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ABSTRACT

Recent advancements in AI have significantly enhanced molecular representation
learning, which is crucial for predicting molecule properties and designing new
molecules. Despite these advances, effectively utilizing the vast amount of molec-
ular data available in textual form from databases and scholarly articles remains
a challenge. Recently, a large body of research has focused on utilizing Large
Language Models (LLMs) and multi-modal architectures to interpret textual in-
formation and link it with molecular structures. Nevertheless, existing datasets
often lack specificity in evaluation, as well as direct comparisons and compre-
hensive benchmarking across different models and model classes. In this work,
we construct a dataset specifically designed for evaluating models on structure-
directed questions and textual description-based molecule retrieval, featuring about
500,000 question-answer pairs related to approximately 240,000 molecules from
PubChem. Its structure enhances evaluation specificity and precision through the
use of multiple-choice answers. Moreover, we benchmark various architectural
classes fine-tuned using this dataset, including multi-modal architectures, and large
language models, uncovering several insights. Our experiments indicate that the
BioT5 and MoleculeSTM models are the top performers in Molecule QA and
Molecule Retrieval tasks respectively, achieving about 70% accuracy. We have
made both the dataset and the fine-tuned models publicly available.

1 INTRODUCTION

Drug discovery is an extensive and laborious process, costing billions of dollars due to extensive
property validations, lab tests, animal studies, and human trials (Dickson and Gagnon, 2009). In
the field, much of the valuable information about molecules is documented in text form, accessible
through an extensive array of public databases. This textual information includes a wide range of
data, from drug details (Wishart et al., 2018) and toxicity reports (Fonger et al., 2014) to the methods
of molecule extraction, as well as their physical characteristics (Kim et al., 2019), information
available in patents, chemical reactions (Lowe, 2017), and applications in producing various goods
like materials, fertilizers, perfumes, and insecticides (Dionisio et al., 2018).

While deep learning methods have significantly impacted drug discovery by predicting specific
molecular properties such as solubility or energy, these approaches face challenges when deciphering
the information encoded in textual form. For example, identifying the potential side effects of a drug
might depend heavily on analyzing narrative case studies, and patient reports documented in FDA
reports (U.S. FDA, 2024), clinical-trial documents(CTGov, 2024), etc which are rich in textual data
but not easily quantifiable through traditional regression or classification methods. This necessitates
the need for methods capable of interpreting molecular structures and their relationship with textual
information and performing inference based on text. By bridging this gap, we can significantly
enhance our ability to understand molecules and unlock a broader spectrum of textual knowledge that
remains largely untapped. This improved understanding, in turn, enables literature-based discovery
of novel materials and drugs with potentially significant benefits for science and medicine.

Very recently, there has been a surge in the development of models to decipher the complex relation-
ships between molecular structures and textual descriptions (Liu et al. (2023a;b); Li et al. (2024);
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Figure 1: An example of a Question Answering task: In the first question, the objective is to infer
certain information from a molecular structure. In the second question, the objective is to retrieve a
molecule with properties that satisfy the prompt.

Edwards et al. (2022; 2021); Zeng et al. (2022)). Numerous methods have developed multi-modal
frameworks, incorporating adaptations of models like CLIP Radford et al. (2021) and BLIP Li et al.
(2023), which are specifically designed to learn correlations between visual content and text in the
realm of molecular science Liu et al. (2023a;b). Additionally, the emergence of Scientific Large
Language Models, such as Galactica Taylor et al. (2022), trained on vast troves of scientific data,
represents a significant effort forward in harnessing computational power for molecular understanding
and discovery.

Despite significant progress in model development, several challenges persist in the evaluation of
these models. Existing datasets, such as those in Degtyarenko et al. (2007); Su et al. (2022); Liu et al.
(2023a); Fang et al. (2024), often rely on free-form text generation or molecule/text retrieval tasks,
which hinder the assessment of a model’s ability to infer specific molecular properties. These datasets
typically use generic prompts like “Describe the molecule,” which fail to extract precise information.
A more effective approach would involve using targeted questions, such as “What is the physical
state of the molecule at room temperature?”. Additionally, widely used evaluation metrics, such as
the BLEU score in molecule captioning tasks, are inadequate for this context. Since answers to vague
prompts like “Describe the molecule” can vary significantly, ranging from physical properties to
industrial applications, BLEU’s reliance on semantic similarity makes it unreliable. Further details
on these methodological shortcomings are provided in section 2.2.

In this work, we have developed a comprehensive dataset consisting of over 500,000 question-and-
answer (QA) pairs and small molecules represented by SMILES (Simplified Molecular Input Line
Entry System) (Weininger, 1988) sequences. These QAs are crafted from a rich base of textual
data sourced from PubChem (Kim et al., 2019), encompassing a wide array of information such as
chemical structures, physical properties, applications, and uses of molecules in drugs and biological
pathways, as well as manufacturing details. We believe this dataset will significantly enhance the
ability to infer information from molecular structures aid in the design of new molecules and improve
the capability to evaluate these processes more effectively (See Figure 1). Our main contributions are:

1. We created a comprehensive dataset with about 500,000 QA pairs for 240,000 distinct molecule
SMILES sequences across various categories, including multiple-choice answers to improve
evaluation precision on specific areas including chemical information, biological information,
physical properties, and more.

2. To ensure the reliability of our dataset, we implemented a comprehensive validation process that
includes human annotation of a small subset to evaluate data accuracy.

3. We conduct an extensive evaluation of this dataset using state-of-the-art (SoTA) molecule-text mul-
timodal models and recent advancements in large language models. Our analysis provides valuable
insights into the advantages and limitations of current models, highlighting their performance in
understanding and interpreting molecular data.

To the best of our knowledge, this work represents the first large-scale dataset and benchmarking
effort dedicated to diverse question-answering methodologies for small molecules.

2 RELATED WORK

This section overviews the key related works in molecule-text learning with a single model and
separate encoders, language models and various benchmarking datasets. We first describe various
models in 2.1, followed by datasets in 2.2.
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2.1 MODELS ARCHITECTURES IN MOLECULE-TEXT LEARNING

Molecule-Text learning with a Single Model: Initial models in molecule-text modeling combined
molecules and texts using a unified encoder-only framework. Key works include KV-PLM (Zeng
et al., 2022) and GPT-MolBERTa (Balaji et al., 2023), built on the foundations of SciBERT (Beltagy
et al., 2019) and RoBERTa (Liu et al., 2019), respectively. KV-PLM fine-tunes SciBERT with
SMILES sequences from 15,000 PubChem (Kim et al., 2019) descriptions, employing masked
language modeling for representation learning. This model acts as a dual encoder for text and
molecule representations. GPT-MolBERTa, using RoBERTa as its base, integrates descriptions from
ChatGPT (OpenAI, 2022), which may introduce non-factual information, affecting reliability.

Molecule-Text with Separate Encoders: Recent and more effective models used multi-modal
strategies by integrating separate encoders for molecules and text. For instance, Text2Mol (Edwards
et al., 2021) employs SciBERT, akin to KV-PLM, for text processing, while molecule representation
benefits from Mol2Vec (Jaeger et al., 2018) tokens as initial inputs, utilizing contrastive training
to synchronize molecule and text embeddings, mirroring CLIP’s (Radford et al., 2021) approach.
Conversely, MoMu (Su et al., 2022) introduces molecules as graphs, leveraging a Graph Isomorphism
Network (GIN) (Xu et al., 2018) for molecule encoding and uses SciBERT for text processing.
MoleculeSTM (Liu et al., 2023a) enhances its methodology by training with both SMILES strings
and molecular graphs, initializing SMILES encoder weights from MegaMolBART (NVIDIA, 2021)
and adopting a GIN model for graph representation, with text decoding also relying on SciBERT. All
these methodologies use of contrastive learning to align text and molecule representations, gaining
advantages from expansive datasets and diverse molecular encoding techniques. Alternatively, MolT5
(Edwards et al., 2022) has fine-tuned a T5 model(Raffel et al., 2020) to train separate SMILES and
text encoders and decoders. Recently, MolCA (Liu et al., 2023b) utilize the BLIP model (Li et al.,
2023), employing a GINE model (Brossard et al., 2020) for graph encoding and SciBERT for text,
and text generation fine-tuned by LoRA optimization of the Galactica model (Taylor et al., 2022).
3DMolLM(Li et al., 2024) extended this framework to include question prompts for more directed
QA.

Decoder-based Scientific Large Language Models: The Galactica model (Taylor et al., 2022),
trained explicitly on scientific data, supports a variety of scientific tasks such as generating molecular
and protein sequences, question answering, code generation, and mathematical problem-solving.
We also evaluate popular large language models (LLMs) like GPT-3.5 (OpenAI, 2022) and LLaMA
(Touvron et al., 2023) in our work, noting their strong performance across many tasks, including
those in the scientific domain.

2.2 CORRESPONDING BENCHMARK DATASETS FOR MOLECULE-TEXT LEARNING

All the methods discussed so far draw upon datasets sampled from various public sources. For
example, KV-PLM introduced PCdes, utilizing PubChem to compile a dataset of 15,000 samples.
Additionally, KV-PLM incorporated a set of multiple-choice questions (MCQs) akin to those in this
work, albeit with a smaller scope of approximately 1,500 entries, which, in context, was considered a
significantly large dataset. Text2Mol developed the CheBI-20 dataset by sampling from the Chemical
Entities of Biological Interest (ChEBI) (Degtyarenko et al., 2007) database, resulting in a collection
of approximately 20,000 molecular descriptions. MoMu extracted 50,000 captions from PubChem,
while MoleculeSTM significantly expanded this approach by sampling over 300,000 captions from
PubChem to create the PubChemSTM dataset. 3DMolLM (Li et al., 2024) has curated a set of
Question-answering pairs from these captions using ChatGPT.

Limitations in existing datasets: We identify several limitations in previous dataset curation
methodologies that justify the development of our current dataset and benchmarking efforts. Detailed
discussions of these issues, with specific examples, are presented in Appendix.

1. Lack of Specificity in Prompts and Question Diversity: Existing datasets, such as PubChem-
STM(Liu et al., 2023a), MoMu(Su et al., 2022), CheBI-20(Edwards et al., 2021), and PCDes(Zeng
et al., 2022), typically consist of captions extracted directly from PubChem(Kim et al., 2019).The
captions are free-form, containing diverse information about various tasks without categorization.
Other datasets like InstructMol(Cao et al., 2023) and MolInstructions(Fang et al., 2024), which
also derive captions from these sources, feature queries such as “Describe the molecule.” Such
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Dataset Diverse Multiple Model Factual Anonymized
Questions? choice? Benchmark ? validity ? names ?

PCDes (Zeng et al., 2022) ✗ ✗ ✗ ✓ ✗
CheBI-20 (Edwards et al., 2021) ✗ ✗ ✗ ✓ ✓
MoMu (Su et al., 2022) ✗ ✗ ✗ ✓ ✗
PubChemSTM (Liu et al., 2023a) ✗ ✗ ✗ ✓ ✓
MolInstructions (Fang et al., 2024) ✗ ✗ ✓ ✓ ✓
InstructMol (Cao et al., 2023) ✗ ✗ ✓ ✓ ✗
3DMolLM (Li et al., 2024) ✓ ✗ ✗ ✗ ✗

MolTextQA (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Different molecule captioning or instruction datasets.

prompts are insufficient for extracting specific information about molecules. A more targeted
approach should involve using directed, specific questions.

2. Evaluation of Text Generation: Models such as MolT5(Edwards et al., 2022), MoMu(Su et al.,
2022), MolCA(Liu et al., 2023b), 3DMolLM(Li et al., 2024) are trained to generate text for an
input smile. When questions are not sufficiently directed, metrics like BLEU or ROUGE scores
fail to effectively evaluate the responses if the content of generated answers varies significantly,
such as between physical properties and industrial uses. Furthermore, answers like “The state
of the molecule is water” versus “The stage of the molecule is gas” may score similarly, despite
their vast differences. Employing QA multiple-choice questions can help mitigate these issues by
restricting the output space.

3. Factual Correctness, Information Leakage, Dataset Scope: Datasets like 3DMolLM(Li et al.,
2024) include directed questions, but the reliability of their answers is questionable since they
augment the original data with LLM-generated information. Additionally, 3DMolLM does not
anonymize molecule names in questions, which undermines the assessment of a model’s ability
to learn from molecular structure alone, as queries such as “What are the physical properties of
Aspirin?” provide extra hints to the model. Datasets like MoMu(Su et al., 2022) and 3DMolLM(Li
et al., 2024), also limit their test set to entries with large descriptions, thus neglecting lesser studied
molecules.

4. Benchmarking Across Several Model Classes: Different architectures such as MolT5,
MoleculeSTM, 3DMolLM, and language models like Galactica and Llama, which vary in archi-
tecture and hence input formats, make head-to-head comparisons across these models challenging.

We summarize the differences in these datasets in Table 1. In this work, we introduce MolTextQA,
a comprehensive dataset designed to benchmark molecule-text relationship learning. MolTextQA
features directed question-answering on small molecules and incorporates multiple-choice questions
to enhance accuracy. Additionally, we benchmark molecule-text models across architectural classes
to facilitate direct comparisons. It is important to note that this dataset is not intended to replace
existing resources and can be used with other datasets to supplement training. The dataset also seeks
to enhance model evaluation and enable more direct comparisons between different methodologies.

3 BUILDING THE MOLTEXTQA DATASET

3.1 DATA SOURCE

Our work primarily utilizes the PubChem library (Kim et al., 2019), a resource overseen by the
National Center for Biotechnology Information (NCBI) for cheminformatics and drug discovery
research. Compiling information from over 750 sources, this dataset supports diverse drug discovery
tasks like property prediction and repurposing. Adopting Liu et al.’s approach, we crawl PubChem
to extract descriptions and SMILES strings for small molecules, covering aspects from chemical
properties to biological effects. This enabled an in-depth analysis of molecule characteristics,
enriching our dataset with diverse questions and answers. PubChem is freely available and licensed
for non-commercial purposes. Licensing terms are elaborated in the Appendix.
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Splits Molecules Total QAs Physical Chemical Biological Source ApplicationProperties Information Information

Pretrain 213336 421227 39512 183936 38757 145590 13415
Train 20000 54842 3569 28115 10448 11862 848
Valid 2500 5754 331 2809 908 1620 86
Test 5000 11922 691 5941 1990 3140 160

Total 240836 493,742 45091 224468 52914 165856 14670

Table 2: Dataset Statistics: Distribution of questions across different splits and categories

Attribute Data
SMILES sequence CC(=O)C

Question What is the physical state of the molecule at room temperature?

Options (a) Liquid (b) Solid (c) Gas

Correct Option (a) Liquid

Sentence The physical state of the molecule is liquid.

SMILES options (a) CH4 (b) CC(=O)C (c) C(=O)([O-])[O-].[Ca+2]

Correct SMILE (b) CC(=O)C

PubChem ID 180

Category Physical Properties

Table 3: A sample datapoint

3.2 DATASET OVERVIEW

The dataset comprises about 500,000 questions related to more than 240,000 molecules, categorized
into five distinct areas:

1. Chemical Information covers the chemical structure, functional groups, and chemical properties.
2. Physical Properties addresses the properties such as solubility, physical state, and odor.
3. Biological Information contains the molecules’ role in biological pathways, drug applications,

and drug toxicity.
4. Source details the molecules’ origin and manufacturing processes.
5. Application describes application areas such as perfumes, fertilizers, and insecticides.

We provide detailed dataset statistics across these QA categories in Table 2. Further, in Table 3,
we depict a sample data point indicating different attributes. Each data point includes a question,
options, a SMILES sequence, a set of candidate answers, a question category, the correct choice, and
options in sentence form. Each datapoint also includes a set of candidate SMILES randomly sampled
from the data and useful for the Molecule Retrieval task. A Tanimoto similarity threshold of 0.2
was applied during sampling to ensure that the selected molecules are sufficiently distinct from one
another. The dataset is divided into test, valid, train and pretrain sets for different stages of model
development and evaluation.

3.3 DATA CONSTRUCTION

In this work, we employed different LLMs, specifically Llama3-70B, Llama3-8B, and ChatGPT3.5,
for constructing a question-and-answer dataset. The methodology involves passing molecular de-
scriptions to the LLMs and prompting them to generate a set of questions with multiple-choice
options that are semantically related to ensure challenging and informative questions. To prevent the
possibility of inferring information solely from the molecule’s common name, we specifically prompt
the LLM to anonymize the common name of the molecule in the resulting QAs. This ensures that
downstream models must rely on molecule structure alone for inference. Due to the expensive nature
of the Llama3-70B API, the pretrain split was generated with Llama3-7B, while the other splits are
generated using the Llama3-70B.
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Figure 2: Procedure for data generation: (a) molecule captions are used to generate a set of QAs
using Llama3-70B. (b) The generated QAs are validated for correctness using GPT 3.5.

Additionally, we instructed the LLMs to produce a short-sentence answer for each question, to
facilitate text-generation tasks. This process is depicted in Figure 2(a). Each generated question
was then categorized into one of five distinct categories to streamline the evaluation process. The
specifics of the prompts utilized in this process and LLM versions are documented in the Appendix.
It is important to note that LLMs are not utilized as sources of factual information; rather, only to
transform data into a different format.

3.4 DATASET VALIDATION

To enhance the reliability of the generated question-and-answer content and mitigate the risk of
fabricated information ("hallucinations") or uninformative, nonsensical questions, we implemented a
two-pass validation process. First, following a methodology similar to that outlined by Es et al., we
employed an alternative language model (GPT-3.5) to verify the accuracy of the QA pairs. In this step,
the caption, question, and multiple-choice options were provided to the model, which was tasked
with selecting the correct answer based on the given context. QA pairs where the model either failed
to choose the correct answer or could not deduce it from the provided information were excluded
from our dataset, ensuring that the content is grounded in the factual information from the captions.
In the second stage, the remaining questions were passed to the LLM for an additional verification
step. This phase focused on filtering out questions that were unanswerable, uninformative, or not
useful for evaluating molecular characteristics and applications. Detailed descriptions of the prompts
used in both stages can be found in the Appendix. Figure 2 depicts the data generation process.

3.5 BENCHMARKING DATASET EFFICACY

To assess the accuracy of language models in generating question-and-answer pairs, we manually
reviewed a random sample of 400 QA pairs from the test set. Our evaluation focused on three key
criteria: whether the question could be logically derived from the provided caption, the unambiguous
correctness of the answer, and the relevance of the question—specifically, ensuring it avoids uninfor-
mative queries and contributes to meaningful chemical or biological insights based on the structure.
We have found that 391 of the 400 samples satisfy this criteria. This corresponds to a greater than
96.13 percent accuracy on the entire dataset with a p-value of <0.05 under a hypergeometric test,
indicating statistically significant performance. We elaborate the specifics of the hypothesis test and
human verification in Appendix. We also include these samples with the supplementary material.

4 BENCHMARKING ON MOLTEXTQA

This section evaluates the MolTextQA dataset with various models, as detailed in subsection 4.1,
which includes both molecule-text multi-modal and scientific language models. For model specifics
and training details, see Appendix. The tasks and objectives for the benchmark are outlined in section
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4.2. We then assess model performance in a zero-shot setting (4.3) and 4.4 covers model fine-tuning
and their performance evaluation.

4.1 BENCHMARKED MODELS IN EXPERIMENTS

1. Single Encoder Architectures:
SciBERT (Beltagy et al., 2019) leverages a BERT base, fine-tuned on scientific papers, especially
from biomedical fields. It has superior performance on several scientific tasks like entity recognition
and text classification.
KV-PLM (Zeng et al., 2022) builds on SciBERT, trained further with molecule-text pairs from
PubChem. It incorporates pre-training with SMILES and fine-tuning for text retrieval, employing a
max hinge loss for improved prediction and retrieval.
MolT5 (Edwards et al., 2022) is a T5 model fine-tuned for molecule captioning. It features an
encoders and decoder architecture for both SMILES and captions.
BioT5 Pei et al. (2023) is a T5 model similar to MolT5. However, the training dataset includes a
larger training set and modalities including small molecules and proteins.
BioT5 Plus Pei et al. (2024) is an updated BioT5 model including additional data sources and
multi-task instruction tuning.

2. Separate Encoder Architectures
MoleculeSTM (Liu et al., 2023a) employs a dual-encoder combining SciBERT (Beltagy et al.,
2019) and a Graph Isomorphism Network (GIN) (Xu et al., 2018) for encoding text and chemical
structures, respectively. It trains on PubChem data, using InfoNCE loss to refine molecule-text
alignment.
MoMu (Su et al., 2022) is similar to MoleculeSTM, yet introduces an extra contrastive loss
between molecules in addition to the molecule-text contrastive loss.

3. Large Language Models (Decoder-Only)
Llama (Touvron et al., 2023) includes autoregressive transformer models, fine-tuned for instruction
adherence showing versatility in several general tasks from QA to code generation. We experiment
with 4 model from the Llama2 and Llama3 series - Llama2-7B, Llama2-70B, Llama3-8B, Llama3-
70B.
GPT-3.5 Turbo (OpenAI, 2022), part of the GPT series, is optimized for human alignment, with
broad application across numerous tasks.
Galactica (Taylor et al., 2022) features autoregressive, decoder-only models trained on scientific
content, effective in specialized biomedical datasets. We experimented with multiple sizes of the
model - 125M, 1.3B, and 6.7B.

4.2 TASKS AND OBJECTIVES

1. Molecule QA task: The first task, "Molecule QA", entails choosing the right answer from multiple
options, where models are given a SMILES string or molecular graph of a molecule and a related
question. The goal is to select the correct option, testing the model’s capability to recognize and
deduce molecular properties or characteristics from the molecule’s structure.
While large decoder-only models can be directly prompted to obtain answers to such queries, this
approach is not feasible for the encoder-based models (e.g. KV-PLM, MoleculeSTM, MoMU)
since they cannot generate text. For these models, this is framed as a sentence retrieval task from
SMILES input, where each sentence is a "question + answer choice.“

2. Molecule Retrieval task: The second task, known as the "Molecule Retrieval Task," reverses
the domains. The model is given a sentence description of a molecule and must identify the
correct SMILES string from among a list of candidates. This task evaluates the model’s ability
to accurately retrieve structures, useful for generating new molecules with target properties. For
decoder-only LLMs, the task involves presenting the model with a sentence and a set of SMILES
options, from which the model is prompted to retrieve the correct SMILES string. For encoder
models, the task remains similar: retrieving the appropriate SMILES strings based on a sentence.
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In both settings, the performance is measured by Accuracy, which is defined as the proportion of
times the correct option is picked as follows:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

4.3 RESULTS ON ZERO-SHOT INFERENCE

Model Entire
dataset

Physical
Properties

Chemical
Info

Biological
Info

Sources Uses

Molecule QA
SciBERT 21.26 20.16 21.52 19.02 22.36 22.46
KV-PLM 29.86 27.90 32.03 26.61 28.51 26.74
MoleculeSTM 44.68 30.17 48.02 30.90 51.28 31.02
MoMu 44.93 28.84 49.60 30.05 50.31 27.81

gpt3.5 40.30 44.73 38.54 43.29 40.24 47.59
llama3-8b 16.16 20.03 16.08 17.27 14.07 27.27
llama3-70b 58.24 63.28 57.07 56.91 59.58 66.31
llama2-7b 24.57 22.70 25.31 24.86 23.46 24.60
llama2-70b 28.79 30.57 27.11 36.15 26.39 37.43

Random 20.69 20.55 22.78 21.11 20.18 19.49

Molecule Retrieval
SciBERT 21.22 21.36 21.93 21.12 19.84 22.99
KV-PLM 48.53 47.80 60.01 43.09 30.47 54.01
MoleculeSTM 67.38 49.13 76.98 53.02 63.57 54.55
MoMu 66.02 45.79 76.51 51.12 61.51 50.27

gpt3.5 38.31 39.92 47.02 31.10 26.36 36.90
llama3-8b 20.96 22.16 21.93 20.12 19.68 16.04
llama3-70b 52.72 41.26 70.32 38.14 32.63 39.57
llama2-7b 18.58 19.36 19.24 17.57 17.97 16.04
llama2-70b 20.35 16.56 21.93 18.22 19.93 15.51

Random 20.28 20.43 21.12 19.84 20.58 19.17

Table 4: Zero-Shot Setting Accuracy:The Molecule QA task requires selecting the correct option
from a set, given a SMILES string and a related question. The Molecule Retrieval task involves
choosing the correct SMILES from candidates, based on a molecular property description.

The results for the Molecule QA and Molecule Retrieval tasks under zero-shot conditions are outlined
in Table 4. These evaluations involved models that were not trained on the question-answering dataset
introduced in this study. However, models such as MoleculeSTM, MoMu, and KV-PLM, which were
trained using a dataset similar to the one presented here, which may partly explain their effectiveness.
To avoid data leakage, MoleculeSTM and MoMu were retrained, explicitly excluding test samples
from their training sets. For the LLMs, the public checkpoints were prompted with QA tasks; details
of these prompts are provided in the Appendix. Results for the Galactica, MolT5, and BioT5 models
are omitted in zero-shot scenarios as they are not aligned for question-answering tasks.

In the Molecule QA task, which requires answering questions based on SMILES inputs, both
decoder-only LLMs and multimodal architectures exhibited similar levels of performance. Here,
Llama3-70B emerged as the top performer. MoleculeSTM, MoMu, and GPT3.5 showed comparable
results. In contrast, smaller models such as Llama-7b and SciBERT approximated random guessing
performance, highlighting their limited applicability. Notably, LLMs performed better in predicting
physical properties and uses (e.g., appearance, odor), whereas multimodal architectures excelled in
processing chemical information. This suggests that LLMs are adept at handling diverse data types,
while multimodal systems effectively leverage structural data inherent in molecular representations
useful for inferring chemical information.

For the Molecule Retrieval task, multimodal architectures, particularly MoleculeSTM, significantly
outperformed LLMs, accurately retrieving SMILES strings in over 66% of instances. The marginal
superiority of MoleculeSTM over MoMu suggests that 3D pretraining initialization may enhance
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its retrieval capabilities. Multimodal architectures consistently demonstrated higher accuracy in
identifying chemical properties compared to other types similar to the MoleculeQA task. Among the
LLMs, only Llama3-70B achieved notable performance, with an accuracy exceeding 50%.

4.4 RESULTS ON FINETUNED MODELS

Finally, we discuss the outcomes of finetuning our models in Table 5 using the training subset from the
proposed dataset. We finetuned the Llama3-8B, Llama2-7B, Galactica and MolT5 models, alongside
the top multimodal architectures, MoMu and MoleculeSTM, by fine-tuning them with this subset.
For MolT5, we have fine-tuned both the pretrained checkpoint and the checkpoints specifically for
SMILES generation or caption generation. We did not fine-tune larger LLMs due to the high costs
associated with training. We faced challenges in fine-tuning the architecture proposed in 3DMolLM
(Li et al., 2024), which are discussed in the Appendix.

Model Entire
dataset

Physical
Properties

Chemical
Info

Biological
Info

Sources Uses

Molecule QA
MoleculeSTM 65.14 68.62 61.86 65.35 69.93 71.12
MoMu 65.08 70.76 60.69 66.65 70.56 71.66

Llama3-8b 60.41 64.35 58.67 64.10 60.73 55.08
Llama2-7b 41.84 42.06 43.97 41.64 38.21 37.43
Galactica-125m 43.97 43.39 43.13 43.58 46.29 37.43
Galactica-1.3b 60.98 62.62 58.60 62.41 64.85 48.66
Galactica-6.7b 69.01 70.36 65.73 72.99 72.52 65.24
Molt5-large 34.15 30.57 34.27 38.34 32.56 26.74
Molt5-large-s2c 34.69 47.26 31.16 37.89 36.49 31.55
BioT5 75.10 81.04 73.70 73.79 77.51 68.45
BioT5-plus 71.16 69.35 68.08 72.59 78.42 72.73

Random 20.69 20.55 22.78 21.11 20.18 19.49

Molecule Retrieval
MoleculeSTM 65.27 59.95 72.39 54.57 60.17 62.03
MoMu 63.6 56.34 70.52 53.27 59.23 57.75

Llama3-8b 20.6 19.76 20.67 20.07 20.9 22.46
Llama2-7b 20.58 20.43 20.03 20.77 21.49 21.39
Galactica-125m 21.62 28.04 21.57 20.92 20.09 31.02
Galactica-1.3b 22.17 29.64 22.45 21.67 19.71 31.02
Galactica-6.7b 22.30 30.44 22.6 22.22 19.28 33.16
Molt5-large 23.54 39.79 23.89 23.36 18.18 41.18
Molt5-large-c2s 23.00 32.31 23.86 21.32 19.87 29.95
BioT5 23.34 37.63 21.29 21.14 17.26 33.16
BioT5-plus 22.30 31.24 21.286 19.46 17.75 27.72

Random 20.28 20.43 21.12 19.84 20.58 19.17

Table 5: Finetuning performance: Accuracy of different models in the finetuning setting, in both
Molecule QA and Molecule Retrieval tasks.

Upon fine-tuning, all LLMs have exhibited reasonable performance in the molecule QA task. Most
notably, the Llama3-8B model showed a 45% improvement in accuracy, surpassing the best per-
forming zero-shot Llama3-70B model from the previous section. The BioT5 model emerged as the
best performer overall with a 75% accuracy, suggesting that they can be effectively fine-tuned for
question answering tasks. However, this also highlights room for improvement, which future works
should focus on. Additionally, the size of the LLMs appears to be advantageous, indicating that
scaling could further enhance performance. The results overall indicate that LLMs can be effective
in infering molecular properties. On the other hand, multimodal architectures also demonstrated a
considereable improvement across categories, increasing performance by 20%. However, the MolT5
models, while outperforming random benchmarks, lagged behind other models. The architecture
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of MolT5 is similar to BioT5; however, the notable performance gap between them highlights the
advantages of BioT5’s multi-modal training approach.

For the Molecule Retrieval tasks, all LLMs performed close to randomly, indicating that this archi-
tecture might not be well-suited for molecule generation tasks, though it can be useful for inferring
properties. In contrast, multimodal architectures consistently outperformed LLMs. Notably, while
these architectures showed superior performance in chemical properties in zero-shot settings, fine-
tuning enabled them to excel across categories. Despite significant gains in tasks like Physical
properties (by over 10%), this has also led to a slight decline in performance for Chemical properties
and consequently, overall. This performance dip suggests that embeddings may not fully capture
diverse types of information, leading to trade-offs. We also observe a similar trend between BioT5
and BioT5-plus, where BioT5-plus demonstrates improved performance in the "Sources" and "Uses"
categories but shows a decline in accuracy for "Physical" and "Chemical Properties." This highlights
the need for improved modeling strategies to achieve robust performance across all tasks.

It is important to note that these fine-tuning efforts utilized only a small portion of the full dataset,
raising questions about potential outcomes if the entire dataset were employed. Given the success
of LLMs in Molecule QA tasks and multimodal architectures in Molecule Retrieval tasks, we
speculate that an architecture fine-tuned on QA tasks, which integrates elements from both types
of architectures and employs strategies to capture diverse sorts of information, could excel in both
scenarios. Exploring this possibility will be a focus of our future research.

5 CONCLUSION

Our work introduces MolTextQA, a novel dataset featuring over 500,000 QA pairs related to small
molecule structures, covering a broad spectrum of molecular properties and applications. We
have benchmarked MolTextQA against a diverse array of large language models and state-of-the-
art multimodal architectures, analyzing their strengths and weaknesses. We also see potential in
extending our approach to include other scientific modalities, like proteins, to widen the dataset’s
applicability. We aspire for MolTextQA to become a foundational resource for the development
of more efficient molecule-text foundation models. We anticipate its application in drug discovery,
materials science, and other fields.

We acknowledge a few limitations in the dataset creation process. First, the dataset exhibits minor
inaccuracies, as reported in Section 3.5, which could potentially complicate model training. Future
work will focus on implementing more rigorous validation strategies to enhance data precision.
Additionally, the dataset includes a broad spectrum of questions, a small fraction of which may
appear straightforward, such as identifying the polarity of a molecule—an aspect that only requires
a basic knowledge of chemistry. While this diversity of questions benefits model training, it also
suggests we could refine our selection process to ensure each question more effectively serves the
dataset’s purpose. Furthermore, the dataset covers data across a wide range of general categories.
The exploration of data acquisition and fine-tuning of specialized datasets for niche applications is an
area that requires further investigation.

6 ETHICS STATEMENT

All data, code, and models used in this research have been sourced from public domains that are
freely distributable, ensuring our adherence to ethical standards of transparency and accessibility. We
elaborate on the licensing of the dataset source (PubChem) in Appendix B. Given the long history of
research within the biomedical and cheminformatics communities, our work aligns with established
practices. We do not foresee any ethical concerns regarding our work.

7 REPRODUCIBILITY

The dataset introduced in this work, along with the code used to generate the benchmark,
is publicly available in the project repository (https://anonymous.4open.science/r/
MolTextQA-D688/). Further details on the prompts utilized for dataset generation can be found
in Appendix D, while Appendix F provides comprehensive information on the models employed in
the benchmarking process
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A DATASET DESCRIPTION

The MolTextQA dataset will be made publicly available upon acceptance and will be hosted with a
permanent availability using a DOI identifier. The dataset is organized in a CSV file format, which
is a standard and widely used format in machine learning applications. The dataset is available at -
https://anonymous.4open.science/r/MolTextQA-D688/

A.1 DATASET STRUCTURE

Each data point in the dataset contains the following fields:

• CID: The PubChem Identifier of the molecule.
• QID: The identifier of the question within a CID.
• Category: The category of the data point, following this convention:

1. Physical properties
2. Chemical information
3. Biological uses
4. Sources
5. General applications

• Sentence: A sentence summary of the question and answer.
• Question: The actual question asked.
• Options: A set of options for the answer, of which one is correct.
• Correct_option: The index (1-based) of the correct option.
• Retrieval_options: A set of PubChem IDs used for molecule retrieval from the sentence

task.
• Retrieval_correct: The correct option in the retrieval task.

For benchmarking and further details regarding the application of this dataset in machine learning
tasks, please refer to the project repository. The model weights will be made available upon acceptance
and all the results are reproducible. The predictions file and the codes used for generating the results
in the benchmark are also available in the repository.

• Dataset and Benchmark Repository: https://anonymous.4open.science/r/
MolTextQA-D688/

A.2 INTENDED USES OF THE DATASET

The dataset is primarily intended to be used for molecule-text relationship learning. The task of
molecule-text learning has been gaining increasing attention in recent research. However, the current
datasets and developed models do not enable structured inference, and evaluation is not precise.
The MolTextQA dataset addresses these challenges by offering a question-answering format with
multiple-choice answers. Questions are based on a small molecule input, with answers provided in
textual sentence or multiple-choice format. The dataset is intended for applications in fields such as
drug discovery, retrosynthesis, and the discovery of materials like fertilizers, pesticides, and perfumes.

A.3 LICENSE

The MolTextQA dataset will be distributed under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license, which permits use, distribution, and reproduction in any medium, provided the
original work is properly cited.

A.4 RIGHTS AND RESPONSIBILITIES

The authors bear all responsibility in case of violation of rights associated with the dataset.
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B DATASET SOURCE

The primary source for building this dataset is PubChem (Kim et al., 2019). PubChem consolidates
chemical data from multiple public sources. A comprehensive list of these sources is accessible
at https://pubchem.ncbi.nlm.nih.gov/sources/. The licensing terms on PubChem
are stated as: "Works produced by the U.S. government are not subject to copyright protection
in the United States. Any such works found on National Library of Medicine (NLM) Web sites
may be freely used or reproduced without permission in the U.S. Please acknowledge NLM as the
source of the information by including the phrase “Courtesy of the National Library of Medicine”
or “Source: National Library of Medicine.” More details on the licensing terms can be found at
https://www.nlm.nih.gov/web_policies.html.

For efficient data retrieval, the PubChem Power User Gateway offers abstracts of compound records
in XML format. This facilitates the extraction and analysis of chemical information by enabling
users to search for molecular descriptions and their unique PubChem Compound Identifier (CID).
This CID is then used to fetch the Simplified Molecular-Input Line-Entry System (SMILES) repre-
sentation for each compound listed in PubChem. For utilizing the PubChem Power User Gateway,
visit https://pubchem.ncbi.nlm.nih.gov/docs/power-user-gateway. This ap-
proach for obtaining PubChem data is also followed by (Fang et al., 2024; Cao et al., 2023; Li et al.,
2024), all publicly available.
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C LIMITATIONS OF EXISTING DATASETS

In this section, we discuss some limitations of existing datasets, illustrating each point with concrete
examples.

Lack of Specificity in Prompts and Question Diversity: Existing datasets such as PubChemSTM
(Liu et al., 2023a), MoMu (Su et al., 2022), CheBI-20 (Edwards et al., 2021), and PCDes (Zeng et al.,
2022) predominantly consist of captions derived from PubChem (Kim et al., 2019). These captions
are free-form and include diverse information across various tasks without specific categorization.
For instance, consider the following captions from PubChem:

• Caption A: This molecule is a natural product found in Carica papaya.

• Caption B: It is an N-glycosyl compound, a ribose triphosphate, a pyrimidone, and an
aminopyrimidine.

Datasets such as InstructMol (Cao et al., 2023) and MolInstructions (Fang et al., 2024), which also
source their captions from similar databases, pose queries like ‘Describe the molecule.’ Given the
broad range of information in the captions—from molecule manufacturing, to physical properties,
to chemical structures, to drug toxicity, to industrial applications—the queries remain insufficiently
structured for detailed inference. In contrast, our proposed dataset includes specific queries such as Is
this molecule denser than water?, Does this molecule contain a mannose ring?, or Is this molecule
an antibiotic or an analgesic?

This issue also affects retrieval models such as MoleculeSTM or MoMu, where the challenge is
compounded by the necessity for a single molecule embedding to retrieve both Caption A and Caption
B. This task is difficult as these captions semantically reside in distinct spaces.

Factual Correctness: Datasets such as 3DMolLM(Li et al., 2024) employ data augmentation from
LLMs in their data generation procedure, raising concerns about the overall accuracy of the dataset.
Moreover, these datasets generate five questions for each data point, irrespective of whether sufficient
information exists. There is no validation process to determine the reliability of the data, leading to
the generation of numerous unreliable questions. Consider the following example from PubChem:
https://pubchem.ncbi.nlm.nih.gov/compound/10008613

The provided caption is:

(1S, 2S, 4R, 5R, 6R, 9R, 10S, 11R, 12R, 16R, 18S, 21R) −
2, 9, 10, 11 − tetrahydroxy − 4, 6, 12, 17, 17 − pentamethyl −
18 − [(2S, 3R, 4S, 5R) − 3, 4, 5 − trihydroxyoxan − 2 −
yl]oxyhexacyclo[11.9.0.01, 21.04, 12.05, 10.016, 21]docos− 13− en− 8− one
is a natural product found in Actaea yunnanensis and Actaea cimicifuga with data
available.

The generated questions in the 3DMolLM dataset are:

• What is the SMILES code of the molecule?, which is trivial as SMILES sequence is part of
the input.

• What is the chemical name of this molecule?,

• What are some of the functional groups present in this molecule?,

• What are the physical properties of this molecule?, speculating about properties not detailed
in the caption.

• What is the potential biological significance of this molecule?, hypothesizing about the
biological activity without supporting data.

These questions illustrate the challenge of relying on LLM-generated content without appropriate
validation, leading to questions that speculate beyond available data.

In contrast, our current work employs a two-stage procedure to validate and filter data generated
with LLMs. We also manually evaluate the dataset and estimate its overall accuracy at less than 0.05.
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Since not much information is available on most molecules, our dataset averages about two questions
per molecule, enhancing factual reliability.

Information Leakage: The 3DMolLM dataset does not anonymize molecule names, resulting in
many questions that include either the common or chemical name of the molecule, thereby providing
unintended hints. For example, a question in the dataset - “What is the main component of Lobaplatin
that gives it its anticancer properties?” offers additional clues that may influence the evaluation
process, complicating assessing a model’s ability to learn from the molecule sequence or structure
alone.

Evaluation Limited to Samples with Available Data: Datasets like MoMu, 3DMolLM, and MolCA
limit their test sets to molecules accompanied by captions of more than 20 words. This approach
inherently biases the evaluation towards well-known and extensively studied molecules. Conversely,
the dataset presented in this work, while including these well-documented data points, also augments
the test set with molecule captions chosen randomly, not by length. This strategy helps to provide
a more balanced and representative evaluation of the model’s capabilities across a wider range of
molecular data.

Benchmarking Across Several Model Classes: Existing datasets often exhibit limitations in their
benchmarking scope. For instance, MolInstructions has been evaluated solely using LLMs, while
3DMolLM employs only Llama as an additional baseline. Other models like KV-PLM and MoMu
are benchmarked against only a subset of available models. Similarly, MoleculeSTM and MolT5 lack
direct comparisons in their evaluations. In contrast, our approach aims to extensively benchmark and
compare models across different architectural classes. This broader evaluation is facilitated by the
structure of our dataset, which includes questions and multiple-choice options, allowing for a more
comprehensive assessment of model performance.
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D PROMPTS FOR DATA GENERATION AND INFERENCE

In this section, we discuss the various prompts for large language models in this work

• In Figure 3, we depict the prompt used to generate QA data (section 3.3). The LLM is
provided with the input of a description of a molecule and a set of QAs is generated.

• In Figures 4 and 5, we depict the prompt used for validating the generated data with an
LLM(section 3.4). In the first stage, the LLM is provided with the generated question,
answer, and molecule description, and tasked with inferring the correct option based on this
input. In the next stage, the LLM is given the filtered questions and prompted to evaluate
their relevance in relation to the molecular characteristics.

• In Figures 6 and 7, we discuss the prompts used for inference from LLMs(section 4.3), and
also for fine-tuning LLMs(section 4.4).

Figure 3: Prompt used for QA generation: The LLM is provided with the input of a description of
a molecule and is prompted to generate a set of QAs is generated

Figure 4: Prompt used for validation: The LLM is provided with a a generated Question and
options, and the description of the question it was generated from. The LLM is then prompted to
identify the correct option.
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Figure 5: Prompt used for validation step 2: The LLM is then provided with the questions from
the previous stage and tasked with evaluating their relevance in the context of deciphering molecular
characteristics

Figure 6: Prompt for Molecule QA inference: The LLM is provided with an input SMILES string,
and a set of options, and is prompted to identify the correct option.

Figure 7: Prompt for Molecule Retrieval inference: The LLM is provided with an input sentence
about a SMILES string, and a set of options, and is prompted to identify the correct SMILES seqeuce.
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E DATASET EFFICACY EVALUATION

To assess the overall reliability of our dataset, we conducted a benchmark by randomly sampling
400 data points from the test split. The data points were evaluated on three criteria: whether the
question could be logically derived from the provided caption, the unambiguous correctness of the
answer, and the relevance of the question—specifically, ensuring it avoids uninformative queries and
contributes to meaningful chemical or biological insights based on the structure. Out of the sampled
data, 391 points met these criteria. To understand the implications of this result for the entire dataset,
we calculated the p-value using a hypergeometric distribution (sci). A hypergeometric test is used
to measure the probability of obtaining a specific number of successes in a given number of draws
from a finite population containing a certain amount of successes. With parameters k=400, n=391,
N=11,922 (i.e the size of all test split), and K=0.961*11,922, we found a p-value of <0.05. This
result suggests that the dataset is over 96.1 percent accurate, demonstrating a high level of reliability.
Details of the random test samples used for this evaluation can be accessed through the project’s
repository.

To illustrate our evaluation process, we present representative examples of both accepted and rejected
cases:

E.1 ACCEPTED EXAMPLES

• PubChem ID: 21580808
Question: What is the molecule resulting from?
Options:

1. Protonation of the oxygen of the primary amino group of sotalol
2. Protonation of the nitrogen of the secondary amino group of sotalol
3. Deprotonation of the nitrogen of the primary amino group of sotalol
4. Protonation of the oxygen of the secondary hydroxyl group of sotalol
5. Deprotonation of the oxygen of the primary hydroxyl group of sotalol

Accepted because: The question addresses specific chemical modifications with clearly
distinguishable options.

• PubChem ID: 47528
Question: What is the mechanism of action of the molecule on vascular smooth muscles?
Options:

1. Membrane depolarization
2. Membrane hyperpolarization
3. Increased transmembrane sodium conductance
4. Increased intracellular concentration of cyclic AMP
5. Reduced transmembrane potassium conductance

Accepted because: The question relates to structure-function relationships with distinct,
non-overlapping answer choices.

• PubChem ID: 1711945
Question: Where is the molecule naturally found?
Options:

1. Tilia platyphyllos
2. Tilia tomentosa
3. Sargassum natans
4. Sargassum micracanthum
5. Sargassum flavescens

Accepted because: The question has a single, verifiable correct answer among distinct
options.
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E.2 REJECTED EXAMPLES

• PubChem ID: 54671008
Question: When did the molecule receive FDA approval?
Options:

1. 10 October 2006
2. 12 October 2007
3. 12 October 2008
4. 10 October 2009
5. 12 October 2010

Rejection Rationale: Relies on temporal metadata information rather than molecular
properties, which cannot be inferred from structure.

• PubChem ID: 10129
Question: What type of odor does the molecule have?
Options:

1. Strong
2. Mild
3. Sweet
4. Pungent
5. Unpleasant

Rejection Rationale: Options lack clear differentiation and are potentially overlapping.
• PubChem ID: 101562486

Question: What is the general class of biomolecules to which the molecule belongs?
Options:

1. Carbohydrate
2. Lipid
3. Oligopeptide
4. Nucleic acid
5. Heterocycle

Rejection Rationale: Multiple options could be technically correct.
• PubChem ID: 53361968

Question: What characteristic may make the molecule a desirable therapy?
Options:

1. It is less expensive
2. It is less likely to generate resistance
3. It is only for treatment-naive patients
4. It is only for PI-experienced patients
5. It is only for HIV-2 infections

Rejection Rationale: Addresses clinical outcomes not directly inferrable from structure.
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F BASELINE MODELS, TRAINING, AND FINETUNING

In this section, we expand on the specific details of different models used to evaluate the MolQA
dataset.

F.1 MODEL DETAILS

F.1.1 SINGLE ENCODER ARCHITECTURES:

Scibert: SciBERT (Beltagy et al., 2019) is an encoder model, that leverages a pre-trained BERT
framework, subsequently fine-tuned on a substantial corpus of scientific papers, predominantly from
the biomedical domain (constituting 85% of its training data). This specialization makes SciBERT a
useful baseline for our study. It has a robust performance across various scientific tasks, including
named entity recognition and text classification.

KV-PLM: KV-PLM(Zeng et al., 2022) is a single encoder model derived from SciBERT, further
trained on molecule-text pairs sourced from PubChem. The training process begins with pre-training,
during which SMILES sequences are appended to molecular descriptions to form the training data.
The model employs a masking strategy where certain tokens representing both molecular structures
and biomedical text are masked at random. The model’s task is to predict these masked tokens
based on the surrounding context. Following pre-training, KV-PLM undergoes fine-tuning for text
retrieval tasks. In this phase, the model learns to accurately retrieve specific text descriptions based
on SMILES sequence inputs, utilizing a max hinge loss function. This loss is given by:

LMH =max
d′

[α+ s (m,d′)− s(m,d)]

+ max
m′

[α+ s (m′,d)− s(m,d)] , (1)

here LMH represents the max hinge loss, m and d denotes the molecule (SMILES sequence) and
its corresponding text description, respectively. The terms d′ and m′ refer to a negative text and
molecule that do not match the original pairing and the function s(m,d) calculates the similarity
score between a molecule and a document.

MolT5: MolT5 (Edwards et al., 2022) is an encoder-decoder model, built by fine-tuning a T5 (Raffel
et al., 2020) model. The model is trained in two stages. First, the the model is trained with masked
language modeling objective, to encode and decode SMILES string and molecule captions. Next, the
model is fine-tuned to generate SMILES strings or captions from the captions or the SMILES strings
input respectively. The dataset used for fine-tuning is CheBI-20 (Edwards et al., 2021)).

F.1.2 MULTIMODAL ARCHITECTURES:

MoleculeSTM: The paper (Liu et al., 2023a) introduces a framework that uses a dual-encoder to
extract and align representations of text and molecules. The framework employs a Graph Isomorphism
Network (GIN) (Xu et al., 2018) to encode chemical data, represented by fc, and SciBert to encode
textual data, denoted as ft. The GIN model is initialized from GraphMVP (Liu et al., 2021), which
does multi-view pretraining between the 2D topologies and 3D geometries from the GEOM dataset
(Axelrod and Gomez-Bombarelli, 2022). The components are trained end-to-end on a dataset that
contains molecules and their descriptions sourced from PubChem. The model’s learning process is
governed by the InfoNCE loss:

LInfoNCE =− 1

2
Exc,xt

[
log

exp (E (xc,xt))

exp (E (xc,xt)) +
∑

xt′
exp (E (xc,xt′))

+ log
exp (E (xc,xt))

exp (E (xc,xt)) +
∑

xc′
exp (E (xc′ ,xt))

]
(2)

Here xc and xt represent the input chemical structure and textual description, respectively. fc, ft
represent the chemical and text representation model, and pc, pt represents chemical, text projection
matrices. The function E(xc,xt) = ⟨pc ◦ fc(xc), pt ◦ ft(xt)⟩ calculates the similarity. The goal
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is to distinguish between correctly matched chemical-text pairs (xc,x ∗ t) and mismatched pairs
(xc,xt′, x ∗ c′,xt), enhancing the model’s ability to map chemical structures to their descriptive
texts accurately.

MoMu: MoMu (Su et al., 2022) is another dual-encoder model similar to MoleculeSTM, leveraging
both SciBERT for textual data and a Graph Isomorphism Network (GIN) for chemical structures.
Similar to MoleculeSTM, MoMu employs a GIN network but is initialized with random weights,
which are then trained using a contrastive loss mechanism akin to that used in MoleculeSTM. This
baseline comparison underscores the potential enhancements 3D pretraining brings to the model’s
ability to capture complex molecular structures.

F.1.3 LARGE LANGUAGE MODELS

Llama: Llama (Touvron et al., 2023) is a series of decoder-only, autoregressive transformer models
trained on a large general corpus. Llama demonstrates exceptional performance in various tasks,
including common sense reasoning, closed-book QA, mathematical reasoning, and code generation.
Llama has been fine-tuned on a select instructional dataset to follow human instructions effectively.
Given its extensive application range, assessing Llama’s chemical understanding capabilities is of
interest. We have experimented with the smallest and the largest versions of the Llama-2 and Llama-3
series of models.

GPT 3.5 Turbo We further benchmark the GPT-3.5 Turbo (OpenAI, 2022) model, a member of the
Generative Pre-trained Transformer series.

Galactica: We also benchmark Galactica (Taylor et al., 2022), a set of scientific language models that
are autoregressive, decoder-only similar to the previous models. These models are trained to recognize
and understand a wide range of scientific information, such as chemical structures represented by
SMILES strings, sequences of amino acids, computer code, and mathematical equations. The dataset
used contains a large collection of scientific documents and research papers. It is shown to be effective
on specialized biomedical datasets like PubMedQA and MedMCQA. For this study, we use Galactica
models of different sizes, with 125M, 1.3B, and 6.7B parameters.

F.2 ZERO-SHOT INFERENCE:

Large Language Models: For the Llama series of models, zero-shot inference was performed
using the API service offered by Microsoft Azure AI services. For GPT-3.5, zero-shot inference is
performed using the OpenAI platform. For Galactica, model weights are obtained from the Hugging
Face library.

Multi-modal Architectures: For SciBERT and KV-PLM, the model weights are initialized from the
MoleculeSTM official repository: https://github.com/chao1224/MoleculeSTM. We
retrained MoMu and MoleculeSTM, due to potential data leakage issues by removing the samples in
the pertaining set that overlap with the test set. 30 Epochs of training on the pre-training dataset were
performed for MoleculeSTM and MoMu, which took about 40 hours on an NVIDIA RTA A6000
GPU. The code and model parameters were obtained from Molecule STM’s official repository. THe
learning rate used was 1e-5 and a batch size of 45. For MoMu, we used the augmentation probability
of 0.2. A temperature of 0.1 is used for both the models.

F.3 FINETUNING:

Galactica: 3 Epochs of training on the finetuning dataset were performed by the other models. LoRA
(Hu et al., 2021) was used to finetune the query and value vectors of Galactica 125M, 1.3B, and 6.7B.
Training and evaluation took around 2.5 hours, 5 hours, and 30 hours respectively on a NVIDIA
A100 80GB PCIe. The learned rate used was 2e-5, a weight decay of 0.01, and a batch size of 8 using
Huggingface’s Trainer for causal language modeling (because the base OPT model is a decoder-only
model)1. The LoRA parameters are r = 16, α = 32 and a lora_dropout of 0.05.

1https://huggingface.co/docs/transformers/en/tasks/language_modeling
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MoleculeSTM and MoMu: The finetuning was performed in the same setting as training, as
described in Section F.2. Both the models are fine-tuned for 3 epochs, at a learning rate of 1e-15. The
total finetuning time is about 1 hour.

Llama2-7B and Llama3-8B models: Both the models are trained for 3 epochs using LoRA on an
NVIDIA A100 80GB PCIe. The total training time is approximately 30 hours for each model. The
Lora parameters used are r = 16, α = 32 and a lora_dropout of 0.1. The learning rate is 1e-5 and the
weight decay used is 1e-4.

MolT5, BioT5 and BioT5 plus: The models are finetuned for 10 epochs on an NVIDIA A100 80GB
PCIE. The approximate training time for the MolT5 model is 3.5 hours, while it is 6 hours for the
BioT5 models. These models are trained with a learning rate of 2e-5, a weight decay of 0.01 and a
batch size of 8 using the Huggingface’s trainer.

F.4 A NOTE ON 3DMOLLM

Additionally, we attempted to fine-tune the BLIP-like model, as proposed in the 3DMolLM paper
(Li et al., 2024), on the MolTextQA dataset. This model methodology involves projecting the 3D
structure of a molecule into the space of LLM tokens and utilizing these tokens for text generation.
Unfortunately, we encountered challenges during fine-tuning using the default configurations provided
in the code repository. Specifically, we were unable to finetune the model to generate answers in the
required format, which impeded our ability to perform any meaningful analysis.
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