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1 INTRODUCTION

The discovery and development of new materials underpin technological progress in renewable en-
ergy (Tabor et al., 2018; Jablonka et al., 2020; Yao et al., 2022). However, the growing complexity
and volume of materials research creates an urgent need for systematic data collection and analy-
sis. This challenge is particularly acute in energy materials, where rapid iteration between material
design, synthesis, and characterization generates vast amounts of heterogeneous data. Photovoltaics
exemplify this challenge. As a key technology for sustainable energy generation (Haegel et al.,
2019), solar cells have seen remarkable advances, with perovskite-based devices emerging as one
of the fastest-developing technologies to date (Tabor et al., 2018). Their rapid evolution stems from
extensive experimentation with device architectures, chemical compositions, and fabrication meth-
ods. Understanding the relationships between these variables and device performance is essential
for rational design of high-efficiency solar cells. However, the accelerating pace of research makes
it increasingly difficult for researchers to track and synthesize findings from published literature.
While databases have been created to collect and organize perovskite solar cell data (Jacobsson
et al., 2022), manual curation proves both unscalable and error-prone. The largest perovskite solar
cell database (Jacobsson et al., 2022), for instance, has remained static since its initial release despite
numerous new publications reporting high-performing devices.

Here, we present an automated framework using large language models (LLMs) for extracting struc-
tured data from solar cell literature. By systematically validating our approach against expert an-
notations, we show that LLMs can match or exceed human accuracy in extracting key performance
indicators. Our implementation includes thorough validation and normalization protocols, lever-
aging LLM-as-Judge approaches (Li et al., 2024), ensuring consistent data quality across diverse
publication formats. Through comparative analysis of multiple LLM architectures, we identify op-
timal approaches for the extraction task. Our work advances materials informatics by providing a
scalable solution to database maintenance. While demonstrated on perovskite solar cells, this ap-
proach offers a template for automated data extraction in other rapidly evolving materials domains.
The framework particularly excels at maintaining consistency in extracting numerical parameters
and device architectures, addressing key challenges in manual curation across materials science.

2 RELATED WORK

Data Extraction Methods in Materials Science Scientific data extraction has evolved from rule-
based approaches to increasingly sophisticated machine learning methods (Schilling-Wilhelmi et al.,
2025). Early tools like ChemDataExtractor (Swain & Cole, 2016) and ChemicalTagger (Hawizy
et al., 2011) relied on regular expressions and hand-crafted rules, which proved effective but lim-
ited in scope and adaptability. The emergence of large language models (LLMs) has transformed
this landscape. Recent work demonstrates that LLMs can extract structured scientific data through
simple prompting (Patiny & Godin, 2023; Polak & Morgan, 2024) or fine-tuning (Dagdelen et al.,
2024), offering greater flexibility and generalization than traditional methods (Jablonka et al., 2023).

Evolution of PV Materials Databases The photovoltaics community has developed several ap-
proaches to materials data collection and organization. Initial efforts focused on computational
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screening, producing databases of predicted material properties (Stevanović et al., 2012; Castelli
et al., 2012). However, the gap between computational predictions and experimental reality mo-
tivated the creation of manually curated experimental databases. Notable examples include the
Emerging PV Database (Almora et al., 2020) and the Perovskite Database (Jacobsson et al., 2022),
which capture detailed device architectures and performance metrics. These resources have enabled
new applications, such as fine-tuning LLMs for property prediction (Xie et al., 2023), while high-
lighting the need for automated curation methods.

3 METHODS

Our experimental framework implements two interconnected pipelines: an extraction pipeline that
processes PDF documents using configurable LLM models and an evaluation pipeline that ensures
accurate assessment of the extracted data (Figure 1).

3.1 DATA EXTRACTION PIPELINE

Figure 1: Overview of the data extraction pipeline. Our extraction pipeline, Perovscribe, provides
bulk processing of research papers. The pipeline handles normalizing and matching extracted cells
before evaluation.

The pipeline processes research papers in bulk and stores results by model for NOMAD (Scheidgen
et al., 2023) integration. PyMuPDF extracts text from PDFs, which the models (GPT-4o, Gemini
1.5 Pro/Flash, and Claude 3.5 Sonnet at temperature 0) process using the Instructor package (Liu,
2025) to reliably extract only explicitly stated information from papers, with automatic retries for
schema validation.

3.2 EVALUATION PIPELINE

The evaluation pipeline incorporates field-specific considerations, including unit normalization
across diverse reporting conventions and intelligent cell matching to handle multiple solar cell en-
tries within single papers.

Matching Algorithm and Cost Function Given that extractions can contain multiple solar cells,
we aimed to optimally pair extracted cells with the corresponding ground truth entries. To ensure
this, we implemented a structured matching process using the Kuhn–Munkres algorithm (Kuhn,
1955; Munkres, 1957). The matching process relies on a cost function that incorporates domain-
specific priorities:
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Cost = −0.7× stacksim(t,e) − 0.2× depositionsim(t,e) − 0.1× all fieldssim(t,e), (1)

where stacksim(t,e) is the similarity score for the cell stack, depositionsim(t,e) is the same for depo-
sition data within the layers, and all fieldssim(t,e) for all data extracted. For the cell stack, we take
an average Levenshtein ratio for each layer defined as a string. For deposition and all fields, we use
a normalized inverted DeepDiff (Dehpour) distance on the Python dictionary objects. This formula-
tion emphasizes structural similarity in the extracted cell stack, which fundamentally defines a solar
cell. Deposition details and other metadata play secondary roles. We assessed the robustness of this
cost function by conducting an ablation study in which we systematically removed components and
modified weight distributions (see Appendix A.2).

3.3 EVALUATION METRICS

Our evaluation framework combines multiple complementary metrics to assess extraction quality.
The foundation is an overall similarity score computed using DeepDiff (Dehpour), which measures
structural differences between extracted data and ground truth.

At the device level, we track the total number of solar cells identified in both ground truth and
extraction, along with the number of successfully matched devices. Device recall quantifies the
proportion of ground truth cells that were correctly extracted. We supplement this with structural
accuracy measures that assess how well the extraction preserves device architecture, focusing on
stack composition and layer-wise similarities.

For numerical and categorical fields, we compute precision and recall using predefined tolerances to
accommodate acceptable variations in reported values. These tolerances are particularly important
for experimental measurements like efficiency and current density, where minor variations should
not be penalized. We aggregate these scores at both the individual field level and across entire
devices to provide granular and holistic performance measures.

LLM-as-Judge For cases in which our manually created scoring methods do not work, we employ
an LLM-as-Judge approach for scoring. For cases in which our manually created scoring methods
do not work, we use LLMs to evaluate the extraction performance (Li et al., 2024). For this, we
use claude-3-5-haiku-20241022 with a user prompt that asks to compare two fields and to
return a boolean indicating if the fields match. This methodology proves particularly valuable for
chemical formulas where equivalent representations exist. For instance, our evaluation recognizes
that ”MAPbI3” and ”CH3NH3PbI3” represent identical compounds, with the former using a com-
mon abbreviation for methylammonium. Similarly, the judge correctly identifies chemical equiva-
lence between variants like ”MAPbI3-xClx” and ”CH3NH3PbI3” or between ”(PEA)2MA4Pb5I16”
and ”PEA2MA4Pb5I16”. The LLM-based evaluation also handles naming variations in material
layers, successfully matching ”TiO2-c” with ”TiO2”, ”Spiro-MeOTAD” with ”Spiro-OMeTAD”,
and ”Perovskite with PCBM/PEG network” with ”CH3NH3PbI3 w/ PCBM/PEG”, while correctly
rejecting non-equivalent matches like different atmosphere conditions or conflicting treatment dura-
tions such as ”10 min TiCl4 treatment” versus ”TiCl4 treatment for 30 min”.

3.4 DATA COLLECTION

To evaluate our extraction framework, we assembled a dataset of 68 solar cell research papers,
including 54 from Jacobsson et al. (2021) and 14 additional publications manually selected to cover
edge cases such as tandem architectures, self-assembled monolayers (SAMs), and stability studies.
We established a validation protocol involving 13 domain experts in solar cell research, with each
paper assigned to three independent reviewers to ensure robust cross-validation.

To optimize the validation process, we first performed automated extractions using Claude-3.5-
Sonnet, providing experts with baseline structured data through the NOMAD platform Scheidgen
et al. (2023). Experts were instructed to thoroughly verify and correct these preliminary extractions
over a four-week period, identifying any errors or omissions in the model’s output. This process
yielded 63 validated papers from 11 experts.
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Inter-annotator agreement analysis revealed limited consensus among expert extractions (see Fig-
ure 4). Only 15 papers achieved agreement between two or more experts on fundamental parameters
(device count and four primary performance metrics), with complete consensus among all assigned
reviewers in four cases. These 15 validated extractions, representing contributions from all partici-
pating experts, were established as the ground truth dataset for evaluating our extraction framework’s
performance.

4 RESULTS AND DISCUSSION

The overall precision was consistently high across models, with all achieving scores above 0.88.
Claude 3.5 Sonnet led with precision of 0.938, followed by GPT-4o at 0.904, while both Gemini
variants performed similarly (Flash: 0.887, Pro: 0.886). The small performance spread of ap-
proximately 0.05 between models indicates that current LLM architectures have achieved robust
capabilities in technical data extraction. Bootstrapped performance analysis revealed more nuanced
differences between models (Figure 2). Claude 3.5 Sonnet achieved perfect precision on multiple
papers and showed statistically significant improvements over GPT-4o.

A detailed performance breakdown across multiple metrics revealed important trade-offs (Figure 3).
While Claude 3.5 Sonnet excelled in precision, it scored lowest in recall among the tested models.
We also observed substantial variations in how models handled complex extractions. Notably, Gem-
ini 1.5 Flash required frequent LLM Judge calls, indicating that its outputs often fell outside our
standard evaluation pipeline. In contrast, Claude 3.5 Sonnet needed minimal judge interventions,
suggesting more standardized output formatting.

These patterns highlight an important consideration for deployment: while all tested models can
extract data with high precision, their varying recall scores and output formats suggest different op-
timal use cases. Models requiring fewer judge calls might be preferable for large-scale automated
extraction, while those with higher recall might better suit applications where completeness is crit-
ical. If we look at detailed scores for the primary solar cell metrics, we see that no one model
outperforms the others.
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Figure 2: Bootstrapped performance differences between models. For this analysis, we use
DABEST (Ho et al., 2019) to bootstrap effect sizes between the overall precision scores of the
models. The top plot shows the precision scores for different papers in our test set, where each
paper is represented by one line. We can see that for multiple papers Claude 3.5 Sonnet achieves
perfect precision. The bottom plot shows bootstrapped effect sizes relative to a random Human
Baseline. We find that Claude 3.5 Sonnet significantly outperforms GPT 4o in overall precision.
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Figure 3: Performance breakdown for different models. In all cases, the best performance is
on the outer rim. We show different models in color. The precision and recall scores are averaged
over all fields. Layers similarity is a DeepDiff score on the detailed characteristics of the device
stack (i.e., including processing conditions). While we observe that Claude 3.5 Sonnet scores best
in precision, it scores worst in recall. We also observe large differences in the number of calls to the
LLM Judge. While Claude 3.5 Sonnet requires the least calls, Gemini 1.5 flash requires the most
— indicating that many of the results Gemini 1.5 flash produces cannot be handled by our manually
developed scoring functions but instead require calls to the LLM Judge. While inspecting the main
solar cell performance metrics, PCE, FF, Jsc, and Voc, we can see that even though there is no clear
winner, Claude 3.5 Sonnet does best overall.

5 LIMITATIONS

Some limitations affect this work’s scope and conclusions. A fundamental challenge stems from the
significant variance in our human-labeled dataset (Figure 4). Expert annotators showed considerable
disagreement in their extractions, highlighting the inherent complexity of standardizing solar cell
data extraction. This variance complicates both the training and evaluation of automated approaches.

In addition, the current framework processes only textual content. Solar cell publications often
present critical performance data and device architectures through visual elements, which our sys-
tem cannot interpret. Additionally, the analysis covers only the main manuscript text, excluding
supplementary information that frequently contains detailed experimental procedures and additional
characterization data.

While our validation approach involved multiple expert reviewers per paper, the dataset remains
modest at 15 papers. Expanding this dataset would strengthen our conclusions, but the resource-
intensive nature of expert validation presents a practical barrier. The substantial time and expertise
required for thorough paper review makes large-scale validation prohibitively expensive.

6 CONCLUSIONS

Data extraction from scientific literature is a foundational challenge in materials science. For simple
cases, rule-based approaches and regular expressions can reliably extract structured information.
Traditional natural language processing methods work well for standardized formats and clearly
defined parameters. For small-scale efforts, manual curation by experts remains viable. However,
there are vast amounts of complex, heterogeneous scientific data for which these approaches prove
inadequate.
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For critical research domains like perovskite solar cells, researchers have relied on manual extraction
to build comprehensive databases, a process that becomes increasingly unsustainable as the field
grows. Here, we have shown that large language models can automate this process while maintaining
high accuracy. Our results demonstrate that these models not only match human performance but
can provide consistency in cases where expert annotators disagree.

This success in handling the complexities of solar cell literature — with its intricate device architec-
tures, varied reporting formats, and technical nuance — reveals the transformative potential of LLMs
in scientific knowledge management. While the path to fully automated scientific data extraction
still faces challenges, our results suggest that the collective knowledge embedded in the scientific
literature can now be systematically accessed and structured at scale. This capability promises to ac-
celerate not just solar cell research but any field where the wealth of published knowledge currently
lies trapped in unstructured text, waiting to be unlocked.
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A APPENDIX

A.1 DATA COLLECTION

An overview of the interrater agreement is shown in Figure 4.

A.2 MATCHING FUNCTION SENSITIVITY ANALYSIS

We performed the following modifications:

• Removing deposition information had no significant effect, as deposition data was sparsely
extracted by both experts and models.

• Adjusting the weight distribution (e.g., shifting to 0.5 stacks, 0.4 depositions, 0.1 all fields
or 0.5 stacks, 0.1 depositions, 0.4 all fields) resulted in negligible differences due to the
lack of extracted deposition information.

• Sensitivity analysis confirmed that our approach is stable; small perturbations in weight
values did not significantly alter the results.
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Figure 4: Interrater agreement between human labelers. Each row and column represents a hu-
man labeler. The color coding shows the Spearman rank correlation coefficient, which, by definition,
is perfect for all diagonal elements. However, we observe that the correlation for the off-diagonal
elements is often rather weak.

These findings reinforce our decision to prioritize cell stack similarity as the defining criterion for
matching, as meaningful variations in solar cell composition are typically reflected in the stack
structure rather than minor deposition or metadata differences.
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