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Abstract

A major challenge in single-particle cryo-electron microscopy (cryo-EM) is that1

the orientations adopted by the 3D particles prior to imaging are unknown; yet, this2

knowledge is essential for high-resolution reconstruction. We present a method3

to recover these orientations directly from the acquired set of 2D projections.4

Our approach consists of two steps: (i) the estimation of distances between pairs5

of projections, and (ii) the recovery of the orientation of each projection from6

these distances. In step (i), pairwise distances are estimated by a Siamese neural7

network trained on synthetic cryo-EM projections from resolved bio-structures.8

In step (ii), orientations are recovered by minimizing the difference between9

the distances estimated from the projections and the distances induced by the10

recovered orientations. We evaluated the method on synthetic cryo-EM datasets.11

Current results demonstrate that orientations can be accurately recovered from12

projections that are shifted and corrupted with a high level of noise. The accuracy13

of the recovery depends on the accuracy of the distance estimator. While not14

yet deployed in a real experimental setup, the proposed method offers a novel15

learning-based take on orientation recovery in SPA. Our code is available at https:16

//github.com/anonymous/protein-reconstruction.17

1 Introduction18

Single-particle cryo-electron microscopy (cryo-EM) has revolutionized the field of structural biology19

over the last decades [1, 2, 3]. The use of electron beams to image ice-embedded samples has20

permitted the recovery of 3D bio-structures at unprecedented resolution. This “resolution revolution”21

has had a tremendous impact in biomedical research, providing invaluable insights into the biological22

processes that underlie many current diseases.23

In single-particle cryo-EM, every 3D particle adopts a random orientation θi in the ice layer before24

being imaged. Hence, the projection geometry associated to each acquired 2D projection (Figure 1)25

is unknown. Yet, this knowledge is essential for the tomographic reconstruction of bio-structures [4].26

We consider that a cryo-EM measurement (i.e., a projection) pi ∈ Rnp is acquired through27

pi = CϕStiPθix+ n, (1)

where x ∈ Rnx is the unknown 3D density map [5] (Coulomb potential). The operator Pθi : Rnx →28

Rnp is the projection along the orientation θi (i.e., the x-ray transform). The operator Sti : Rnp →29

Rnp is a shift of the projection by ti = (ti1 , ti2). The convolution operator Cϕ : Rnp → Rnp models30

the microscope point-spread function (PSF) with parameters ϕ = (d1, d2, αast), where d1 is the31

defocus-major, d2 is the defocus-minor, and αast is the angle of astigmatism [6, 7]. Finally, n ∈ Rnp32

represents additive noise. Figure 11 illustrates the effect of projection, shift, and noise. The challenge33

is then to reconstruct x from a set of projections {pi}Pi=1 acquired along unknown orientations.34
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Figure 1: Geometry of the imaging model de-
fined in (1). The 3D density x in the coordinate
system (x1, x2, x3) is imaged along the orienta-
tion θ to produce the 2D projection p in the co-
ordinate system (y1, y2) of the microscope’s de-
tector plane. The orientation θ = (θ3, θ2, θ1) is
decomposed as the direction (θ2, θ1) ∈ [0, π]×
[0, 2π[ (parameterizing the sphere S2) and the
in-plane rotation θ3 ∈ [0, 2π[ (parameterizing
the circle S1). In our work, we represent the
orientation θ as a unit quaternion q.

dq(qi, qk)

dq(qi, qj)

dq(qj, qk)

Figure 2: Single-particle cryo-EM produces P
projections (with P in the order of 105) from
unknown orientations: {(pi, qi)}Pi=1. Observing
that distances between orientations constrain the
latter, we aim to recover the orientations {qi}
from {dq(qi, qj)}, where dq(qi, qj) is the dis-
tance (angle) between orientations qi and qj . Ob-
serving that the similarity between projections
depends on their relative orientation, we aim to
estimate the distance dq(qi, qj) from the projec-
tions (pi,pj).

A popular approach is to alternatively refine the 3D structure and estimated orientations [8, 9, 10, 11,35

12, 13]. Yet, the outcome of these iterative-refinement procedures is often predicated on the quality36

of the initial reconstruction, or, equivalently, on the initial estimation of the orientations [14, 15].37

Several methods have been designed to produce a first rough ab initio structure for the refinement38

procedure [16]. Moment-matching techniques [17, 18, 19, 20] reconstruct an initial structure such39

that the first few moments of the distribution of its theoretical measurements match the ones of40

its experimental projections; however, they typically remain sensitive to error in data and can41

require relatively high computational complexity. Based on the central-slice theorem, common-lines42

methods [21, 8, 22, 23, 24, 25, 26] aim at uniquely determining the orientations of each projection by43

identifying the common-lines between triplets of projections—a real challenge given the massive44

amount of noise. Alternatively, the marginalized maximum likelihood (ML) formulation of the45

reconstruction problem [11]—classically used for the iterative-refinement procedures themselves—46

can be minimized using stochastic gradient descent [27]. This permits to avoid the need for an initial47

volume estimate, at the possible cost of greater convergence instability.48

More recently, the recovery of geometrical information from unknown view tomography of 2D point49

sources has been proposed [28], but the extension to 3D cryo-EM tomography is not straightforward.50

Finally, [29] proposed to recover the in-plane rotations by learning to embed projections in an51

appropriate latent space, but only after directions had been estimated through three rounds of 2D52

classification in RELION.53

Despite the aforementioned advances, providing a robust initial volume remains a challenge due to54

the high-dimensionality and ill-posedness of the underlying optimization problem. On the other hand,55

the remarkable ability of convolutional neural networks to capture relevant representations of images56

has had a profound influence in imaging [30]. In this work, we present a learning-based approach to57

recover the unknown orientations directly from the acquired set of projections—without the need for58

an intermediate reconstruction procedure or an initial volume estimate.59

2 Method60

Our approach relies on two observations (Figure 2), yielding two steps (Figure 3). First, the more61

similar two projections (pi,pj), the more likely they originated from two particles that adopted close62
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Figure 3: Our method consists of two steps. First, we estimate distances between pairs of projections.
Second, we recover the orientation of each projection from these distances.

orientations (qi, qj) in the ice prior to imaging;1 this observation guides a number of applications in63

the field [2]. Hence, we aim to estimate distances between orientations dq(qi, qj) from the projections64

as d̂p(pi,pj), which we discuss in §2.2. Second, an orientation q is constrained by the distances65

between itself and the other orientations {d(q, qj)}. Hence, we aim to recover orientations {q̂k} such66

that the induced distances {dq(q̂i, q̂j)} are close to the estimated distances {d̂p(pi,pj)}, which we67

discuss in §2.3. All in all, from a set of projections {pk}, we aim to recover their orientations {q̂k}68

such that dq(q̂i, q̂j) ≈ d̂p(pi,pj) ≈ dq(qi, qj), with equality if d̂p and {q̂k} are perfectly estimated.69

Our approach is similar to [31]. While the authors reconstruct 2D images from 1D projections, they70

rely on the same two-step approach: they (i) estimate distances as d̂p(pi,pj) = ‖pi − pj‖2 then71

(ii) recover the orientations by spectrally embedding that distance graph. The Euclidean distance is72

however not robust to perturbations: for example, two projections that only differ by a shift St of one73

pixel would be considered far apart while their orientations are the same. They noted that issue and74

we observed it too (Appendix E). To circumvent this, we propose to learn d̂p from examples (§2.2).75

2.1 Representation of orientations with quaternions76

The orientation of a 3D particle with respect to the microscope’s detector plane is a rotation relative to77

a reference orientation (Figure 1). The group of all 3D rotations under composition is identified with78

SO(3), the group of 3× 3 orthogonal matrices with determinant 1 under matrix multiplication. A79

rotation matrix Rθ ∈ SO(3) can be decomposed as a product of
(
3
2

)
= 3 independent rotations, for80

example as Rθ = Rθ3Rθ2Rθ1 , where θ = (θ3, θ2, θ1) ∈ [0, 2π[× [0, π]× [0, 2π[ are the (extrinsic81

and proper) Euler angles in the ZY Z convention (a common parameterization in cryo-EM) [32].82

While Euler angles are a concise representation of orientation (3 numbers for 3 degrees of freedom),83

they suffer from a topological constraint—there is no covering map from the 3-torus to SO(3)—84

which manifests itself in the gimbal lock, the loss of one degree of freedom when θ2 = 0. This makes85

their optimization by gradient descent (§2.3) problematic. On the other hand, optimizing rotation86

matrices (made of 9 numbers) would require computationally costly constraints (orthogonality and87

determinant 1) to reduce the degrees of freedom to 3. Moreover, the distance between orientations88

cannot be directly computed from Euler angles and is costly (30 multiplications) to compute from89

rotation matrices [33]. We solve both problems by representing orientations with unit quaternions.90

Quaternions q ∈ H are an extension of complex numbers2 of the form q = a+ bi+ cj + dk where91

a, b, c, d ∈ R. Unit quaternions q ∈ S3, where S3 =
{
q ∈ H : |q| = 1

}
is the 3-sphere (with92

the additional group structure inherited from quaternion multiplication), concisely and elegantly93

represent a rotation of angle θ about axis (x1, x2, x3) as q = cos(θ/2)+x1 sin(θ/2)i+x2 sin(θ/2)j+94

x3 sin(θ/2)k. They parameterize rotation matrices as95

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 .

1Up to protein symmetries, which we discuss later.
2The algebra H is similar to the algebra of complex numbers C, with the exception of multiplication being

non-commutative.
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Figure 4: Distance learning. We are looking for a distance d̂p between projections that is an accurate
estimator of the distance dq between their orientations. We propose to parameterize d̂p as a Siamese
neural network (SNN), trained on a synthetic dataset of projections with associated orientation.

Note that S3 → SO(3) is a two-to-one mapping (a double cover) as q and −q represent the same96

orientation. Unlike Euler angles, S3 is isomorphic to the universal cover of SO(3). Hence, the97

distance between two orientations, i.e., the length of the geodesic between them on SO(3), is98

dq : S3 × S3 → [0, π],

dq(qi, qj) = 2 arccos (|〈qi, qj〉|) ,
(2)

where 〈·, ·〉 is the inner product, and the absolute value |·| ensures that dq(qi, qj) = dq(qi,−qj). The99

distance dq(qi, qj) corresponds to the magnitude of the rotation R∗ such that Rqi = R∗Rqj [33].100

2.2 Distance learning101

We aim to estimate a function d̂p such that d̂p(pi,pj) ≈ dq(qi, qj). While we could in principle102

design d̂p, that would be intricate—if not impossible—partly because the invariants are difficult103

to specify. We instead opt to learn d̂p, capitalizing on (i) the powerful function approximation104

capabilities of neural networks, and (ii) the possibility to generate realistic datasets supported by the105

availability of numerous 3D atomic models3 and our ability to model the cryo-EM imaging procedure.106

From a training dataset {pi, qi}Pi=1, we learn the projection distance107

d̂p = argmin
dp

LDE, where LDE =
∑
i,j

∣∣dp(pi,pj)− dq(qi, qj)∣∣2 (3)

is the loss and dq is defined in (2). The dp is parameterized as the Siamese neural network (SNN) [34]108

dp(pi,pj) = df (Gw(pi),Gw(pj)),

where Gw is a convolutional neural network with weights w that is trained to extract the most relevant109

features fi ∈ Rnf from a projection pi. SNNs, also termed “twin networks”, are commonly used in110

the field of deep metric learning to learn similarity functions [35]. We set the feature space distance111

df as the cosine distance to facilitate the learning of a d̂p that respects the elliptic geometry of S3112

(Appendix F). Figure 4 illustrates the proposed learning paradigm.113

As evaluating a sum over P 2 pairs is computationally intractable for cryo-EM datasets with typically114

P in the order of 105 projections, we sample the sum and minimize (3) with stochastic gradient115

descent (SGD) over small batches of pairs. The weights w are updated by back-propagation.116

The architecture of Gw is described in Appendix G. When designing the architecture, we constrain117

the functional space from which the trained Gw is drawn and express our prior expert knowledge. For118

example, we realize shift invariance, i.e., a guarantee that a shift St does not change our estimated119

distances and orientations, with a fully convolutional architecture. Size invariance, i.e., taking120

projections p of varying sizes np while yielding a representation f of a fixed size nf , is realized by a121

final average pooling layer. As we do not (yet) know how to realize an invariance to noise or PSF, we122

resort to data augmentation, i.e., training on perturbed projections. In §3.4, we show that a built-in123

invariance (shift) is far preferable to one learned through augmentation (noise). Finally, as projections124

3https://www.ebi.ac.uk/pdbe/emdb
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are made by integrating through the 3D volume, projections from opposed directions are mirrors of125

each other.4 That is another kind of physical knowledge that should ideally be built into our method.126

One could hope to train Gw to directly map projections to orientations as q̂i = fi = Gw(pi). While127

that would avoid the orientation recovery step, a space of nf = 4 dimensions does not have room for128

Gw to represent the other factors of variation in p, such as different noise levels, PSFs, or proteins.129

We tested that hypothesis in Appendix F.130

2.3 Orientation recovery131

The task of recovering points based on their relative distances has been extensively studied. Many132

methods aim at mapping high-dimensional data onto a lower-dimensional space while preserving133

distances, primarily for dimensionality reduction and data visualization. Well-known examples134

include MDS [36], Isomap [37], LLE [38], Laplacian eigenmaps [39], t-SNE [40], and UMAP [41].135

The embedding of distance matrices in Euclidean space (given by their eigenvectors) is especially136

well-described. In particular, the framework of Euclidean distance matrices (EDMs) [42] provides137

theoretical guarantees on the recovery of points from distances.138

We however aim to embed the orientations q in S3 (§2.1), a setting for which we are unaware of any139

theoretical characterization (e.g., on the shape of the loss function or its behavior when distances are140

missing or noisy). The fact that S3 is locally Euclidean does however offer some hope. Indeed, despite141

the non-convexity and the lack of theoretical guarantees, we are able to appropriately minimize our142

loss function, as we experimentally demonstrate in Appendix D.143

We recover the orientations of a set of projections
{
pk
}P
k=1

through144

{
q̂k
}P
k=1

= argmin
{qk∈S3}

LOR, where LOR =
∑
i,j

∣∣∣d̂p (pi,pj)− dq (qi, qj)∣∣∣2 (4)

is the loss and d̂p is the estimator trained in (3). Note that the sole difference with (3) is that the145

minimization is performed over the orientations q rather than the distance dp. Here again, we sample146

the sum in practice and minimize (4) with mini-batch SGD. Sampling the sum amounts to building a147

sparse (instead of complete) distance graph before embedding, a common strategy.148

2.4 Evaluation149

While not a part of the method per se, we must evaluate the quality of the recovered orientations.150

Unfortunately, we cannot directly take the difference between the recovered orientations {q̂k}Pk=1151

and the true orientations {qk}Pk=1 as orientations are rotations up to an arbitrary reference orientation.152

Any global rotation or reflection of the recovered orientations is as valid as any other, i.e., dq(qi, qj) =153

dq(Tqi,Tqj) ∀T ∈ O(4), where O(4) is the group of 4× 4 orthogonal matrices. Hence, we align154

the sets of orientations and compute the mean orientation recovery error as155

EOR = min
T∈O(4)

1

P

P∑
i=1

∣∣dq (qi,Tq̂i) ∣∣. (5)

We implement T as a product of
(
4
2

)
= 6 independent rotations and an optional reflection:156

T =

[
m 0
0 I

] ∏
1≤i<j≤4

Tθij , m ∈ {−1, 1}, θij ∈ [0, 2π[, (6)

where Tθij ∈ SO(4) is a rotation by angle θij on the (xi, xj) plane.157

In practice, we again minimize (5) with mini-batch SGD. Because O(4) is disconnected, we optimize158

the 6 angles separately for m = 1 (proper rotations) and m = −1 (improper rotations). Figure 15159

shows an alignment to EOR = 0 after a perfect recovery.160

4That fact prevents the resolution of chirality, i.e., we cannot distinguish a protein from its mirrored form.
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3 Experiments161

We first evaluated whether orientation recovery through (4) was feasible assuming perfect distances,162

and how it was affected by errors in the distances (§3.2). We then learned to estimate the distances163

through (3), and evaluated the accuracy of this procedure (§3.3) and its robustness to perturbations of164

the projections (§3.4). Finally, we ran the whole machinery on a synthetic dataset to assess how well165

orientations could be recovered from estimated distances (§3.5).166

3.1 Experimental conditions167

Density maps. We considered two proteins (Figure 10): the β-galactosidase, a protein with a168

dihedral (D2) symmetry, and the lambda excision HJ intermediate (HJI), an asymmetric protein169

with local cyclic (C1) symmetry. Their deposited PDB atomic models are 5a1a [43] and 5j0n [44],170

respectively. From these atomic models, we generated the density maps in Chimera [45] by fitting the171

models with a 1Å map for 5a1a and a 3.67Å map for 5j0n; this gave us a volume of 110×155×199172

voxels for 5a1a and one of 69× 57× 75 voxels for 5j0n.173

Protein symmetries. Symmetries are problematic when learning distances: two projections can174

be identical while not originating from the same orientation, which breaks an axiom of distance175

functions (identity of indiscernibles). Figure 16b illustrates this problem. To capture only one of four176

identical projections of 5a1a, we restricted directions to (θ2, θ1) ∈ [0, π[× [0, π2 [ (a quarter of the177

sphere, illustrated in Figure 12a) for that protein. This treatment of symmetries is incomplete5 but178

sufficient for a proof-of-concept.179

Projections. Using the ASTRA projector [46], we generated P = 5, 000 synthetic projections180

of 275 × 275 pixels (downsampled to 116 × 116) for 5a1a and 116 × 116 pixels for 5j0n, taken181

from uniformly sampled orientations.6 We then perturbed the measurements with different levels of182

additive Gaussian noise [47, 48] and off-centering shifts. Figure 11 displays some samples.183

Datasets. For each protein, we split the projections into training, validation, and test subsets, and184

created disjoint pairs of projections from each (Table 1). The training and validation sets were used to185

train and evaluate the SNN, while the test set was used to evaluate orientation recovery given a trained186

SNN. Sampling orientations (mostly) uniformly induces a distribution of distances that is skewed187

towards larger distances (shown in Figure 12b). As this would skew LDE and bias d̂p, we further188

sampled 1% of the training and validation pairs to make the distribution of distances uniform—for189

d̂p to be uniformly accurate over the whole [0, π] range of distances (see Appendix B for further190

illustrations). While 1, 650 projections were enough to perfectly reconstruct the density maps (as191

shown in Figures 9e and 9j), our method is not limited by the number of projections as optimization192

is done per batch. Optimization settings are described in Appendix C.193

3.2 Sensitivity of orientation recovery to errors in distance estimation194

We first evaluated the feasibility of orientation recovery assuming that the exact distances were known.195

The method successfully recovers the orientation of every projection in this case (see Appendix D).196

To evaluate the robustness of (4), we perturbed the distances prior to recovery with an error sampled197

from a Gaussian distribution with mean 0 and variances σ2 ∈ [0.0, 0.8]. Figure 5 shows that the198

recovery error EOR is a monotonic function of the error in distances: from EOR = 0 with exact199

distances to EOR ≈ 0.2 radians (≈ 11.5°) for σ2 = 0.8.200

These results demonstrate that the performance of orientation recovery (4) depends on the quality of201

the estimated distances, which advocates for a proper and extensive training of the SNN. Moreover,202

we observe that LOR is a reliable proxy for EOR, allowing us to assess recovery performance in the203

absence of ground-truth orientations (i.e., when recovering the orientations of real projections).204

5The remaining issue is that one of four distances is arbitrarily chosen per pair of projections.
6Orientations used in §3.2 (Figure 5) and §3.4 (Figure 7) were actually obtained by uniformly sampling

the Euler angles θ, constrained to (θ3, θ2, θ1) ∈ [0, 2π[× [0, π
2
[× [0, 2π[ for 5j0n. Our conclusions would be

identical if orientations were uniformly sampled from SO(3) instead.
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Table 1: Split of P = 5, 000 projections in train-
ing, validation, and test subsets.

Dataset P P 2 Used pairs

Training 2,512 (50%) 6,310,144 63,101
Validation 838 (17%) 702,244 7,022
Test 1,650 (33%) 2,722,500 2,722,500
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Figure 5: Orientation recovery from perturbed
distances on 5j0n (left) and 5a1a (right).
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(a) Loss converged on 5j0n (left) and 5a1a (right).
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(b) Relationship between d̂p and dq on 1, 000 pairs
from the test sets of 5j0n (left) and 5a1a (right).

Figure 6: Distance learning.

3.3 Learning to estimate distances205

We evaluated the ability of the SNN to learn to approximate the orientation distance dq. For206

comparison, we evaluated a baseline, the Euclidean distance d̂p(pi,pj) = ‖pi,pj‖2, in Appendix E.207

Figure 6a shows the convergence ofLDE, reached in about 50 epochs. Figure 6b shows the relationship208

between the distance d̂p estimated from projections and the true distance dq. The outliers for 5a1a209

are explained by our incomplete treatment of its symmetry. While our learned distance function210

is a much better estimator than the Euclidean distance—compare Figure 6b with Figure 16—they211

share one characteristic: both plateau and underestimate the largest distances. We did attenuate212

the phenomenon by sampling training distances uniformly (see §3.1), and the issue is much less213

severe than with the Euclidean distance. An alternative could be to only rely on smaller distances for214

recovery. That would however require the addition of a spreading term in (4) to prevent the recovered215

orientations to collapse.216

These results confirm that a SNN is able to estimate differences in orientations from projections alone,217

even though much has yet to be gained from improving upon the rather primitive SNN architecture218

we are currently using. The use of additional training data should help further diminish overfitting.219

3.4 Sensitivity of distance learning to perturbations in the projections220

We first demonstrated that the learning of distances is insensible to off-centering shifts (Figure 7a),221

which is expected given that shift invariance is built in our SNN (see §2.2).222

As we cannot—or do not yet know how to—build noise invariance in the SNN architecture, we trained223

the SNN on noisy projections and evaluated whether it could learn to treat noise as an irrelevant224

information. Figure 7b shows EOR ≈ 0.16 radians (≈ 9°) for noiseless projections and EOR ≈ 0.42225

radians (≈ 24°) for a more realistic noise variance of σ2 = 16 (with signal-to-noise ratio of -12 dB).226

Whereas a naive distance function (e.g., an Euclidean distance) would be extremely sensitive to noise,227

the SNN mostly learned to discard it. Moreover, the observed overfitting indicates that more training228

data should further decrease the sensitivity of the SNN to noise.229

Note that we did not evaluate sensitivity to the PSF at this stage but expect a similar behavior.230

Here again (§3.2), we observed that (i) the estimation of more accurate distances (a smaller LDE)231

leads to the recovery of more accurate orientations (a smaller LOR and EOR), and that (ii) an higher232

recovery loss LOR induces an higher error EOR.233
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(a) Learning from shifted projections {StiPθix},
with shifts ti1 and ti2 sampled from a triangular
distribution with mean 0 and of increasing limits.
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(b) Learning from noisy projections {Pθix + n},
with white noise n ∼ N (0, σ2I) of increasing vari-
ance σ2.

Figure 7: Sensitivity of distance learning to perturbations in the projections of 5j0n. The box
plots show the distance learning loss LDE (the distribution is taken over epochs). Boxes show the
orientation recovery loss LOR and error EOR.

� ���� �����

�����

�

�

�
�
�

������������

���� �������������

���� �������������

� � � �

��������������

�

���

�
�
�
�
�
�
��
��
�
�
��
�
�
�
�
��
�
�

����������������

(a) 5j0n, noiseless.
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(b) 5j0n, noisy.

� ���� ����

�����

�

�

�
�
�

������������

���� �������������

���� �������������

� � � �

��������������

�

���

�
�
�
�
�
�
��
��
�
�
��
�
�
�
�
��
�
�

����������������

(c) 5a1a, noiseless.
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(d) 5a1a, noisy.

Figure 8: Distance learning and orientation recovery from estimated distances. The green and orange
boxes show LDE (3) on the training and validation sets. The blue curve shows the evolution of the
recovery loss until convergence, with the minimum LOR (4) highlighted. The red histogram shows
the errors in the recovered orientations {dq(qi,Tq̂i)}, with the mean EOR (5) highlighted.

3.5 Orientation recovery and reconstruction of density maps234

As a proof-of-concept, we attempted to solve the full inverse problem posed by (1), i.e., to reconstruct235

the density maps x̂ from sets of projections {pi} and their orientations {q̂i} recovered through the236

proposed method. It is worth noting that, at this stage of development, we only trained the SNN on237

projections originating from the protein we were attempting to reconstruct. In addition, reconstruction238

was performed with a direct reconstruction algorithm (ASTRA’s GPU implementation of the CGLS239

algorithm) rather than with a robuster iterative method. This is a specific experimental case that only240

partially shines light on the applicability of the method in real situations; this is discussed in §4.241

Figure 8a shows the recovery of orientations from distances that were estimated from noiseless242

projections of 5j0n. A mean error of EOR ≈ 0.20 radians (≈ 11°) in the recovered orientations led243

to a reconstruction with a resolution of 12.2Å at a Fourier shell coefficient (FSC) of 0.5, shown in244

Figure 9c. As predicted by our other experiments, corrupting the projections with noise (σ2 = 16)245

negatively impacts the quality of the recovered orientations (Figure 8b); the obtained mean error246

is then EOR ≈ 0.25 radians (≈ 14°). Unsurprisingly, this leads to a reconstruction with a lower247

resolution of 15.2Å, shown in Figure 9d. (Note that reconstruction was here obtained from the248

noiseless projections, the goal being to evaluate only the impact of orientation mis-estimation.)249

Finally, Figures 8c,d show the recovery of orientations from noiseless and noisy projections of 5a1a.250

A mean error of EOR ≈ 0.13 radians (≈ 7°) in both cases led to reconstructions with resolutions of251

8.0Å and 9.6Å, shown in Figures 9h,i. Distance estimation, orientation recovery, and reconstruction252

performed better on 5a1a than 5j0n because its ground-truth density is of higher resolution.253

These results tend to indicate that a reasonable first structure can be reconstructed from projections254

whose orientations have been recovered through our method.255

4 Discussion256

In this work, we explored the use of distance learning between pairs of 2D cryo-EM projections257

from a 3D protein structure to infer the unknown orientation at which each projection was imaged258
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Figure 9: Density maps x̂ reconstructed from (a,f) ground-truth orientations, (b,g) random orientations,
(c,h) orientations recovered from noiseless projections, and (d,i) orientations recovered from noisy
projections. The Fourier shell correlation (FSC) curves in (e,j) indicate the resolutions of the densities
(w.r.t. ground-truth densities, shown in Figures 10b,d).

from. Our two-step method relies on the estimation of pairwise distances between unseen projections,259

followed by the recovery of the orientations from these distances.260

The method has been evaluated on synthetic datasets for two different proteins. The results provide261

key insights on the viability of the proposed scheme. First, they demonstrate that a SNN can learn262

a distance function between projections that estimates the difference in their orientation (§3.3) and263

that is invariant to shifts and robust to increasing levels of noise (§3.4)—an important condition in264

cryo-EM. Second, they demonstrate that an accurate estimation of distances leads to an accurate265

recovery of orientations (§3.2, §3.4). Finally, our method was able to recover orientations with266

an error of 0.12 to 0.25 radians (7 to 14°)—leading to an initial volume with a resolution of 8 to267

15Å (§3.5). In summary, the more accurate the estimated distances, the more precise the recovered268

orientations, and, ultimately, the higher-resolution the reconstructed volume.269

While the method is not yet ready to be deployed in practice, we believe that a series of developments270

could make it relevant for single-particle cryo-EM reconstruction.7 As previously discussed, the271

results underline the importance of learning an accurate distance estimator. In this regard, the272

performance of the SNN could be improved. First, the architecture of the twin convolutional neural273

networks should be expanded and tuned. Second, training could be improved, perhaps by providing274

more supervision by separately predicting the differences in direction (θ2, θ1) and in-plane angle θ3.275

Importantly, the SNN would be better trained on a more diverse cryo-EM dataset. Indeed, its success276

as a faithful estimator eventually relies on our capacity to generate a synthetic training dataset whose277

data distribution is diverse enough to cover that of unseen projection datasets. Such realistic cryo-EM278

projections could be generated by relying on a more expressive formulation of the cryo-EM physics279

and taking advantage of the thousands of atomic models available in the PDB. In particular, a280

necessary extension will be to include the effects of the PSF and to evaluate its impact.281

A final phase of tests before deploying the method on real cryo-EM measurements will be to282

extensively test the method on “unseen proteins”, i.e., proteins whose simulated projections have283

never been seen by the SNN. In this regard, an interesting aspect of our method is that the twin284

networks within the SNN intrinsically predict the relationship between projections, allowing the SNN285

as a whole to abstract the particular volume. Learning should benefit from the profound structural286

similarity shared by proteins—after all, they are all derived from the same 21 building blocks.287

Training our 4.5M parameter model (see Appendices G and C) has the following negative environ-288

mental impact: it consumes 13 kWh of energy, which produces 6.36 lbs of CO2 on average [49].289

7Note that the present project will not be further continued by its authors due to other professional occupations.
Hence, we strongly encourage anyone interested to build on these ideas and, hopefully, make it a practical tool.
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