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Abstract

Open-vocabulary part segmentation (OVPS) struggles with structurally connected
boundaries due to the inherent conflict between continuous image features and
discrete classification mechanism. To address this, we propose PBAPS, a novel
training-free framework specifically designed for OVPS. PBAPS leverages struc-
tural knowledge of object-part relationships to guide a progressive segmenta-
tion from objects to fine-grained parts. To further improve accuracy at chal-
lenging boundaries, we introduce a Boundary-Aware Refinement (BAR) module
that identifies ambiguous boundary regions by quantifying classification uncer-
tainty, enhances the discriminative features of these ambiguous regions using
high-confidence context, and adaptively refines part prototypes to better align
with the specific image. Experiments on Pascal-Part-116, ADE20K-Part-234,
PartImageNet demonstrate that PBAPS significantly outperforms state-of-the-art
methods, achieving 46.35% mIoU and 34.46% bIoU on Pascal-Part-116. Our code
is available at https://github.com/TJU-IDVLab/PBAPS.

1 Introduction

Semantic segmentation aims to assign each pixel in an image to a predefined class. Traditional
methods [1, 2, 3, 4, 5, 6] are based on supervised learning with labeled data [7, 8, 9] and have
achieved significant progress in closed-set but exhibit limited zero-shot generalizability in open-world
scenarios. Open-vocabulary semantic segmentation (OVSS) [10, 11, 12] addresses this limitation by
leveraging pre-trained vision-language models (VLM) [13, 14, 15] to enable segmentation of unseen
classes. Existing OVSS methods can be broadly categorized into two paradigms: (1) direct matching
via cross-modal similarity [16, 12, 17] and (2) mask classification frameworks [18, 19, 20] based
on feature clustering. Although effective for object-level segmentation, their part-level performance
degrades significantly [21]. Open-vocabulary part segmentation (OVPS) [22, 17, 23] faces the
additional challenge of ambiguous part boundaries.

We subdivide boundaries into three types: object boundary, structurally connected part boundary, and
non-structurally connected part boundary. Structurally connected parts refer to anatomically adjacent
components with direct physical connections (e.g., cat head and neck). Existing OVPS methods,
including multigranularity segmentation based on object-part modeling [24, 25, 26] and fine-grained
feature enhancement approaches [27, 28], commonly exhibit inaccuracies in segmenting intra-object
structurally connected part boundaries (Figure 1). These approaches neglect the key distinction
between OVSS and OVPS: object-level segmentation depends on distinct feature variations across
boundaries, while part-level segmentation encounters smooth and continuous feature transitions (e.g.,
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fur texture/color changes) at structurally connected boundaries, in contrast to the moderate local
feature differences at non-structurally connected part boundaries.
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Figure 1: Boundary issues of existing methods on Pascal-Part-116 [21]. Dataset-specific part boundary
definition variances limit the validity of pixel-alignment metrics for segmentation evaluation. For
example, although the prediction boundary between cat neck and torso (PartCLIPSeg [28], blue
dotted) deviates from annotations, it remains anatomically interpretable. Our method prioritizes
anatomically/structurally implausible boundaries (red dotted).

The fundamental challenge in segmenting structurally connected part boundaries arises from the
incompatibility between continuous, smooth image features and discrete classification mechanisms.
Discrete classification enforces mutually exclusive label assignments and fails to account for pixels
at structurally connected part boundaries, which exhibit hybrid characteristics of adjacent parts and
lack clearly distinguishable features. To achieve accurate segmentation, it is essential to enhance the
discrimination of these ambiguous features. Furthermore, since label assignment relies on category
feature representations, adaptive optimization of category features can synergistically improve
classification precision.

We propose the Boundary-Aware Refinement (BAR) module to refine the structurally connected part
boundary. The BAR (1) first locates ambiguous boundary regions by analyzing the matching cost. In
this work, we use the cosine similarity between the pixel features and part prototypes as the matching
cost [29, 20]. The ambiguous regions are then separated from the original part masks, leaving the
remaining deterministic regions as reliable references. (2) BAR then optimizes the pixel features
within ambiguous regions by leveraging the context from deterministic regions and adaptively updates
the part prototypes to better align with the current image characteristics. (3) Finally, ambiguous
boundary regions are reclassified using enhanced pixel features and adapted prototypes.

In this paper, we propose Progressive Boundary-Aware Part Segmentation (PBAPS), a training-free
OVPS framework that refines structurally connected part boundaries. Specifically, we first generate
visual prototypes for each part class using Stable Diffusion [30], SAM [31], and DINOv2 [32].
Then, based on part structural relationships, a Hierarchical Part Connected Graph (HPCGraph) is
constructed. Guided by this HPCGraph, progressive part segmentation is performed, where the BAR
module mitigates boundary ambiguities and enhances segmentation precision.

In summary, the contribution of this paper is threefold: (i) We reveal the intrinsic cause of structurally
connected part boundary errors: the conflict between continuous image features and discrete clas-
sification. (ii) We propose the BAR module, which improves boundary precision through feature
optimization and dynamic prototype adaptation. (iii) We propose PBAPS, a novel and effective
training-free OVPS method that integrates hierarchical reasoning with iterative boundary refinement,
achieving state-of-the-art on Pascal-Part-116 [21], ADE20K-Part-234 [21], and PartImageNet [33].

2



2 Related Work

Open Vocabulary Semantic Segmentation. OVSS aims to overcome the limitations of predefined
classes in traditional segmentation [34, 35, 36, 37, 38] by enabling zero-shot segmentation of unseen
classes, requiring integration of the semantic understanding of VLM (e.g., CLIP [13], BLIP [14])
with pixel-level localization. Existing methods can be broadly categorized into two paradigms.
One [10, 11, 16, 12, 17] is based on feature clustering and mask classification. OVSegmentor [39]
leverages slot-attention [40] for pixel grouping and text alignment. RIM [41] employs image-to-image
matching for training-free segmentation, constructing visual references and enhancing robustness
via a relation-aware ranking distribution strategy. Our method generates part prototypes based on
the process of constructing visual references in RIM. EBSeg [42] balances embeddings between
base/novel classes and supplements spatial cues with SAM [31]. The second paradigm focuses on the
alignment of the pixel-level features [18, 19, 20], which directly establishes associations between the
vision and text features on the pixel scale. ZegCLIP [19] extends CLIP image-level classification
capability to the pixel level. CAT-Seg [20] proposes a cost aggregation framework that optimizes
CLIP image-text similarity through spatial and category aggregation.

Open Vocabulary Part Segmentation. Compared to OVSS, OVPS imposes higher demands
on both model generalization and fine-grained recognition. Existing OVSS methods [43, 20, 21]
often suffer significant performance degradation at the part level, mainly due to insufficient object-
part structural modeling and limited fine-grained feature extraction. Recent studies have made
notable progress. OPS [24] introduces class-agnostic part segmentation via object-aware spatial
constraints and self-supervised feature optimization. ViRReq [25] decomposes part segmentation
into composable atomic requests, leveraging a knowledge base for multigranular parsing. ViRReq
and TAPPS [44] have previously explored object-to-part segmentation. In contrast, hierarchical
reasoning in our method PBAPS introduces a cross-hierarchy matching mechanism, fully exploiting
hierarchical context to strengthen feature discrimination. VLPart [45] constructs a joint vision-
language embedding space through co-training, using DINO [46] dense semantic correspondence
to parse novel objects into known components. In terms of benchmark construction, OV-PARTS
[21] establishes the first OVPS benchmark (Pascal-Part-116, ADE20K-Part-234) with defined task
scenarios. HIPIE [47] decouples hierarchical representations to separate foreground-background
features. WPS-SAM [48] proposes a weakly supervised framework based on SAM [31], which
reduces annotation dependency through co-training of learnable part prompt tokens and bounding
box/point supervision. In feature enhancement, OIParts [27] fuses DINOv2 [32] local features
with Stable Diffusion [30] global representations via adaptive channel selection. PartCLIPSeg [28]
addresses fine-grained generalization by jointly optimizing separation and enhancement losses for
part context modeling. PartCATSeg [49] improves semantic discrimination by constructing part-
aware text embeddings combined with contrastive training, but lacks the ability to model structural
relationships between parts.

3 Boundary Feature Gradient Analysis

To quantitatively analyze the feature variations across object boundaries, structurally connected part
boundaries, and non-structurally connected part boundaries, we compute the spatial feature gradient.
This feature gradient refers to the rate of spatial change in image feature vectors. Specifically, we
extract pixel-wise features using DINOv2 [32]. For the feature vector f(i, j) ∈ R1×d of each pixel
(i, j) in the image, we calculate the gradients in the horizontal (x) and vertical (y) directions for each
channel c:

Gx(i, j, c) = |f(i+ 1, j, c)− f(i, j, c)|, Gy(i, j, c) = |f(i, j + 1, c)− f(i, j, c)| (1)

For each pixel (i, j), we aggregate the gradients across all channels using the Euclidean norm to

obtain the overall spatial feature gradient: Grad(i, j) =
√∑d

c=1 (Gx(i, j, c)2 +Gy(i, j, c)2). A
higher value of Grad(i, j) corresponds to more pronounced local feature variation, whereas a lower
value indicates smoother feature transitions. We extract these gradient values for all pixels located
within the ground-truth masks of each boundary type and perform a systematic statistical analysis.

As shown in Table 1, the mean gradients and standard deviations (SD) exhibit consistent patterns
across all three datasets: the object boundary shows the highest mean and SD values, while the
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Table 1: Quantitative analysis of boundary feature gradients on Pascal-Part-116 [21], ADE20K-Part-
234 [21], and PartImageNet [33]. The mean reflects the overall intensity of feature changes at the
boundary. The standard deviation indicates the spatial consistency of boundary feature changes.

Boundary Type Pascal-Part-116 ADE20K-Part-234 PartImageNet

Mean SD Mean SD Mean SD

Object 0.5291 0.1300 0.5102 0.1253 0.5487 0.1352
Non-structurally connected part 0.5043 0.1164 0.4875 0.1108 0.5036 0.1204
Structurally connected part 0.4356 0.0762 0.4219 0.0721 0.4015 0.0658

Ground TruthRaw Image Feature Gradient

Figure 2: Heatmap of feature gradients. (1) Object boundary: feature gradients at the boundaries
between human/dog and other objects are the highest. (2) Non-structurally connected part boundary
(blue dotted): these have notably higher gradients than interior regions, indicating clear local vari-
ations. (3) Structurally connected part boundary (red dotted): feature gradients are relatively low,
reflecting smooth feature transitions between adjacent parts.

structurally connected part boundary presents the lowest values. This indicates that, regardless of the
scale and diversity of the dataset, the object boundary exhibits the most significant feature differences
and the most drastic changes. The structurally connected part boundary exhibits smooth feature
transitions, while the non-structurally connected part boundary shows moderate feature changes,
reflecting local differences. These results are consistent with Figure 2, provide theoretical support for
optimizing structurally connected part boundaries in the BAR module.

The low feature gradients at structurally connected part boundaries reflect the conflict between
the continuous feature space and the discrete semantic space. When pixel features exhibit smooth
transitions between structurally connected parts, their feature vectors blend characteristics from both
adjacent parts, making it difficult for discrete classification methods based on thresholds or similarity
metrics to assign accurate labels. Moreover, the low feature gradients at these boundaries violate
the common assumption that "boundaries have high gradients", rendering conventional boundary
localization ineffective for such boundary.

To address these challenges, we design the Boundary-Aware Refinement (BAR) module, which
explicitly locates ambiguous and deterministic regions at structurally connected part boundaries
through cost-divergence maps. By leveraging context from deterministic regions, BAR enhances
the discriminative features of ambiguous regions and adaptively optimizes part prototypes, thereby
improving the segmentation accuracy of structurally connected part boundaries.
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4 Method

Given an input image, the OVPS method is required to assign the correct part class label to each
pixel. Unlike closed-set semantic segmentation, OVPS allows the test set Dtest to contain unseen part
classes Cunseen that are not included in the training set. In our training-free framework, all classes in
the test set belong to Cunseen.

As illustrated in Figure 3, we present PBAPS, a training-free OVPS framework that operates in three
stages: (1) generating visual prototypes via foundation models, (2) constructing HPCGraph based
on structural prior knowledge, and (3) performing hierarchical segmentation guided by HPCGraph,
during which the BAR module refines the structurally connected part boundaries.

Cross-Model Prototype Induction
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Figure 3: The architecture of PBAPS. Object-level segmentation is first performed through feature-
prototype matching in V1, generating the object mask M1.Taking the cat mask M1 as an example,
PBAPS then calculates part-level matching costs between the pixels and the corresponding cat
part prototypes in V2, yielding the initial part mask M raw

2 . The BAR module subsequently refines
structurally connected part boundaries in M raw

2 to obtain the optimized part mask M2.

4.1 Cross-Model Prototype Induction

It is important to note that the paradigm of semantic segmentation via visual prototype construction
has been adopted and validated as effective in existing studies, such as OVDiff [50] and RIM [41].
The novelty of this work does not lie in the prototype construction itself, but rather in addressing the
low segmentation accuracy of the structurally connected part boundaries in OVPS. Building upon the
prototype-based paradigm, our method performs hierarchical segmentation guided by the HPCGraph,
while the Boundary-Aware Refinement (BAR) module further improves boundary precision through
feature optimization and dynamic prototype adaptation.

To generate visual prototypes for part classes, we follow the proven pipeline [41] that integrates Stable
Diffusion [30], SAM [31] and DINOv2 [32]. (1) First, Stable Diffusion generates synthetic images
for each part c in Dtest using text prompts (e.g., "a photo of c"), while extracting cross-attention
maps to localize the target part c across multiple layers and timesteps [51, 50, 41]. These attention
maps are processed via normalization and thresholding to generate a high-confidence region mask
M . (2) Within regions where M = 1, we randomly sample k foreground prompt points for SAM,
which produces a binary mask corresponding to part c. (3) Finally, DINOv2 extracts features from
the masked regions of the synthetic images, and the visual prototype pc ∈ R1×d for c is computed as
the average feature vector in these regions, serving as a global semantic representation for subsequent
matching and boundary refinement.
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4.2 Hierarchical Part Connected Graph

We construct the Hierarchical Part Connected Graph (HPCGraph) based on part structural relation-
ships. The HPCGraph is defined as G = (V, E), where the node set V = {V0,V1, . . . ,VL} consists
of L + 1 hierarchical layers. Specifically, V0 = {root} serves as the starting symbol, V1 denotes
the object nodes, and Vl (l > 1) represents the part nodes of different granularity. The edge set E
comprises two types of relationships: (1) Hierarchical edge ep→c from the parent node vp ∈ Vl to the
child node vc ∈ Vl+1, representing the "composition" relationship (e.g., "cat head" → "cat eye"). (2)
Adjacency edge ei−j between nodes vi, vj ∈ Vl if they have structural connection (e.g., "cat head"
↔ "cat neck").

Cross-hierarchy Matching Cost. To effectively exploit object-part and part-part relationships, we
define the matching cost between a pixel feature f ∈ R1×d and a node v ∈ V as the maximum cosine
similarity within its dominance set D(v) = {v} ∪ {descendant nodes of v}:

S(f, v) = max
u∈D(v)

[
f⊤pu

|f | · |pu|

]
(2)

4.3 Progressive Boundary-Aware Part Segmentation

Given an input image I ∈ Rh×w×3, we extract pixel features F ∈ Rh×w×d using DINOv2, adopting
a sliding-window strategy [52] to preserve fine spatial details. The progressive part segmentation is
defined as Segment(F,Vl) → Ml, where Vl denotes the node set of the layer l and Ml represents
the corresponding segmentation mask produced for the layer l.

Object-level Segmentation (l = 1). For each pixel feature f(i, j) in the feature map F , we
calculate cross-hierarchy matching costs with all nodes in V1. The resulting object-level segmentation
mask M1 is obtained by assigning to each pixel (i, j) the node with the highest matching score:
M1(i, j) = argmaxv∈V1

S (f(i, j), v).

Part-level Segmentation (l ≥ 2). For each parent node p ∈ Vl−1, perform localized segmentation
within its corresponding mask Ml−1(p). Specifically, we extract the parent-region feature Fp =
F ⊙ Ml−1(p) and calculate the cross-hierarchy matching costs between Fp and its child nodes
C ⊆ Vl to generate raw mask M raw

l,p = argmaxc∈C S(Fp, c). The overall segmentation mask at
layer l is M raw

l =
⋃

p∈Vl−1
M raw

l,p . Subsequently, the BAR module optimizes structurally connected
part boundaries through feature optimization and prototype adaptation, generating the final refined
masks Ml. The progressive part segmentation ends when the current layer l contains only atomic
parts (i.e., ∀v ∈ Vl, C(v) = ∅).

4.4 Boundary-Aware Refinement

The BAR module refines structurally connected part boundaries via four steps, as shown in Figure 4.
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Figure 4: Example of Boundary-Aware Refinement. When segmenting the cat neck and torso,
the corresponding matching-cost maps are obtained. Taking their absolute difference quantifies
the classification ambiguity, where salient regions indicate similar matching costs. Thresholding
this difference map yields ambiguous regions (shaded areas), and the rest as deterministic regions.
Ambiguous-region feature optimization and prototype adaptation are then applied to refine the
boundary between the cat neck and torso.
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Ambiguous Boundary Region Localization. To address the uncertainty at structurally connected
part boundaries, we first quantify the classification ambiguity using a cost-divergence map defined
as DA,B = |SA − SB |, where SA, SB ∈ Rh×w denote the matching cost maps of the structurally
connected parts A and B. The low divergence values correspond to regions where both parts exhibit
similar matching costs, indicating semantic ambiguity. We normalize DA,B and apply a threshold
to identify the ambiguous region U = I (Norm(DA,B) ≤ λ), where λ ∈ [0, 1] is the ambiguity
threshold. The high-confidence deterministic regions are then obtained by excluding U from the
initial part masks Araw, Braw:

Adet = Araw ⊙ (1− U), Bdet = Braw ⊙ (1− U) (3)

Ambiguous Pixel Feature Optimization. The deterministic regions serve as reliable context for
refining ambiguous pixels, as their features are distinct and free from classification uncertainty. For
each ambiguous pixel m ∈ U , we enhance its discriminative characteristics by incorporating the
context from deterministic regions Adet and Bdet. Specifically, we first compute attention weights
wA(m, a) by normalizing cosine similarities between the ambiguous pixel feature fm and all pixels
a ∈ Adet. These weights quantify the relevance of each pixel in Adet to the ambiguous pixel m.
Using wA(m, a) to aggregate contextual features from Adet:

wA(m, a) =
exp(cos(fm, fa))∑

e∈Adet
exp(cos(fm, fe))

, cA(m) =
∑

a∈Adet

wA(m, a)fa (4)

Similarly, we compute wB(m, b) and aggregate the context of Bdet into cB(m). The optimized
feature f̃m is then derived by fusing the original feature fm with the contextual feature of both
parts, this fusion mitigates the ambiguity of hybrid features by "pulling" fm toward the discrimina-
tive characteristics of deterministic regions, thereby improving feature separability and boundary
precision:

f̃m = γ · fm + (1− γ) · cA(p) + cB(p)

2
(5)

Visual Prototype Adaptive Refinement. To adapt global part knowledge to the specific image
context, we refine visual prototypes by integrating global priors with local image features. For the
deterministic region of part A, we cluster its features FA

det = {fa | a ∈ Adet} using K-means
to obtain a local prototype qA, which captures the dominant appearance patterns of part A in the
current image. The adaptive prototype is then computed by fusing the global prototype pA with its
corresponding local prototype qA:

p̃A = α · pA + (1− α) · qA (6)

where α ∈ [0, 1]. This adaptation allows p̃A to preserve the universal characteristics of part A while
incorporating image-specific variations (e.g., pose, texture), making it more relevant for matching
ambiguous pixels in the current scene. Similarly, obtain p̃B for part B.

Notably, the similarity between synthetic prototypes and real test images can affect segmentation
performance. Our approach achieves a balance between effectiveness and generalization by employing
synthetic prototypes with moderate similarity and combining them with the dynamic prototype
adaptation mechanism. This design maintains high segmentation accuracy without overfitting to
specific datasets, enabling robust performance across diverse domains. Moreover, even when the
attention-based masks derived from Stable Diffusion contain minor inaccuracies (e.g., small non-target
regions), the prototype adaptation mechanism effectively mitigates such issues. By combining global
prototypes with contextual features from deterministic regions, the resulting prototypes dynamically
align with the true object parts present in the image, thus enhancing segmentation precision and
robustness.

Ambiguous Region Reclassification. For each ambiguous pixel m ∈ U , we perform a reclassifica-
tion using the optimized pixel feature f̃m and the adaptive prototypes p̃A, p̃B :

y(m) = arg max
c∈{A,B}

cos(f̃m, p̃c) (7)
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5 Experiments

5.1 Datasets and Evaluation

We evaluate PBAPS on three benchmarks: (1) Pascal-Part-116 [21], which refines the Pascal-Part [53]
by merging over-segmented parts and removing redundant descriptors. The validation set includes
17 object classes, 116 part classes, and 850 images. (2) ADE20K-Part-234 [21], derived from
ADE20K [54] via low-frequency class filtering and synonym merging, containing 44 object classes,
234 part classes, and 1016 validation images. (3) PartImageNet [33], which groups 158 ImageNet
[55] classes into 11 superclasses with uniform part structures, follows prior work [28] to evaluate 40
common object categories on 2957 validation images. In line with previous works [45, 28], we use
the mean Intersection over Union (mIoU) to assess overall segmentation quality. Additionally, the
boundary Intersection over Union (bIoU) [56] is introduced to specifically evaluate the accuracy of
part boundary.

5.2 Implementation Details

Visual Prototype Generation. For each part class, we generate hundreds of 512×512 synthetic
images using Stable Diffusion v1.4 [30], along with their corresponding cross-modal attention maps.
After binarizing attention maps (threshold=0.7), 5 prompt points are randomly sampled for ViT-B
SAM [31] to obtain the corresponding part masks. The features within the masked regions are then
extracted using ViT-B DINOv2 [32]. Finally, K-means clustering (K = 4) is applied to these features
to construct subcategory prototypes, thus capturing intra-class morphological diversity and improving
the robustness of the part prototype.

Model Inference. We extract pixel-wise features from input images using ViT-B DINOv2 [32]
with a sliding-window strategy [52], using the "key" values from the final attention layer as feature
representations [57]. The hyperparameters of the BAR module are fixed as follows: ambiguity
threshold λamb = 0.3, feature fusion weight γ = 0.8, and prototype adaptation coefficient α = 0.7.

5.3 Comparison with Existing Methods

Table 2: Comparison with existing methods. * denotes our re-implementation. Bold and underline
indicate the best and second-best results, respectively.

Method Backbone Supervision Zero-shot
transfer

Pascal-Part-116 ADE20K-Part-234 PartImageNet

mIoU bIoU mIoU bIoU mIoU bIoU

ZSSeg+ [16, 21] ResNet-50 class label ✗ 24.91 18.18 19.84 12.89 - -
VLPart [45] ResNet-50 class label ✗ 25.98 16.79 - - - -
CLIPSeg [43] ViT-B/16 class label ✗ 24.23 15.98 5.88 4.87 26.98 18.54
CAT-Seg [20] ViT-B/16 class label ✗ 30.53 21.25 8.88 7.71 28.56 20.21
PartCATSeg [49] ViT-B/16 class label ✗ 29.54 20.96 14.68 11.99 30.18 21.29
PartCLIPSeg [28] ViT-B/16 class label ✗ 35.96 26.72 12.64 9.69 30.38 21.04

OVDiff [50] UNet Training-free 41.55 31.57 22.13 15.83 38.22 26.71
RIM* [41] UNet+ViT-B/16 Training-free 43.19 32.13 20.91 13.30 39.32 25.06

PBAPS (ours) UNet+ViT-B/16 Training-free 46.35 34.46 24.70 16.41 42.61 29.31

We compare PBAPS with ZSSeg+, VLPart, CLIPSeg, CAT-Seg, PartCATSeg and PartCLIPSeg,
which are fine-tuned on target benchmarks. As shown in Table 2, PBAPS outperforms the state-of-
the-art full-supervised method PartCLIPSeg [28] by more 10% in mIoU across the three datasets,
with bIoU improvements of 7.74%, 6.72% and 8.27% on Pascal-Part-116, ADE20K-Part-234, and
PartImageNet, respectively. We also compare PBAPS with training-free OVSS methods OVDiff [50]
and RIM [41], using identical visual prototype set for fairness. All three visual prototype matching
methods outperform finetuning-based methods, validating the effectiveness of this paradigm in OVPS.
Our method achieves state-of-the-art mIoU and bIoU scores on all three datasets, surpassing OVDiff
and RIM. Figure 5 visually demonstrates its superiority. Unlike RIM, which under-segments when
target parts lack distinct boundaries, PBAPS captures subtle feature transitions between connected
parts, enhancing segmentation accuracy.
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5.4 Analysis and Ablation Study

Table 3: Ablation study for PBAPS on Pascal-Part-116. The baseline model (1st row) excludes all
components, directly matching pixel-wise features extracted by DINOv2 [32] with visual prototypes.

HPCGraph BAR Pascal-Part-116

w/ Hier. Seg. w/ X-Hier. Match w/ Boun. Loc. w/ Feat. Opt. w/ Proto. Adapt. mIoU bIoU

40.74 31.09
✓ 43.37 32.66
✓ ✓ 44.08 32.99
✓ ✓ ✓ 43.86 32.89
✓ ✓ ✓ 44.83 33.42
✓ ✓ ✓ ✓ 45.58 34.04
✓ ✓ ✓ ✓ 45.79 34.16
✓ ✓ ✓ ✓ ✓ 46.35 34.46

Ablation study for HPCGraph. The HPCGraph enhances part-level semantic modeling via hierar-
chical segmentation and cross-hierarchy matching. As shown in Table 3, incorporating hierarchical
segmentation (2nd row) increases mIoU and bIoU by 2.63% and 1.57%, respectively, indicating
that modeling top-down part relationships effectively improves segmentation consistency. Further
integration of cross-hierarchy matching (3rd row) raises mIoU and bIoU to 44.08% and 32.99%,
demonstrating that cross-level prototype comparison strengthens fine-grained part discrimination and
improves boundary precision.

Ablation study for BAR. As shown in Table 3, using feature optimization alone without ambiguous
boundary localization (4th row) leads to slight performance degradation, mIoU and bIoU drop by
0.22% and 0.1% compared to the 3rd row, indicating that indiscriminate context fusion weakens local
discriminative features. Introducing boundary region localization (6th row) improves mIoU and bIoU
by 1.5% and 1.05%, validating the importance of distinguishing deterministic from ambiguous regions.
Moreover, the 5th and 7th rows demonstrate the synergistic effect between prototype adaptation
and boundary localization, which jointly improve boundary precision. When all components are
integrated (8th row), mIoU and bIoU increase by 5.61% and 3.37% over the baseline, confirming the
overall effectiveness of the BAR module in refining part boundaries.

Effectiveness of boundary region localization. As shown in Table 4, we assess the boundary
localization capability of the BAR module by computing boundary recall, which measures the
proportion of true boundary pixels correctly covered by the detected ambiguous regions. When
the ambiguity threshold is set to λamb = 0.3, the model achieves the optimal balance between
the boundary recall (78.93%) and the segmentation precision (46.35% mIoU). A strict threshold
(λamb = 0.1) filters out 64.78% of true boundary pixels, leading to insufficient refinement, while
a lenient threshold (λamb = 0.5) improves recall to 88.97% but introduces non-boundary noise,
reducing mIoU and bIoU.

Table 4: Pascal-Part-116 results with dif-
ferent ambiguity threshold.

λamb Boundary Recall mIoU bIoU

0.1 35.22 44.48 33.42
0.2 58.70 45.54 33.81
0.3 78.93 46.35 34.46
0.4 82.15 45.71 34.01
0.5 88.97 44.29 33.10

Table 5: Impact of part boundary optimization types on
Pascal-Part-116.

Optimization Type mIoU bIoU Inference Time (s)

Baseline 44.08 32.99 1.47
Non-struct. boundary 43.19 32.48 2.06
All part boundary 45.43 33.95 2.19
Struct. boundary 46.35 34.46 1.81

Impact of BAR for different boundary. As shown in Table 5, we analyze the impact of the BAR
module on different types of part boundaries. The baseline (1st row) employs the HPCGraph without
BAR. For structurally connected part boundaries, BAR achieves the most significant improvements
(2.27% mIoU, 1.47% bIoU). In contrast, applying BAR to non-structurally connected part boundaries
(2nd row) slightly decreases both mIoU and bIoU, while increasing inference time by 0.25s compared
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to the 4th row. This degradation occurs because such boundaries are already well separated, and
additional context fusion introduces noise that blurs the boundaries. Moreover, the greater number of
boundaries increases the overall inference time. Although applying BAR to all part boundaries im-
proves mIoU by 1.35%, it increases the inference time by 48%, confirming that selective optimization
of structurally connected boundaries offers the best balance between accuracy and efficiency.

Ground Truth CAT-Seg PartCLIPSeg RIM PBAPS (Ours)

Figure 5: Qualitative results on Pascal-Part-116.

6 Conclusion

This study addresses the inaccurate segmentation of structurally connected part boundaries by in-
troducing PBAPS, a training-free OVPS framework. PBAPS integrates a progressive segmentation
strategy guided by HPCGraph with a BAR module to enhance boundary precision. Extensive
experiments demonstrate that PBAPS consistently outperforms state-of-the-art methods across mul-
tiple benchmarks, confirming its effectiveness and generalizability. This study offers a novel and
interpretable solution for fine-grained part segmentation in open-world scenarios.
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Justification: The mathematical formulations in Sections 3 and 4 are methodological com-
ponents rather than theoretical propositions. The work focuses on algorithmic design and
empirical validation.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method PBAPS is detailed in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[Yes]
Justification: We open-source the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5.2 comprehensively specifies the datasets, the foundation models, the
hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Statistical significance is not a focus of our experiments, as the emphasis lies
on comparing method effectiveness rather than statistical hypothesis testing.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These can be found in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve sensitive data and the datasets used are standard
benchmarks in the field (Section 5).
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impacts in the Appendix A.2.
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• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper focuses on a segmentation framework using publicly available part
segmentation datasets and does not involve the release of high-risk models

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper appropriately cites all assets used (Section 1), such as datasets and
models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper introduces a novel framework (PBAPS) and methodology but does
not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The PBAPS relies on computer vision techniques without employing LLMs as
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion

A.1 Limitations and Future Work

Although our method shows excellent performance in the OVPS task, it still has several limitations.
First, PBAPS focuses on part-level semantic segmentation and cannot distinguish different instances
of the same category. For example, when multiple cats appear in an image, PBAPS segments all
"cat head" without assigning each head to its respective individual. Second, our method relies on
the HPCGraph, which defines hierarchical and adjacency relationships between objects and parts
via manual design or external knowledge bases. However, when processing objects with complex,
irregular structures (e.g., modular furniture), the statically predefined graph may fail to capture their
intrinsic part topology and semantic associations.

To address these limitations, future work can explore two directions. On the one hand, introducing
instance-aware mechanisms could enable simultaneous semantic segmentation and instance separation.
On the other hand, developing a dynamic hierarchical reasoning framework that can adaptively adjust
part hierarchical structures based on specific objects.

A.2 Social Impact

Our method offers significant societal value in multiple domains. In healthcare, its precise segmenta-
tion of structurally connected parts can improve the efficiency of pathological diagnosis and provide
a low-cost, annotation-free diagnostic aid for remote regions, thereby promoting equitable access to
medical resources. In industrial manufacturing, its hierarchical part reasoning capability supports
automated quality inspection and disassembly of mechanical equipment.

Despite these advantages, PBAPS also has potential risks. In safety-critical applications such as
medical imaging and autonomous driving, reliance on predefined structural priors may lead to
segmentation errors in complex scenarios. For example, misidentifying the boundaries of rare
pathological organs, causing diagnostic inaccuracies.

B Additional Experiments

B.1 Further Details

Stable Diffusion. A text-conditioned latent diffusion model [30] that generates images via iterative
denoising and has three main components: (1) a pre-trained VAE [58] for image encoding/decoding,
(2) a text encoder τ converting the prompt into embedding vector, and (3) a time-conditional U-
Net ϕ that denoises an initial Gaussian noise to produce the image. During image synthesis, the
corresponding cross-attention maps A [51] are extracted to locate the target part. Specifically, the
prompt p is encoded in text embedding τ(p) ∈ RN×d, where N denotes the length of the token
sequence. At each U-Net ϕ timestep t, visual features ϕ (zt) ∈ RH×W×C from a noisy image zt are
flattened and projected to query Q, while text embedding τ(p) produces the key K and the value V
via learnable layers ℓK and ℓV :

Q = ℓQ(ϕ(zt)), K = ℓK(τ(p)), V = ℓV (τ(p)) (8)

The cross-attention weights A = Softmax
(

QKT

√
d

)
∈ RH×W×N . To obtain robust class attention

maps, attention maps are aggregated over multiple layers and time steps:

Ãj =
1

|B||T |
∑
b∈B

∑
t∈T

Aj
b,t

max(Aj
b,t)

(9)

where j is the index of the text token, B and T denote the layers and timestep sets, respectively.

Segment Anything Model. SAM [31] is a training-free image segmentation framework that enables
prompt-based rapid segmentation of arbitrary objects using point, box, or mask input. Its architecture
consists of: (1) an image encoder that extracts the global visual feature Fi from the input image, (2) a
prompt encoder that encodes prompts into unified features Fp, and (3) a mask decoder that generates
candidate masks by integrating Fi with Fp.
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DINOv2. DINOv2 [32] is a discriminative self-supervised ViT that distills general visual features
from large-scale unlabeled data. Through joint global-image and local-patch level learning, its robust
features excel in tasks including image classification, semantic segmentation, and patch matching.

For each part class c, we mainly adopt the generic prompt template "a photo of c" to guide Stable
Diffusion [30] in synthesizing images of the part c. To further enrich visual diversity, we incorporate
synonyms and subclasses of the original class names [51]. We also standardize class names (e.g.,
"tvmonitor" → "tv monitor") and refine them to resolve ambiguities (e.g., "cat hand" → "cat paw").

During image generation, we set an independent random seed for each class to ensure reproducibility.
The image generation time scales linearly with the number of images: 124s for 32 images, 227s for
64 images, and 443s for 128 images. Each part prototype, extracted via DINOv2 [32], occupies 0.45
MB. During inference, PBAPS employs a sliding window of size 224×224 with a stride of 64 for
feature extraction using DINOv2 (identical to all baseline methods), achieving an average processing
time of 1.81s per image. All results are measured with a single NVIDIA A6000 GPU.

B.2 Ablation on Feature Extractors

Table 6: Comprison of different feature ex-
tractors on Pascal-Part-116 [21].

Feature Extractor mIoU bIoU

MAE [59] 37.94 27.47
DINO [60] 41.20 30.79
CLIP [13] 42.39 30.41
Stable Diffusion [30] 44.12 33.31
DINOv2 [32] 46.35 34.46

Table 7: Comprison of mask generators on
Pascal-Part-116 [21].

Mask Generator mIoU bIoU

MaskFormer [61] 41.28 30.97
SAM [31] 43.82 32.43
None 46.35 34.46

Our method can integrate with any pretrained visual feature extractor to construct visual prototypes
and extract image features. As shown in Table 6, to demonstrate the superiority of using DINOv2
[32] for image feature extraction in our framework, we compare it with several self-supervised ViT
feature extractors. DINOv2 significantly outperforms other methods, benefiting from its pretraining
based on image-level and patch-level discriminative learning, which empowers it with fine-grained
feature representation capabilities. CLIP exhibits limitations in fine-grained feature alignment, likely
due to its contrastive learning that focuses on global feature alignment (Figure 6). MAE yields the
weakest performance due to its lack of explicit semantic discriminative learning. Stable Diffusion
performs secondarily by leveraging structural information implicitly learned through generative tasks.

w/ CLIPGround Truth w/ DINOv2

Figure 6: Qualitative ablation on feature extractors in Pascal-Part-116 [21].
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B.3 Ablation on Mask Generators

Our PBAPS framework supports two segmentation paradigms: (1) direct per-pixel feature classifica-
tion and (2) region-level classification following mask generation by a pre-trained segmenter. To vali-
date the superiority of our pixel-wise classification strategy, we compare it against MaskFormer-based,
SAM-based variants. Note that when using MaskFormer [61] or SAM [31] for mask generation, the
segmentation process operates only under the structural constraints of HPCGraph without boundary
refinement via the BAR module, as these generators only produce binary masks, lacking class-specific
matching cost maps. As shown in Table 7, introducing MaskFormer or SAM significantly degrades
performance. This is because MaskFormer, trained on object-level COCO [62, 8, 63], tends to
propose coarse object regions and fails to capture subtle part-level distinctions. Although SAM
exhibits zero-shot generalization, its segmentation relies on prominent visual changes (e.g., texture,
color). The part-level segmentation often involves only local, subtle variations, leading to frequent
under-segmentation by SAM (Figure 7).

w/ SAMGround Truth w/o SAM

Figure 7: Qualitative ablation on mask generators in Pascal-Part-116 [21].

B.4 Sensitivity Analysis of Hyperparameters
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Figure 8: The sensitivity analysis of γ, α and K on Pascal-Part-116 [21].

To evaluate the impact of key hyperparameters in PBAPS, we conduct a sensitivity analysis on Pascal-
Part-116 for three core parameters: feature fusion weight γ, prototype adaptation coefficient α, and
the number of subprototypes K in visual prototype generation. Figure 8 shows that when γ = 0.8,
PBAPS achieves the highest mIoU of 46.35%. A moderate γ balances the retention of critical
original feature information and the integration of discriminative context from deterministic regions.
When γ is low (0.5), excessive reliance on contextual features suppresses original discriminative
information, degrading performance. When γ is high (1.0), the neglect of contextual guidance leaves
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feature ambiguity unresolved. Similarly, a moderate α (0.7) enables adaptive prototypes to retain
both universal part knowledge and image-specific variations (e.g., pose, texture). When α is small,
over-adaptation to local features may introduce noise or cause overfitting to image details. When
α approaches 1.0, the prototypes lack adaptability to variations in the current image. Regarding
the number of subprototypes, K = 4 allows the model to fully capture intra-class diversity while
avoiding noise interference. When K = 0, the global prototype is overly generic; when K > 4,
excessive subprototypes may introduce noisy clusters, leading to performance degradation.

B.5 Additional Qualitative Results

Ground Truth PartCLIPSeg PartCATSeg RIM PBAPS (Ours)

Figure 9: Qualitative results on PartImageNet [33].
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Ground Truth PartCLIPSeg PartCATSeg RIM PBAPS (Ours)

Figure 10: Qualitative results on Pascal-Part-116 [21].

26


	Introduction
	Related Work
	Boundary Feature Gradient Analysis
	Method
	Cross-Model Prototype Induction
	Hierarchical Part Connected Graph
	Progressive Boundary-Aware Part Segmentation
	Boundary-Aware Refinement

	Experiments
	Datasets and Evaluation
	Implementation Details
	Comparison with Existing Methods
	Analysis and Ablation Study

	Conclusion
	Acknowledgement
	Discussion
	Limitations and Future Work
	Social Impact

	Additional Experiments
	Further Details
	Ablation on Feature Extractors
	Ablation on Mask Generators
	Sensitivity Analysis of Hyperparameters
	Additional Qualitative Results


