
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISEPRINTS: DISTORTION-FREE WATERMARKS FOR
AUTHORSHIP IN PRIVATE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid adoption of diffusion models for visual content generation, proving
authorship and protecting copyright have become critical. This challenge is particu-
larly important when model owners keep their models private and may be unwilling
or unable to handle authorship issues, making third-party verification essential.
A natural solution is to embed watermarks for later verification. However, exist-
ing methods require access to model weights and rely on computationally heavy
procedures, rendering them impractical and non-scalable. To address these chal-
lenges, we propose NoisePrints, a lightweight watermarking scheme that utilizes
the random seed used to initialize the diffusion process as a proof of authorship
without modifying the generation process. Our key observation is that the initial
noise derived from a seed is highly correlated with the generated visual content. By
incorporating a hash function into the noise sampling process, we further ensure
that recovering a valid seed from the content is infeasible. We also show that
sampling an alternative seed that passes verification is infeasible, and demonstrate
the robustness of our method under various manipulations. Finally, we show how to
use cryptographic zero-knowledge proofs to prove ownership without revealing the
seed. By keeping the seed secret, we increase the difficulty of watermark removal.
In our experiments, we validate NoisePrints on multiple state-of-the-art diffusion
models for images and videos, demonstrating efficient verification using only the
seed and output, without requiring access to model weights.

1 INTRODUCTION

Generative diffusion and flow models (Ho et al., 2020; Song et al., 2020; Lipman et al., 2022)
have rapidly transformed visual content creation, enabling the synthesis of high-quality images
and videos from simple text prompts (Rombach et al., 2021; Saharia et al., 2022; Ramesh et al.,
2022). While these models open new creative opportunities, they also raise pressing questions of
copyright, authorship, and provenance (Zhu et al., 2018; Yu et al., 2021; Liu et al., 2023). In particular,
proving authorship of generated content is essential for creators who wish to protect their work,
establish ownership, or resolve disputes over originality (Arabi et al., 2025; Huang et al., 2025). This
challenge is particularly pressing for independent creators and smaller organizations, who lack the
trusted infrastructure of major AI providers and therefore require alternative mechanisms, such as
watermarking, to prove that content was generated by their models.

Watermarking has emerged as a promising direction for enabling authorship verification in generative
models. In this setting, a watermark refers to a verifiable signal that links generated content to its
origin. Most existing methods achieve this either by embedding artificial patterns into the output or
by recovering hidden information through inversion of the generation process (Gunn et al., 2024;
Arabi et al., 2025; Yang et al., 2024b; Wen et al., 2023; Ci et al., 2024). However, these approaches
often require access to the model weights and inference code, which may not be available when
the model is proprietary or privately fine-tuned. Others modify the generation process in ways that
alter the output distribution, or rely on computationally expensive inversion procedures, making
verification impractical at scale. These limitations hinder the adoption of watermarking in scenarios
where efficient and model-agnostic solutions are most needed.

In this work, we propose NoisePrints, a lightweight watermarking scheme that does not embed
additional signals or alter the generation process, thereby preserving the original output distribution.
Instead, we leverage the random seed that initializes the diffusion process as a proof of authorship.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our key observation is that the initial noise derived from a seed is highly correlated with the generated
visual content (Łukasz Staniszewski et al., 2025). This property enables verification by directly
checking the correlation between the initial noise and the generated content, without requiring access
to the diffusion model or costly inversion procedures. To secure this construction, we incorporate
a one-way hash function into the noise sampling process, which makes it infeasible to recover a
valid seed from the content. Moreover, we employ cryptographic zero-knowledge proofs to establish
ownership without exposing the seed, thereby increasing the difficulty of watermark removal. Finally,
we design a protocol for resolving disputes over authorship claims that handles both watermark
injection attempts and geometric transformations of the original content.

To assess the reliability of NoisePrints, we evaluate its security and robustness. We show that the
probability of randomly sampling a seed that produces noise correlating with a given image above
the verification threshold is vanishingly small, and provide intuition for why such correlations persist.
We further examine robustness under a wide range of attacks, including post-processing operations,
geometric transformations, SDEdit-style regeneration (Meng et al., 2021), and DDIM inversion (Song
et al., 2022), and introduce a dispute protocol that complements the verification protocol. Finally, we
compare our approach with existing watermarking methods, highlighting efficiency, robustness, and
practicality, and discuss extensions such as zero-knowledge verification for real-world deployment.

Our results establish seed-based watermarking as a practical and robust solution for proving authorship
in diffusion-generated content. The method requires no changes to the generation process, preserves
output quality, and remains reliable across diverse models and adversarial conditions, providing
creators with a lightweight tool to assert ownership in the growing landscape of generative media.

2 RELATED WORK

Watermarking in diffusion models can be organized along three design axes: timing (post-hoc vs.
during sampling), location (pixels, latents/noise, or model parameters), and verification (direct decod-
ing vs. inversion). We focus on sampling-time watermarking in the noise/latent space, embedding the
mark directly in the generation trajectory. Unlike most prior works, which depend on inversion, our
approach achieves lightweight, inversion-free verification without requiring access to model weights.

Post-hoc Watermarking Post-hoc methods embed a watermark into an image after it is gener-
ated. Early approaches used frequency-domain perturbations or linear transforms (Cox et al., 1997;
O’Ruanaidh & Pun, 1997; Chang et al., 2005), while more recent works train deep networks to hide
and extract invisible signals (Zhu et al., 2018; Zhang et al., 2019; Tancik et al., 2020). These methods
are simple to deploy, since they require no changes to the generative model. However, they are fragile
and can be defeated by regeneration or steganalysis attacks (Zhao et al., 2024; Yang et al., 2024a).

In-generation Watermarking Another line of work modifies the generative pipeline itself, often
by fine-tuning the model so that watermarks are embedded directly into the produced images (Zhang
et al., 2019; Zhao et al., 2023; Fernandez et al., 2023; Lukas & Kerschbaum, 2023; Cui et al.,
2024; Sander et al., 2025; Zhang et al., 2024). These methods achieve strong detectability under
common image transformations, but incur non-trivial training cost and require model weights, limiting
portability and practical deployment.

Closer to our approach are methods that manipulate the noise used to initialize the denoising
process, thereby embedding the watermark in the noise. Detection relies on inversion (e.g., DDIM
inversion (Song et al., 2022)) to estimate the noise that generated the image and check whether
it contains the watermark. Early schemes embedded patterns in the noise, but this introduced
distributional shifts (Wen et al., 2023). Later works addressed this either by refining the embedded
patterns (Ci et al., 2024; Yang et al., 2024b) or by sampling the noise with pseudorandom error-
correcting code (Gunn et al., 2024; Christ et al., 2024). Another recent approach (Arabi et al., 2025)
treats initial noises as watermark identities and matches inverted estimates against a database, using
lightweight group identifiers to reduce search cost while still relying on inversion.

While these methods avoid the cost of training or fine-tuning a generative model, they transfer
the computational overhead to the verification stage, since inversion requires repeatedly applying
the diffusion model. This becomes especially prohibitive for high-dimensional data such as video.
Dependence on inversion also limits their applicability to few-step diffusion models, where accurate
recovery of the initial noise can be more challenging (Garibi et al., 2024; Samuel et al., 2025). Finally,
verification requires access to the generative model itself, which becomes restrictive if the model is

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

private and its owner is either untrusted or unwilling to handle detection. Our method avoids these
drawbacks: it neither embeds patterns nor alters the generation process, making it fully distortion-free,
and it avoids reliance on inversion, enabling lightweight verification at scale.

Attacks, Steganalysis, and Limits Regeneration attacks, which regenerate a watermarked image
through a generative model to wash out the hidden signal while preserving perceptual quality, can
reliably erase many pixel-space watermarks, challenging post-hoc approaches (Zhao et al., 2024). For
content-agnostic schemes that reuse fixed patterns, including noise-space marks, simple steganalysis
by averaging large sets of watermarked images can recover the hidden template, enabling removal and
even forgery in a black-box setting (Yang et al., 2024a). At a more fundamental level, impossibility
results show that strong watermarking, resistant to erasure by computationally bounded adversaries,
is unattainable under natural assumptions, underscoring the need to specify precise threat models and
robustness criteria (Zhang et al., 2025).

3 METHOD

3.1 PRELIMINARIES

We present our method in the context of latent diffusion models (LDMs) (Rombach et al., 2021;
Podell et al., 2024; Labs, 2024), which have become the standard in recent diffusion literature. LDMs
generate content by progressively denoising a latent and decoding it into pixel space with a variational
autoencoder (VAE). An LDM consists of (i) a diffusion model that defines the denoising process, and
(ii) a VAE (E,D), where E encodes images into latents and D decodes latents back into pixels.

Generation begins from a seed s. To ensure that the noise generation process cannot be adversarially
manipulated to yield a targeted noise initialization, we first apply a fixed cryptographic hash h(s) and
use the result to initialize the PRNG. We require h to be deterministic, efficient, and cryptographically
secure (collision resistant, pre-image resistant, and producing uniformly distributed outputs). The
PRNG produces Gaussian noise ε(h(s)) ∼ N (0, I), which the diffusion model iteratively denoises
into a clean latent z0. For the denoising process, we use deterministic samplers. Finally, the decoder D
maps z0 to the output x, such that the seed s uniquely determines the result via its hashed initialization
of the PRNG.

In practice, the VAE is often public and reused across models (e.g., Wan (Wan et al., 2025) and
Qwen-Image (Wu et al., 2025) share a VAE, and DALL·E 3 (Betker et al., 2023) uses the same
VAE as Stable Diffusion (Rombach et al., 2021)). In this work we consider both diffusion and flow
models. Both start from Gaussian noise ε(h(s)) and define a trajectory to a clean latent, making
our verification framework applicable in either case, as demonstrated on Stable Diffusion (Rombach
et al., 2021) and Flux (Labs, 2024). We assume the diffusion model is private and inaccessible to
verifiers, while the VAE is accessible to them, allowing verifiers to embed candidate content into
the shared latent space. Notably, we do not assume the VAE weights are publicly shared, and only
assume black-box access to the VAE encoder. For brevity, we refer to the diffusion model simply as
the model.

3.2 THREAT MODEL

We consider a setting where a generative model is controlled by a model owner who keeps the weights
private and may expose the model only through a restricted interface (e.g., API access). The owner
may be a small organization or even a private individual, and is not necessarily a fully trusted entity.
Content can be generated either by the owner directly, or by a user who queries the model through
the API. In both cases, the party who generated the content may later wish to prove authorship of
the output without requiring access to the model itself. Since the model owner may not be willing,
able, or trusted to handle authorship issues (now or in the future), the responsibility for verification is
delegated to an independent third party. The verifier is the only trusted party for handling authorship
claims, and its role is to execute the public verification procedure. The model weights remain private
and are never shared.

To enable authorship verification, the content producer records the seed s used to initialize the
sampling procedure. The generated content x is public, but s remains secret until the producer
wishes to prove authorship. At that point, the producer provides the pair (x, s) to a verifier. The
verifier can then check this claim using only public primitives (PRNG specification, encoder E, and
threshold calibration), without access to the model itself. This property ensures that verification is
both lightweight and model-free, avoiding the need to share private weights.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

  

Verifier Inputs

NoisePrint Verification

Verifier Inputs
DDIM Inversion

Diffusion

Model

Slow Requires the modelFast Model-free

 

seed

hash

 

PRNG

Gaussian Noise

Diffusion

Model

Generated Image

NoisePrint Content Generation

No intervention in the generation

Other Methods’ Verification
Arabi et al., Ci et al., Gunn et al., Yang et al., Wen et al.

Figure 1: NoisePrint introduces no intervention in the generation process and therefore does not alter the
distribution of generated images. For verification, we compare the noise derived from the seed with the given
image. In contrast to other approaches that rely on DDIM inversion and compare the predicted initial noise to a
key (i.e., a pre-embedded watermarking pattern) to decide authorship, our method is lightweight and model-free.

It is important that the seed s does not leak to the public during verification, as it could potentially
allow an adversary to claim ownership over the content in the future or execute more targeted and
effective adversarial attacks. In order to mitigate this risk, it would be beneficial if s is not revealed
even to the verifier. To support this, the scheme can be extended with zero-knowledge proofs that
establish ownership without revealing s, which we recommend for practical deployments. For clarity,
we first present our method without this extension.

We consider an adversary that knows the generated content x, and all public primitives: PRNG
specification, encoder E, and verification threshold τ . The adversary does not know the weights of
the diffusion model and the seed s used by the rightful owner. The adversary may pursue two goals:

• Watermark Removal. Modify x into x̃ so that the correlation with the rightful owner’s
seed s drops below the threshold τ , making the content unverifiable.

• Watermark Injection. Produce an image x̃ that is visually similar to x, and a fake seed s′

such that (x̃, s′) passes verification, thereby claiming ownership of content similar to x.
An adversary may perform only removal (removal-only), only injection (injection-only), or a combined
attack that both suppresses the original correlation with s and establishes a correlation with a forged
seed s′. To pursue the removal goal, we assume the adversary may employ the following types of
attacks, all of which must preserve perceptual similarity to x: (i) basic image processing operations
(e.g., compression, blur, resizing), (ii) diffusion-based image manipulation (e.g., SDEdit which
reintroduces noise at intermediate denoising steps and DDIM inversion based optimization), or (iii)
geometric transformations (e.g., rotations, crops).

These attack families follow prior work (Arabi et al., 2025; Gunn et al., 2024; Yang et al., 2024b)
on robust watermarking and reflect both common manipulations that occur in practice and stronger
generative edits that adversaries might attempt. Although we demonstrate robustness against one
adversarial removal attack (DDIM inversion based optimization), we acknowledge that perfect robust-
ness against adversarial, quality-preserving edits is unattainable (Zhang et al., 2025), and therefore
scope our claims to practical robustness under bounded, perceptual-preserving manipulations. To
measure the perceptual similarity between the original image and the attacked one, we use SSIM,
PSNR, and LPIPS (Zhang et al., 2018).

3.3 NOISEPRINTS WATERMARKS

Our key observation, upon which we build our method, is that in diffusion and flow models the initial
Gaussian noise ε(s) leaves a persistent and surprisingly strong imprint on the generated content.
Despite the high dimensionality of the space, the latent representation of the final image x exhibits a
significantly higher correlation with its originating noise ε(s) than with an unrelated noise sample. A
related observation was noted by Łukasz Staniszewski et al. (2025), though in a different context.
We further discuss this phenomenon in Appendix A, where we relate it to optimal transport and
propose an explanation for why such correlations naturally persist. This finding allows us to treat
the initial noise as a natural watermark. By producing ε(h(s)) from the seed and measuring its
correlation with x, we obtain a reliable authorship signal, which we call a NoisePrint. Unlike many
prior watermarking approaches, NoisePrint does not alter the generative process and hence the output
distribution remains intact, rendering the watermark completely distortion-free. Figure 1 gives an
overview of our method alongside a comparison to prior approaches based on inversion.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Next, we describe our verification protocol. This protocol remains robust under simple image
processing and diffusion-based manipulations. To address more challenging cases such as geometric
transformations and injection-only attacks, we further introduce a dispute protocol.

Verification Protocol Let E(x) denote the latent embedding of an image x obtained using the public
VAE encoder. For a given seed s, the initial Gaussian noise ε(h(s)) is produced deterministically by
seeding the public PRNG (after hashing s) and drawing the required number of variates. We define
the NoisePrint score as the cosine similarity between the embedded image and the noise:

ϕ(x, s) ≜
⟨E(x), ε(h(s))⟩
∥E(x)∥2 ∥ε(h(s))∥2

. (1)

A claim (x, s) is verified by comparing ϕ(x, s) to a threshold τ calibrated to achieve a desired false
positive rate under the null hypothesis that E(x) and ε(h(s)) are independent. If ϕ(x, s) ≥ τ , the
verifier accepts the claim as valid. We summarize the verification protocol in Algorithm 1.

While this procedure is effective under simple image processing and diffusion-based manipulations,
as demonstrated in Section 5.2, it does not address cases where the adversary applies geometric
transformations or injects a watermark into an existing image. Geometric transformations can
misalign the image embedding with its originating noise and therefore decrease the correlation, while
injection attacks pose a challenge because an adversary may fabricate a different seed-image pair
that also passes verification. To handle geometric transformations and injection-only attacks, we
introduce a dispute protocol.

Dispute Protocol We propose a dispute protocol for cases where an adversary claims ownership
over a modified version of the original content, and passes the basic verification protocol due to
injecting their watermark into this modified version. The protocol requires each claimant i ∈ {A,B}
to submit a triplet (xi, si, gi) consisting of their content, their seed, and an optional transformation
gi ∈ G from a public family of transformations (e.g., rotations or crops). For a claim (x, s) and a
transformation g ∈ G, we define the extended NoisePrint score:

ϕ(x, s; g) ≜
⟨E(g · x), ε(h(s))⟩
∥E(g · x)∥2 ∥ε(h(s))∥2

. (2)

The verifier then applies gi to the opponent’s content and evaluates:

ϕ(xi, si; id) ≥ τ and ϕ(xj , si; gi) ≥ τ, j ̸= i, (3)

where id is the identity transformation. We refer to the first inequality as self check and the second
as cross check. If one claimant satisfies both inequalities, that claimant is recognized as the rightful
owner; if both or neither do, the dispute remains unresolved. The protocol is outlined in Algorithm 2.

The protocol resolves injection-only attempts. Suppose an adversary produces x̃ and a fake seed s′

such that (x̃, s′) passes the verification test, while the true NoisePrint from the rightful seed s remains
detectable. In the dispute, the rightful owner submits (x, s, id) and passes both the self and cross
checks. The injector, however, fails the cross check on x with s′, since s′ is independent of x under
the null used to calibrate the threshold. Hence, injection without removal cannot overturn ownership,
and any successful injector must also remove the true NoisePrint.

The dispute protocol also resolves geometric removal attempts. If an adversary applies some
transformation g to suppress the correlation of (x, s), the rightful owner can recover alignment
by submitting (x, s, I(g)), with I(g) ∈ G being the inverse transformation that would align the
two. In doing so they would pass both checks, while the adversary cannot provide a valid seed for
any geometric transformation g ∈ G of the original image. Note that it is not necessary for the
inverse transformation I(g) to fully recover the original image when applied on the transformed
image, as long as the respective latents are re-aligned. See for example the set of transformations in
Appendix H.

3.4 ZERO-KNOWLEDGE PROOF

In this subsection, we provide a short background on zero-knowledge proof (ZKP) and describe the
goal of our ZKP. Implementation details and benchmark results are provided in Appendix C.

Zero-knowledge proofs (ZKPs) allow a prover P to convince a verifier V that a statement is true
without revealing to V anything beyond its validity. Consider a public circuit C. Suppose a prover

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

wants to convince a verifier that y = C(s;x), where y and x are public and s is a private witness
known only to P . A ZKP lets P produce a proof that convinces V that y was correctly computed
as C(s;x) for some s, without revealing s. In our case, all computation is performed over a finite
field. Besides zero-knowledge, a ZKP must satisfy: (i) Completeness: if true, an honest prover can
generate a proof accepted by the verifier (with high probability); and (ii) Soundness: if false, even a
malicious prover cannot generate a proof accepted by the verifier (with high probability). For a more
formal explanation of ZKPs, see (Thaler et al., 2022).

In our case, the private witness s is the seed, and the public input x is the image. The circuit C uses
s to derive the initial noise, which is then used to compute an inner product with x. From this, the
cosine similarity between the noise and the image is calculated. Finally, the circuit outputs 1 if the
similarity exceeds the public threshold τ , and 0 otherwise.

In addition, we use the ZKP to bind the proof to a specific user by partitioning the seed into two
parts. The first part is a public string describing the image and ownership (e.g., “An image of a cat
generated by the amazing cat company”), and the second part is a private secret random value. The
concatenation of the public string and the private random value is used as input to the cryptographic
one-way hash function h, whose output is then used to derive the initial noise for image generation.
The resulting ZKP uses the string as a public input and is thus “bound” to the string and honest owner.

4 SECURITY ANALYSIS

The main security requirement in our setting is that it should be computationally infeasible for an
adversary to forge a valid claim without access to the true seed. In the case of NoisePrints, this amounts
to showing that it is extremely unlikely to find a random seed s′ such that the corresponding noise
ε(s′) exhibits high correlation with a given image x. We emphasize that this analysis addresses only
the probability of a random seed coincidentally passing verification, and does not cover manipulations
of the content. Robustness against such attacks is evaluated empirically in Section 5.2.

False positives under seed guessing Let z = E(x) ∈ Rd be the embedding of the candidate
content, and let ε ∼ N (0, Id) be an independent random noise vector obtained from a random seed.
The NoisePrint score is: ϕ = ⟨z, ε⟩/(∥z∥2∥ε∥2). Without loss of generality we can assume that both
z and ε lie on the unit sphere. Thus ϕ is simply the inner product between two independent random
unit vectors in Rd. In high dimensions, by the concentration of measure phenomenon, such vectors
are almost orthogonal, hence their inner product is tightly concentrated around zero. The condition
ϕ ≥ τ has a geometric interpretation: it means that the random noise ε falls into a spherical cap of
angular radius arccos(τ) around z. In Appendix B we analyze this probability and show that:

Pr[ϕ ≥ τ ] = 1
2 I1−τ2

(
d−1
2 , 1

2

)
≤ exp

(
− (d−1)

2 τ2
)
, (4)

where Ix(p, q) is the regularized incomplete beta function. The exponential decay in d implies that the
false positive probability becomes negligible in high-dimensional embeddings. This property naturally
aligns with modern generative models: current image diffusion models already use thousands of
dimensions, while video diffusion models employ embedding spaces an order of magnitude larger,
making accidental collisions astronomically unlikely.

Threshold selection Given a target false positive rate δ, one can set the verification threshold τ as:

τ =
√
1− a∗, where a∗ solves 1

2Ia(
d−1
2 , 1

2 ) = δ. (5)
In our case we target an extremely low rate of δ = 2−128, meaning an adversary would need to try
roughly 2128 seeds to produce a false positive, which is computationally infeasible and provides
cryptographic-level security. We find a∗ using a numerical solver.

5 EXPERIMENTS AND RESULTS

This section presents an evaluation of our approach across various generative models. We begin
by assessing the reliability of verification in the absence of attacks, measuring the true positive
rate (TPR) at a fixed false positive rate (FPR). We then turn to robustness, examining how well
NoisePrints withstand the range of attacks available to an adversary, and benchmarking our method
against existing watermarking techniques. Since these baselines were designed under a different
threat model, we highlight two important distinctions: their verification requires access to the model
weights, and it involves substantially higher computational cost. Additional experiments, analyses,
and results are provided in Appendices E, F, H and L.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 RELIABILITY ANALYSIS

We evaluate the reliability of verification with our approach across multiple models. Specifically, we
generate images with Stable Diffusion 2.0 base (SD2.0, Rombach et al. (2021)), SDXL-base (Podell
et al., 2024), Flux-dev, and Flux-schnell (Labs, 2024) using prompts from Gustavo (2022). For video
generation, we use Wan2.1 (Wan et al., 2025) evaluated on a subset of prompts from VBench2.0 Zheng
et al. (2025). For each generated image x, we compute its NoisePrint ϕ(x, s), where s is the seed
used to generate x, and report the mean and standard deviation. We then analytically determine a
threshold per model for a fixed FPR of 2−128 (as in Section 4), and report the percentage of images
that pass this threshold. Results are summarized in Table 1. NoisePrint values exceed the threshold
by a large margin across all models, even at an extremely low FPR of 2−128. A single consistent
outlier appears across three models, corresponding to a prompt discussed in Appendix G.

Table 1: Reliability analysis across different models. For each model, we report the latent image dimension d
(the dimension of the VAE latent space), the mean and standard deviation of the NoisePrint score ϕ(x, s), the
analytically derived threshold τ for FPR = 2−128, and the resulting pass rate (images detected as watermarked).

Model Latent Dim. (d) Mean NoisePrint ϕ ± Std Threshold (τ ) Pass Rate

SD2.0 16,384 0.482 ± 0.088 0.101739 1.00
SDXL 65,536 0.431 ± 0.070 0.051000 0.99
Flux.1-schnell 262,144 0.197 ± 0.056 0.025500 0.99
Flux.1-dev 262,144 0.202 ± 0.055 0.025500 0.99
Wan2.1 1,297,920 0.0678 ± 0.0247 0.011460 1.0

5.2 ROBUSTNESS ANALYSIS

We analyze the robustness of our method using SD2.0 (Rombach et al., 2021), comparing it to prior
works: WIND (Arabi et al., 2025), Gaussian Shading (GS) (Yang et al., 2024b), and Undetectable
Watermark (PRC) (Gunn et al., 2024). We consider the attacks mentioned in Section 3.2. For each
attack, we report the empirical true positive rate (TPR) as a function of the false positive rate (FPR).
In addition, we measure TPR (at a fixed FPR) as a function of PSNR, LPIPS, and SSIM between
the attacked image and the original. We also provide qualitative examples, visually demonstrating
the effect of each attack on two sample images. Results are shown in Figures 2, 3, 10 and 11, with
additional experiments on SDXL (Podell et al., 2024), Flux-schnell (Labs, 2024), and the video
model Wan (Wan et al., 2025) in the Appendix (Figures 12 to 14 and 16 to 19).

Note that baseline methods require access to diffusion model weights, and their verification is
substantially more computationally expensive as shown in Table 2. By replacing inversion with a
lightweight cosine similarity, our method achieves an end-to-end verification speedup of ×14–×213
over inversion-based baselines (WIND, PRC, GS), depending on the model.
Basic Image Processing Attacks We consider six common image corruptions, each applied at
three severity levels: (i) brightness change (intensity multiplied by 2, 3, 4); (ii) contrast change
(contrast multiplied by 2, 3, 4); (iii) Gaussian blur (Gaussian kernels of radius 2, 4, 6 pixels); (iv)
Gaussian noise (additive noise with standard deviations 0.1, 0.2, 0.3); (v) compression (JPEG quality
factors 25, 15, 10); and (vi) resize (down- and up-sampling with scale factors 0.30, 0.25, 0.20).

As shown in Figures 2, 10 and 11, our method matches or outperforms prior methods, achieving TPR
above 0.9 at the lowest FPR (2−128) for attacked images that retain reasonable perceptual similarity
and quality. Under severe degradations such as Gaussian blur (r = 6) and Gaussian noise (σ = 0.3),
WIND appears more robust, with TPR near 1.0. However, at these corruption levels the images are
heavily distorted and diverge from the outputs of a well-trained model (see sample images), making

Table 2: Runtime of different components for verifying various watermarking methods. All methods require
one VAE encode. Baselines (WIND, PRC, GS) additionally perform inversion, while our method replaces it
with a cosine similarity. Results are mean ± standard deviation over multiple runs on a single RTX 3090 GPU.

Model VAE Encode (all) Inversion (WIND, PRC, GS) Cosine Similarity (Ours)

SD2.0 (50 steps) 0.037 ± 0.004 s 3.234 ± 0.075 s 0.182 ± 0.045 ms
SDXL (50 steps) 0.152 ± 0.007 s 12.704 ± 0.303 s 0.090 ± 0.018 ms
Flux-dev (20 steps) 0.158 ± 0.007 s 33.594 ± 0.245 s 0.098 ± 0.005 ms
Flux-schnell (4 steps) 0.155 ± 0.006 s 6.673 ± 0.055 s 0.100 ± 0.011 ms
Wan2.1-1.3B (25 steps) 6.463 ± 0.102 s 91.473 ± 0.164 s 0.097 ± 0.010 ms

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.45 0.50 0.55 0.60 0.65 0.70

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

7.2 8.0 8.8 9.6 10.4

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.250.300.350.400.450.50

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.725

PSNR: 10.3 dB
LPIPS: 0.237

×3.0
SSIM: 0.578

PSNR: 7.7 dB
LPIPS: 0.402

×4.0
SSIM: 0.524

PSNR: 6.7 dB
LPIPS: 0.499 Original (B)

×2.0
SSIM: 0.690

PSNR: 10.3 dB
LPIPS: 0.278

×3.0
SSIM: 0.514

PSNR: 7.2 dB
LPIPS: 0.481

×4.0
SSIM: 0.448

PSNR: 5.8 dB
LPIPS: 0.607

Brightness Change Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=6

0.60 0.64 0.68 0.72 0.76

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

22 23 24 25 26

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.420.480.540.600.66

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

r=2
SSIM: 0.839

PSNR: 27.2 dB
LPIPS: 0.329

r=4
SSIM: 0.787

PSNR: 24.8 dB
LPIPS: 0.421

r=6
SSIM: 0.767

PSNR: 23.5 dB
LPIPS: 0.462 Original (B)

r=2
SSIM: 0.752

PSNR: 26.4 dB
LPIPS: 0.451

r=4
SSIM: 0.662

PSNR: 24.1 dB
LPIPS: 0.611

r=6
SSIM: 0.626

PSNR: 22.8 dB
LPIPS: 0.670

Gaussian Blur Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.1

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.3

0.10 0.15 0.20 0.25 0.30

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

12 14 16 18 20

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.50.60.70.80.91.01.1

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

=0.1
SSIM: 0.210

PSNR: 20.4 dB
LPIPS: 0.476

=0.2
SSIM: 0.092

PSNR: 14.9 dB
LPIPS: 0.827

=0.3
SSIM: 0.056

PSNR: 12.0 dB
LPIPS: 1.068 Original (B)

=0.1
SSIM: 0.301

PSNR: 20.3 dB
LPIPS: 0.551

=0.2
SSIM: 0.136

PSNR: 14.8 dB
LPIPS: 0.964

=0.3
SSIM: 0.079

PSNR: 12.0 dB
LPIPS: 1.188

Gaussian Noise Attacks
Ours WIND PRC GS

Figure 2: Robustness of different methods against common post-processing attacks. We evaluate brightness
changes (top), Gaussian blur (middle), and Gaussian noise (bottom) at varying levels of severity.

robustness in this regime less meaningful. Even at milder corruption levels our method maintains
TPR above 0.9, though artifacts remain evident. For instance, with Gaussian noise at σ = 0.2, the
images show strong artifacts and PSNR drops to 14.8-14.9, while TPR@FPR= 2−128 is already
close to 1.0, showing our method remains effective even when perceptual quality is compromised.

Regeneration Attack Following prior work (Zhao et al., 2024; Arabi et al., 2025), we evaluate
diffusion-based regeneration (SDEdit-style) attacks (Meng et al., 2021; Nie et al., 2022) by adding
Gaussian noise to the latent of a watermarked image and then denoising it back to a clean image.
We test three noise levels: 0.2, 0.4, and 0.6. To simulate the private-weights scenario, we apply
SDEdit using a different base model, specifically SDXL, while the images were originally generated
with SD2.0. As shown in Figure 3, our method performs extremely well against this type of attack,
surpassing prior methods. Importantly, regeneration attacks tend to preserve the perceptual quality of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the original image, as evident from both the qualitative samples and the similarity metrics, making
them a more realistic and concerning threat model than basic image corruptions.

Inversion based adversarial attack While generic attacks such as image transformations or off-
the-shelf regeneration can partially weaken the watermark signal, a stronger adversary could directly
target our verification protocol, namely the correlation between noise and image. To explore this
scenario, we introduce an optimization-based inversion attack that estimates the initial noise vector
and deliberately decorrelates from it while preserving perceptual fidelity to the original image.

Specifically, the adversary estimates the initial noise xT used to generate the original image x
via DDIM inversion, and then optimizes the image latents xθ (initialized to x) using the loss
L = ∥xθ − x∥2 +w · cos(xθ, xT ), where w is a hyperparameter. We run 100 optimization steps with
w ∈ {0.3, 0.4, 0.5}, where larger w values encourage greater divergence from the original image.
We consider two variations of the attack: (i) the attacker uses a different model (SD1.4) for initial
noise estimation, and (ii) the attacker has access to the original generative model (SD2.0). DDIM
inversion is performed with an empty prompt, 50 steps, and no classifier-free guidance (CFG).

As shown in Figures 3 and 10, both attack variations are significantly more effective than regeneration
or image-transformation attacks. They preserve perceptual similarity to the original image, with only
moderate degradation in quality. Nevertheless, our method outperforms all other baselines by a large
margin, despite the attack being tailored to break our protocol, demonstrating resilience even under
targeted adversarial conditions.

Geometric Transformations We evaluate our method under geometric transformations, which dis-
rupt the alignment between a generated image and its initial noise. Our dispute protocol addresses this
by allowing each party to submit a transformation that re-aligns the opponent’s image. Accordingly,
we test performance when transformed images are restored using an estimated inverse transform. We
focus on two transformation types, rotation and crop & scale, and find that, after re-alignment, 100%
of images pass the verification threshold at FPR = 2−128. See Appendix H for details.

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.6

0.60 0.64 0.68 0.72 0.76

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

20 21 22 23 24 25

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.120.160.200.240.280.32

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SDXL, =0.2
SSIM: 0.820

PSNR: 26.9 dB
LPIPS: 0.087

SDXL, =0.4
SSIM: 0.627

PSNR: 20.7 dB
LPIPS: 0.249

SDXL, =0.6
SSIM: 0.732

PSNR: 21.8 dB
LPIPS: 0.218 Original (B)

SDXL, =0.2
SSIM: 0.713

PSNR: 23.8 dB
LPIPS: 0.165

SDXL, =0.4
SSIM: 0.491

PSNR: 18.7 dB
LPIPS: 0.345

SDXL, =0.6
SSIM: 0.558

PSNR: 19.4 dB
LPIPS: 0.394

SDEdit (SDXL) Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD1.4, w=0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD1.4, w=0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD1.4, w=0.5

0.675 0.690 0.705 0.720 0.735 0.750

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.5 24.0 24.5 25.0 25.5

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.1250.1500.1750.2000.225

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SD1.4, w=0.3
SSIM: 0.803

PSNR: 27.1 dB
LPIPS: 0.077

SD1.4, w=0.4
SSIM: 0.782

PSNR: 26.1 dB
LPIPS: 0.097

SD1.4, w=0.5
SSIM: 0.759

PSNR: 25.2 dB
LPIPS: 0.112 Original (B)

SD1.4, w=0.3
SSIM: 0.722

PSNR: 24.8 dB
LPIPS: 0.155

SD1.4, w=0.4
SSIM: 0.684

PSNR: 23.9 dB
LPIPS: 0.214

SD1.4, w=0.5
SSIM: 0.651

PSNR: 23.1 dB
LPIPS: 0.267

Inversion Attack (SD1.4) Attacks
Ours WIND PRC GS

Figure 3: Robustness of different methods against regeneration and inversion attacks (using a different model).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented NoisePrints, a method for authorship verification requiring only the seed and generated
output, without access to diffusion model weights. Our approach does not alter the generation process
and is hence distortion-free. Compared to prior watermarking methods, it is significantly more
efficient, particularly for higher-dimensional models (e.g., video). We showed robustness under
diverse manipulations, including diffusion-based attacks, where it outperforms existing methods.

Although our analysis focused on a specific threat model, our approach is broadly applicable. It is
compatible with the owner-only setting of WIND (Arabi et al., 2025), supporting direct seed-image
verification when the seed is known or serving as a lightweight pre-filter in their two-stage pipeline
when it is not (see more details in Appendix I). More generally, our method can complement other
watermarking schemes as a fast first-pass filter, reducing reliance on costly inversion or optimization
in real-world deployments.

At the same time, our approach has limitations. It requires the verifier to be able to encode images
through the model’s VAE, which requires the cooperation of the model provider in case the VAE
is private. It is unsuitable for real/fake detection, since adversarial patterns could be injected into
real images to mimic correlation with a chosen noise. Our verification assumes a restricted set of
geometric transformations, leaving open the possibility of stronger manipulations. Finally, like with
other methods that perform verification against a key that relates to the original noise pattern, our
method is not suitable for claiming authorship or tracing the origin of image or video variations that
resemble the original only in their semantic content.

Looking forward, it would be interesting to extend our approach to real images, exploring how
correlation-based methods could support real/fake detection in open-world scenarios. In this context,
the spatial distribution of correlation may provide additional cues, for example by highlighting
inconsistencies between foreground and background regions.

ETHICS STATEMENT

This work introduces a watermarking scheme for generative models aimed at improving authorship
verification. Our method empowers creators, especially those without access to proprietary models,
to establish ownership of their content. We believe this advances transparency and accountability in
generative AI while minimizing risks of misuse. The approach does not alter the generation process,
does not directly apply to real/fake detection, and is therefore unsuitable for monitoring or restricting
legitimate content. We openly acknowledge that no watermarking system is perfectly robust and that
our method should be viewed as a technical aid rather than a legal guarantee of authorship.

REPRODUCIBILITY STATEMENT

We provide full details of our method, including the verification protocol, threat model, and zero-
knowledge proof construction, in Section 3. All algorithms are described explicitly, and pseudocode
for both verification and dispute protocols is included in Appendix D. Experimental settings, datasets,
models, and evaluation metrics are specified in Section 5. Implementation details of the zero-
knowledge proof are in Appendix C. Further implementation details are provided in Appendix K.
To facilitate replication, we will publish code for reproducing all experiments and for generating
the zero-knowledge proof. Together, these descriptions and resources should allow independent
researchers to reproduce our results.

REFERENCES

Peter J Acklam. An algorithm for computing the inverse normal cumulative distribution function.
Peter’s Page. Available online at: http://home. online. no/˜ pjacklam/notes/invnorm, 2003.

Kasra Arabi, Benjamin Feuer, R. Teal Witter, Chinmay Hegde, and Niv Cohen. Hidden in the noise:
Two-stage robust watermarking for images, 2025. URL https://arxiv.org/abs/2412.
04653.

10

https://arxiv.org/abs/2412.04653
https://arxiv.org/abs/2412.04653


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Chin-Chen Chang, Piyu Tsai, and Chia-Chen Lin. Svd-based digital image watermarking scheme.
26(10):1577–1586, July 2005. ISSN 0167-8655.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Hai Ci, Pei Yang, Yiren Song, and Mike Zheng Shou. Ringid: Rethinking tree-ring watermarking for
enhanced multi-key identification, 2024. URL https://arxiv.org/abs/2404.14055.

I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon. Secure spread spectrum watermarking for
multimedia. Trans. Img. Proc., 6(12):1673–1687, December 1997. ISSN 1057-7149. doi:
10.1109/83.650120. URL https://doi.org/10.1109/83.650120.

Yingqian Cui, Jie Ren, Han Xu, Pengfei He, Hui Liu, Lichao Sun, Yue Xing, and Jiliang Tang.
Diffusionshield: A watermark for copyright protection against generative diffusion models, 2024.
URL https://arxiv.org/abs/2306.04642.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable
signature: Rooting watermarks in latent diffusion models, 2023. URL https://arxiv.org/
abs/2303.15435.

Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, and Daniel Cohen-Or. Renoise:
Real image inversion through iterative noising. In European Conference on Computer Vision, pp.
395–413. Springer, 2024.

Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for Zero-Knowledge proof systems. In 30th USENIX Security
Symposium (USENIX Security 21), pp. 519–535. USENIX Association, August 2021. ISBN 978-1-
939133-24-3. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/grassi.

Sam Gunn, Xuandong Zhao, and Dawn Song. An undetectable watermark for generative image
models. arXiv preprint arXiv:2410.07369, 2024.

Gustavo. Stable diffusion prompts, 2022. URL https://huggingface.co/datasets/
Gustavosta/Stable-Diffusion-Prompts. Dataset on Hugging Face. Accessed 2025-
09-14.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Baixiang Huang, Canyu Chen, and Kai Shu. Authorship attribution in the era of llms: Problems,
methodologies, and challenges. ACM SIGKDD Explorations Newsletter, 26(2):21–43, 2025.

Valentin Khrulkov, Gleb Ryzhakov, Andrei Chertkov, and Ivan Oseledets. Understanding ddpm latent
codes through optimal transport, 2022. URL https://arxiv.org/abs/2202.07477.

Ahmed Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn Song. MIRAGE:
Succinct arguments for randomized algorithms with applications to universal zk-SNARKs. In 29th
USENIX Security Symposium (USENIX Security 20), pp. 2129–2146. USENIX Association, 2020.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Hugo Lavenant and Filippo Santambrogio. The flow map of the fokker–planck equation does not
provide optimal transport. Applied Mathematics Letters, 133:108225, 06 2022. doi: 10.1016/j.aml.
2022.108225.

M. Ledoux. The Concentration of Measure Phenomenon. Mathematical surveys and mono-
graphs. American Mathematical Society, 2001. ISBN 9780821837924. URL https://books.
google.co.il/books?id=mCX_cWL6rqwC.

11

https://arxiv.org/abs/2404.14055
https://doi.org/10.1109/83.650120
https://arxiv.org/abs/2306.04642
https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/2303.15435
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://arxiv.org/abs/2202.07477
https://github.com/black-forest-labs/flux
https://books.google.co.il/books?id=mCX_cWL6rqwC
https://books.google.co.il/books?id=mCX_cWL6rqwC


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow, 2022. URL https://arxiv.org/abs/2209.03003.

Yugeng Liu, Zheng Li, Michael Backes, Yun Shen, and Yang Zhang. Watermarking diffusion model,
2023. URL https://arxiv.org/abs/2305.12502.

Nils Lukas and Florian Kerschbaum. Ptw: Pivotal tuning watermarking for pre-trained image
generators, 2023. URL https://arxiv.org/abs/2304.07361.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. In International
Conference on Learning Representations, 2021.

M. E. Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM, 2(4):19–20, 1959.

Andreas Müller, Denis Lukovnikov, Jonas Thietke, Asja Fischer, and Erwin Quiring. Black-box
forgery attacks on semantic watermarks for diffusion models, 2025. URL https://arxiv.
org/abs/2412.03283.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. In International Conference on Machine Learning
(ICML), 2022.

J. O’Ruanaidh and T. Pun. Rotation, translation and scale invariant digital image watermarking. In
Proceedings of the 1997 International Conference on Image Processing (ICIP ’97) 3-Volume Set-
Volume 1 - Volume 1, ICIP ’97, pp. 536, USA, 1997. IEEE Computer Society. ISBN 0818681837.

Alex Ozdemir, Fraser Brown, and Riad S Wahby. Circ: Compiler infrastructure for proof systems,
software verification, and more. In 2022 IEEE Symposium on Security and Privacy (SP), pp.
2248–2266. IEEE, 2022.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Dvir Samuel, Barak Meiri, Haggai Maron, Yoad Tewel, Nir Darshan, Shai Avidan, Gal Chechik, and
Rami Ben-Ari. Lightning-fast image inversion and editing for text-to-image diffusion models. In
Proceedings of the International Conference on Learning Representations (ICLR), 2025.

Tom Sander, Pierre Fernandez, Alain Durmus, Teddy Furon, and Matthijs Douze. Watermark anything
with localized messages. In International Conference on Learning Representations (ICLR), 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

12

https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2305.12502
https://arxiv.org/abs/2304.07361
https://arxiv.org/abs/2412.03283
https://arxiv.org/abs/2412.03283
https://openreview.net/forum?id=di52zR8xgf
https://arxiv.org/abs/2010.02502


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 2117–2126, 2020.

Justin Thaler et al. Proofs, arguments, and zero-knowledge. Foundations and Trends® in Privacy
and Security, 4(2–4):117–660, 2022.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Finger-
prints for diffusion images that are invisible and robust, 2023. URL https://arxiv.org/
abs/2305.20030.

Anna PY Woo, Alex Ozdemir, Chad Sharp, Thomas Pornin, and Paul Grubbs. Efficient proofs of
possession for legacy signatures. In 2025 IEEE Symposium on Security and Privacy (SP), pp.
3291–3308. IEEE, 2025.

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni,
Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen,
Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai,
and Zenan Liu. Qwen-image technical report, 2025. URL https://arxiv.org/abs/2508.
02324.

Pei Yang, Hai Ci, Yiren Song, and Mike Zheng Shou. Steganalysis on digital watermarking: Is your
defense truly impervious?, 2024a. URL https://arxiv.org/abs/2406.09026.

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shading:
Provable performance-lossless image watermarking for diffusion models. arXiv, 2024b. URL
https://arxiv.org/abs/2404.04956.

Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. Artificial fingerprinting for
generative models: Rooting deepfake attribution in training data. In IEEE International Conference
on Computer Vision (ICCV), 2021.

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz
Barak. Watermarks in the sand: Impossibility of strong watermarking for generative models, 2025.
URL https://arxiv.org/abs/2311.04378.

Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Robust invisible
video watermarking with attention, 2019. URL https://arxiv.org/abs/1909.01285.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile
image watermarking for tamper localization and copyright protection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11964–11974, 2024.

Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan, Ilya Grishchenko, Christopher Kruegel,
Giovanni Vigna, Yu-Xiang Wang, and Lei Li. Invisible image watermarks are provably removable
using generative ai, 2024. URL https://arxiv.org/abs/2306.01953.

13

https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2508.02324
https://arxiv.org/abs/2508.02324
https://arxiv.org/abs/2406.09026
https://arxiv.org/abs/2404.04956
https://arxiv.org/abs/2311.04378
https://arxiv.org/abs/1909.01285
https://arxiv.org/abs/2306.01953


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, and Min Lin. A recipe for
watermarking diffusion models, 2023. URL https://arxiv.org/abs/2303.10137.

Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Yuanhan Zhang, Jingwen
He, Wei-Shi Zheng, Yu Qiao, et al. Vbench-2.0: Advancing video generation benchmark suite for
intrinsic faithfulness. arXiv preprint arXiv:2503.21755, 2025.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XV, pp. 682–697, Berlin, Heidelberg, 2018. Springer-Verlag. ISBN 978-
3-030-01266-3. doi: 10.1007/978-3-030-01267-0 40. URL https://doi.org/10.1007/
978-3-030-01267-0_40.

Łukasz Staniszewski, Łukasz Kuciński, and Kamil Deja. There and back again: On the relation
between noise and image inversions in diffusion models, 2025. URL https://arxiv.org/
abs/2410.23530.

14

https://arxiv.org/abs/2303.10137
https://doi.org/10.1007/978-3-030-01267-0_40
https://doi.org/10.1007/978-3-030-01267-0_40
https://arxiv.org/abs/2410.23530
https://arxiv.org/abs/2410.23530


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A OPTIMAL TRANSPORT DISCUSSION

Optimal transport studies the problem of moving probability mass from one distribution to another
while minimizing a transport cost function. Given a source distribution µ and a target distribution ν,
the optimal transport map T ∗ minimizes the expected cost Ex∼µ[c(x, T (x))] where c(·, ·) is the cost
function, which is often set to be the quadratic cost c(x, y) = ∥x− y∥2. The optimal transport map
provides the most efficient way to transform samples from the source to match the target distribution,
which connects naturally to the generative modeling objective of transforming noise into data samples.

Khrulkov et al. (2022) demonstrate that the mapping between noise and data of the probability flow
ODE of diffusion models coincides with the optimal transport map for many common distributions,
including natural images. While not guaranteed in the general case (Lavenant & Santambrogio, 2022),
they also provide theoretical evidence for the case of multivariate normal distributions.

Flow matching models are trained with conditional optimal transport velocity fields, and the learned
velocity field is often simpler than that of diffusion models and produces straighter paths (Lipman
et al., 2022). Liu et al. (2022) prove that rectified flow leads to lower transport costs compared to
any initial data coupling for any convex transport cost function c, and recursive applications can only
further reduce them.

By the identity ∥x−y∥2 = ∥x∥2+∥y∥2−2⟨x, y⟩, decreases in transport cost correspond to increases
in the dot product. The norm of high dimensional Gaussian noise samples concentrate tightly around√
d, and assuming the target is a KL-regularized high dimensional VAE latent space, latent norms

are encouraged to also have this property. Thus an increase in average dot product should translate
to a near-proportional increase in average cosine similarity. We refrain from asserting a universal
bound on the expected cosine for arbitrary targets, but on image/video data we empirically observe
cosines that yield statistically decisive results with error probabilities compatible with cryptographic
practice.

B EXACT SPHERICAL-CAP PROBABILITY FOR A GAUSSIAN VECTOR

Let X ∼ N (0, Id) be a d-dimensional standard Gaussian and let v ∈ Rd be a unit vector. We are
interested in the tail probability

Pr
[
cos(X, v) ≥ a

]
, a ∈ [−1, 1].

Because the Gaussian is rotationally invariant, we may assume v = e1 without loss of generality.

Theorem 1 (Exact spherical-cap probability). For any d ≥ 2 and a ∈ [−1, 1],

Pr
[
cos(X, v) ≥ a

]
= 1

2 I1−a2

(
d−1
2 , 1

2

)
(6)

where Ix(p, q) is the regularized incomplete beta function1.

Proof. Define the random direction U := X/∥X∥ ∈ Sd−1, which is uniform on the sphere. Then

cos(X, v) = X·v
∥X∥ = U1.

The first coordinate U1 of a uniform point on Sd−1 has the density (Muller, 1959, Eq. (3.2))

fd(t) =
Γ
(
d
2

)
√
π Γ

(
d−1
2

)(1− t2
) d−3

2 , −1 < t < 1,

i.e. the Beta
(
d−1
2 , 1

2

)
distribution mapped affinely from [0, 1] to [−1, 1]. Integrating fd(t) from a to

1 and expressing the result with the regularised incomplete beta function yields Equation 6.
1In SCIPY this is scipy.special.betainc(p,q,x).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem 2 (Exponential bound). For any d ≥ 2 and τ ∈ [0, 1],

Pr
[
cos(X, v) ≥ τ

]
≤ exp

(
− (d−1)

2 τ2
)
.

Proof. Let U := X/∥X∥ ∈ Sd−1, which is uniform on the sphere, and set f(u) := ⟨u, v⟩. The
map f : Sd−1 → R is 1-Lipschitz (with respect to the geodesic or Euclidean metric restricted to the
sphere) and has median 0 by symmetry. By Lévy’s isoperimetric (concentration) inequality on the
sphere (Ledoux, 2001, Ch. 2), for every t ≥ 0,

Pr
[
f(U) ≥ t

]
≤ exp

(
− (d−1)

2 t2
)
.

Taking t = τ yields the claim.

C ZERO-KNOWLEDGE PROOF

In this section, we provide the implementation details and benchmark results of our zero-knowledge
proof (ZKP).

C.1 IMPLEMENTATION DETAILS

In our implementation, we had to overcome two main challenges:

1. ZKP proof systems currently do not allow for efficient proofs on floating-point number
computations.

2. Proofs with input sizes required for our use case (vectors of sizes larger than 218) are infea-
sible in our proof system due to high memory requirements both for the initial compilation
of the circuit and for the proof generation.

We overcome these challenges by using fixed-point integers instead of floating points, and splitting the
proof for the full vector derivation and inner product computation into smaller proofs of intermediate
inner product computation (for vectors of size ≈ 700) and then using another circuit to combine all
of the intermediate values to find the cosine angle and check it against the threshold. This approach
allows us to easily scale up our proofs to larger noise sizes as required for video generation.

We use the CirC (Ozdemir et al., 2022) toolchain to write our circuit in a front-end language called
Z# and then compile it to an intermediate representation called R1CS. We then use CirC to produce a
ZKP on the R1CS instance using the Mirage (Kosba et al., 2020) proof system. In particular, we use
Woo et al. (2025)’s modified version of CirC.

As mentioned above, our circuit takes as private witness a seed s and derives a vector v1 of length
L (which in our implementation was chosen to be of size 266000 ≈ 218). The circuit then takes as
public input a flattened image latent represented by a vector v2 of size L. It then computes their dot
product and their individual magnitudes. Finally, using these values, it computes the cosine angle
CA and checks if it is above a public threshold value τ .

In more detail, the circuit uses private seed s and a public seed spub to derive the vector v1 as follows.
First, the circuit computes p← h(s ∥ spub), where h is a collision-resistant hash function. Then the
circuit expands p by iteratively applying a pseudorandom number generator (PRNG) to produce a
stream of pseudorandom numbers.

These pseudorandom values are then used as inputs to a lookup table (Acklam, 2003) that approxi-
mates the inverse cumulative distribution function of the Gaussian distribution, thereby transforming
the uniform pseudorandom numbers into Gaussian-distributed samples. The resulting values from
the lookup table evaluation constitute the entries of v1.

Unfortunately, our framework’s memory requirements make computing a vector of size ≈ 218

infeasible even in a server-class machine. To solve this issue, we construct two circuits instead of one.
Our key idea is to make the first circuit prove the correctness of the dot product and magnitude using
only L/n entries at a time, for some n such that L/n is small enough. The prover can then generate
n proofs using this circuit to cover all L entries. The second circuit then combines n dot products

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and n magnitudes to produce a cosine angle to check if it is above a public threshold value t. As part
of the proof, the prover commits to all intermediate inner product values. Both circuits verify these
commitments to ensure that the intermediate values calculated and verified by the first circuit are also
the ones used by the second circuit. Next, we describe both circuits in detail.

C.2 ZKP CIRCUIT FOR COMPUTING DOT PRODUCT AND SQUARED MAGNITUDE

We provide the pseudocode of our first circuit in Figure 4. This circuit takes as input a private
seed s to derive a noise vector (ek)k∈[L/n]. To do so, along with s, it uses a public seed spub
(representing ownership information) and a public counter c (identifying one of n circuits) to compute
p ← h(s ∥ spub ∥ c). The circuit then iteratively computes PRNG(p) to generate g pseudorandom
numbers. As numbers in CirC are elements in a prime field of size ≈ 255 bits and we only need 33
random bits for our Gaussian noise sampling algorithm, each such pseudorandom number is divided
into k = 7 parts, so that (g · k) = L/n. They are then used to sample elements from the normal
distribution using a lookup table ND which produces the noise vector (ek)k∈[L/n]. After the values
are derived, the circuit calculates their inner product with the public input vector that represents
the L/n-th portion of an image in the form of a vector (vk)k∈[L/n]. The circuit calculates both the
dot product and the squared magnitude of (ek)k∈[L/n]. Finally, the circuit verifies that the public
commitment com, combined with private randomness r, correctly commits to the dot product and
squared magnitude (which values will be used by the second circuit). The commitment is instantiated
using a hash function on the concatenation of the values. Since ZKP circuits operate over finite fields,
negative integers cannot be represented directly, so the actual implementation uses an additional sign
vector to encode them.

DPM(c, spub, (vk)k∈[L/n], com; s, r) :
dot prod = 0
sq mag = 0
p← h(s ∥ spub ∥ c)
for i ∈ {1, . . . , g}:
p← PRNG(p)
//parse p as (pℓ)ℓ∈[k].
for j ∈ {1, . . . , k}:
e(i,j) ← ND(pj)
dot prod← dot prod+ e(i,j) · v(i,j)
sq mag ← sq mag + e(i,j)

2

endfor
endfor
assert(com = commit(dot prod ∥ sq mag ∥ r)
return 1

Figure 4: Circuit for computing dot product and square of the magnitude. The circuit is instantiated
with a function ND that on a random input simulates sampling an element from normal distribution.

C.3 ZKP CIRCUIT FOR COMBINING ALL DOT PRODUCTS AND SQUARED MAGNITUDES

The pseudocode for the second circuit is shown in Figure 5. To start, the circuit takes as public input
commitments (comi)i∈[n] and as private inputs randomness (ri)i∈[n], dot products (dot prodi)i∈[n]

and squared magnitudes (sq magi)i∈[n]. It checks if all comi are valid. If so, using these values, the
circuit calculates the final dot product FDP and the final squared magnitude FSM , which represent
all L elements. Next, instead of computing the magnitude mag of the entire noise vector from FSM ,
which requires a complex square root computation, the circuit takes it as a private input and checks if
it is valid (which requires just a simple multiplication). Similarly, instead of computing the cosine
angle CA, the circuit takes it as a private input and checks its correctness with the help of the public
magnitude of the image vector img mag. Note that since a field does not recognize real numbers,
we round down these values to the nearest integer and scale both cosine angle CA and threshold t to
be 32-bit fixed-precision integers. Similarly to the earlier circuit, we handle negative values with an
additional vector that represents the sign.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Combine((comi)i∈[n], img mag, t; (ri)i∈[n],
(dot prodi)i∈[n], (sq magi)i∈[n],mag,CA):

FDP = 0
FSM = 0
for i ∈ {1, . . . , n}:

if comi ̸= commit((dot prodi ∥ sq magi); ri):
return ⊥

FDP = FDP + dot prodi
FSM = FSM + sq magi

endfor
// verify magnitude of noise vector mag
assert((mag)2 <= FSM <= (mag + 1)2)
// verify cosine angle CA
floor ← mag · img mag · CA
ceil← mag · img mag · (CA+ 1)
assert(floor <= FDP · 232 <= ceil)
assert(CA > t)
return 1

Figure 5: Circuit for combining all dot products and squared magnitudes.

C.4 BENCHMARK RESULTS

We benchmarked our ZKPs to show that they are indeed efficient and practical. Our testbed is a
machine equipped with an AMD Ryzen Threadripper 5995WX 1.8GHz CPU and 256GB RAM. The
proof generation time for the first circuit is 765 ms (which can be run in parallel for all n parts of
the vector), whereas for the second circuit it is 920 ms. The proof verification times for the first and
second circuits are 415 ms and 115 ms, respectively.

Since we use Mirage as our backend proof system, it produces a prover and verifier key required for
proving and verifying, respectively. The prover key for both circuits is less than 200 MB, and the
verifier key is less than 1 MB in both cases. The proof size is at most 356 bytes.

D NOISEPRINT ALGORITHMS

Algorithm 1: Verification for NoisePrint
Input: content x, seed s, threshold τ
Public Primitives: encoder E, PRNG spec, hash function h

if ϕ(x, s) ≥ τ then return Accept
else return Reject

Algorithm 2: Dispute Protocol
Input: claims (xA, sA, gA) and (xB , sB , gB)
Public Primitives: encoder E, threshold τ , PRNG spec, set of transforms G, hash function h

for i ∈ {A,B} do
if gi not provided then gi ← id
SELFPASS(i)← [ϕ(xi, si; id) ≥ τ ]
CROSSPASS(i)← [ϕ(xj , si; gi) ≥ τ ], j ̸= i
VALID(i)← SELFPASS(i) ∧ CROSSPASS(i)

if VALID(A) and not VALID(B) then return A
else if VALID(B) and not VALID(A) then return B
else return Unresolved

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E VAE EFFECT ON COSINE SIMILARITY

A practical consideration in our framework is that correlation is measured in latent space, whereas the
generated content is ultimately observed in RGB space. This raises the question of whether decoding
a latent to an image and then re-encoding it back into latent space affects the measured correlation. To
evaluate this, we report the correlation values before and after a VAE decode-encode cycle, using the
native VAE of each model. As shown in Table 3, the differences are minor across all tested models,
indicating that the VAE introduces only negligible distortion and does not significantly affect the
correlation.

Model Pre-VAE Mean ± Std Post-VAE Mean ± Std

SD2.0 0.4922 ± 0.0904 0.4818 ± 0.0876
SDXL 0.4545 ± 0.0598 0.4283 ± 0.0608
Flux.1-schnell 0.2102 ± 0.0535 0.1989 ± 0.0543

Table 3: Cosine similarity of generated latents with original noise before and after passing through
the VAE and back.

F CORRELATION QUALITATIVE ANALYSIS

Our method builds on the observation that the noise used to generate an image is highly correlated
with the image itself. Figure 6 shows two examples, one from Flux (Labs, 2024) and one from
SDXL (Podell et al., 2024), with spatial correlation maps smoothed by a Gaussian filter. Regions
exceeding a predefined threshold are highlighted by an overlaid mask. As can be seen, the correlation
is stronger in the foreground regions. We hypothesize that this effect arises from sharper structures
and richer textures in foreground regions, where high-frequency details are more directly influenced
by the noise, whereas smoother backgrounds dilute the signal.

Figure 6: Spatial correlation between initial noise and the generated image latents. Left: Flux-dev,
right: SDXL.

G FAILURE EXAMPLE

(a) SDXL (b) schnell

Figure 7: Failure cases.

We observed a failure case with a specific prompt (“concept art
of a minimalistic modern logo for a European logistics corpo-
ration”). For 2 out of the 3 models tested, the generated images
had exceptionally low entropy and contained large uniform
regions, making it much more difficult to retain a detectable
watermark. In both SDXL and Flux.1-schnell, the resulting
correlation fell below the threshold chosen for a 2−128 false
positive rate, despite being generated by the claimed seed (Fig-
ure 7). A related result by Łukasz Staniszewski et al. (2025)
demonstrates that DDIM inversion tends to produce latents that
more significantly deviate from the original noise vector that was used to generate the image in parts
of the latents that correspond to plain areas in the image. While such cases are rare, they highlight
that verification may fail in low-variance generations. Importantly, this can be anticipated, and users
can be warned at generation time if the output falls into this regime.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H GEOMETRIC TRANSFORMATIONS ATTACK

We next provide more details about the experiment that showed robustness to geometric attacks
(Section 5.2, last paragraph).

As mentioned earlier, we consider two transformation types: rotation and crop & scale. For
rotation, each image is rotated by a random angle in the range [−45, 45] degrees. For crop
& scale, the image is cropped at a random location with a crop factor in [0.6, 0.9], and then
rescaled to its original size. In both cases, the applied transformation is estimated using OpenCV’s
estimateAffinePartial2D function, and its inverse is used to re-align the image. To account
for potential misalignment at the borders, we compute a transform-derived mask that restricts the
cosine similarity calculation to the overlapping spatial region (see Figure 8).

Given a set of images, we apply these attacks and report the mean and standard deviation of the
NoisePrint score, as well as the percentage of images that pass the verification threshold at FPR
= 2−128. As shown in Table 4, both rotation and crop & scale transformations are accurately
estimated in all cases, resulting in 100% of images passing the verification threshold.

Original Transformed Re-aligned Original Transformed Re-aligned

Figure 8: Estimation and alignment of geometric attacks. In green: the masked area used for cosine similarity.

Table 4: Quantitative results under geometric transformations. We report the mean and standard deviation of
the NoisePrint score ϕ and the pass rate at FPR = 2−128 for both rotation and crop & scale transformations. In
all cases, the transformations are accurately estimated and every image passes the threshold.

Transform Mean NoisePrint ϕ± Std Pass Rate

Rotation 0.3825 ± 0.0648 1.0
Crop & Rescale 0.4191 ± 0.0649 1.0

I TRACEABILITY RESULTS

We evaluate NoisePrints in the traceability setting presented in WIND Arabi et al. (2025), where
the model owner embeds a unique watermark per generated image to subsequently verify whether a
given image was generated by their model and identify the specific key that was embedded during
generation from a pool of keys. Table 5 reports detection rates for our method and WIND across 100
images matched against 100,000 different seeds under various corruptions and adversarial attacks
using Stable Diffusion 2.0. Both methods demonstrate high robustness under most corruptions;
however, our method exhibits superior resilience to the DDIM inversion-based adversarial attack.

Table 5: Tracability results: Fraction of images matching with the correct noise sample out of
100,000 (Stable Diffusion 2.0) Attack legend: Bright - Brightness ×3, Contrast - Contrast ×3, Blur -
Gaussian Blur r = 4, Noise - Gaussian Noise σ = 2, Inv - DDIM inversion using Stable Diffusion
1.4 with w = 0.4, JPEG - JPEG compression Q = 25, Resize - Resize ×0.25, SDEdit - SDEdit with
SDXL, ϵ = 0.6.

Metric Clean Bright Contrast Blur Noise Inv JPEG Resize SDEdit
Ours 1.000 0.990 1.000 0.990 1.000 0.980 0.990 1.000 1.000
WIND 1.000 0.990 1.000 1.000 1.000 0.560 1.000 1.000 0.980

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J COSINE SIMILARITY DISTRIBUTION

In Figure 9 we visualize the cosine similarity distribution of generated images with their respective
Initial noises and of generated images with random Gaussian noises. This illustrates the large gap
that allows for a clear separation between the two distributions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cosine Similarity

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
ac

tio
n 

of
 S

am
pl

es

Cosine Similarity Distribution: Initial Noise vs Random Gaussian
Random Gaussian
Initial Noise
Initial Noise Cosine Mean: 0.4818
Random Gaussian Cosine Mean: -0.0005

Figure 9: Histograms of cosine similarity between initial noise and generated images and cosine
similarity between random noise and generated images (Stable Diffusion 2.0).

K IMPLEMENTATION DETAILS

For most of our experiments, we use torch.randn as the PRNG, passing a torch.Generator
that is initialized with the seed. For the zero-knowledge proof implementation, we use a simple
Linear Congruential Generator to get pseudorandom numbers, which are then transformed into
Gaussian-distributed samples as explained in Appendix C. We use an implementation of Poseidon
(Grassi et al., 2021) as our one-way hash function.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

L ADDITIONAL ROBUSTNESS RESULTS

We provide additional robustness results for our method across different models:

1. Figure 10 reports results on SD2.0 under our inversion attack, where the model used for
performing inversion is the same as the one used for image generation (SD2.0).

2. Figure 11 presents additional results on SD2.0 with basic corruption attacks.
3. Figures 12 and 13 shows results on SDXL with basic corruption attacks.
4. Figure 14 provides results on SDXL under SDEdit and inversion attacks, with SDXL also

used to perform the attacks.
5. Figure 15 provides results on SDXL under the imprint removal attack presented in Müller

et al. (2025). In this attack, the initial noise xT that was used to generate the original image
latents x is estimated with DDIM inversion using a proxy model (Stable Diffusion 2.0).
Then, the image latents xθ (initialized to x) are optimized such that the resulting latents
from DDIM inversion stray away from this initial noise estimation of xT . The optimization
happens through gradient descent, minimizing the loss L = ∥I0→T (xθ)− (−xT )∥2, with
I0→T (xθ) being the inversion result when starting from xθ. We evaluate the method’s
effectiveness after 30, 40, and 50 optimization steps. As can be seen, this attack is highly
effective against watermarking methods that rely on inversion for detection, and is able to
cause detection rates to significantly drop with only minor degradations to image fidelity. In
contrast, our method displays very high robustness against this attack, since it does not rely
on inversion and is less affected by the method’s adversarial optimization goal.

6. Figures 16 and 17 presents results on Flux-schnell with basic corruption attacks. Note that
Flux-schnell is a few-step model operating with only four denoising steps. Accurate inversion
is more challenging in such models, making our inversion-free approach a significant
advantage.

7. Figure 18 shows results on Flux-schnell under SDEdit and inversion attacks, with SDXL
used to perform the attacks.

8. Figure 19 provides results on the video model Wan, where we adapt image attacks to
the video domain. Our method demonstrates strong robustness on video while remaining
efficient. As shown in Table 2, relying on correlation rather than inversion is particularly
beneficial for video due to its high dimensionality.

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD2.0, w=0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD2.0, w=0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SD2.0, w=0.5

0.675 0.700 0.725 0.750 0.775

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.4 24.0 24.6 25.2 25.8

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.1250.1500.1750.2000.225

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SD2.0, w=0.3
SSIM: 0.803

PSNR: 27.1 dB
LPIPS: 0.077

SD2.0, w=0.4
SSIM: 0.782

PSNR: 26.1 dB
LPIPS: 0.097

SD2.0, w=0.5
SSIM: 0.759

PSNR: 25.2 dB
LPIPS: 0.112 Original (B)

SD2.0, w=0.3
SSIM: 0.722

PSNR: 24.8 dB
LPIPS: 0.155

SD2.0, w=0.4
SSIM: 0.684

PSNR: 23.9 dB
LPIPS: 0.214

SD2.0, w=0.5
SSIM: 0.651

PSNR: 23.1 dB
LPIPS: 0.267

Inversion Attack (SD2.0) Attacks
Ours WIND PRC GS

Figure 10: SD2.0: Comparing robustness of different watermarking methods against inversion attack.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

Q=15

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=10

0.76 0.78 0.80 0.82 0.84

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

27.0 27.6 28.2 28.8 29.4 30.0

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.150.180.210.240.27

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

Q=25
SSIM: 0.845

PSNR: 30.7 dB
LPIPS: 0.178

Q=15
SSIM: 0.804

PSNR: 28.9 dB
LPIPS: 0.231

Q=10
SSIM: 0.760

PSNR: 27.3 dB
LPIPS: 0.315 Original (B)

Q=25
SSIM: 0.837

PSNR: 28.8 dB
LPIPS: 0.122

Q=15
SSIM: 0.788

PSNR: 27.3 dB
LPIPS: 0.189

Q=10
SSIM: 0.742

PSNR: 26.0 dB
LPIPS: 0.259

JPEG Compression Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.2

0.690 0.705 0.720 0.735 0.750 0.765

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

24.4 24.8 25.2 25.6 26.0

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.3750.4000.4250.4500.475

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×0.3
SSIM: 0.838

PSNR: 27.3 dB
LPIPS: 0.315

×0.25
SSIM: 0.821

PSNR: 26.6 dB
LPIPS: 0.353

×0.2
SSIM: 0.805

PSNR: 25.9 dB
LPIPS: 0.377 Original (B)

×0.3
SSIM: 0.755

PSNR: 26.5 dB
LPIPS: 0.407

×0.25
SSIM: 0.725

PSNR: 25.8 dB
LPIPS: 0.468

×0.2
SSIM: 0.697

PSNR: 25.1 dB
LPIPS: 0.517

Resize Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.45 0.50 0.55 0.60 0.65

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

13.6 14.4 15.2 16.0 16.8

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.160.200.240.280.32

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.649

PSNR: 16.5 dB
LPIPS: 0.157

×3.0
SSIM: 0.510

PSNR: 13.9 dB
LPIPS: 0.264

×4.0
SSIM: 0.442

PSNR: 12.8 dB
LPIPS: 0.328 Original (B)

×2.0
SSIM: 0.618

PSNR: 16.3 dB
LPIPS: 0.165

×3.0
SSIM: 0.453

PSNR: 13.7 dB
LPIPS: 0.289

×4.0
SSIM: 0.389

PSNR: 12.7 dB
LPIPS: 0.346

Contrast Attacks
Ours WIND PRC GS

Figure 11: SD2.0: Comparing robustness of different watermarking methods against additional basic
corruption attacks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.50 0.55 0.60 0.65 0.70

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

6 7 8 9 10

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.300.360.420.480.540.60

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.710

PSNR: 10.6 dB
LPIPS: 0.229

×3.0
SSIM: 0.506

PSNR: 6.8 dB
LPIPS: 0.446

×4.0
SSIM: 0.425

PSNR: 5.1 dB
LPIPS: 0.576 Original (B)

×2.0
SSIM: 0.751

PSNR: 9.8 dB
LPIPS: 0.250

×3.0
SSIM: 0.590

PSNR: 6.9 dB
LPIPS: 0.508

×4.0
SSIM: 0.517

PSNR: 5.6 dB
LPIPS: 0.637

Brightness Change Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=6

0.78 0.80 0.82 0.84 0.86

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

26 27 28 29 30 31

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.350.400.450.500.55

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

r=2
SSIM: 0.842

PSNR: 27.8 dB
LPIPS: 0.394

r=4
SSIM: 0.757

PSNR: 24.6 dB
LPIPS: 0.610

r=6
SSIM: 0.726

PSNR: 23.2 dB
LPIPS: 0.710 Original (B)

r=2
SSIM: 0.932

PSNR: 33.5 dB
LPIPS: 0.258

r=4
SSIM: 0.883

PSNR: 29.6 dB
LPIPS: 0.443

r=6
SSIM: 0.860

PSNR: 27.6 dB
LPIPS: 0.529

Gaussian Blur Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.1

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.3

0.04 0.08 0.12 0.16 0.20

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

12 14 16 18 20

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.91.01.11.21.3

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

=0.1
SSIM: 0.238

PSNR: 20.3 dB
LPIPS: 0.800

=0.2
SSIM: 0.108

PSNR: 14.9 dB
LPIPS: 1.197

=0.3
SSIM: 0.064

PSNR: 12.0 dB
LPIPS: 1.379 Original (B)

=0.1
SSIM: 0.160

PSNR: 20.2 dB
LPIPS: 0.915

=0.2
SSIM: 0.060

PSNR: 14.8 dB
LPIPS: 1.246

=0.3
SSIM: 0.033

PSNR: 11.9 dB
LPIPS: 1.388

Gaussian Noise Attacks
Ours WIND PRC GS

Figure 12: SDXL: Evaluating robustness against basic corruption attacks.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
Q=15

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=10

0.825 0.840 0.855 0.870 0.885

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

29.6 30.4 31.2 32.0 32.8

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.180.210.240.270.300.33

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

Q=25
SSIM: 0.901

PSNR: 32.6 dB
LPIPS: 0.128

Q=15
SSIM: 0.868

PSNR: 30.8 dB
LPIPS: 0.197

Q=10
SSIM: 0.831

PSNR: 29.0 dB
LPIPS: 0.267 Original (B)

Q=25
SSIM: 0.929

PSNR: 35.4 dB
LPIPS: 0.172

Q=15
SSIM: 0.902

PSNR: 33.1 dB
LPIPS: 0.278

Q=10
SSIM: 0.874

PSNR: 30.9 dB
LPIPS: 0.365

JPEG Compression Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.2

0.83 0.84 0.85 0.86 0.87

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

29.0 29.5 30.0 30.5 31.0

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.3000.3250.3500.3750.400

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×0.3
SSIM: 0.843

PSNR: 27.9 dB
LPIPS: 0.355

×0.25
SSIM: 0.817

PSNR: 26.9 dB
LPIPS: 0.423

×0.2
SSIM: 0.789

PSNR: 25.9 dB
LPIPS: 0.489 Original (B)

×0.3
SSIM: 0.931

PSNR: 33.6 dB
LPIPS: 0.241

×0.25
SSIM: 0.918

PSNR: 32.5 dB
LPIPS: 0.295

×0.2
SSIM: 0.903

PSNR: 31.3 dB
LPIPS: 0.341

Resize Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.42 0.48 0.54 0.60 0.66

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

13 14 15 16 17

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.150.200.250.300.35

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.653

PSNR: 17.2 dB
LPIPS: 0.145

×3.0
SSIM: 0.454

PSNR: 14.0 dB
LPIPS: 0.271

×4.0
SSIM: 0.362

PSNR: 12.6 dB
LPIPS: 0.343 Original (B)

×2.0
SSIM: 0.615

PSNR: 16.4 dB
LPIPS: 0.164

×3.0
SSIM: 0.460

PSNR: 13.1 dB
LPIPS: 0.298

×4.0
SSIM: 0.395

PSNR: 11.6 dB
LPIPS: 0.376

Contrast Attacks
Ours WIND

Figure 13: SDXL: Evaluating robustness against additional basic corruption attacks.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.5

0.70 0.72 0.74 0.76 0.78

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.4 24.0 24.6 25.2 25.8

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.200.240.280.320.36

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SDXL, w=0.3
SSIM: 0.789

PSNR: 25.3 dB
LPIPS: 0.176

SDXL, w=0.4
SSIM: 0.734

PSNR: 23.6 dB
LPIPS: 0.242

SDXL, w=0.5
SSIM: 0.682

PSNR: 22.4 dB
LPIPS: 0.320 Original (B)

SDXL, w=0.3
SSIM: 0.874

PSNR: 28.4 dB
LPIPS: 0.178

SDXL, w=0.4
SSIM: 0.841

PSNR: 26.5 dB
LPIPS: 0.257

SDXL, w=0.5
SSIM: 0.812

PSNR: 25.4 dB
LPIPS: 0.351

Inversion Attack (SDXL) Attacks
Ours WIND PRC GS

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FLUX, =0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FLUX, =0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

FLUX, =0.5

0.720 0.735 0.750 0.765 0.780

SSIM

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
@

FP
R

=2
12

8
TPR@FPR=2 128 vs SSIM

22.8 23.4 24.0 24.6 25.2 25.8

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.2250.2500.2750.3000.325

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

FLUX, =0.3
SSIM: 0.751

PSNR: 24.2 dB
LPIPS: 0.239

FLUX, =0.4
SSIM: 0.696

PSNR: 22.4 dB
LPIPS: 0.310

FLUX, =0.5
SSIM: 0.662

PSNR: 21.0 dB
LPIPS: 0.376 Original (B)

FLUX, =0.3
SSIM: 0.872

PSNR: 28.5 dB
LPIPS: 0.175

FLUX, =0.4
SSIM: 0.836

PSNR: 26.3 dB
LPIPS: 0.254

FLUX, =0.5
SSIM: 0.815

PSNR: 24.8 dB
LPIPS: 0.310

SDEdit (FLUX) Attacks
Ours WIND PRC GS

Figure 14: SDXL: Evaluating robustness against SDEdit and inversion attacks.

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

30 Steps

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

40 Steps

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

50 Steps

0.792 0.800 0.808 0.816 0.824

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.1 23.4 23.7 24.0 24.3

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.1020.1080.1140.1200.126

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

30 Steps
SSIM: 0.841

PSNR: 27.0 dB
LPIPS: 0.095

40 Steps
SSIM: 0.823

PSNR: 26.2 dB
LPIPS: 0.114

50 Steps
SSIM: 0.808

PSNR: 25.6 dB
LPIPS: 0.131 Original (B)

30 Steps
SSIM: 0.744

PSNR: 27.3 dB
LPIPS: 0.156

40 Steps
SSIM: 0.725

PSNR: 26.6 dB
LPIPS: 0.179

50 Steps
SSIM: 0.711

PSNR: 26.0 dB
LPIPS: 0.199

Imprint-Removal Attacks
Ours WIND GS

Figure 15: SDXL: Evaluating robustness against Imprint Removal attack of Müller et al. (2025).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.48 0.54 0.60 0.66 0.72

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

7 8 9 10 11 12

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.250.300.350.400.45

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.708

PSNR: 11.5 dB
LPIPS: 0.206

×3.0
SSIM: 0.511

PSNR: 7.8 dB
LPIPS: 0.369

×4.0
SSIM: 0.435

PSNR: 6.5 dB
LPIPS: 0.458 Original (B)

×2.0
SSIM: 0.812

PSNR: 12.3 dB
LPIPS: 0.181

×3.0
SSIM: 0.676

PSNR: 9.6 dB
LPIPS: 0.303

×4.0
SSIM: 0.602

PSNR: 8.1 dB
LPIPS: 0.382

Brightness Change Attacks
Ours

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

r=6

0.725 0.750 0.775 0.800 0.825

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.2 24.0 24.8 25.6 26.4 27.2

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.350.400.450.500.55

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

r=2
SSIM: 0.739

PSNR: 23.4 dB
LPIPS: 0.370

r=4
SSIM: 0.634

PSNR: 21.4 dB
LPIPS: 0.601

r=6
SSIM: 0.595

PSNR: 20.5 dB
LPIPS: 0.713 Original (B)

r=2
SSIM: 0.882

PSNR: 27.4 dB
LPIPS: 0.241

r=4
SSIM: 0.831

PSNR: 24.8 dB
LPIPS: 0.356

r=6
SSIM: 0.811

PSNR: 23.6 dB
LPIPS: 0.419

Gaussian Blur Attacks
Ours

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.1

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

=0.3

0.08 0.12 0.16 0.20 0.24

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

12 14 16 18 20

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.70.80.91.01.11.2

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

=0.1
SSIM: 0.328

PSNR: 20.7 dB
LPIPS: 0.518

=0.2
SSIM: 0.167

PSNR: 15.2 dB
LPIPS: 0.913

=0.3
SSIM: 0.104

PSNR: 12.3 dB
LPIPS: 1.163 Original (B)

=0.1
SSIM: 0.213

PSNR: 20.7 dB
LPIPS: 0.789

=0.2
SSIM: 0.099

PSNR: 15.4 dB
LPIPS: 1.087

=0.3
SSIM: 0.060

PSNR: 12.4 dB
LPIPS: 1.261

Gaussian Noise Attacks
Ours

Figure 16: Flux.1-schnell: Evaluating robustness against basic corruption attacks.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
Q=15

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Q=10

0.795 0.810 0.825 0.840 0.855 0.870

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

27.6 28.2 28.8 29.4 30.0 30.6

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.160.200.240.280.32

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

Q=25
SSIM: 0.821

PSNR: 27.1 dB
LPIPS: 0.111

Q=15
SSIM: 0.774

PSNR: 25.7 dB
LPIPS: 0.177

Q=10
SSIM: 0.727

PSNR: 24.6 dB
LPIPS: 0.249 Original (B)

Q=25
SSIM: 0.922

PSNR: 31.9 dB
LPIPS: 0.162

Q=15
SSIM: 0.897

PSNR: 30.3 dB
LPIPS: 0.264

Q=10
SSIM: 0.872

PSNR: 28.8 dB
LPIPS: 0.335

JPEG Compression Attacks
Ours

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.25

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×0.2

0.78 0.79 0.80 0.81 0.82

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

25.8 26.1 26.4 26.7 27.0 27.3

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.3000.3250.3500.3750.400

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×0.3
SSIM: 0.743

PSNR: 23.5 dB
LPIPS: 0.336

×0.25
SSIM: 0.709

PSNR: 22.9 dB
LPIPS: 0.406

×0.2
SSIM: 0.675

PSNR: 22.2 dB
LPIPS: 0.474 Original (B)

×0.3
SSIM: 0.883

PSNR: 27.5 dB
LPIPS: 0.220

×0.25
SSIM: 0.867

PSNR: 26.7 dB
LPIPS: 0.258

×0.2
SSIM: 0.850

PSNR: 25.8 dB
LPIPS: 0.291

Resize Attacks
Ours

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×2.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×3.0

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

×4.0

0.44 0.48 0.52 0.56 0.60

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

13.6 14.4 15.2 16.0 16.8 17.6

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.160.200.240.280.32

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

×2.0
SSIM: 0.602

PSNR: 18.2 dB
LPIPS: 0.170

×3.0
SSIM: 0.467

PSNR: 15.4 dB
LPIPS: 0.258

×4.0
SSIM: 0.397

PSNR: 14.2 dB
LPIPS: 0.307 Original (B)

×2.0
SSIM: 0.570

PSNR: 16.8 dB
LPIPS: 0.177

×3.0
SSIM: 0.504

PSNR: 14.7 dB
LPIPS: 0.251

×4.0
SSIM: 0.477

PSNR: 13.9 dB
LPIPS: 0.286

Contrast Attacks
Ours

Figure 17: Flux.1-schnell: Evaluating robustness against additional basic corruption attacks.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.4

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, w=0.5

0.705 0.720 0.735 0.750 0.765

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

23.0 23.5 24.0 24.5 25.0

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.140.160.180.200.220.24

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SDXL, w=0.3
SSIM: 0.699

PSNR: 21.9 dB
LPIPS: 0.132

SDXL, w=0.4
SSIM: 0.645

PSNR: 20.9 dB
LPIPS: 0.179

SDXL, w=0.5
SSIM: 0.595

PSNR: 20.1 dB
LPIPS: 0.230 Original (B)

SDXL, w=0.3
SSIM: 0.849

PSNR: 25.4 dB
LPIPS: 0.104

SDXL, w=0.4
SSIM: 0.824

PSNR: 24.4 dB
LPIPS: 0.140

SDXL, w=0.5
SSIM: 0.804

PSNR: 23.7 dB
LPIPS: 0.182

Inversion Attack (SDXL) Attacks
Ours

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.2

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.3

2 1142 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

SDXL, =0.4

0.720 0.735 0.750 0.765 0.780

SSIM

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs SSIM

22.2 22.8 23.4 24.0 24.6

PSNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs PSNR (dB)

0.1350.1500.1650.1800.1950.210

LPIPS

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
FP

R
=2

12
8

TPR@FPR=2 128 vs LPIPS

Original (A)

SDXL, =0.2
SSIM: 0.691

PSNR: 21.2 dB
LPIPS: 0.154

SDXL, =0.3
SSIM: 0.643

PSNR: 20.0 dB
LPIPS: 0.201

SDXL, =0.4
SSIM: 0.600

PSNR: 19.1 dB
LPIPS: 0.268 Original (B)

SDXL, =0.2
SSIM: 0.858

PSNR: 25.1 dB
LPIPS: 0.089

SDXL, =0.3
SSIM: 0.838

PSNR: 24.1 dB
LPIPS: 0.123

SDXL, =0.4
SSIM: 0.814

PSNR: 22.7 dB
LPIPS: 0.175

SDEdit (SDXL) Attacks
Ours

Figure 18: Flux.1-schnell: Evaluating robustness against SDEdit and inversion attacks.

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×2.0

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×3.0

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×4.0

Brightness Attacks

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

=0.1

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

=0.2

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

=0.3

Gaussian Noise Attacks

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

r=2

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

r=4

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

r=6

Gaussian Blur Attacks

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

CRF=20

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

CRF=32

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

CRF=40

H.264 Compression Attacks

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×2.0

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×3.0

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×4.0

Contrast Attacks

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×0.3

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×0.25

2 114 2 95 2 76 2 57 2 38 2 19 20

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

×0.2

Resize Attacks

Figure 19: Wan 2.1: Evaluating robustness against basic corruption attacks for video.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

USE OF LLMS

We used ChatGPT to assist with the preparation of this paper. Specifically, we used it to correct
grammar and improve sentence-level clarity. We carefully checked all of its outputs. In addition, we
used it to help identify related work. All such references were manually verified to exist and were
cross-checked against their official sources. All ideas, technical content, and analysis are our own.

30


	Introduction
	Related Work
	Method
	Preliminaries
	Threat Model
	NoisePrints Watermarks
	Zero-knowledge Proof

	Security Analysis
	Experiments and Results
	Reliability Analysis
	Robustness Analysis

	Conclusion, Limitations, and Future Work
	Optimal Transport Discussion
	Exact spherical-cap probability for a Gaussian vector
	Zero-knowledge Proof
	Implementation details
	ZKP circuit for computing dot product and squared magnitude
	ZKP circuit for combining all dot products and squared magnitudes
	Benchmark results

	NoisePrint Algorithms
	VAE Effect on Cosine Similarity
	Correlation Qualitative Analysis
	Failure Example
	Geometric Transformations Attack
	Traceability Results
	Cosine Similarity Distribution
	Implementation Details
	Additional Robustness Results

