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ABSTRACT

We propose Bayesian Tree-dependent Factorization (BTF), a novel probabilistic
representation learning model that uncovers hierarchical, continuous latent fac-
tors in complex datasets. BTF constructs a tree-based model that discovers in-
terpretable factorizations of the data wherein each factor has a conditional rela-
tionship to its parent, allowing it to capture both global and local effects. This
approach is particularly well-suited for biological data, where traditional methods
like PCA fail to capture higher-order dependencies and hierarchical structure. A
significant contribution of this work is the multi-view extension of BTF, which al-
lows for the joint analysis of multiple data modalities. By learning shared loadings
across views while maintaining distinct factors for each modality, multi-view BTF
improves performance and enables deeper insights into the relationships between
different data types. We demonstrate the performance of BTF in simulations as
well as in a real-world application to gene expression and clinical data in breast
cancer patients, revealing biologically and clinically meaningful patient trends,
and showing that BTF is a valuable representation learning tool for analysis and
hypothesis generation.

1 INTRODUCTION

Complex data are often comprised of both global effects that apply broadly across a significant
portion of the data as well as local effects that may be detectable only in small subsets. This is es-
pecially the case in biological datasets; for example, single cell RNA sequencing counts are widely
influenced by effects such as cell size or cell cycle phase, but certain subsets of samples may ex-
hibit specific properties related to more targeted effects such as cell-type-specific stress responses.
Similarly, breast cancer patients are all subject to certain common biological effects such as tumor
growth, but certain subtypes of patients may be particularly affected by biological responses related
to specific biological or clinical markers such as immunohistological status. There may be even fur-
ther effects conditioned on interactions between immunohistological status and other processes such
as metastasis, stage or particular immune response. A significant challenge presented by these types
of data is that while it can be useful to discretize certain categories or sub-groups of samples, many
of the significant latent effects are inherently continuous in nature. These considerations motivate a
highly interpretable approach that learns a dependent structure of continuous factors so that we are
able to jointly infer and understand the continuous effects present in the data and their relationships
to each other.

Common factor analysis approaches such as Principal Component Analysis and Independent Com-
ponent Analysis often do not provide interpretable factors, even when sparse; every principal com-
ponent typically captures many different sources of variance to different degrees, without accounting
for higher order dependencies between effects. These approaches also fail to account for any kind
of hierarchical structure and instead impose strong orthogonality or independence constraints. More
recent methods attempt to address these weaknesses by directly inferring hierarchical structure un-
der certain strong constraints. One such approach, Tree-Dependent Component Analysis (Bach &
Jordan, 2012), relaxes the orthogonality assumptions made by more classic factorization methods
by inferring a set of components that are well fit by a tree-structured graphical model. Even more
recently, hierarchical approaches to matrix factorization have come into increased focus. These also
do not impose orthogonality constraints, but they often make discrete assumptions of hierarchical
structure membership that do not allow for fully continuous effects. (Sugahara & Okamoto, 2024;
Almutairi et al., 2021; Li et al., 2019) One relevant example of this approach is eTrees (Almutairi
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et al., 2021), which generates tree-structured embeddings that explicitly encode a hierarchical struc-
ture by assuming discrete binary indicators of category and subcategory-membership. Other com-
mon approaches to the unsupervised discovery of hierarchical structure in data often rely on two
broad techniques: recursively constructed sampling-based approaches such as hierarchical Dirichlet
processes (Teh et al., 2004); or post-hoc modeling of the hierarchical structure using agglomerative
(or similar) clustering of the results of factorization methods with desirable properties. Most of these
approaches also assume that the underlying hierarchy leads to discrete groupings and do not capture
the kinds of continuous effects we previously described.

We propose a Bayesian approach to a unified factor analysis of hierarchically structured yet contin-
uous effects. In contrast to all the previously described methodologies, Bayesian Tree-Dependent
Factorization infers a dependent structure that models continuous effects and also generates an ex-
plicit interpretation of each component’s effect given their parents. Notably, one common machine
learning approach that incorporates non-linear dependencies in a hierarchical fashion is the decision
tree (more specifically, classification and regression trees)(Breiman et al., 1984). Decision trees can
be used for both supervised and unsupervised learning tasks, but usually rely on discrete splits and
are prone to overfitting. To address these problems, we typically rely on ensembles of decision trees
(or random forests). (Breiman, 2001) While these ensembles also leverage hierarchical structure in
order to make predictions and are very robust, they sacrifice the interpretability of the decision tree.
This challenge is one of the motivations of the tree-based approach to factorization that we explore
here.

A key contribution of this work is its emphasis on flexibility and interpretability. Because we have
taken a Bayesian approach, we can place priors on the factor loadings as well as the factors them-
selves, and generate posterior estimates of uncertainty and likelihood. We also place certain con-
straints on the factor loadings which allow us to more easily interpret factor dependencies as condi-
tional weights.

Finally, we introduce a multi-view extension to BTF. Multi-view datasets are becoming increasingly
prevalent, particularly in genomics and healthcare applications, where the integration of different
dependent modalities can be crucial to understanding the complex underlying mechanisms. By
leveraging the structure present in multiple modalities of data, we can increase the robustness of our
estimates across the views. The relationships between the modalities also give us the opportunity to
interpret what we learn in one view in the context of another. We demonstrate that this interpretabil-
ity can significantly improve our understanding of the latent structure in clinical and biological data,
and that we can leverage it to observe detailed mechanistic relationships between the signals in each
view and formulate powerful hypotheses.

2 METHODS

BTF is a Bayesian approach which extends the probabilistic PCA (Tipping & Bishop, 1999) formu-
lation with a hierarchical loading structure. As in probabilistic PCA, samples are drawn from Gaus-
sian distributions with means generated from a linear combination of independently drawn Gaussian
factors and a shared tolerance or noise parameter σ. As such, the probabilistic graphical model for
BTF (shown in Fig. 1) closely resembles that of probabilistic PCA. In contrast to probabilistic PCA,
we formulate the loadings on the factors in BTF such that they are dependent on one another. Each
loading is the product of sub-loadings z, some of which they share with other loadings. A binary
tree determines the sub-loadings used to construct a given factor’s loading and the way in which they
are combined, as depicted in Fig. 2. Crucially, the position of a node sub-loading in relation to its
parent dictates whether it is multiplied by the parent’s sub-loading zp or the complement (1 − zp),
indicating that right and left child factors describe conditional effects whose distributions are posi-
tively and negatively correlated with the effect distributions of their parent, respectively. As a result,
we hypothesize that the BTF model is well-suited to data where hierarchical dependencies involving
up- or down-regulation are of particular relevance (as is often the case in biological data).

The depth of the binary tree is specified a priori and may be specific to the chosen application. We
further constrain the values of the sub-loadings such that they fall between 0 and 1, which lends
itself to a simple interpretation of a sample’s factor sub-loading z as the conditional weight of that
factor in that sample given the weight of its parent factor.
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Figure 1: A visualization of the tree structure used to form the loadings for Bayesian Tree-dependent
Factorization out of the sub-loadings. The binary tree demonstrates the dependencies induced by the
loading composition.

Figure 2: A plate-notated visualization of Bayesian Tree-dependent Factorization (BTF) with a
depth of 3. The tree may be of arbitrary depth depending on user specification. Gray nodes denote
variables known a priori.

2.1 MODEL

We define the following latent variables:

• Let θ, β and σ0 be hyperparameters.

• Let xi with i ∈ 1...N be the data with D dimensions.

• Let Fij be the D-dimensional factor j at depth i in the binary tree.

• Let zij be the N -dimensional sub-loading j at depth i in the binary tree.

• Let σ be the global noise parameter.

The prior distributions on the latent variables defined by BTF can be summarized as follows:

Fij ∼ N (0, θ)

zij ∼ β(β0)

σ ∼ N (0, σ0)

Note that the number of factors and loadings defined by the model depends on the depth of the tree.
Should a depth of 3 be specified, data would be sampled from the following conditional probability
distribution:
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p(X|Z,F ) ∼ N (µx,Σx)

µx = z11 ∗ F11

+ z21 ∗ (1− z11) ∗ F21

+ z22 ∗ z11 ∗ F22

+ z31 ∗ (1− z11) ∗ (1− z21) ∗ F31

+ z32 ∗ (1− z11) ∗ z21 ∗ F32

+ z33 ∗ z11 ∗ (1− z22) ∗ F33

+ z34 ∗ z11 ∗ z22 ∗ F34

where we have visually indented the contributions of each level of the tree to the overall sample
means in order to demonstrate the relationship between the depth parameter and the terms that make
up the conditional likelihood. We employ Adaptive Moment Estimation (ADAM) (Diederik, 2014)
for the learning process.

2.2 MULTI-VIEW BAYESIAN TREE-DEPENDENT FACTORIZATION

To increase the stability and interpretability of BTF, we also formulate a multi-view extension to
the model. One of the possible challenges to factorization problems and to BTF in particular is
identifiability; in particular, the large number of sub-loadings specified in the BTF model means that
there are many more degrees of freedom in the parameter space than there are factors. Due to the
Bayesian nature of the model, stronger or additional priors may be added to alleviate these concerns.

In particular, we integrate multiple views of data by jointly optimizing the sum of the log likelihoods
of multiple factorizations across a common set of samples with different data types. We constrain
the loadings across views such that they are equal. As such, we learn one set of loadings, but as many
sets of factors as there are views. This significantly constrains the loading parameters and ensures
that the factors across views are related, which further assists in our interpretation. Additionally,
we incorporate weight parameters on each of the individual model log likelihoods which may be
specified a priori in order to up-weight the effect of any given view.

3 SIMULATIONS

In order to test the ability of the BTF to recover a ground truth hierarchical structure, we first applied
BTF to data from two different simulations with three levels of effects. We devise simulations
by randomly sampling 7 sets of sub-loadings from a uniform distribution between 0 and 1 and
then composing the loadings from the sub-loadings in the hierarchical fashion specified by the BTF
model. To induce hierarchical structure in the data, we mask each set of sub-loadings such that the
right-child sub-loadings of any given parent loading are only non-zero when the parent loading is
greater than 0.5, and left-child sub-loadings are non-zero only when their parent loading is less than
0.5. We sample N sub-loadings at each level and combined these with arbitrarily chosen factors that
demonstrate spread along D dimensions to produce a simulation of N samples in D dimensions.
We demonstrate this generative process in an easy-to-visualize simulation in two dimensions (Fig.
3). All experiments with simulated data are run on simulations of 1,000 samples.

We ran BTF on the simulated data and then compared the inferred loadings to those recovered by
three baseline methods: Principal Component Analysis (PCA), Independent Component Analysis
(ICA) (Lee & Lee, 1998), and Tree-dependent Component Analysis (TCA). PCA and ICA are the
most common approaches to factorization and make basic assumptions regarding orthogonality or
independence of the components, respectively. TCA relaxes these assumptions by allowing for a
set of components that are well fit by a tree-structured graphical model. As such, we consider it a
comparable approach for the purposes of inferring an unknown hierarchical structure.

One of the advantages of BTF is that it is able to learn an arbitrary number of factors without
being constrained by the rank of the data. PCA and the commonly used FastICA (Hyvarinen, 1999)
algorithm are each only able to generate a maximum of r factors where r is the rank of the given
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Figure 3: A visualization of the effects generated in the 2-dimensional simulation, arranged in the
hierarchy induced by the generative loading structure.

data. In order to ensure a fair comparison, we also ran the models on a simulation in 7 dimensions
which closely resembles the hierarchical structure we used for the 2 dimensional simulation, but
with the effects of each level of the hierarchy represented in new dimensions plus additional small
noise added in extra dimensions to ensure that the data is full rank.

3.1 EVALUATION OF SIMULATIONS

In order to numerically evaluate the quality of the factorizations learned by BTF in contrast to the
chosen baseline methods, we examined the Spearman correlations of each of the true factor loadings
used in the generative simulations to each of the factor loadings learned by each method. We also
visualized the 2-dimensional data colored by the learned loadings and compared these to the ground
truth visualization in order to evaluate the quality of the effects captured by BTF.

3.2 RESULTS OF SIMULATION ANALYSIS

Fig. 4 shows the correlations between the learned loadings and the ground truth loadings. The heat
map shows that the correlations are very high along the diagonal, demonstrating that BTF is able
to recover the correct structure. Additionally, the high correlation block structure away from the
diagonals demonstrates that all recovered loadings are highly correlated with their ancestor loadings
in the loading tree. This is consistent with our expectation regarding the structure of the sub-loading
compositions and further validates that BTF is able to learn interpretable dependencies between the
loadings. Fig. 4 shows a visualization of the data colored by the inferred loadings of the hierarchy.
They are very similar to the true generative loadings.

In Fig. 5, we show the correlations between the learned loadings and the ground truth loadings for
each of the 4 tested methods on the 7-dimensional data. BTF is able to recover the correct factor
loadings and most of the hierarchical structure, although the position of two factors in the hierarchy
are switched, demonstrating the identifiability challenge in recovering ground truth. However, the
differences between BTF and PCA are stark; PCA recovers an entirely different set of factors, and
the first two sets of loadings account for the majority of the correlation to all of the ground truth
loadings. The hierarchical structure is not recovered and the factors do not reflect any individual
ground truth structural elements. ICA performs only slightly better, presumably due to the relaxation
of the orthogonality constraint. In our experiments, we found that TCA correctly identified that
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Figure 4: Left: A visualization of the effects learned by BTF when applied to the 2-dimensional
simulation, arranged in the hierarchy induced by the generative loading structure. Each visualization
shows the data colored by the corresponding learned loading in the hierarchy. Right: A heatmap
showing the Spearman correlation statistics of the ground truth loadings to the BTF loadings when
applied to the 2-dimensional simulation.

Figure 5: The correlations between learned loadings and ground truth loadings for each of the 4
tested methods on the 7-dimensional simulation data.

there are three levels to the hierarchy. However, it is unable to identify the true binary structure of
the hierarchy and the loadings it recovers do not correlate well with ground truth.

None of the baseline approaches provide an interpretation of the functional relationships between the
structural elements beyond parent-child structure (in the case of TCA); no conditional dependencies
are explicitly represented by the loadings as they are in BTF. This demonstrates one of the unique
advantages of BTF.

4 APPLICATIONS TO GENE EXPRESSION AND CLINICAL DATA IN BREAST
CANCER PATIENTS

In order to test BTF in a real-world application, we applied single-view (SV) and multi-view (MV)
BTF to a clinical and genomic dataset (Curtis et al., 2012) containing gene expression and clinical
measurements collected from 2,000 breast cancer patients. We hypothesized that leveraging the
multi-modal aspect of the data using multi-view BTF could help to address the aforementioned
concerns about identifiability.
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To even further increase the identifiability of the model and to aid in our analysis, we adjusted the
structure of the loading compositions in the MV-BTF model such that the top level of the hierarchy
includes 4 sub-trees. The means of the Gaussian distributions generating the data were adjusted
to linear combinations of 4 expressions, each one of the form specified by BTF. The loadings on
each of the 4 sub-tree expressions were fixed to binary indicators of the prognostic PAM50 (Bernard
et al., 2009) molecular subtype membership, thus ensuring that each subtree only captures signal in
its corresponding subtype. The first 3 levels of the resulting hierarchy is shown in Fig. 4.

Figure 6: The first 3 levels of the modified subtype-specific structure inferred in the METABRIC
data.

Notably, BTF can optionally be run with non-negativity constraints. Because we wanted a high-
fidelity model of gene expression, which is measured on an intrinsically positive scale, we applied
the non-negative formulation of BTF to this data; thus, all loading and factor values were positively
constrained during optimization. We describe our data pre-processing procedure in detail in the
Supplementary Methods.

4.1 EVALUATION APPROACH

To evaluate our single and multi-view results, we used a combination of visualization and gene
set enrichment analysis. The clinical factors are easily visualizable and interpretable due to the
low dimensionality of the data. The scaled clinical factors of our multi-view analysis are shown
in Supplementary Fig. 12. In order to interpret the gene factors we used PreRanked Gene Set
Enrichment Analysis (Subramanian et al., 2005), which evaluates a predefined ranking to determine
whether different sets of genes are over-represented at either end of the scale defined by the ordered
ranking when compared to a randomly permuted baseline. We treated the factors as rankings of
the genes. Because lower factor values contribute less signal in a non-negative factorization of the
data, we only considered significant enrichments where the Normalized Enrichment Score (NES)
was greater than 0, limiting our analysis to gene sets that are over-represented in the higher factor
values. Enrichments were evaluated for significance using 1,000 permutations and were corrected
for multiple hypothesis testing using the Benjamini Hochberg approach at α = 0.1.

To evaluate the performance of SV-BTF, we compared the number of unique biological enrichments
of MSigDB canonical pathways (Liberzon et al., 2011) captured by the learned BTF factors to those
captured by three baseline methods (PCA, ICA and NMF). We also evaluated the reconstruction
errors of the 4 methods.

We evaluated the improvement of MV-BTF over SV-BTF by comparing the number of MSigDB
oncogenic geneset enrichments (Liberzon et al., 2011) learned in each application. We also did a
qualitative examination of the enrichments discovered by the multi-view approach as well as how
they relate to patient trends in the learned hierarchical structure of the clinical view.

To better understand the degree to which transfer learning occurs in MV-BTF, we ran additional
experiments wherein we added varying levels of Gaussian noise to the data. To this end, we learned
8 individual multi-view and single-view models with added Gaussian noises of σ = 0.1, 0.2, 0.5 and
1 added in each of the two views. All noised data was rescaled to ensure a fair comparison between
views. In all analyses, models were fit 10 times with distinct random seeds so as to account for
variability due to initialization. Additional information on our choice of model hyperparameters can
be found in the Supplement.
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4.2 RESULTS OF SINGLE-VIEW ANALYSIS

Fig. 7 shows the results of the application of BTF to the METABRIC expression data when com-
pared to the 3 baseline approaches. The reconstruction errors of BTF and NMF in contrast to the
other methods are somewhat higher. This suggests that the increase is due to the stronger assump-
tions made by the models, especially the similar non-negativity constraints.

Figure 7: Left: The reconstruction error of BTF and 3 baseline models when applied to the
METABRIC gene expression data. Right: The number of unique biological enrichments recovered
in each of the 4 approaches when evaluating the factors using GSEA PreRank.

BTF outperforms the baseline approaches in number of high-ranking biological enrichments recov-
ered. These results suggest that by incorporating a hierarchical representation of the dependencies
inherent to the biological data, we are better able to recover the underlying biological signal. We
hypothesize that the BTF approach could be particularly powerful in this context due to its explicit
representation of opposing effects within the loading structure, which more closely resembles the
natural up- or down-regulation of different genes in concert with specific biological mechanisms.

When we relax the restriction of our biological enrichments and consider genesets that are signif-
icantly overrepresented at the bottom of the rankings defined by the factor means, we note that
the non-negative approaches (NMF and BTF) recover fewer enrichments than the other approaches
(PCA and ICA) (See supplementary Fig. 10); while a non-negative model is likely to be a higher-
fidelity representation of the true underlying biology, this result highlights the challenge of recover-
ing biological enrichment under strong constraints.

4.3 RESULTS OF MULTI-VIEW ANALYSIS

Next, we evaluated the performance of multi-view BTF with respect to cancer-specific geneset en-
richments. The enrichment results for each experiment are shown in Fig. 8. We found that the
multi-view approach captured more cancer-specific enrichments than the single-view approach. This
demonstrates that the model is effectively able to leverage a second view in order to improve its rep-
resentation of the structure in the first. Additionally, we found that MV-BTF captures more enrich-
ments than SV-BTF even when we add small amounts of artificial noise to the expression view. In
these cases, fewer enrichments are captured by SV-BTF than in the noiseless data, but MV-BTF in-
creases the enrichment signal nonetheless. When more noise is added, the clinical signal eventually
dominates the learning process, resulting in fewer enrichments. We also see found that BTF is able
to leverage even noisy clinical data to recover more enrichments in the biological data. This suggests
that multi-view BTF is a potentially powerful tool for the analysis of confounded or noisy data, as is
often the case in biological applications, although care needs to be taken to weight the views appro-
priately. We found that these trends persisted with respect to a broader set of biological enrichments
(see Supplementary Fig. 11), although variation between noise-levels was less predictable.

The enrichments in each subtype sub-tree demonstrate that each tree captures informative and
highly-interpretable enrichments that reflect real relationships between biological mechanisms and
the clinical trends in that subtype. In the interest of space, we analyze and visualize this capability in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 8: Left: The numbers of PreRank GSEA cancer-specific geneset enrichments represented in
the factors of both the SV and the MV approaches, for varying levels of added noise in the expression
view. Right: Cancer-specific geneset enrichments for varying added noise in the clinical view.

the luminal A subtype (Fig. 9) subtree. The root nodes of the trees function like intercepts, and thus
describe the global effects that define the molecular subtype. True to the directional loading struc-
ture of BTF, the right child describes biological effects common to the progression of most luminal
A breast cancers, such as estrogen signaling and estrogen dependent gene expression, which play
a major role in luminal breast cancers (Clusan et al., 2023) and insulin secretion, which is known
to promote estrogen-dependent breast cancers (Rose & Vona-Davis, 2012). It is also enriched for
pathways such as FOXA1 signaling, a crucial factor in the progression of breast cancer that is also
associated with better prognosis in the luminal A subtype. (Metovic et al., 2022) In addition to
estrogen-receptor (ER) positivity, post-menopausal status and age, mucinous tumors are also signif-
icantly up-weighted in the corresponding clinical factor; while relatively rare, they occur exclusively
in luminal A breast cancers (Limaiem & Ahmad, 2023). In contrast, the left child enrichments relate
to biological mechanisms of poor prognosis due to treatment resistance; these cases are exceptional
given that this subtype is the least aggressive molecular subtype and generally responds well to treat-
ment (Orrantia-Borunda et al., 2022). Consistent with this interpretation, the corresponding clinical
factor suggests older patients with larger tumors and higher rates of morbidity.

The children of the left branch are enriched for biological processes that are responsible for tumor
invasion and metastasis, including extra-cellular matrix organization (Elgundi et al., 2020) and col-
lagen formation (Zhang et al., 2023), as well as different known mechanisms of treatment resistance:
for example, lipid metabolism (left), which is implicated in driving resistance to endocrine therapy
in invasive lobular carcinoma (ILC) (Du et al., 2018), versus Wnt pathway signaling (right) (Xu
et al., 2020). Notably, the corresponding clinical factors accurately capture related clinical effects
and their directionality: high cellularity, low survival patients on the right, and ILC patients on the
left. Recent work suggests that patient survival with ILC is highly time-dependent and also depends
on menopausal status, age and ER status. (Chamalidou et al., 2021)

The children of the right clinical branch differentiate a continued trajectory of tumor growth (with
higher grade tumors and higher Nottingham Prognostic Index (Haybittle et al., 1982) scores) from
progesterone-receptor (PR) positive cases, which generally have better prognosis (Prat et al., 2013).
The corresponding biological factor is not enriched for any genesets; however, Hashmi et al. (2018)
suggest that more than 80% of luminal A breast cancers may be PR+, and thus we hypothesize
that much of the relevant biological signal may be captured by its parent factor. The other child
biological factor is enriched for many biological mechanisms related to tumor growth, including
growth factor activation (Witsch et al., 2010) and cell cycle machinery (Thu et al., 2018), as well as
specific pathways that are recent and currently active drug targets including C-MYC transcriptional
activation (Llombart & Mansour, 2022) and Aurora B kinase signaling. (Borah & Reddy, 2021)

Overall, these results demonstrate that MV-BTF can be used to understand, investigate and inter-
pret the real relationships between patient biology and clinical presentation. Additionally, MV-BTF
could be a valuable tool for hypothesis generation; for example, to propose specific biological mech-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

anisms that could underlie patient trends or outcomes. We include the exact biological enrichments
and corresponding clinical factors for all 4 subtrees in the Supplementary material.

Figure 9: Biological mechanisms and corresponding clinical effects represented by the learned
MV-BTF structure in the luminal A subtype.

5 DISCUSSION

Commonly used factorization approaches fail to account for the complexities of many real world
datasets containing both local and global effects with higher order dependencies between factors. We
show that Bayesian Tree-dependent Factorization is a Bayesian approach capable of interpretably
and effectively discovering dependent, hierarchical structure that captures both specific and broader
effects. One advantage of BTF is that it is highly flexible and allows for the specification of various
priors on the latent factors. An additional strength of BTF is the continuous but constrained nature
of the factor loadings, which allow the user to interpret the learned factors as continuous effects
with loadings that indicate their conditional weight given their parents. We also demonstrate that
we can construct a multi-view formulation of BTF that allows for integrative discovery of common
mechanisms across modalities. Furthermore, our applications of BTF to breast cancer patient data
demonstrate that BTF and MV-BTF are capable of uncovering and aiding in the interpretation of
the real hierarchical mechanisms underlying complex datasets and thus could be valuable tools for
investigation and hypothesis generation in contexts such as drug target discovery.

BTF is not without limitations. In particular, the model makes very strong assumptions about the
nature of the relationships between dependent factors and how the hierarchy of these factors is
structured. Due to the number of possible configurations of the underlying latent hierarchies, con-
sideration of all the potential structures quickly becomes intractable. The binary tree learned by
BTF is unlikely to always reflect the true underlying structure of the data, and care must be taken
not to interpret the factor relationships too literally. Additionally, BTF requires that the user specify
the depth of the learned factor tree a priori. Future work may attempt to relax these assumptions
by automatically inferring properties of the tree structure. Similarly, our multi-view formulation of
BTF makes the very strong assumption that the loadings across views be identical; future work could
relax this assumption, for example by implementing a weighted likelihood that prefers factorizations
with loadings that are highly correlated or otherwise related across views.

Broadly speaking, there are many opportunities for advancement in hierarchical factorization meth-
ods. In particular, many methods (including BTF) rely on prescriptive assumptions regarding the
form of the higher order dependencies between factors. Future work could attempt to incorpo-
rate a deep learning approach or other highly non-linear functional forms in order to relax these
assumptions as much as possible and accommodate additional complexity. Overall, we expect that
hierarchical approaches like BTF that prioritize the interpretability of higher-order dependencies and
latent mechanistic structure will continue to serve an important function in real world applications,
particularly in critical decision making tasks.
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REPRODUCIBILITY

Complete supporting this publication (including model and optimization code, simulation genera-
tion, and visualizations) will be made available via Github at the time of publication. For now, we
include partial code specifying the model in the Supplementary material, so as to aid the review
process.

This study makes use of data generated by the Molecular Taxonomy of Breast Cancer International
Consortium. Funding for the project was provided by Cancer Research UK and the British Columbia
Cancer Agency Branch.

The METABRIC datasets are accessible upon request from the European Genome-Phenome Archive
(EGA) using the accession number EGAS00000000083. Corresponding clinical data is available
from the corresponding publication. (Curtis et al., 2012)
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6 SUPPLEMENT

6.1 PREPROCESSING OF THE METABRIC DATA

Before applying BTF, we pre-processed the data. We log-transformed the quantile-normalized ex-
pression data and then generated approximate log2 gene expression intensities from the means of all
probe intensities occuring within the gene bodies. We filtered to the top 10% most variably express-
ing genes over samples (2,011 genes). We also made sure to include all available genes from the
PAM50 set (Bernard et al., 2009), which are commonly used as molecular markers for breast cancer
subtype. We imputed 22 missing values using a nearest neighbors approach with five neighbors.

In the clinical data, we converted categorical values to one-hot encoding and then chose a subset of
the features based on relevance and low degrees of missingness. Among the features included were
histological subtype, PAM50 subtype, receptor status, stage, grade, tumor size, cellularity, age at
diagnosis and tumor size. We also included survival status and the right-censored time to survival in
days. The full set of features used in this analysis is shown in Fig. 12.

We removed patient samples of the Normal-like PAM50 subtype to reduce the odds of confounding
the other breast cancer subtypes; the true nature of this subtype is not well understood and it was
originally defined using normal breast tissue samples for the purpose of quality control. (Bernard
et al., 2009)

Clinical data were scaled using a min-max scaler to the range [0, 1] so as to ensure positive values
for the purpose of the multi-view analysis.

6.2 MODEL HYPERPARAMETERS

We ran all formulations of BTF with the following hyperparameter settings:

θ = 1

β0 = (10, 10)

σ0 = 0.01

Multi-view models were run with model weights of 1 and 15 on the expression and clinical views
respectively; we chose these weights because we found that they effectively showcased the trade-off
between performance improvement and the effect of the added noise in our multi-view experiments.

Step sizes used for the ADAM optimization algorithm were: 0.1 (loadings), 0.1 (factors), and 0.01
(global noise parameter).

Factors were initialized to random samples. Loadings were initialized to uniform vectors of 0.5 (an
uninformed choice consistent with our interpretation of the loadings as conditional weights between
0 and 1). The global noise parameter was initialized to 0.1.

Model optimization ran for 15,000 iterations in each experiment to ensure convergence.
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6.3 SUPPLEMENTARY FIGURES

Figure 10: Left: The reconstruction error of BTF and 3 baseline models when applied to the
METABRIC gene expression data. Right: The number of unique biological enrichments recovered
in each of the 4 approaches when evaluating the factors using GSEA PreRank.

Figure 11: Left: The numbers of PreRank GSEA biological enrichments represented in the factors
of both the single-view and the multi-view approaches, compared to models learned with varying
levels of added noise in the expression view. Right: Biological enrichments for varying levels of
added noise in the clinical view. Green arrows depict means.
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Figure 12: A heatmap showing learned factors in the clinical view of the MV-BTF run used for
the luminal A subtree analysis. Factors are scaled for easier interpretation. The factor values of
the molecular subtype features (LumA, LumB, Her2, and Basal) reflect the subtree structure (e.g.
factors 1, 2, 3, and 4 are the root nodes of each subtree, and factors 5 and 6 are the top-level child
nodes of the luminal A subtree).
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