitt & Chan, 2020) for degradation generation. The degradation parameters ranging from
10,000 to 40,000 correspond to varying levels of degradation, spanning from slight to severe.

recognition dataset’s validation split, comprising 12,000 images. We choose the unseen atmospheric
turbulence degradation to simulate diverse degradation levels, employing the methodology outlined
in (Chimitt & Chan, 2020) for degradation generation. The degradation parameters ranging from
10,000 to 40,000 correspond to varying levels of degradation, spanning from slight to severe. We
provide the dataset samples in Fig. 12.

D MORE VISUAL COMPARISON

In this section, we present additional visual comparisons with state-of-the-art methods: PSFR-
GAN (Chen et al., 2021), GFP-GAN (Wang et al., 2021), GPEN (Yang et al., 2021), Restore-
Former (Wang et al., 2022b), CodeFormer (Zhou et al., 2022), VQFR (Gu et al., 2022), and
DR2 (Wang et al., 2023).

The qualitative comparisons on the LFW-Test are shown in Fig. 13. The qualitative comparisons
on the WIDER-Test are shown in Fig. 14, Fig. 15 and Fig. 16. The qualitative comparisons on the
BRIAR-Test are shown in Fig. 17. The qualitative comparisons on the CelebA-Test are shown in
Fig. 18.

We also compare the large occlusion and pose situation with state-of-the-art methods in Fig. 19.

While our method demonstrates robustness in most severe degradation scenarios, we also observe
instances where it may fail, particularly in cases with large face poses. This can be expected as
the FFHQ dataset contains few samples with large face poses, leading to a scarcity of relevant
codebook features to effectively address such situations, resulting in less satisfactory restoration and
reconstruction outcomes. We show the failure cases in Fig. 20.

These comparisons demonstrate that our proposed DAEFR generates high-quality facial images and
effectively preserves the identities, even under severe degradation of the input faces. Furthermore,
compared to the alternative methods, DAEFR performs better in recovering finer details and producing
more realistic facial outputs.
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Figure 13: Qualitative comparison on LFW-Test datasets. Our DAEFR method exhibits robustness
in restoring high-quality faces in detail part.
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Figure 14: Qualitative comparison on WIDER-Test datasets. Our DAEFR method exhibits
robustness in restoring high-quality faces in detail part.
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Figure 15: Qualitative comparison on WIDER-Test datasets. Our DAEFR method exhibits
robustness in restoring high-quality faces in detail part.
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Figure 16: Qualitative comparison on WIDER-Test datasets. Our DAEFR method exhibits
robustness in restoring high-quality faces in detail part.
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Figure 17: Qualitative comparison on BRIAR-Test datasets. Our DAEFR method exhibits robust-
ness in restoring high-quality faces in detail part.
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Figure 18: Qualitative comparison on CelebA-Test datasets. Our DAEFR method exhibits robust-
ness in restoring high-quality faces in detail part.
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Figure 19: Qualitative comparison on large occlusion and pose situation. Our DAEFR method
exhibits robustness in restoring high-quality faces in detail part.
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Figure 20: Failure case on extreme pose situation. Our DAEFR method fails in extremely pose
situations.
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