
Under review as a conference paper at ICLR 2023

INTERVAL BOUND INTERPOLATION FOR FEW-SHOT
LEARNING WITH FEW TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot learning aims to transfer the knowledge acquired from training on a
diverse set of tasks to unseen tasks from the same task distribution, with a limited
amount of labeled data. The underlying requirement for effective few-shot gen-
eralization is to learn a good representation of the task manifold. This becomes
more difficult when only a limited number of tasks are available for training. In
such a few-task few-shot setting, it is beneficial to explicitly preserve the local
neighborhoods from the task manifold and exploit this to generate artificial tasks
for training. To this end, we introduce the notion of interval bounds from the
provably robust training literature to few-shot learning. The interval bounds are
used to characterize neighborhoods around the training tasks. These neighbor-
hoods can then be preserved by minimizing the distance between a task and its
respective bounds. We then use a novel strategy to artificially form new tasks for
training by interpolating between the available tasks and their respective interval
bounds. We apply our framework to both model-agnostic meta-learning as well as
prototype-based metric-learning paradigms. The efficacy of our proposed approach
is evident from the improved performance on several datasets from diverse domains
in comparison to recent methods.

1 INTRODUCTION

Few-shot learning problems deal with diverse tasks consisting of subsets of data drawn from the
same underlying data manifold along with associated labels. The joint distribution of data and
corresponding labels which governs the sampling of such tasks is often called the task distribution
(Finn et al., 2017; Yao et al., 2022). Consequently, few-shot learning methods attempt to leverage
the knowledge acquired by training on a large pool of such tasks to easily generalize to unseen tasks
from the same distribution, using only a few labeled examples. We hereafter refer to the support
of the task distribution as the task manifold which is distinct from but closely-related to the data
manifold associated with the data distribution. Since the unseen tasks are sampled from the same
underlying manifold governing the task distribution, we should ideally learn a good representation
of the task manifold by preserving the neighborhoods from the high-dimensional manifold in the
lower-dimensional feature embedding (Tenenbaum et al., 2000; Roweis & Saul, 2000; Van der Maaten
& Hinton, 2008). However, the labels associated with a task can define any arbitrary partitioning of
the data. Therefore, we can attempt to preserve the neighborhood for a task by simply conserving the
neighborhoods for the corresponding subset of the data manifold in the feature embedding learned by
the few-shot learner. This facilitates effective generalization to new tasks using a limited amount of
labeled data by only updating the classifier as the learned feature embedding would likely require
very little adaptation. However, existing few-shot learning methods lack an explicit mechanism for
achieving this. Further, real-world few-shot learning scenarios like rare disease detection may not
have the large number of training tasks required for effective learning, due to various constraints such
as data collection costs, privacy concerns, and/or data availability in newer domains (Yao et al., 2022).
In such scenarios, few-shot learning methods are prone to overfit the training tasks, thus limiting the
ability to generalization to unseen tasks. Therefore, in this work, we develop a method to explicitly
constrain the feature embedding in an attempt to preserve neighborhoods from the high-dimensional
task manifold and to construct artificial tasks within these neighborhoods in the feature space, to
improve the performance when a limited number of training tasks are available.

1

Under review as a conference paper at ICLR 2023

The proposed approach relies on characterizing the neighborhoods from the high-dimensional task
manifold and propagating them through the network with the intent to preserve the task neighborhood
in the feature space. We achieve this by employing the concept of interval bounds from the provably
robust training literature (Gowal et al., 2019; Morawiecki et al., 2020), i.e. the axis-aligned bounds
for the activations in each layer, obtained using interval arithmetic (Sunaga, 1958). Concretely, as
shown in Figure 1, we first define a small ϵ-neighborhood for each few-shot training task and then use
Interval Bound Propagation (IBP; Gowal et al., 2019) to obtain the bounding box around the mapping
of the corresponding neighborhood in the feature embedding space. We then explicitly attempt to
preserve the ϵ-neighborhoods by minimizing the distance between a task and its respective interval
bounds in addition to optimizing the few-shot classification objective. We further devise a mechanism
to construct the artificial tasks by interpolating between a task and its corresponding IBP bounds. It
is important to notice that this setup is distinct from provably robust training for few-shot learning in
that we do not attempt to minimize (or calculate for that matter) the worst-case classification loss.

Task Distribution p(T)

fθS fθL−S

LUB

LLB

LCE

Learner

Sample Task Ti

Task manifold Learned embedding

Figure 1: Illustration of the proposed interval bound propagation–aided few-shot learning setup (best
viewed in color): We use interval arithmetic to define a small ϵ-neighborhood around a training task
Ti sampled from the task distribution p(T). IBP is then used to obtain the bounding box around
the mapping of the said neighborhood in the embedding space fθS given by the first S layers of the
learner fθ. While training the learner fθ to minimize the classification loss LCE on the query set
Dq

i , we additionally attempt to minimize the losses LLB and LUB , forcing the ϵ-neighborhood to be
compact in the embedding space as well.

(a) (b)

Figure 2: Interval bound–based task interpolation (best viewed in color): (a) Existing inter-task
interpolation methods create new artificial tasks by combining pairs of original tasks (blue ball).
However, depending on how flat the task-manifold embedding is at the layer where interpolation
is performed, the artificial tasks may either be created close to the task-manifold (green cross) or
away from the task-manifold (red box). (b) The proposed interval bound–based task interpolation
creates artificial tasks by combining an original task with one of its interval bounds (yellow ball).
Such artificial tasks are likely to be in the vicinity of the task manifold as the interval bounds are
forced to be close to the task embedding by the losses LLB and LUB .

Various methods have been proposed to mitigate the few-task few-shot problem using approaches
such as explicit regularization (Jamal & Qi, 2019; Yin et al., 2019), intra-task augmentation (Lee
et al., 2020; Ni et al., 2021; Yao et al., 2021), and inter-task interpolation to construct new artificial
tasks (Yao et al., 2022). While inter-task interpolation has been shown to be the most effective among
these existing approaches, it suffers from the limitation that the artificially created tasks may be
generated away from the task manifold depending on the curvature of the feature embedding space,
as there is no natural way to select pairs of task which are close to each other on the manifold (Figure
2(a)). The interval bounds obtained using IBP, on the other hand, are likely to be close to the original
task embedding as we explicitly minimize the distance between a task and its interval bounds. Thus,
using them for interpolation is likely to keep the generated tasks close to the manifold (Figure 2(b)).

2

Under review as a conference paper at ICLR 2023

In essence, the key contributions made in this article advance the existing literature in the following
ways: (1) In Section 4.1, we present for the first time, a novel method to synergize few-shot learning
with interval bound propagation (Gowal et al., 2019) so as to explicitly lend the ability to preserve
task neighborhoods in the feature embedding space of the few-shot learner. (2) In Section 4.2,
we propose the interval bound–based task interpolation technique which can create new tasks (as
opposed to augmenting each individual task (Lee et al., 2020; Ni et al., 2021; Yao et al., 2021)), by
interpolating between a task sampled from the task distribution and its interval bounds. (3) Unlike
existing inter-task interpolation methods that require paired tasks for interpolation (Yao et al., 2022),
our framework can generate new tasks from only a single task. This allows the proposed framework
to be seamlessly integrated with existing few-shot learning paradigms.

In Section 5, we empirically demonstrate the effectiveness of our proposed approach on both gradient-
based meta-learning and prototype-based metric-learning on few-task real-world datasets from
multiple domains, in comparison to the recent prior methods. Finally, we make concluding remarks
and also discuss future scopes of research in Section 6.

2 RELATED WORKS

Few-shot learning: The aim of few-shot learning is to generalize to new tasks using only a few
examples (Wang et al., 2020) through three major strategies. First, one can augment the tasks at the
data level (Hariharan & Girshick, 2017). Second, the hypothesis space can be constrained at the
model level (Snell et al., 2017). Third, the hypothesis search strategy at the algorithm level can be
improved (Finn et al., 2017). The problem of few-task learning can be even more difficult when
there is a scarcity of training tasks in a few-task scenario. We take the route of Yao et al. (2022)
to offer a novel task augmentation strategy that can work in conjunction with both algorithm-level
meta-learning as well as model-level metric-learning methods.

Provable robust training of neural networks: A way to build robust neural networks is to find a
differentiable upper bound on the verifiable violation of specifications. Such upper bounds can then be
directly optimized alongside the original loss (Mirman et al., 2018; Raghunathan et al., 2018; Wong
et al., 2018). IBP (Gowal et al., 2019) follows this direction by explicitly minimizing the worst-case
loss inside the ϵ-neighborhood of an input for an arbitrary network with some architectural constraints.
However, in our work, instead of building robust networks, we repurpose IBP to characterize the
ϵ-neighborhood to learn better representation such that the generalization to new tasks by a few-shot
learner becomes easier. Moreover, the bounds of the ϵ-neighborhood obtained through IBP gives us a
direct way to construct new artificial tasks when the number of available tasks is scarce.

Manifold learning: Traditional methods like ISOMAP (Tenenbaum et al., 2000), LLE (Roweis &
Saul, 2000), t-SNE (Van der Maaten & Hinton, 2008), etc. aims to represent high-dimensional data
in lower-dimensional space while preserving the local neighborhoods through manifold learning
(Abukmeil et al., 2021). Recent manifold learning approaches mostly employ generative neural
networks such as deep belief network (Lee et al., 2009), variational auto-encoders (Connor et al.,
2021; Kumar & Poole, 2020), flow-based approaches (Brehmer & Cranmer, 2020; Caterini et al.,
2021), etc. In a similar spirit, we repurpose IBP to define ϵ-neighborhoods for few-shot learning tasks
and constrain the learned feature embedding to preserve the said neighborhoods.

Task augmentation: To train on datasets with a limited number of tasks, some works directly impose
regularization on the few-shot learner (Jamal & Qi, 2019; Yin et al., 2019). Another line of work
performs data augmentation on the individual tasks (Lee et al., 2020; Ni et al., 2021; Yao et al., 2021).
Finally, a third direction is to employ inter-task interpolation to mitigate task scarcity (Yao et al.,
2022). Our approach is similar to the third category in that we directly create new artificial tasks.
But, we also differs from all of the above-mentioned methods in that we neither undertake intra-task
augmentation nor inter-task interpolation.

3 PRELIMINARIES

In a few-shot learning problem, we deal with tasks Ti ∼ p(T). Each task Ti is associated with a dataset
Di = (Xi, Yi), that we further subdivide into a support set Ds

i = (Xs
i , Y

s
i) = {(xs

i,r, y
s
i,r)}

Ns
r=1 and

a query set Dq
i = (Xq

i , Y
q
i) = {(x

q
i,r, y

q
i,r)}

Nq

r=1. Given a learning model fθ, where θ denotes the
model parameters, few-shot learning algorithms attempt to learn θ to minimize the loss on the query

3

Under review as a conference paper at ICLR 2023

set Dq
i for each of the sampled tasks using the data-label pairs from the corresponding support set

Ds
i . Thereafter, the trained model fθ and the support set Ds

j for new tasks Tj can be used to perform
inference on the corresponding query set Dq

j . In the following subsection, we discuss gradient-based
meta-learning while the prototype-based metric-learning is detailed in Appendix A.

Gradient-based meta-learning: In gradient-based meta-learning, the aim is to learn initial param-
eters θ∗ such that a typically small number of gradient update steps using the data-label pairs in
the support set Ds

i results in a model fϕi
that performs well on the query set of task Ti. During the

meta-training stage, first, a base learner is trained on multiple support sets Ds
i , and the performance

of the resulting models fϕi
is evaluated on the corresponding query sets Dq

i . The meta-learner param-
eters θ are then updated such that the expected loss of the base learner on query sets is minimized.
In the meta-testing stage, the final meta-trained model fθ∗ is fine-tuned on the support set Ds

j for
the given test task Tj to obtain the adapted model fϕj that can then be used for inference on the
corresponding query set Dq

j . Considering Model-Agnostic Meta-Learning (MAML) (Finn et al.,
2017) as an example, the bi-level optimization of the gradient-based meta-learning is formulated as:

θ∗ ← argmin
θ

ETi∼p(T)[L(fϕi ;D
q
i)], where ϕi = θ − η0∇θL(fθ;Ds

i), (1)

while η0 denotes the inner-loop learning rate used by the base learner to train on Ds
i for task Ti, and

L is the loss function, which is usually the cross-entropy loss for classification problems:

LCE = ETi∼p(T)[−
∑

r
log p(yqi,r|x

q
i,r, fϕi)]. (2)

A key requirement for effective few-shot generalization to new tasks for both gradient-based meta-
learning and prototype-based metric-learning is to learn a good embedding of the high-dimensional
manifold characterizing the task distribution p(T), i.e. the task manifold. Ideally, the learned
embedding should conserve the neighborhoods from the high-dimensional task manifold (Tenenbaum
et al., 2000; Roweis & Saul, 2000). Hence, in the following subsection, we discuss Interval Bound
Propagation (IBP) (Gowal et al., 2019) that can be employed to define a neighborhood around a task.

Interval bound propagation: Let us consider a neural network fθ consisting of a sequence of
transformations hl, (l ∈ {1, 2, · · · , L}) for each of its L layers. We start from an initial input z0 = x
to the network along with lower bound z0(ϵ) = x − 1ϵ and upper bound z0(ϵ) = x + 1ϵ for
an ϵ-neighborhood around the input x. In each of the subsequent layers l ∈ {1, 2, · · · , L} of the
network, we get an activation zl = hl(zl−1). IBP uses interval arithmetic to obtain the corresponding
axis-aligned bounds of the form zl(ϵ) ≤ zl ≤ zl(ϵ) on the activations for the l-th layer. Given the
specific differentiable transformation hl, interval arithmetic yields corresponding differentiable lower
and upper bound transformations zl(ϵ) = hl(zl−1(ϵ), zl−1(ϵ)), and zl(ϵ) = hl(zl−1(ϵ), zl−1(ϵ)), as
described in Appendix C. This ensures that each of the coordinates zl,c(ϵ) and zl,c(ϵ) of zl(ϵ) and
zl(ϵ) respectively, satisfies the conditions:

zl,c(ϵ) = min
zl−1(ϵ)≤zl−1≤zl−1(ϵ)

eT
chl(zl−1) and zl,c(ϵ) = max

zl−1(ϵ)≤zl−1≤zl−1(ϵ)
eT
chl(zl−1), (3)

where ec is the standard c-th basis vector. Further extending to multiple layers, such as fθS having
the first S layers of fθ, the individual transformations hl and hl for l ∈ {1, 2, · · · , S} can be
composed to obtain the corresponding functions f

θS and fθS , such that zS(ϵ) = f
θS (z0, ϵ), and

zS(ϵ) = fθS (z0, ϵ).

4 PROPOSED METHOD

Our proposed method aims to enable the learner fθ to learn a feature embedding that attempts
to preserve the ϵ-neighborhoods in the task manifold. Therefore, in the following subsection, we
describe the notion of an ϵ-neighborhood for a training task Ti using IBP and show how they can be
preserved to aid in few-shot learning problems.

4.1 FEW-SHOT LEARNING WITH INTERVAL BOUNDS

Consider the network fθ = fθL−S ◦ fθS where S (≤ L) is a user-specified layer number that
demarcates the boundary between the portion fθS of the model that focuses on feature representation

4

Under review as a conference paper at ICLR 2023

and the subsequent portion fθL−S responsible for the classification. For a given training task Ti, the
Euclidean distances between the embedding fθS (xq

i,r) for the query instances and their respective
interval bounds f

θS (x
q
i,r, ϵ) and fθS (x

q
i,r, ϵ) is a measure of how well the ϵ-neighborhood is preserved

in the learned feature embedding:

LLB =
1

Nq

∑Nq

r=1
||fθS (xq

i,r)− fθS (x
q
i,r, ϵ)||

2
2 and (4)

LUB =
1

Nq

∑Nq

r=1
||fθS (xq

i,r)− fθS (x
q
i,r, ϵ)||

2
2. (5)

To ensure that the small ϵ-neighborhoods get mapped to small interval bounds by the feature em-
bedding fθS , we can minimize the losses LLB and LUB in addition to the classification loss
LCE in (2). Notice that the losses LLB and LUB are never used for the support instances xs

i,r.

Figure 3: Dynamic weights
for MAML+IBP on miniIm-
ageNet when γ is set to 1 for
ease of visualisation.

Attempting to minimize a naı̈ve sum of the three losses can cause
some issues. For example, weighing the classification loss LCE too
high essentially reduces the proposed method to vanilla few-shot learn-
ing. On the other hand, assigning very high weights to the interval
losses LLB and/or LUB may diminish learnability as the preservation
of ϵ-neighborhoods gets precedence over classification performance.
Moreover, such static weighting approaches are not capable of adapting
to (and consequently mitigating) situations where one of the losses
comes to unduly dominate the others. Thus, we minimize a convex
weighted sum L of the three losses:

L(t) = wCE(t)LCE(t) + wLB(t)LLB(t) + wUB(t)LUB(t), (6)

where t denotes the current training step and we(t) is the weight for the
corresponding loss Le, e ∈ {CE,LB,UB} at the t-th training step,
which is dynamically calculated based on a softmax across the current values of the three losses:

we(t) =
exp(Le(t)/γ)∑

e′∈{CE,LB,UB} exp(Le′(t)/γ)
. (7)

The hyperparameter γ controls the relative importance of the losses. If any of the losses become
too large, the dynamic weighing scheme strives to restore balance by assigning very high weightage
to the concerned loss, thus prioritizing its minimization over that of the other losses. The changes
in the dynamic weights over training steps for IBP-aided MAML (hereafter called MAML+IBP)
using “4-CONV” network (Vinyals et al., 2016) on the miniImageNet dataset (Vinyals et al., 2016) is
illustrated in Figure 3. We can observe that while there is a clear ordering to the magnitude of the
weights (and therefore the corresponding losses) throughout the entire training run, the weights are in
fact able to adapt to changes in loss values to maintain the status quo among the different losses.

Table 1: Effect of IBP on MAML for miniImageNet and tieredIm-
ageNet datasets in terms of 5-way 1-shot Accuracy and intra-task
compactness

Algorithm Accuracy 1-NN distance

miniImageNet tieredImageNet miniImageNet tieredImageNet

MAML (Finn et al., 2017) 48.70±1.75% 51.67±1.81% 0.97±0.02 0.98±0.02
MAML+SN on f

θS
44.90±1.12% 45.26±1.05% 1.38±0.04 1.41±0.04

MAML+GL 48.70± 0.97% 51.90±0.98% 0.96±0.02 0.98±0.02
MAML+ULBL 49.43±0.90% 51.67±0.91% 0.94±0.02 0.97±0.02
MAML+IBP (ours) 50.76±0.83% 54.36±0.80% 0.90±0.02 0.96±0.02

Motivating results: In Ta-
ble 1, we demonstrate the ef-
fect of employing IBP-aided
training for MAML using
“4-CONV” network. Apart
from vanilla MAML, we
consider three other regu-
larized variants of MAML,
(1) MAML+SN that applies
Spectral Normalization (Miy-
ato et al., 2018) to the feature
embedding through the first S
layers, (2) MAML+GL that uses the distance between the original query set and its perturbed (by
additive Gaussian noise) version as an extra loss, and (3) MAML+ULBL that considers the distance
between the upper and lower interval bounds as an additional loss (Morawiecki et al., 2020) (further
details in Appendix F.3). We see that MAML+IBP achieves higher 5-way 1-shot classification
accuracy than the 5 contenders on the miniImageNet and tieredImageNet (Ren et al., 2018) datasets.

5

Under review as a conference paper at ICLR 2023

Moreover, we also illustrate that the feature embedding learned by IBP-aided training exhibits better
intra-task compactness in terms of the mean Euclidean distances from the nearest neighbor in the same
class for 100 query instances from 600 tasks, in the feature space characterized by fθS . Recent works
(Ni et al., 2021; Yao et al., 2022) have shown that augmenting the training data with artificial tasks
can improve performance in domains with a limited amount of tasks. Therefore, while IBP-aided
training improves the performance of vanilla MAML (as well as other baselines, detailed in Appendix
F.3), we are particularly interested in the added advantage that it lends by facilitating the generation
of artificial tasks within the neighborhoods defined by the interval bounds.

4.2 INTERVAL BOUND–BASED TASK INTERPOLATION

Since minimizing the additional losses LLB and LUB is expected to ensure that the ϵ-neighborhood
around a task is mapped to a small interval in the feature embedding space, artificial tasks formed
within such intervals are naturally expected to be close to the task manifold. Therefore, we create
additional artificial tasks by interpolating between an original task and its corresponding interval
bounds (i.e., either the upper or the lower interval bound). In other words, for a training task Ti,
a corresponding artificial task T ′

i is characterized by a support set Ds′

i = {(Hs′

i,r,y
s
i,r)}

Ns
r=1 in the

embedding space. The artificial support instances Hs′

i,r are created as:

Hs′

i,r = (1− λk)fθS (xs
i,r) + (1− νk)λkfθS (x

s
i,r, ϵ) + νkλkfθS (xs

i,r, ϵ), (8)

where k denotes the class to which xs
i,r belongs, λk ∈ [0, 1] is sampled from a Beta distribution

Beta(α, β), and the random choice of νk ∈ {0, 1} dictates which of the bounds is chosen randomly
for each class. The labels ys

i,r for the artificial task remain identical to that of the original task. The

query set Dq′

i for the artificial task is also constructed analogously. We then minimize the mean
of the additional classification loss L′

CE for the artificial task T ′
i and the classification loss LCE

for the original task Ti for query instances (also the support instances in case of meta-learning).
As a reminder, the losses LLB and LUB are also additionally minimized for the query instances.
The complete IBP-based task interpolation or Interval Bound Interpolation (IBI) training setup is
illustrated in Figure 4 in Appendix B. Since IBI does not play any part during the testing phase,
the testing recipe remains identical to that of vanilla few-shot learning. The detailed pseudocode of
MAML+IBI (along with the IBI variant of ProtoNet) can be found in Appendix B.

Theoretical analysis: The data Xi (i = 1, 2, · · · , N) for tasks Ti can be thought of as i.i.d. obser-
vations from a marginal distribution PX defined on a compact subset X of Rd (d ≥ 1), paired with
corresponding Yi drawn from the marginal distribution PY . The map fθS is bestowed with the task
of producing a lower-dimensional representation of the input X . Let us denote the embedding space
by H ⊆ Rκ, given that κ ≤ d. The spaces X and H are endowed with l2 norm for simplicity and
conformity to our convention. One may observe that fθS = h1 ◦ h2 ◦ · · · ◦ hS , where in general
hl(z) = σ(Alz + bl) given that Al ∈ Rdl+1×dl and bl ∈ Rdl+1 , l = 1, · · · , S. The function σ
denotes the activation (such as ReLU), applied component-wise. Evidently, in our notation d1 = d
and dS+1 = κ. With this setup, we proceed to undertake the theoretical analysis of our approach.
Please find the detailed proofs in Appendix C.
Definition 1 (Perturbation). Given any x1 ∈ X , an ε-perturbation corresponding to x1 is the set of
points x1(ε) ⊂ X such that∥x1 − x2∥ = ε, ∀x2 ∈ x1(ε); ε > 0.

For the particular choice of the l2 norm, Definition 1 characterizes ε-perturbation as a hollow ball of
radius ε = ϵ

√
d around a given point.

Lemma 1 (Lipschitz networks ensure bounded IBP). Let x and x be ε-perturbations of x ∼ PX

for an ε > 0 (i.e. x,x ∈ x(ε)). Given that the activation σ is Lipschitz continuous (such as ReLU)
with constant cσ > 0, there exists a constant D = D(cσ;A1, A2, · · · , AS ; ε) such that f

θS (x, ε)

and fθS (x, ε)) will at most be an ε̂-perturbed version of fθS (x), where ε̂ = εD.

The minimization objective function of IBI can be rephrased as L = LCE + ω1LLB + ω2LUB ,
where ω1, ω2 ≥ 0 are Lagrangian multipliers. The forthcoming result, however, relies on the
constrained formulation of the objective, given as min{LCE} subject to LLB ≤ t1 and LUB ≤ t2,
where t1, t2 ≥ 0. This is motivated by the fact that the constrained formulation yields solutions upper
bounding the ones obtained using its Lagrangian counterpart [(Boyd & Vandenberghe, 2004), Chapter

6

Under review as a conference paper at ICLR 2023

5]. Lemma 1 implies that the two losses (LUB and LLB) appearing in the constraints can always be
made arbitrarily small, depending upon ε. As such, in the constrained regime, the remaining problem
is to show that the multi-task sample classification loss can indeed be dealt with.

Theorem 1 (Generalization bound). Let P̃ be the joint distribution of (fθS (X), Y), supported
on H × R. In the multi-task regime, let I denote the set of tasks, each consisting of
N samples. Define R̂(N, |I|) = ETi∼p̂(T)E(Xj ,Yj)∼p̂(Ti)[LCE(fθL−S (H∗

j), Yj)] and R =
ETi∼p(T)E(Xj ,Yj)∼Ti

[LCE(fθL−S (fθS (Xj)), Yj)]. For a bounded loss function LCE : R × R →
[0, a](a ≥ 0), if the neural network-induced map fθL−S is such that

∣∣∇fθL−S (·)
∣∣ <∞, we ensure:

∣∣∣R̂(N, |I|)−R∣∣∣− λ̃ ≾ 2L−S+1
√
2 log(2κ+ 2)

{
1√
N

+
1√
|I|

}
+

√
log(2|I|δ)

N
+

√
log(2δ)

|I|

holds with probability at least 1− δ, where λ̃ = λ̃(ε̂, λ).

5 EXPERIMENTS

Experiment protocol: The experiments are conducted on few-task few-shot image classification
datasets, viz. a subset of the miniImageNet dataset called miniImageNet-S (Yao et al., 2022), and
two medical images datasets namely DermNet-S (Yao et al., 2022), and ISIC (Codella et al., 2018;
Li et al., 2020). We begin our experiments with a few analyses and ablations to better understand
the properties of our proposed method. We then empirically demonstrate the effectiveness of our
proposed IBI method on the gradient-based meta-learning method MAML (Finn et al., 2017) as well
as the prototype-based metric-learner ProtoNet (Snell et al., 2017) to show that IBI can be seamlessly
integrated with multiple few-shot learning paradigms. For our experiments, we employ the commonly
used “4-CONV” network (Vinyals et al., 2016) as well as the larger ResNet-12 network (Lee et al.,
2019) to demonstrate the scalability of the proposed method (further details on scalability in Appendix
E). We perform 5-way 1-shot and 5-way 5-shot classification on all the above datasets (except ISIC
where we use 2-way classification problems, similar to Yao et al. (2021), due to the lack of sufficient
training classes). Further discussion on the datasets and implementation details of IBI along with the
choice of hyperparameters can be found in the Appendix.

Table 2: Ablation on task interpolation strategies in terms of mean Accuracy
and average median distance between original and interpolated tasks over
600 tasks on miniImageNet-S (mIS), ISIC and DermNet-S (DS).

Algorithm Accuracy Average median distance

mIS ISIC DS mIS ISIC DS

MAML+Inter-task interpolation in image space 40.90% 55.25% 48.30% N/A N/A N/A
MAML+Inter-task interpolation after f

θS
41.00% 61.33% 47.43% 3.08 1.23 2.99

MAML+IBP+WCL 41.56% 64.75% 48.90% NA NA NA
MAML+ULBL+Inter-task interpolation after f

θS
40.37% 64.91% 48.23% 3.10 0.97 2.83

MAML+IBP+GA (Image Space) 41.83% 62.67% 48.83% NA NA NA
MAML+IBP+GA (after f

θS
) 41.66% 63.75% 47.60% NA NA NA

MAML+MLTI (Yao et al., 2022) 41.58% 61.79% 48.03% 3.24 1.36 3.05
MAML+IBI without LUB and LLB losses 35.26% 48.94% 41.30% N/A N/A N/A

MAML+IBI (ours) 42.20% 68.58% 49.13% 2.74 0.60 2.65
The Average median distance is calculated with features after the third block for all cases.

Ablation studies on
task interpolation:
We undertake an abla-
tion study to highlight
the importance of
generating artificial
tasks using IBP bound–
based interpolation
by comparing IBI
with (1) inter-task
interpolation on im-
ages, (2) inter-task
interpolation in the
feature embedding
learned by fSθ , (3)
Worst-Case Loss (WCL) on the ϵ-neighborhood (Gowal et al., 2019) along with IBP losses, (4)
inter-task interpolation while minimizing ULBL (Morawiecki et al., 2020), (5) Gaussian noise–based
perturbation (GA) in the image space with IBP losses, (6) Gaussian noise–based perturbation in
the feature embedding space fθS with IBP losses, (7) MLTI (Yao et al., 2022), which performs
MixUp (Zhang et al., 2017) at randomly chosen layers of the learner, and (8) IBP bound–based
interpolation without minimizing the LUB and LLB while only optimizing LCE (more results in
Appendix F.3). We perform the ablation study on 5-way 1-shot classification with the “4-CONV”
network on miniImageNet-S, ISIC, and DermNet-S. From Table 2, we observe that IBI performs best
in all cases. Moreover, inter-class interpolation at the same fixed layer S as IBI and at randomly
selected task-specific layers in MLTI shows worse performance, demonstrating the superiority of the
proposed interval bound–based interpolation mechanism. Further, it is interesting to observe that IBI,

7

Under review as a conference paper at ICLR 2023

when performed without minimizing the LUB and LLB , performs the worst. This behavior is not
unexpected as the neighborhoods are no longer guaranteed to be preserved by the learned embedding
in this case, thus potentially resulting in the generation of out-of-manifold artificial tasks.

To further check whether the tasks generated by IBI indeed follow the distribution, we undertake an
additional comparison based on the similarity of the artificial tasks with the corresponding original
tasks. Concretely, we define the distance between a task and its artificial counterpart as the median
of the pairwise distances between the corresponding data instances in the two tasks. If an artificial
task is created by combining two tasks, a la MLTI (Yao et al., 2022), we consider the smaller of the
two median distances. We observe from Table 2, that the average median distance over 600 tasks is
smaller for the proposed method compared to MLTI, as well as inter-task interpolation in the feature
embedding learned by fSθ . This indicates that the tasks generated by IBI are more likely to lie close
to the original task distribution.

Table 3: Average loss weights for the two proposed
methods, and a comparison of the static weighting and
dynamic weighting versions, including transferability
of static weight values across variants.

MAML+IBP MAML+IBI

Average of dynamic loss weights calculated for IBP and IBI.

wCE 0.8600 0.8658
wUB 0.1369 0.1314
wLB 0.0029 0.0027

Accuracy of algorithms with different weight choices.

Dynamic weighting 41.30±0.79% 42.20±0.82%
Static average weights for MAML+IBP 40.55±0.81% N/A
Static average weights for MAML+IBI N/A 40.72±0.79%

Importance of dynamic loss weighting:
To validate the usefulness of softmax-based
dynamic weighting of the three losses for
both IBP and IBI, we first find the aver-
age weights for each loss in a dynamic
weight run and then plug in the respective
values as static weights for new runs. All
experiments in Table 3 are conducted on
the miniImageNet-S dataset. From the up-
per half of Table 3, we can see that the three
average weights are always distinct with a
definite trend in that LCE gets maximum
importance followed by LUB while LLB

contributes very little to the total loss L.
This may be due to the particular “4-CONV” architecture used in this study which employs ReLU
activations, thus implicitly limiting the spread of the lower bound (Gowal et al., 2019). Further, the
average weights of IBP and IBI are similar for a particular learner highlighting their commonalities,
while they are distinct over different learners stressing their learner-dependent behavior. Further, in
the lower half of Table 3, we explore the effect of using static weights as well as the transferability
of the loss weights across learners. In all cases, the softmax-based dynamic weighting outperforms
static weighting, thus demonstrating the importance of dynamic weighting.

Results on few-task few-shot classification problems: For evaluating the few-shot classification
performance of IBI in few-task situations, we compare against the regularization-based meta-learning
methods TAML (Jamal & Qi, 2019), Meta-Reg (Yin et al., 2019), and Meta-Dropout (Lee et al., 2020)
for MAML. We also compare against data augmentation–based methods like MetaMix (Yao et al.,
2021), Meta-Maxup (Ni et al., 2021), and MLTI (Yao et al., 2022) for both MAML and ProtoNet. The
results in Table 4 show that in keeping with the observation in Table 1, IBP without task interpolation
can improve upon the corresponding baselines. The incorporation of IBP-based task interpolation in
IBI generally improves the results even further. Overall, we observe that both IBP and IBI outperform
the other competitors, with the largest gains being observed for the ISIC dataset.

Table 5: Transferability comparison of MAML and
ProtoNet, with their MLTI, IBP, and IBI variants
in terms of Accuracy over 600 tasks.

Algorithms Accuracy

DS → mIS mIS → DS

MAML 25.06% 33.40%
MAML+MLTI (Yao et al., 2022) 30.03% 36.74%
MAML+IBP (ours) 27.06% 33.90%
MAML+IBI (ours) 30.23% 36.21%

ProtoNet 28.76% 34.03%
ProtoNet∗+MLTI (Yao et al., 2022) 30.06% 35.46%
ProtoNet+IBP (ours) 29.60% 34.13%
ProtoNet+IBI (ours) 30.32% 35.63%
∗: ProtoNet implementation as per Yao et al. (2022).

Cross-domain transferability analysis: The
miniImageNet-S and DermNet-S datasets both
allow 5-way 1-shot classification. Moreover,
miniImageNet-S contains images from natu-
ral scenes while DermNet-S consists of med-
ical images. Therefore, we undertake a cross-
domain transferability study in Table 5. We
summarize the Accuracy values obtained by a
source model trained on DermNet-S but tested
on miniImageNet-S and vice-versa (denoted DS
→ mIS and mIS→ DS, respectively). We can
see that in most cases the IBP variant is able to
improve upon the corresponding baseline. Fur-
ther, the interpolation-based methods, i.e. MLTI

8

Under review as a conference paper at ICLR 2023

Table 4: Performance comparison of the proposed method with baselines and contending algorithms
in terms of mean Accuracy over 600 tasks.

Backbone Algorithm miniImageNet-S ISIC DermNet-S
Network 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

4-CONV

MAML (Finn et al., 2017; Yao et al., 2022) 38.27% 52.14% 57.59% 65.24% 43.47% 60.56%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 38.35% 51.74% 58.57% 68.45% 45.01% 60.92%
TAML (Jamal & Qi, 2019; Yao et al., 2022) 38.70% 52.75% 58.39% 66.09% 45.73% 61.14%
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 38.32% 52.53% 58.40% 67.32% 44.30% 60.86%
MAML+MetaMix (Yao et al., 2021; 2022) 39.43% 54.14% 60.34% 69.47% 46.81% 63.52%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.28% 53.02% 58.68% 69.16% 46.10% 62.64%
MAML+MLTI (Yao et al., 2022) 41.58% 55.22% 61.79% 70.69% 48.03% 64.55%

MAML+IBP (ours) 41.30% 54.36% 64.91% 78.75% 48.33% 63.33%
MAML+IBI (ours) 42.20% 55.23% 68.58% 79.75% 49.13% 65.43%

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 36.26% 50.72% 58.56% 66.25% 44.21% 60.33%
ProtoNet (Snell et al., 2017) 40.70% 53.16% 65.58% 75.25% 46.86% 62.03%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 39.67% 53.10% 60.58% 70.12% 47.71% 62.68%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.80% 53.35% 59.66% 68.97% 46.06% 62.97%
ProtoNet∗+MLTI (Yao et al., 2022) 41.36% 55.34% 62.82% 71.52% 49.38% 65.19%

ProtoNet+IBP (ours) 41.46% 55.00% 70.75% 81.01% 48.66% 67.26%
ProtoNet+IBI (ours) 43.30% 55.73% 70.25% 81.16% 51.13% 65.93%

ResNet-12

MAML (Finn et al., 2017; Yao et al., 2022) 40.02% 52.56% 59.41% 67.66% 47.58% 63.13%
MAML+MetaMix (Yao et al., 2021; 2022) 42.26% 54.65% 62.06% 72.18% 51.40% 64.82%
MAML+MetaMaxup (Ni et al., 2021; Yao et al., 2022) 41.97% 53.92% 61.64% 72.04% 50.82% 64.24%
MAML+MLTI (Yao et al., 2022) 43.35% 54.89% 62.16% 73.56% 52.03% 65.12%

MAML+IBP (ours) 43.50% 55.13% 64.50% 73.91% 50.40% 65.40%
MAML+IBI (ours) 43.90% 57.00% 63.25% 75.66% 52.10% 66.50%

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 40.96% 53.77% 61.91% 72.97% 48.65% 64.61%
ProtoNet (Snell et al., 2017) 42.60% 55.00% 63.01% 75.91% 50.66% 65.40%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 42.95% 56.95% 65.55% 78.33% 51.18% 66.80%
ProtoNet∗+MetaMaxup (Ni et al., 2021; Yao et al., 2022) 42.68% 56.07% 64.17% 77.62% 50.96% 66.38%
ProtoNet∗+MLTI (Yao et al., 2022) 44.08% 57.14% 66.02% 79.15% 52.01% 67.28%

ProtoNet+IBP (ours) 43.33% 57.40% 66.66% 81.00% 51.33% 67.57%
ProtoNet+IBI (ours) 45.33% 58.23% 66.75% 81.83% 52.53% 68.00%

∗ ProtoNet implementation as per Yao et al. (2022).

and IBI are able to further improve performance, with IBI achieving the best performance in most
cases, thus showing that IBI training can improve cross-domain transferability.

6 CONCLUSION AND FUTURE WORKS

In this paper, we attempt to explore the utility of IBP beyond its originally-intended usage for
building and verifying classifiers that are provably robust against adversarial attacks. In summary, we
identify the potential of IBP to conserve a neighborhood from the input image space to the learned
feature space through the layers of a deep neural network by minimizing the distances of the feature
embedding from the two bounds. This can be effective in few-shot classification problems to obtain
feature embeddings where task neighborhoods are preserved, thus enabling easy adaptability to
unseen tasks. Further, since interpolating between training tasks and their corresponding IBP bounds
can yield artificial tasks with a higher chance of lying on the task manifold, we exploit this property
of IBP to prevent overfitting to seen tasks in the few-task scenario. The resulting IBI training scheme
is shown to be effective in both the meta-learning and metric-learning paradigms of few-shot learning.

We demonstrate in our results that IBI can be effectively scaled to relatively large networks like
ResNet-12 as we typically only need to apply IBP to a few initial layers (see Appendix E). However,
this still adds extra computational cost (see Appendix E for a comparative study) which scales
linearly with the number of layers subjected to IBP. Therefore, to limit the additional complexity
and computational cost, a future direction of research may be to investigate the applicability of
more advanced provably robust training methods that yield more efficient and tighter bounds (Lyu
et al., 2021). Moreover, few-shot learners can also be improved with adaptive hyperparameters (Baik
et al., 2020), feature reconstruction (Lee & Chung, 2021), knowledge distillation (Tian et al., 2020),
embedding propagation (Rodrı́guez et al., 2020), etc. Thus, it may be interesting to observe the
performance gains from these orthogonal techniques when coupled with IBI. However, this may not
be a straightforward endeavor, given the complex dynamic nature of such frameworks.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We have included the pseudo-codes and PyTorch based Python implementation for the proposed
method in Appendices B and G, respectively. The description of all datasets used in this study
along with other key implementation details is available in Appendices D, E. The hyperparameter
settings for different algorithms along with their tuning strategy are listed in Appendix F. For the
theoretical analyses, complete proofs are provided in Appendix C. A copy of the code is available in
the Appendix G while the same can also be found at https://anonymous.4open.science/
r/maml-ibp-ibi-D072/.

REFERENCES

Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese, Vincenzo Piuri, and Fabio Scotti. A survey
of unsupervised generative models for exploratory data analysis and representation learning. Acm
computing surveys (csur), 54(5):1–40, 2021.

Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for
few-shot learning. In International Conference on Machine Learning, pp. 232–241. PMLR, 2019.

Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon Kim, and Kyoung Mu Lee. Meta-
learning with adaptive hyperparameters. Advances in Neural Information Processing Systems, 33:
20755–20765, 2020.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In International Conference on Learning Representations, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
Advances in Neural Information Processing Systems, 33:442–453, 2020.

Anthony L Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P Cunningham. Rectangular
flows for manifold learning. Advances in Neural Information Processing Systems, 34:30228–30241,
2021.

Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A Marchetti, Stephen W
Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, et al. Skin lesion analysis
toward melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (isbi), hosted by the international skin imaging collaboration (isic). In 2018 IEEE 15th
international symposium on biomedical imaging (ISBI 2018), pp. 168–172. IEEE, 2018.

Marissa Connor, Gregory Canal, and Christopher Rozell. Variational autoencoder with learned latent
structure. In International Conference on Artificial Intelligence and Statistics, pp. 2359–2367.
PMLR, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Sven Gowal, Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable verified training for
provably robust image classification. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In International Conference on Learning Representa-
tions, 2018.

10

https://anonymous.4open.science/r/maml-ibp-ibi-D072/
https://anonymous.4open.science/r/maml-ibp-ibi-D072/

Under review as a conference paper at ICLR 2023

Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and hallucinating
features. In Proceedings of the IEEE international conference on computer vision, pp. 3018–3027,
2017.

Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11719–11727, 2019.

Abhishek Kumar and Ben Poole. On implicit regularization in β− vaes. In International Conference
on Machine Learning, pp. 5480–5490. PMLR, 2020.

Dong Hoon Lee and Sae-Young Chung. Unsupervised embedding adaptation via early-stage feature
reconstruction for few-shot classification. In International Conference on Machine Learning, pp.
6098–6108. PMLR, 2021.

Hae Beom Lee, Taewook Nam, Eunho Yang, and Sung Ju Hwang. Meta dropout: Learning to perturb
latent features for generalization. In International Conference on Learning Representations, 2020.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the
26th annual international conference on machine learning, pp. 609–616, 2009.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10657–10665, 2019.

Xiaomeng Li, Lequan Yu, Yueming Jin, Chi-Wing Fu, Lei Xing, and Pheng-Ann Heng. Difficulty-
aware meta-learning for rare disease diagnosis. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 357–366. Springer, 2020.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn quickly for
few-shot learning. arXiv preprint arXiv:1707.09835, 2017.

Zhaoyang Lyu, Minghao Guo, Tong Wu, Guodong Xu, Kehuan Zhang, and Dahua Lin. Towards
evaluating and training verifiably robust neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4308–4317, June 2021.

Ron Meir and Tong Zhang. Generalization error bounds for bayesian mixture algorithms. Journal of
Machine Learning Research, 4(Oct):839–860, 2003.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In International Conference on Machine Learning, pp. 3578–3586. PMLR,
2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Paweł Morawiecki, Przemysław Spurek, Marek Śmieja, and Jacek Tabor. Fast and stable interval
bounds propagation for training verifiably robust models. In ESANN 2020 proceedings, European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
2020.

Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, and Tom Goldstein. Data augmentation for
meta-learning. In International Conference on Machine Learning, pp. 8152–8161. PMLR, 2021.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. {BOIL}: Towards representation
change for few-shot learning. In International Conference on Learning Representations, 2021.

Viraj Prabhu, Anitha Kannan, Murali Ravuri, Manish Chaplain, David Sontag, and Xavier Amatriain.
Few-shot learning for dermatological disease diagnosis. In Proceedings of the 4th Machine
Learning for Healthcare Conference, volume 106, pp. 532–552. PMLR, 2019.

11

Under review as a conference paper at ICLR 2023

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classification.
arXiv preprint arXiv:1803.00676, 2018.

Pau Rodrı́guez, Issam Laradji, Alexandre Drouin, and Alexandre Lacoste. Embedding propagation:
Smoother manifold for few-shot classification. In European Conference on Computer Vision, pp.
121–138. Springer, 2020.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural networks. In
International Conference on Learning Representations, 2018.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30, 2017.

Teruo Sunaga. Theory of an interval algebra and its application to numerical analysis. RAAG memoirs,
2:29–46, 1958.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, and Timothy M. Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In European Conference on
Computer Vision, pp. 266–282. Springer, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

Stephan Wojtowytsch and Weinan E. On the banach spaces associated with multi-layer relu networks:
Function representation, approximation theory and gradient descent dynamics. arXiv preprint
arXiv:2007.15623, 2020.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. Advances in Neural Information Processing Systems, 31, 2018.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International Conference on
Machine Learning, pp. 11887–11897. PMLR, 2021.

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpola-
tion. In International Conference on Learning Representations, 2022.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. arXiv preprint arXiv:1912.03820, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

12

Under review as a conference paper at ICLR 2023

A PROTOTYPE-BASED METRIC-LEARNING:

Metric-based few-shot learning aims to obtain a feature embedding of the task manifold suitable for
non-parametric classification. Prototype-based metric-learning, specifically Prototypical Network
(ProtoNet) (Snell et al., 2017), assigns a query point to the class having the nearest (in terms of
Euclidean distance) prototype in the learned embedding space. Given the model fθ and a task Ti, we
first compute class prototypes {ck}Kk=1 as the mean of fθ(xs

i,r) for the instances xs
i,r belonging to

class k:

ck =
1

Ns

∑
(xs

i,r,y
s
i,r)∈Ds,k

i

fθ(x
s
i,r), (9)

where Ds,k
i ⊂ Ds

i represents the subset of Ns support samples from class k. Given a sample xq
i,r

from the query set, the probability p(yqi,r = k|xq
i,r) of assigning it to the k-th class is calculated using

the distance function d(., .) between the representation fθ(x
q
i,r) and the prototype ck:

p(yqi,r = k|xq
i,r, fθ) =

exp(−d(fθ(xq
i,r), ck))∑

k′ exp(−d(fθ(xq
i,r), ck′))

. (10)

Thereafter, the parameters θ for the model fθ can be trained by minimizing cross-entropy loss (2). In
the testing stage, each query sample xq

j,r is assigned to the class having the maximal probability, i.e.,
yq
j,r = argmaxk p(y

q
j,r = k|xq

j,r).

B ALGORITHMS OF MAML AND PROTONET COUPLED WITH IBP AND IBI

The following Figure 4 illustrates a schematic diagram for the training of IBP and IBI variants.

x

ϵ
H

′

LCE

LUB

y

LLB

f
θ

S f
θ

L−S

Ti

L
Softmax
weighting

Figure 4: Interval bound propagation–based few-shot training (best viewed in color): For each query
data-label pair (x, y) in a given training task Ti, we start by defining a ϵ-neighborhood [x−1ϵ,x+1ϵ]
around x. The bounding box [f

θs(x, ϵ), fθs(x, ϵ)] around the embedding fθS (x) after the first S
layers of the learner is found using IBP. In addition to the classification loss LCE , we also minimize
the losses LLB and LUB which respectively measure the distances of fθS (x) to f

θs(x, ϵ) and
fθs(x, ϵ). A softmax across the three loss values is used to dynamically calculate the convex weights
for the losses, so as to prioritize the minimization of the dominant loss(es) at any given training step.
For IBP-based interpolation, artificial tasks T ′

i are created with instances H′ formed by interpolating
both the support and query instances with their corresponding lower or upper bounds. The mean of
the classification loss LCE for the Ti and the corresponding extra loss L′

CE for T ′
i is minimized.

The steps for MAML+IBP/IBI and ProtoNet+IBP/IBI are respectively presented in Algorithm 1 and
2. Please consult the main paper for various notations and equations used in the algorithms.

Remark 1. The way in which the training support set Ds
i informs the loss calculation on the

corresponding query set Dq
i differs between the MAML and ProtoNet variants. While a limited

number of training steps on the support set is undertaken to obtain the model fϕi
where the loss is

calculated on the query set for MAML, the support set is used to calculate the prototypes {ck}Kk=1
for the loss calculation on the query set for ProtoNet.

13

Under review as a conference paper at ICLR 2023

Algorithm 1 IBP/IBI for MAML training
Requires: Task distribution p(T), batch size B, learning rates η0 and η1, interval coefficient ϵ.

1: Randomly initialize the meta-learner parameters θ.
2: while not converged do
3: Sample a batch of B tasks from the distribution ρ(T).
4: For IBI, randomly sample an index 1 ≤ m ≤ B to perform the interpolation.
5: for all i ∈ {1, 2, · · · , B} do
6: Initialize base learner to meta-learner state.
7: Sample a support set Ds

i of data-label pairs {(xs
i,r,y

s
i,r)}

Ns
r=1 from task Ti.

8: Calculate the classification loss LCE using fθ(xs
i,r) and ys

i,r.
9: if i = m then

10: Generate interpolated support and query instances Hs′

i,r and Hs′

i,r using (8).
11: Calculate classification loss L′

CE using fθL−S (Hs′

i,r) and ys
i,r.

12: Set LCE = 1
2 (LCE + L′

CE).
13: end if
14: Update base learner parameters to ϕi = θ − η0∇θLCE .
15: Sample a query set Dq

i of data-label pairs {(xq
i,r,y

q
i,r)}

Nq

r=1 from task Ti.
16: Calculate the classification loss LCE with fϕi

(xq
i,r) and yq

i,r.
17: Calculate LLB and LUB respectively using (4) and (5).
18: if i = m then
19: Calculate classification loss L′

CE using fϕL−S (Hq′

i,r) and yq
i,r.

20: Set LCE = 1
2 (LCE + L′

CE).
21: end if
22: Calculate L by accumulating LCE , LLB and LUB using (6).
23: end for
24: Update meta-learner parameters θ = θ − η1 1

B

∑B
i=1∇θL.

25: end while

Algorithm 2 IBP/IBI for ProtoNet training
Requires: Task distribution p(T), learning rate η, interval coefficient ϵ.

1: Randomly initialize the learner parameters θ.
2: while not converged do
3: For IBI, randomly select if interpolation is to be performed.
4: Sample a support set Ds

i of data-label pairs {(xs
i,r,y

s
i,r)}

Ns
r=1 from task Ti.

5: Calculate the features fθL(xs
i,r) and find the prototypes {ck}Kk=1 using (9).

6: if interpolation to be performed then
7: Generate interpolated support and query instances Hs′

i,r and Hs′

i,r using (8).
8: Calculate features fθL−S (Hs′

i,r) and find prototypes {c′k}Kk=1.
9: end if

10: Sample a query set Dq
i of data-label pairs {(xq

i,r,y
q
i,r)}

Nq

r=1 from task Ti.
11: Calculate the loss LCE using (10) and (2).
12: Calculate LLB and LUB using (4) and (5).
13: if interpolation to be performed then
14: Calculate classification loss L′

CE with fθL−S (Hq′

i,r), {c′k}Kk=1 and yq
i,r by (10) and (2).

15: Set LCE = 1
2 (LCE + L′

CE).
16: end if
17: Calculate L by accumulating LCE , LLB and LUB using (6).
18: Update learner parameters θ = θ − η∇θL.
19: end while

14

Under review as a conference paper at ICLR 2023

C DETAILED THEORETICAL ANALYSIS

Interval bound propagation for networks with affine layer: Let us assume a network f with L
layers where the 0-th layer denotes the initial input. Let us also consider a layer l ≤ L that is not the
0-th input layer. The 0-th layer of f takes the input along with its perturbed counterparts as shown in
Section 3 in the main paper. If at the end of l − 1-th layer the activation, upper bound, and lower
bound are respectively zl−1, zl−1 and zl−1. If the l-th layer performs an affine transformation (such
as a convolutional, fully connected, batch normalization, etc.) followed by a monotonic activation
function (such as ReLU, sigmoid, tanh, etc.) i.e. zl = σ(Alzl−1 + bl), then as per Gowal et al.
(2019), we can calculate the interval bounds for the subsequent l-th layer as follows:

zl = σ(µl − ψl), (11)

zl = σ(µl + ψl), (12)

where ψl = |Al|ψl−1 and µl = Alµl−1 + bl given µl−1 =
zl−1+zl−1

2 and ψl−1 =
zl−1−zl−1

2 .

Lemma 1 (Lipschitz networks ensure bounded IBP). Let x and x be ε-perturbations of x ∼ PX

for an ε > 0 (i.e. x,x ∈ x(ε)). Given that the activation σ is Lipschitz continuous (such as ReLU)
with constant cσ > 0, there exists a constant D = D(cσ;A1, A2, · · · , AS ; ε) such that f

θS (x, ε)

and fθS (x, ε)) will at most be an ε̂-perturbed version of fθS (x), where ε̂ = εD.

Proof. Given that x1,x2 ∈ X∥∥h1(x1)− h1(x2)
∥∥ =

∥∥σ(A1x1 + b1)− σ(A1x2 + b1)
∥∥

≤ cσ
∥∥A1(x1 − x2)

∥∥ (13)

≤ cσ∥A1∥∥x1 − x2∥

where∥A1∥ = sup∥x∥=1∥A1x∥. The inequality 13 is due to the Lipschitz continuity of σ. Commonly
used activation functions, such as ReLU, tend to satisfy this condition. In particular, for ReLU,
cσ = 1. As such, the map h1 also turns out to be Lipschitz continuous. A similar argument also
proves that hl, l = 2, · · · , S all follow the same trait. As a result, fθS also becomes Lipschitz
continuous with accompanying constant (cσA)S , where A = max {∥Al∥}.
The recurrence relation of extremities in IBP, as suggested by Gowal et al. (2019), can be written as:

fθl(x, ε) = σ

{
(Al +|Al|)

2
fθl−1(x, ε) +

(Al −|Al|)
2

f
θl−1(x, ε) + bl

}
,

and f
θl(x, ε) = σ

{
(Al −|Al|)

2
fθl−1(x, ε) +

{Al +|Al|}
2

f
θl−1(x, ε) + bl

}
,

where the | · | operator results in a matrix with all elements replaced by their corresponding absolute
values, and l = 1, 2, ..., S. Thus,∥∥∥fθl(x, ε)− fθl(x)

∥∥∥
=

∥∥∥∥∥σ
{
(Al +|Al|)

2
fθl−1(x, ε) +

(Al −|Al|)
2

f
θl−1(x, ε) + bl

}
− σ

(
Alfθl−1(x) + bl

)∥∥∥∥∥
≤cσ

∥∥∥∥ (Al +|Al|)
2

fθl−1(x, ε) +
(Al −|Al|)

2
f
θl−1(x, ε)−Alfθl−1(x)

∥∥∥∥
=cσ

∥∥∥∥ (Al +|Al|)
2

(
fθl−1(x, ε)− fθl−1(x)

)
+

(Al −|Al|)
2

(
f
θl−1(x, ε)− fθl−1(x)

)∥∥∥∥
≤cσ

{∥∥∥∥ (Al +|Al|)
2

(
f1(θl−1(x, ε)− fθl−1(x)

)∥∥∥∥+

∥∥∥∥ (|Al| −Al)

2

(
fθl−1(x)− f

θl−1(x, ε)
)∥∥∥∥

}

≤cσ

{∥∥∥∥Al +|Al|
2

∥∥∥∥∥∥∥fθl−1(x, ε)− fθl−1(x)
∥∥∥+

∥∥∥∥|Al| −Al

2

∥∥∥∥∥∥∥fθl−1(x)− f
θl−1(x, ε)

∥∥∥} .

15

Under review as a conference paper at ICLR 2023

Observe that, in particular for l = 1∥∥∥fθ1(x, ε)− fθ1(x)
∥∥∥ ≤ cσ {∥∥∥∥A1 +|A1|

2

∥∥∥∥∥x− x∥+
∥∥∥∥|A1| −A1

2

∥∥∥∥∥x− x∥

}

= cσε

{∥∥∥∥A1 +|A1|
2

∥∥∥∥+

∥∥∥∥|A1| −A1

2

∥∥∥∥
}

= ε1 say,

i.e., the deviation in the first layer can be made arbitrarily small based on ε. The quantity∥∥∥fθ1(x)− f
θ1(x, ε)

∥∥∥ can be shown to be upper bounded using a similar argument. In other words,

both fθ1(x, ε) and f
θ1(x, ε) are at most ε1-perturbed from fθ1(x). By the method of induction we

eventually get a D = D(cσ;A1, A2, · · · , AS ; ε) > 0 for which the lemma holds.

Theorem 1 (Generalization bound). Let P̃ be the joint distribution of (fθS (X), Y), supported
on H × R. In the multi-task regime, let I denote the set of tasks, each consisting of
N samples. Define R̂(N, |I|) = ETi∼p̂(T)E(Xj ,Yj)∼p̂(Ti)[LCE(fθL−S (H∗

j), Yj)] and R =
ETi∼p(T)E(Xj ,Yj)∼Ti

[LCE(fθL−S (fθS (Xj)), Yj)]. For a bounded loss function LCE : R × R →
[0, a](a ≥ 0), if the neural network-induced map fθL−S is such that

∣∣∇fθL−S (·)
∣∣ <∞, we ensure:

∣∣∣R̂(N, |I|)−R∣∣∣− λ̃ ≾ 2L−S+1
√
2 log(2κ+ 2)

{
1√
N

+
1√
|I|

}
+

√
log(2|I|δ)

N
+

√
log(2δ)

|I|

holds with probability at least 1− δ, where λ̃ = λ̃(ε̂, λ).

Proof. Before beginning with the proof we point out that, based on Definition 1, given ε > 0 and
x ∈ X , any x

′ ∈ x(ε) can be written as x
′
= x+η(ε). For example, in the simplest case, η(ε) can be

a function in the family±ϵ1. Thus, in case of IBI, the f
θS (xi, ε) and fθS (xi, ε) can both be expressed

as fθS (xi) + η(ε̂) with corresponding η(ε̂). In essence H∗
i = (1− λ)fθS (xi) + λ(fθS (xi) + η(ε̂)),

where λ ∈ [0, 1]. Now, we can observe that,

fθL−S (H∗
i) = fθL−S

(
(1− λ)fθS (xi) + λ

[
fθS (xi) + η(ε̂)

])
= fθL−S

(
fθS (xi) + λη(ε̂)

)
= fθL−S

(
fθS (xi)

)
+ λ∇fθL−S

(
fθS (xi)

)
η(ε̂), (14)

where η(ε̂) ∈ Rκ, ε̂ being as mentioned in lemma 1. We obtain (14) by using the Taylor expansion of
fθL−S up to the first order. Given that

∣∣∇fθL−S (·)
∣∣ <∞, the second term λ∇fθL−S

(
fθS (xi)

)
η(ε̂)

can be made arbitrarily small. The higher-order terms in the expansion all follow suit, which justifies
their omission. Now,∣∣∣∣∣∣ 1N

N∑
i=1

LCE(fθL−S (H∗
i), yi)−

∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1N
N∑
i=1

[
LCE(fθL−S (H∗

i), yi)− LCE(fθL−S (fθS (xi)), yi)
]

+
1

N

N∑
i=1

LCE(fθL−S (fθS (xi)), yi)−
∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣LCE(fθL−S (H∗
i), yi)− LCE(fθL−S (fθS (xi)), yi)

∣∣
+

∣∣∣∣∣∣ 1N
N∑
i=1

LCE(fθL−S (fθS (xi)), yi)−
∫
H×R

LCE(fθL−S (x), y)dP̃(x, y)

∣∣∣∣∣∣ . (15)

16

Under review as a conference paper at ICLR 2023

Since our networks use ReLU activation, the map induced by fθL−S can be shown to be continuous.
GivenH is compact the output space also becomes compact. Restricted to such a space, the cross-
entropy loss LCE (similarly, regularized cross-entropy loss) turns out to be Lipschitz continuous.
Consequently,

|LCE(fθL−S (H∗
i), yi)−LCE(fθL−S (fθS (xi)), yi)|

≤ cL
∥∥∥fθL−S (H∗

i)− fθL−S

(
fθS (xi)

)∥∥∥ = λ̃(ε̂, λ), (16)

where cL > 0 is the Lipschitz constant associated with LCE . Without loss of generality we can
construct the map fθL−S such that∥fθL−S∥ ≤ 1. Now, in case there are |I| tasks involved, namely
{Ti}|I|i=1 (i.e., the multi-task regime), the population risk turns out to be

R = ETi∼p(T)E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (fθS (Xj)), Yj

)]
= ETi∼p(T)E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
.

We are interested in observing the deviation of the same from the realized risk. In other words,∣∣R̂(N, |I|)−R∣∣ ≤ ∣∣R̂(N, |I|)− J ∣∣︸ ︷︷ ︸
(i)

+
∣∣J −R∣∣︸ ︷︷ ︸

(ii)

, (17)

where J = ETi∼p̂(T)E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
and p̂ is the empirical counterpart of the

task distribution. Using Jensen’s inequality, (i) can be upper bounded by

ETi∼p̂(T)

∣∣∣∣∣E(Xj ,Yj)∼p̂(Ti)

[
LCE

(
fθL−S (H∗

j), Yj

)]
− E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣∣
≤λ̃+ ETi∼p̂(T)

∣∣∣∣E(Xj ,Yj)∼p̂(Ti)

[
LCE

(
fθL−S (Hj), Yj

)]
− E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣ ,
(18)

where we utilize arguments (15) and (16) to reach (18). Using the union bound based on |I| tasks on
top of Corollary 3.14 of Wojtowytsch & E (2020) we can show that the second term in the right-hand

side of (18) becomes ≾ 2L−S+1
√

2 log(2κ+2)
N + a

√
2 log(

2|I|
δ)

N , with probability at least 1− δ.

To put a deterministic upper bound on (ii) let us first define the class of functions

G =

{
g : g(T) = E(fθS (X),Y)∼P̃

[
LCE

(
fθL−S (H), Y

)]
; fθL−S ∈WL−S

}
,

where WL−S is the function space induced by networks with L− S hidden layers (Wojtowytsch &
E, 2020). Let us now calculate the Rademacher complexity of the class functions G:

Rad
(
G, {Ti}|I|i=1

)
= Eξ sup

g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξig(Ti)

∣∣∣∣∣∣ = Eξ sup
g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξiETi

[
LCE

(
fθL−S (H), Y

)]∣∣∣∣∣∣
≤ ETiEξ sup

g∈G

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξiLCE

(
fθL−S (H), Y

)∣∣∣∣∣∣ (19)

≤ cLETiEξ sup
fθL−S∈WL−S

1

|I|

∣∣∣∣∣∣
|I|∑
i=1

ξifθL−S (H)

∣∣∣∣∣∣ (20)

≤ cL2L−S+1

√
2 log(2κ+ 2)

|I|
, (21)

where (20) is due to the Lipschitz property ofLCE(·, y) [Lemma 26.9 of Shalev-Shwartz & Ben-David
(2014) or Theorem 7 of Meir & Zhang (2003)]. We arrive at (21) using lemma 3.13 of Wojtowytsch

17

Under review as a conference paper at ICLR 2023

& E (2020). The inequality (19) is based on the fact that supu∈U
∣∣E[u(X)]

∣∣ ≤ E[supu∈U
∣∣u(X)

∣∣],
given the expectation exists for the class of functions U and random variable X .

Thus we obtain the deterministic bound on (ii) given by∣∣∣∣ETi∼p̂(T)E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]
− ETi∼p(T)E(Xj ,Yj)∼Ti

[
LCE

(
fθL−S (Hj), Yj

)]∣∣∣∣
≾

√
2 log(2κ+ 2)

|I|
+

√
log(2δ)

|I|
,

that holds with probability at least 1− δ. The bounds on (i) and (ii) together prove the theorem.

D DETAILS OF DATASETS USED IN THIS STUDY

miniImageNet: The miniImageNet dataset (Vinyals et al., 2016) is a commonly used subset of
ImageNet (Deng et al., 2009) for evaluating few-shot classifiers. The dataset contains a total of 100
classes each containing 600 images of resolution 84× 84× 3. Following the directives of Vinyals
et al. (2016) from the total 100 classes 64 are kept in the Training set, 16 are retained for Validation,
and the rest of the 20 classes are used for testing.

tieredImageNet: In (Ren et al., 2018) the authors proposed a new larger subset of ImageNet (Deng
et al., 2009) for addressing the limitations of miniImageNet. In miniImageNet it is not ensured that
the classes used for training are distinct from those contained in the Test set. Evidently, this contains
the risk of information leakage and may not provide a fair evaluation of the few-shot classifier. As
a remedy Ren et al. (2018) proposed to go higher in the class hierarchy in ImageNet. This enables
tieredImageNet to use higher-level categories in the Training, Validation, and Test sets maintaining
significant diversity between the three. In essence, a total of 608 ImageNet leaf-level classes are
considered that can be categorized into 34 groups. Among these 34 higher-level groups, 20 are used
for training, 6 are kept for validation, and the rest 8 are included in the Test set.

miniImageNet-S: This dataset is created by only using a subset of the original miniImageNet
Training set for training the few-shot learner in a few-task scenario Yao et al. (2022).

Training Classes: n03017168, n07697537, n02108915, n02113712,
n02120079, n04509417, n02089867, n03888605, n04258138, n03347037,
n02606052, n06794110

Validation and Test sets are kept as same as those used in miniImageNet.

DermNet-S: DermNet-S (Yao et al., 2022) is a subset of the ”Dermnet Skin Disease Atlas” publicly
available at http://www.dermnet.com/. The dataset after discarding the duplicates contains
more than 22,000 medical images spread across 625 classes of dermatological diseases. Following the
preprocessing suggested by Prabhu et al. (2019) the authors of (Yao et al., 2022) created DermNet-S
by first extracting the 203 classes containing more than 30 images. Then from the long-tailed data
distribution of the 203 disease classes, the top 30 larger classes are kept for training while the smaller
53 bottom classes are considered for meta-testing. The images are resized to 84× 84× 3 to match the
resolution of miniImageNet. We follow the same dataset construction strategy in our case. Moreover,
we use random classes not included in the Training or Test set as the Validation set. The complete list
of classes in the Training and Test sets are listed as follows:

Training Classes: Seborrheic Keratoses Ruff, Herpes Zoster,
Atopic Dermatitis Adult Phase, Psoriasis Chronic Plaque, Eczema
Hand, Seborrheic Dermatitis, Keratoacanthoma, Lichen Planus,
Epidermal Cyst, Eczema Nummular, Tinea (Ringworm) Versicolor,
Tinea (Ringworm) Body, Lichen Simplex Chronicus, Scabies,
Psoriasis Palms Soles, Malignant Melanoma, Candidiasis large
Skin Folds, Pityriasis Rosea, Granuloma Annulare, Erythema
Multiforme, Seborrheic Keratosis Irritated, Stasis Dermatitis
and Ulcers, Distal Subungual Onychomycosis, Allergic Contact
Dermatitis, Psoriasis, Molluscum Contagiosum, Acne Cystic,
Perioral Dermatitis, Vasculitis, Eczema Fingertip

18

http://www.dermnet.com/

Under review as a conference paper at ICLR 2023

Testing Classes: Warts, Ichthyosis Sex Linked, Atypical Nevi,
Venous Lake, Erythema Nodosum, Granulation Tissue, Basal Cell
Carcinoma Face, Acne Closed Comedo, Scleroderma, Crest Syndrome,
Ichthyosis Other Forms, Psoriasis Inversus, Kaposi Sarcoma,
Trauma, Polymorphous Light Eruption, Dermagraphism, Lichen
Sclerosis Vulva, Pseudomonas, Cutaneous Larva Migrans, Psoriasis
Nails, Corns, Lichen Sclerosus Penis, Staphylococcal Folliculitis,
Chilblains Perniosis, Psoriasis Erythrodermic, Squamous Cell
Carcinoma Ear, Basal Cell Carcinoma Ear, Ichthyosis Dominant,
Erythema Infectiosum, Actinic Keratosis Hand, Basal Cell Carcinoma
Lid, Amyloidosis, Spiders, Erosio Interdigitalis Blastomycetica,
Scarlet Fever, Pompholyx, Melasma, Eczema Trunk Generalized,
Metastasis, Warts Cryotherapy, Nevus Spilus, Basal Cell Carcinoma
Lip, Enterovirus, Pseudomonas Cellulitis, Benign Familial Chronic
Pemphigus, Pressure Urticaria, Halo Nevus, Pityriasis Alba,
Pemphigus Foliaceous, Cherry Angioma, Chapped Fissured Feet,
Herpes Buttocks, Ridging Beading

ISIC: Following Yao et al. (2022) for “ISIC 2018: Skin Lesion Analysis Towards Melanoma
Detection” (Codella et al., 2018; Li et al., 2020) we select the third task where 10,015 medical images
are categorized into seven classes based on lesion types. We first resize the images to 84× 84× 3 to
match the miniImageNet resolution. Then among the seven classes in the ISIC dataset, we select the 4
classes containing a higher number of samples for training while considering the rest for meta-testing
as per the directives of Yao et al. (2022). Since there are only 4 classes in the Training set setting the
number of ways to 2 results in six possible class combinations in a task. This in consequence offers
an extreme few-task scenario. For hyper-parameter tuning random classes are used as a Validation set
following the cross-validation-based approach employed in (Yao et al., 2022). The list of classes in
the Training and the Test sets are listed as follows:

Training Set: Nevus, Melanoma, Benign Keratoses, Basal Cell
Carcinoma

Testing Set: Dermatofibroma, Pigmented Bowen’s, Vascular

E IMPLEMENTATION DETAILS

Scheduling of ϵ: In their paper Gowal et al. (2019) recommended starting with an initial perturbation
ϵ0 = 0 and gradually increasing it to the intended perturbation ϵ over the training steps. In our case,
we follow a similar approach for scheduling the value of perturbation ϵt at the t-th training step. We
have observed that a fast increase in perturbation usually slows down training while a very slow
increment fails to aid the learner. From extensive experimentation with various scheduling techniques
such as linear, cosine, etc., we have found that the following strategy works well in practice. If
the maximum allowed number of training steps is set to T then for the step t the perturbation ϵt is
calculated as:

ϵt =

{
ϵ if t > ⌈0.9T ⌉

t
0.9T ϵ

. (22)

In essence, we linearly increase ϵt starting from 0 up to ϵ over 90% of the maximum training steps T
and keep it fixed at ϵ for the remainder of the training.

Frequency of interpolation for IBI variants: Performing IBP bound–based interpolation for every
task during training may not be beneficial and may instead mislead the learner. For MAML, we have
seen that performing interpolation once in every batch of B tasks aids the training process. In the case
of ProtoNet, we have found that performing IBP bound–based interpolation with a 25% probability
results in the best outcome.

Modifications to network architecture: We have used two networks for our experiments namely
“4-CONV” and “ResNet-12”. The “4-CONV” network can be seamlessly integrated with IBI for
both MAML and ProtoNet. This network consists of 4 blocks, each having a convolution, batch
normalization, max pooling, and ReLU in sequential order. IBI can be performed after any one of
the blocks. The ResNet-12 network also consists of 4 blocks where a block (except the first one)

19

Under review as a conference paper at ICLR 2023

receives inputs from (1) the output of the preceding block, and (2) the input of the preceding block
through a skip connection. While the idea of applying IBI after any of the blocks seems appealing,
the presence of skip connections may hinder a straightforward integration of IBI in this case. To
understand how ResNet-12 can be customized to accommodate MAML+IBP (and consequently
MAML+IBI) we undertake an ablation study on the miniImageNet-S dataset in a 5-way 1-shot
classification problem as described in Table 6. We can observe that in our initial hyperparameter
tuning experiment, MAML+IBP can not match the performance of vanilla MAML on ResNet-12.
Moreover, the performance gap increases as IBP is applied deeper into the network. This may be
explained by the fact that the interval bounds become gradually loose as they progress through the
network. Thus, with increasing depth, the magnitude of the bound losses (especially LUB as the
ReLU activations prevent LLB from becoming too large) will largely outscale the classification
loss and consequently affect convergence (see Remark 2). Applying IBP after only the first block
still fails to achieve parity with the baseline because IBP induces a distortion in the feature space,
due to its regularization effect. While the sequential part of the blocks after IBP can adapt to this
distortion due to their complexity, the simpler skip paths can not do so. Hence, the effect of the
distortion keeps propagating to the deeper blocks via skip connections. To aid the network in such
a situation, we investigate three approaches to modify the skip connection immediately after the
block(s) subjected to IBP, viz. (1) remove the skip connection for the subsequent block (2) introduce
additional layers in the skip connection for the subsequent block to make it deeper and more complex
(3) use a skip after one or more of the initial sub-block(s) (consisting sequentially of one convolution,
one batch normalization, and one ReLU layer) of the next block. Among the three approaches,
we empirically found that MAML+IBP (consequently MAML+IBI) performs best when the skip
connection starts after the second sub-block in block 2. Due to the comparatively powerful learning
strategy of ProtoNet, no such modifications to ResNet-12 are necessary for ProtoNet+IBI.

Table 6: Ablation study of ResNet-12 modifications for MAML+IBP on miniImageNet-S in terms of
mean Accuracy over 600 tasks with 95% confidence interval.

Algorithm IBP position Accuracy

MAML None (Baseline) 40.02±0.78%

MAML+IBP after block 4 21.24±0.54%
MAML+IBP after block 3 23.77±0.59%
MAML+IBP after block 2 29.62±0.62%
MAML+IBP after block 1 37.95±0.83%

MAML+IBP after block 1 with no-skip at block 2 37.81±0.85%
MAML+IBP after block 1 with deeper skip at block 2 38.54±0.81%
MAML+IBP after block 1 with skip and output combination at block 2 40.50±0.83%
MAML+IBP after block 1 with skip after 1 sub-block in block 2 42.18±0.82%
MAML+IBP after block 1 with skip after 2 sub-blocks in block 2 43.50±0.86%

Remark 2. [Scalability of IBI] IBP (and consequently IBI) requires the propagation of the two
interval bounds along with the input data. This introduces a computational overhead, especially in
deeper networks. However, in practice even in a deeper network, we may not need to perform IBP
except in the initial few layers, as the bound losses will otherwise overwhelm the classification loss
and consequently impact convergence. To demonstrate this, we plot the losses (up to 5000 training
steps for the ease of visualization) in the following Figure 5 for MAML+IBI using a ResNet-12
network for 5-way 1-shot miniImageNet-S classification, when IBP is applied up to blocks 1-4. We
can see that the three losses have comparable scales only when IBP is applied after block 1. In all
other cases, LUB heavily dominates the total loss. But, due to its sheer magnitude, the optimizer is
unable to minimize it. Thus, in practice, IBP should only be limited to a few initial layers in deeper
networks. Consequently, IBI easily scales to deeper networks despite the computational overhead.

Remark 3. To show that IBP and IBI variants are well-scalable as their vanilla counterpart we list
the actual training costs in the following Table 7 in terms of the average time in seconds to execute a
single training step of the algorithm. All the experiments are performed in the same environment
using a RTX 3090 GPU. From Table 7 we can observe that, in the case of MAML, the IBI and IBP
variants only takes about 40%-70% additional time when “4-CONV” is used. The difference in cost
reduces further if ResNet-12 is used as the backbone. This is expected as we only need to apply

20

Under review as a conference paper at ICLR 2023

0 1000 2000 3000 4000
Steps

10-10

100

1010

1020

Lo
ss

 w
it

h
 u

p
p
e
r

b
o
u

n
d

(i
n
 l
o
g
 s

ca
le

)

(a)

0 1000 2000 3000 4000
Steps

0

0.5

1

1.5

2

2.5

Lo
ss

 w
it

h
 l
o
w

e
r

b
o
u
n
d

(b)

0 1000 2000 3000 4000
Steps

0

1

2

3

4

C
la

ss
ifi

ca
ti

o
n
 l
o
ss

(c)

0 1000 2000 3000 4000
Steps

100

1010

1020

To
ta

l
lo

ss
(i

n
 l
o
g
 s

ca
le

)

(d)

Figure 5: In the four plots above of losses against training steps the Blue, Green, Red, and Magenta
lines respectively denote IBI applied after blocks 1,2,3, and 4 in ResNet-12 without any additional
modifications. (a) Plot of LUB in log scale for ease of visualization. (b) Plot of LLB . (c) Plot of
LCE . (d) Plot of L in log scale for ease of visualization.

IBP in the first few layers of ResNet-12 to gain its full advantage. For ProtoNet, the increment in
computational cost for the proposed techniques is observed to be slightly more compared to that of
MAML.

Table 7: Actual computational cost in seconds for IBP and IBI variants of MAML and ProtoNet with
“4-CONV” and ResNet-12 backbone.

Algorithm 4-CONV ResNet-12

1-shot 5-shot 1-shot 5-shot

MAML 0.244 0.432 1.408 3.742
MAML + IBP (ours) 0.407 0.615 1.994 4.324
MAML + IBI (ours) 0.412 0.616 2.001 4.326

ProtoNet 0.067 0.073 0.075 0.091
ProtoNet + IBP (ours) 0.129 0.144 0.196 0.221
ProtoNet + IBI (ours) 0.133 0.156 0.202 0.233

F HYPERPARAMETERS USED IN IBP AND IBI

F.1 NAMES AND FUNCTIONS OF HYPERPARAMETERS

The following Table 8 describes the hyperparameters used in the vanilla MAML, MAML+IBP, and
MAML+IBI.

The following Table 9 describes the hyperparameters used in the vanilla ProtoNet, ProtoNet+IBP,
and ProtoNet+IBI.

F.2 HYPERPARAMETER SEARCH SPACE AND TUNING

For hyperparameter tuning, we employ a grid search. In Table 10, we list the search spaces for each of
the hyperparameters used in MAML+IBP and MAML+IBI. Moreover, in Table 11, we also detail the
search spaces for each of the hyperparameters used in ProtoNet+IBP and ProtoNet+IBI. For all other
learners used in Tables 1 and 2 in the main paper, the results are either taken from the corresponding
article or reproduced using the originally recommended hyperparameter settings.

In Tables 12 and 13, we report the optimal dataset-specific hyperparameters for MAML+IBP and
MAML+IBI. Similarly, Tables 14 and 15 detail the optimal dataset-specific hyperparameter choices
for ProtoNet+IBP and ProtoNet+IBI.

For Table 3 in the main paper, the methods using static weights share the same hyperparameter
settings with their dynamic weighted counterpart except for γ, which is not used for the static weight
runs. For Table 4 in the main paper, all the MAML variants use the same settings as vanilla MAML.
Further, for all the different interpolation strategies Beta distribution is used with the choices of α
and β matching those of the MAML+IBI settings.

21

Under review as a conference paper at ICLR 2023

Table 8: Descriptions of hyperparameters used in vanilla MAML, MAML+IBP, MAML+IBI

Hyperarameter name Hyperparameter description

Hyperparameters used in MAML

Meta-shots Number of shots in the query set in the training phase.
Inner loop iterations Number of iterations of the inner loop during training on support set.
Inner loop learning rate η0 Learning rate for SGD in the inner loop during training on support set.
Meta-step size η1 Learning rate for ADAM in the meta-learner update during training.
Meta-batch B Batch size of task during training.
Meta-iterations T Number of training steps.
Evaluation iterations Number of fine-tuning steps on support set during meta-testing.

Additional hyperparameters introduced in MAML+IBP

Interval coefficient ϵ Perturbation required for IBP.
Softmax coefficient γ Controls the relative importance of the three losses used in MAML+IBP

during softmax-based weighting in training phase.
Layer S A layer in the network where IBP losses will be calculated.

Additional hyperparameters introduced in MAML+IBI

α and β Hyperparameters associated with the Beta distribution required for
performing IBP bounds-based interpolation.

Table 9: Descriptions of hyperparameters used in vanilla ProtoNet, ProtoNet+IBP, ProtoNet+IBI

Hyperarameter name Hyperparameter description

Hyperparameters used in MAML

Number of ways in training Traditional ProtoNet Snell et al. (2017) usually considers a higher num-
ber of ways during training.

Meta-shots Number of shots in the query set in training phase.
Meta-step size η Learning rate for ADAM in the learner update during training.
Meta-iterations T Number of training steps.
Distance metric Choice of distance measure, Euclidean or Cosine.

Additional hyperparameters introduced in ProtoNet+IBP

Interval coefficient ϵ Perturbation required for IBP.
Softmax coefficient γ Controls the relative importance of the three losses used in ProtoNet+IBP

during softmax-based weighting in training phase.
Layer S A layer in the network where IBP losses will be calculated.

Additional hyperparameters introduced in ProtoNet+IBI

α and β Hyperparameters associated with the Beta distribution required for
performing IBP bounds-based interpolation.

F.3 FULL RESULTS

Contenders in Motivating Example: For the contenders in Table 1 the settings are as follows:

1. MAML+SN on fθS : This variant of MAML applies Spectral Normalization (Miyato et al.,
2018) up to the S-th layer of the “4-CONV” network. Here similar to the MAML+IBP the
value of S is set to 3.

2. MAML+SN on fθ: Here Spectral Normalization is applied on the full network.
3. MAML+GL: In this variant, we calculate a Gaussian regularization loss instead of IBP. Here

we send the query set along with its perturbed version and attempt to minimize their norm
after the S-th layer alongside LCE . The extra loss LGL can be expressed as follows:

LGL =
1

Nq

Nq∑
r=1

||fθS (xq
i,r)− fθS (xq

i,r + ζ)||22,

22

Under review as a conference paper at ICLR 2023

Table 10: Grid search space of hyperparameters used in vanilla MAML, MAML+IBP, MAML+IBI

Hyperarameter name Hyperparameter search space

Hyperparameters used in MAML

Meta-shots Set to 15 following Finn et al. (2017).
Inner loop iterations Set to 5 following Finn et al. (2017).
Inner loop learning rate η0 Set to 0.01 following Finn et al. (2017).
Meta-step size η1 Set to 0.001 following Finn et al. (2017).
Meta-batch B Set to 4 following Finn et al. (2017).
Meta-iterations T Set to 60000 for miniImageNet and tieredImageNet following Finn et al.

(2017). Set to 50000 for miniImageNet-S, DermNet-S, and ISIC following
Yao et al. (2022).

Evaluation iterations Set to 10 following Finn et al. (2017).

Additional hyperparameters introduced in MAML+IBP

Interval coefficient ϵ Searched in the set {0.05, 0.1, 0.2}.
Softmax coefficient γ Searched in the set {0.01, 1, 10}.
Layer S For the “4-CONV” learner containing 4 blocks of Convolution, Batch nor-

malization, Max pooling, and ReLU, S is searched at the block level in
the set {1, 2, 3, 4}. For example, S = 2 means IBP losses are calculated
after the second block. For the “ResNet-12” network the ablation study in
Appendix E provides the optimum choice of S.

Additional hyperparameters introduced in MAML+IBI

α and β Search space contains three pairs of choices (0.1, 1), (0.25, 1), and (0.5, 0.5)
where a tuple contains the value of α and β in order.

Table 11: Grid search space of hyperparameters used in vanilla ProtoNet, ProtoNet+IBP, ProtoNet+IBI

Hyperarameter name Hyperparameter search space

Hyperparameters used in ProtoNet

Number of ways in training Set to 30 for miniImageNet and tieredImageNet following Snell et al. (2017).
Set to 5 for miniImageNet-S and DermNet-S, and 2 for ISIC as the benefit
of training using higher ways cannot be leveraged in the few-task scenario
Yao et al. (2022).

Meta-shots Set to 15 following Snell et al. (2017).
Meta-step size η Set to 0.001 following Snell et al. (2017).
Meta-iterations T Set to 20000 for miniImageNet and tieredImageNet following Snell et al.

(2017). Our implementation of ProtoNet, unlike Yao et al. (2022), does not
require an additional hyperparameter B, analogous to MAML, for IBP or
IBI training. Thus, for miniImageNet-S, DermNet-S, and ISIC also we set T
to 20000.

Distance metric Set to Euclidean following Snell et al. (2017).

Additional hyperparameters introduced in ProtoNet+IBP

Interval coefficient ϵ Searched in the set {0.05, 0.1, 0.2}.
Softmax coefficient γ Searched in the set {0.01, 1, 10}.
Layer S For the “4-CONV” learner containing 4 blocks of Convolution, Batch nor-

malization, Max pooling, and ReLU, S is searched at the block level in
the set {1, 2, 3, 4}. For example, S = 2 means IBP losses are calculated
after the second block. For the “ResNet-12” network the ablation study in
Appendix E provides the optimum choice of S.

Additional hyperparameters introduced in ProtoNet+IBI

α and β Search space contains three pairs of choices (0.1, 1), (0.25, 1), and (0.5, 0.5)
where a tuple contains the value of α and β in order.

23

Under review as a conference paper at ICLR 2023

Table 12: Optimal hyperparamter setting for MAML+IBP, MAML+IBI in 1-shot settings when
“4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in MAML+IBP

ϵ 0.1 0.05 0.1 0.2 0.05
γ 0.1 0.1 0.1 0.1 0.1
S 3 3 3 3 3

Additional hyperparameters introduced in MAML+IBI

α and β (0.25, 1) (0.25, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

Table 13: Optimal hyperparamter setting for MAML+IBP, MAML+IBI in 5-shot settings when
“4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in MAML+IBP

ϵ 0.1 0.05 0.1 0.2 0.05
γ 0.1 0.1 0.1 0.1 0.1
S 3 3 3 3 3

Additional hyperparameters introduced in MAML+IBI

α and β (0.1, 1) (0.1, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

Table 14: Optimal hyperparamter setting for ProtoNet+IBP, ProtoNet+IBI in 1-shot settings when
“4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in ProtoNet+IBP

ϵ 0.05 0.05 0.1 0.1 0.05
γ 1 1 1 1 1
S 1 1 1 1 1

Additional hyperparameters introduced in ProtoNet+IBI

α and β (0.1, 1) (0.25, 1) (0.5, 0.5) (0.25, 1) (0.1, 1)

where ζ ∼ N (0, σ), and the standard deviation σ is scheduled similar to ϵ with starting
from 0 and slowly increasing to ϵ/2.

4. MAML+ULBL: Following Morawiecki et al. (2020) we replace the two bound losses with a
single one that calculates the distance between the upper and lower interval bounds. The
loss LULBL in this case can be written as:

LULBL =
1

Nq

Nq∑
r=1

||fθS (x
q
i,r, ϵ)− fθS (x

q
i,r, ϵ)||

2
2

The full version of Table 1 is provided in the following Table 17.

Comparison of IBP with other few-shot learners: As contending meta-learning algorithms, we
choose the vanilla MAML along with notable meta-learners such as Meta-SGD Li et al. (2017),
Reptile Nichol et al. (2018), LLAMA Grant et al. (2018), R2-D2 Bertinetto et al. (2019), and BOIL

24

Under review as a conference paper at ICLR 2023

Table 15: Optimal hyperparamter setting for ProtoNet+IBP, ProtoNet+IBI in 5-shot settings when
“4-CONV” network is used.

Hyperarameter Hyperparameter settings for datasets

miniImageNet tieredImageNet miniImageNet-S DermNet-S ISIC

Additional hyperparameters introduced in ProtoNet+IBP

ϵ 0.05 0.05 0.1 0.1 0.05
γ 1 1 1 1 1
S 1 1 1 1 1

Additional hyperparameters introduced in ProtoNet+IBI

α and β (0.1, 1) (0.1, 1) (0.5, 0.5) (0.5, 0.5) (0.25, 1)

Table 16: Optimal hyperparameter settings for MAML+IBP/IBI and ProtoNet+IBP/IBI when
“ResNet-12” is used as the network.

Datasets

Learner Shots Parameter miniImageNet-S DermNet-S ISIC

MAML+IBP 1 and 5 ϵ 0.1 0.1 0.1
MAML+IBP 1 and 5 γ 0.1 0.1 0.1
MAML+IBP 1 and 5 S∗ 1 1 1

MAML+IBI (Additional) 1 and 5 α and β (0.1, 1) (0.1, 1) (0.1, 1)

ProtoNet+IBP 1 and 5 ϵ 0.05 0.05 0.05
ProtoNet+IBP 1 and 5 γ 0.1 0.1 0.1
ProtoNet+IBP 1 and 5 S∗ 1 1 1

ProtoNet+IBI (Additional) 1 and 5 α and β (0.1, 1) (0.1, 1) (0.1, 1)
∗: Set as per Appendix E with necessary modifications.

Table 17: Effect of IBP on MAML for miniImageNet and tieredImageNet datasets in terms of 5-way
1-shot Accuracy and intra-task compactness. This is the full version of Table 1.

Algorithm Accuracy 1-NN distance

miniImageNet tieredImageNet miniImageNet tieredImageNet

MAML (Finn et al., 2017) 48.70±1.75% 51.67±1.81% 0.97±0.02 0.98±0.02
MAML+SN on fθS 44.90±1.12% 45.26±1.05% 1.38±0.04 1.41±0.04
MAML+SN on fθ 42.83±0.94% 43.06±0.96% 1.52±0.04 1.53±0.04
MAML+GL 48.70± 0.97% 51.90±0.98% 0.96±0.02 0.98±0.02
MAML+ULBL 49.43±0.90% 51.67±0.91% 0.94±0.02 0.97±0.02
MAML+IBP (ours) 50.76±0.83% 54.36±0.80% 0.90±0.02 0.96±0.02

Oh et al. (2021). Moreover, considering the regularizing effect of IBP and IBI, we also include
meta-learners such as TAML Jamal & Qi (2019), Meta-Reg Yin et al. (2019), and Meta-Dropout
Lee et al. (2020) which employ explicit regularization. We further include data augmentation–reliant
learners such as MetaMix Yao et al. (2021), Meta-Maxup Ni et al. (2021), as well as the inter-
task interpolation method MLTI Yao et al. (2022). In case of metric-learners, we compare against
the vanilla ProtoNet in addition to other notable methods like MatchingNet Vinyals et al. (2016),
RelationNet Sung et al. (2018), IMP Allen et al. (2019), and GNN Satorras & Estrach (2018). We also
compare against ProtoNet coupled with data augmentation methods such as MetaMix, Meta-Maxup,
and MLTI, as done in Yao et al. (2022). While Yao et al. (2022) had to modify the training strategy
of the canonical ProtoNet to accommodate the changes introduced by MetaMix, Meta-Maxup, and
MLTI, the flexibility of IBP and IBI imposes no such requirements. We summarize the findings in
Table 18. We can observe that either IBP or IBI or both achieve better Accuracy than the competitors
in all cases. The slightly better performance of IBP with ProtoNet seems to imply that IBP-based
task interpolation is often unnecessary for ProtoNet when a large number of tasks is available.

25

Under review as a conference paper at ICLR 2023

Table 18: Performance comparison of the two proposed methods with baselines and competing
algorithms on miniImageNet and tieredImageNet datasets. The results are reported in terms of mean
Accuracy over 600 tasks with 95% confidence interval.

Dataset Learner type Algorithm 1-shot 5-shot

miniImageNet

Meta-learners

MAML (Finn et al., 2017) 48.70±1.75% 63.11±0.91%
Meta-SGD (Li et al., 2017) 50.47±1.87% 64.03±0.94%
Reptile (Nichol et al., 2018) 49.97±0.32% 65.99±0.58%
LLAMA (Grant et al., 2018) 49.40±0.84% -
R2-D2 (Bertinetto et al., 2019) 49.50±0.20% 65.40±0.20%
TAML (Jamal & Qi, 2019; Yao et al., 2022) 46.40±0.82% 63.26±0.68%
BOIL (Oh et al., 2021) 49.61±0.16% 66.45±0.37%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 47.02±0.77% 63.19±0.69%
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 47.47±0.81% 64.11±0.71%
MAML+MetaMix (Yao et al., 2021; 2022) 47.81±0.78% 64.22±0.68%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 47.68±0.79% 63.51±0.75%
MAML+MLTI (Yao et al., 2022) 48.62±0.76% 64.65±0.70%

MAML+IBP (ours) 50.76±0.83% 67.13±0.81%
MAML+IBI (ours) 52.16±0.84% 67.56±0.86%

Metric-learners

MatchingNet Vinyals et al. (2016) 43.44±0.77% 55.31±0.73%
RelationNet (Sung et al., 2018) 50.44±0.82% 65.32±0.70%
IMP (Allen et al., 2019) 49.60±0.80% 68.10±0.80%
GNN (Satorras & Estrach, 2018) 49.02±0.98% 63.50±0.84%
ProtoNet (Snell et al., 2017) 49.42±0.78% 68.20±0.66%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 47.21±0.76% 64.38±0.67%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 47.33±0.79% 64.43±0.69%
ProtoNet∗+MLTI (Yao et al., 2022) 48.11±0.81% 65.22±0.70%

ProtoNet+IBP (ours) 50.48±0.83% 68.33±0.79%
ProtoNet+IBI (ours) 51.79±0.81% 68.46±0.79%

tieredImageNet

Meta-learners

MAML (Finn et al., 2017) 51.67±1.81% 70.30±0.08%
Meta-SGD (Li et al., 2017) 48.97±0.21% 66.47±0.21%
Reptile (Nichol et al., 2018) 49.97±0.32% 65.99±0.58%
BOIL (Oh et al., 2021) 49.35±0.26% 69.37±0.12%

MAML+IBP (ours) 54.36±0.80% 71.30±0.77%
MAML+IBI (ours) 54.16±0.79% 71.00±0.84%

Metric-learners

MatchingNet (Vinyals et al., 2016) 54.02±0.79% 70.11±0.82%
RelationNet (Sung et al., 2018) 54.48±0.93% 71.32±0.78%
ProtoNet (Snell et al., 2017) 53.31±0.20% 72.69±0.74%

ProtoNet+IBP (ours) 53.83±0.81% 75.26±0.83%
ProtoNet+IBI (ours) 55.16±0.77% 74.96±0.82%

∗ ProtoNet implementation as per Yao et al. (2022).

Notes on contenders used in Table 2: The extra parameter settings required for the contenders in
Table 2 are as follows:

1. MAML+WCL: Here given a task its worst-case loss in the ϵ-neighborhood (Gowal et al.,
2019) is added with the original loss. In essence, this acts similar to augmentation with the
worst-case logits. We tune the relative contribution of the original task and the worst-case
task to the final LCE following the recommendations made by (Gowal et al., 2019).

2. MAML+GA (image space): Here the original task is perturbed with Gaussian noise to form
the augmented task in the image space. The noise is sampled from a Gaussian with mean 0
and standard deviation σ = ϵ/2. The value of σ is scheduled similarly to ϵ.

3. MAML+GA (at fθS feature space): Here the embedding of the original task after fθS

is perturbed with Gaussian noise. Similar to the image space, the mean of the normal
distribution used for sampling noise can be set to 0. However, finding a good σ may not be
straightforward as the fθS feature space is continuously updating. In our implementation,
we take σ as half of the median distance between the original task and its bounds over a
MAML+IBI run.

The full version of Table 2 is detailed in Table 19. The full version of Table 4 in the main paper is
provided here across Tables 20 and 21. Moreover, the full version of Table 5 in the main paper is
presented in Table 22.

26

Under review as a conference paper at ICLR 2023

Table 19: Full version of Table 2 for performance comparison of MAML+IBI against 11 augmentation
strategies, in the 5-way 1-shot setting. The results are reported in terms of mean Accuracy over 600
tasks along with the 95% confidence intervals.

Algorithm mIS ISIC DS

MAML+Inter-task interpolation in image space 40.90±0.86% 55.25±1.58% 48.30±0.81%
MAML+Inter-task interpolation after fθS 41.00±0.83% 61.33±1.52% 47.43±0.78%
MAML+WCL 41.56±0.88% 66.83±1.64% 48.20±0.81%
MAML+ULBL+WCL 41.27±0.84% 63.50±1.48% 48.43±0.80%
MAML+IBP+WCL 41.56±0.85% 64.75±1.61% 48.90±0.83%
MAML+ULBL+Intra-task Interpolation 40.37±0.80% 64.91±1.45% 48.23±0.77%
MAML+GA (Image Space) 41.33±0.85% 63.25±1.68% 47.67±0.86%
MAML+IBP+GA (Image Space) 41.83±0.82% 62.67±1.59% 48.83±0.82%
MAML+IBP+GA (after fθS) 41.66±0.84% 63.75±1.63% 47.60±0.82%
MAML+MLTI Yao et al. (2022) 41.58±0.72% 61.79±1.00% 48.03±0.80%
MAML+IBI without LUB and LLB losses 35.26±0.79% 48.94±1.36% 41.30±0.81%

MAML+IBI (Ours) 42.20±0.82% 68.58±0.93% 49.13±0.80%

Table 20: Full results for MAML variants on miniImageNet-S, DermNet-S, and ISIC in Table 4 of the
main paper. All results are reported in terms of Accuracy over 600 tasks along with 95% confidence
level.

Algorithm 4-CONV ResNet-12

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

miniImageNet-S

MAML (Finn et al., 2017) 38.27±0.74% 52.14±0.65% 40.02±0.78% 52.56±0.85%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 38.35±0.76% 51.74±0.68% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 38.70±0.77% 52.75±0.70% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 38.32±0.75% 52.53±0.69% - -
MAML+MetaMix (Yao et al., 2021; 2022) 39.43±0.77% 54.14±0.73% 42.26±0.75% 54.65±0.87%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.28±0.77% 53.02±0.72% 41.97±0.78% 53.92±0.85%
MAML+MLTI (Yao et al., 2022) 41.58±0.72% 55.22±0.76% 43.35±0.90% 54.89±0.88%

MAML+IBP (ours) 41.30±0.79% 54.36±0.81% 43.50±0.86% 55.13±0.90%
MAML+IBI (ours) 42.20±0.82% 55.23±0.81% 43.90±0.90% 57.00±0.88%

ISIC

MAML (Finn et al., 2017) 57.59±0.79% 68.24±0.77% 59.41±1.98% 67.66±1.92%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 58.57±0.94% 68.45±0.81% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 58.39±1.00% 66.09±0.71% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 58.40±1.02% 67.32±0.92% - -
MAML+MetaMix (Yao et al., 2021; 2022) 60.34±1.03% 69.47±0.60% 62.06±1.77% 72.18±1.75%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 58.68±0.86% 69.16±0.61% 61.64±1.81% 72.04±1.79%
MAML+MLTI (Yao et al., 2022) 61.79±1.00% 70.69±0.68% 62.16±1.88% 73.56±1.82%

MAML+IBP (ours) 64.91±0.92% 78.75±0.94% 64.50±1.48% 73.91±1.42%
MAML+IBI (ours) 68.58±0.93% 79.75±0.91% 63.25±1.51% 75.66±1.56%

DermNet-S

MAML (Finn et al., 2017) 43.47±0.83% 60.56±0.74% 47.58±0.93% 63.13±0.85%
MAML+Meta-Reg (Yin et al., 2019; Yao et al., 2022) 45.01±0.83% 60.92±0.69% - -
TAML (Jamal & Qi, 2019; Yao et al., 2022) 45.73±0.84% 61.14±0.72% - -
MAML+Meta-Dropout (Lee et al., 2020; Yao et al., 2022) 44.30±0.84% 60.86±0.73% -
MAML+MetaMix (Yao et al., 2021; 2022) 46.81±0.81% 63.52±0.73% 51.40±0.89% 64.82±0.87%
MAML+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 46.10±0.82% 62.64±0.72% 50.82±0.85% 64.24±0.86%
MAML+MLTI (Yao et al., 2022) 48.03±0.79% 64.55±0.74% 52.03±0.90% 65.12±0.88%

MAML+IBP (ours) 48.33±0.83% 63.33±0.84% 50.40±0.88% 65.40±0.89%
MAML+IBI (ours) 49.13±0.80% 65.43±0.79% 52.10±0.87% 66.50±0.92%

27

Under review as a conference paper at ICLR 2023

Table 21: Full results for ProtoNet variants on miniImageNet-S, ISIC, and DermNet-S in Table 4
of the main paper. All results are reported in terms of Accuracy over 600 tasks along with 95%
confidence level.

Algorithm 4-CONV ResNet-12

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

miniImageNet-S

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 36.26±0.70% 50.72±0.70% - -
ProtoNet (Snell et al., 2017) 40.70±0.79% 53.16±0.77% 40.96±0.75% 55.00±0.86%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 39.67±0.71% 53.10±0.74% 42.95±0.87% 56.95±0.89%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 39.80±0.73% 53.35±0.68% 42.68±0.78% 56.07±0.85%
ProtoNet∗+MLTI (Yao et al., 2022) 41.36±0.75% 55.34±0.74% 44.08±0.83% 57.14±0.90%

ProtoNet+IBP (ours) 41.46±0.79% 55.00±0.81% 43.33±0.82% 57.40±0.90%
ProtoNet+IBI (ours) 43.30±0.81% 55.73±0.80% 45.33±0.85% 58.23±0.92%

ISIC

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 58.56±1.01% 66.25±0.96% - -
ProtoNet (Snell et al., 2017) 65.58±0.91% 75.25±0.90% 61.91±1.94% 75.91±1.92%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 60.58±1.17% 70.12±0.94% 65.55±1.80% 78.33±1.76%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 59.66±1.13% 68.97±0.83% 64.17±1.85% 77.62±1.86%
ProtoNet∗+MLTI (Yao et al., 2022) 62.82±1.13% 71.52±0.89% 66.02±1.88% 79.15±1.87%

ProtoNet+IBP (ours) 70.75±0.95% 81.01±0.93% 66.66±1.52% 81.00±1.49%
ProtoNet+IBI (ours) 70.25±0.91% 81.16±0.94% 66.75±1.63% 81.83±1.58%

DermNet-S

ProtoNet∗ (Snell et al., 2017; Yao et al., 2022) 44.21±0.75% 60.33±0.70% - -
ProtoNet (Snell et al., 2017) 46.86±0.77% 62.03±0.79% 48.65±0.85% 65.40±0.81%
ProtoNet∗+MetaMix (Yao et al., 2021; 2022) 47.71±0.83% 62.68±0.71% 51.18±0.90% 66.80±0.83%
ProtoNet∗+Meta-Maxup (Ni et al., 2021; Yao et al., 2022) 46.06±0.78% 62.97±0.74% 50.96±0.88% 66.38±0.85%
ProtoNet∗+MLTI (Yao et al., 2022) 49.38±0.85% 65.19±0.73% 52.01±0.93% 67.28±0.87%

ProtoNet+IBP (ours) 48.06±0.81% 67.26±0.84% 51.33±0.91% 67.57±0.88%
ProtoNet+IBI (ours) 51.13±0.80% 65.93±0.82% 52.53±0.94% 68.00±0.88%
∗ ProtoNet implementation as per Yao et al. (2022).

Table 22: Full result for Table 5 describing transferability comparison of MAML and ProtoNet, with
their MLTI, IBP and IBI variants. All results are reported in terms of Accuracy over 600 tasks along
with the 95% confidence intervals. Here, A→ B indicates the model trained on dataset A is tested
on dataset B.

Algorithms Accuracy

DermNet-S → miniImageNet-S miniImageNet-S → DermNet-S

MAML 25.06±0.79% 33.40±0.77%
MAML+MLTI 30.03±0.58% 36.74±0.64%
MAML+IBP (ours) 27.06±0.78% 33.90±0.81%
MAML+IBI (ours) 30.23±0.82% 36.21±0.84%

ProtoNet 28.76±0.82% 34.03±0.80%
ProtoNet∗+MLTI 30.06±0.56% 35.46±0.63%
ProtoNet+IBP (ours) 29.60±0.81% 34.13±0.82%
ProtoNet+IBI (ours) 30.32±0.84% 35.63±0.83%
∗: ProtoNet implementation as per Yao et al. (2022).

28

Under review as a conference paper at ICLR 2023

G CODES

The following code can be used to run MAML, MAML+IBP, and MAML+IBI. Please put the data
in a folder with the dataset name. The data should be in “.jpg” image format typically of resolution
84 × 84. The data is expected to be arranged in train, validation, and test folders each containing
folders for individual classes. The main code is kept inside the “src” folder while the helper code can
reside outside. The “main” function resides in the “run learner.py”.

Helper code: image data process.py
import os
import random

from PIL import Image
import numpy as np
import t o r c h

def r e a d d a t a s e t (d a t a d i r , v a l p r e s e n c e =True) :

Read t h e image d a t a s e t .

i f v a l p r e s e n c e i s True :
re turn t u p l e (r e a d c l a s s e s (os . p a t h . j o i n (d a t a d i r , x)) f o r x in [’ t r a i n ’ , ’ v a l ’ , ’ t e s t ’])

e l s e :
re turn t u p l e (r e a d c l a s s e s (os . p a t h . j o i n (d a t a d i r , x)) f o r x in [’ t r a i n ’ , ’ t e s t ’ , ’ t e s t ’])

def r e a d c l a s s e s (d i r p a t h) :

Read t h e c l a s s d i r e c t o r i e s i n a t r a i n / v a l / t e s t d i r e c t o r y .
Images s h o u l d be i n ” . j p g ” f o r m a t .

re turn [I m a g e P r o c e s s C l a s s (os . p a t h . j o i n (d i r p a t h , f)) f o r f in os . l i s t d i r (d i r p a t h)]

c l a s s I m a g e P r o c e s s C l a s s :

Loading and u s i n g t h e image d a t a s e t .
To use t h e s e APIs , you s h o u l d p r e p a r e a d i r e c t o r y t h a t
c o n t a i n s t h r e e sub − d i r e c t o r i e s : t r a i n , t e s t , and v a l .

def i n i t (s e l f , d i r p a t h) :
s e l f . d i r p a t h = d i r p a t h
s e l f . c a c h e = {}

def sample (s e l f , num images) :

Sample images (as p y t o r c h t e n s o r) from t h e c l a s s .

names = [f f o r f in os . l i s t d i r (s e l f . d i r p a t h) i f f . e n d s w i t h (’ . j p g ’)]
random . s h u f f l e (names)
images = []
f o r name in names [: num images] :

images . append (s e l f . r e a d i m a g e (name))
re turn images

def r e a d i m a g e (s e l f , name) :

For r e a d i n g images and t r a n s f o r m a t i o n s as n e c e s s a r y .
Image r e s o l u t i o n i s s e t t o 84 x84 .

i f name in s e l f . c a c h e :
re turn s e l f . c a c h e [name]

wi th open (os . p a t h . j o i n (s e l f . d i r p a t h , name) , ’ rb ’) a s i n f i l e :
img = Image . open (i n f i l e) . r e s i z e ((8 4 , 8 4)) . c o n v e r t (’RGB’)
img = np . a r r a y (img) . a s t y p e (’ f l o a t 3 2 ’) / 0 x f f
img =np . r o l l a x i s (img , 2 , 0)
s e l f . c a c h e [name] = t o r c h . t e n s o r (img)
re turn s e l f . r e a d i m a g e (name)

Main code: run learner.py
import random
import os
import s y s
import numpy as np
import t o r c h

import a r g p a r s e
from i m g d a t a p r o c e s s import r e a d d a t a s e t
from d a t e t i m e import d a t e t i m e
from copy import deepcopy

from s r c . models import NetworkModel
from s r c . e v a l m o d e l import b u l k e v a l u a t e
from s r c . t r a i n m o d e l import t r a i n
from s r c . l e a r n e r s import L e a r n e r

def a r g u m e n t p a r s e r () :
Get an argument p a r s e r f o r a t r a i n i n g s c r i p t .

29

Under review as a conference paper at ICLR 2023

p a r s e r = a r g p a r s e . Argumen tPa r se r (f o r m a t t e r c l a s s = a r g p a r s e . A r g u m e n t D e f a u l t s H e l p F o r m a t t e r)
p a r s e r . add a rgumen t (’−− d a t a s e t ’ , help = ’ name of d a t a s e t ’ , d e f a u l t =None)
p a r s e r . add a rgumen t (’−− a l g o r i t h m ’ , help = ’ name of a l g o r i t h m ’ , d e f a u l t =None)
p a r s e r . add a rgumen t (’−− seed ’ , help = ’ random seed ’ , d e f a u l t =0 , type = i n t)
p a r s e r . add a rgumen t (’−− o r d e r ’ , help = ’ o r d e r f o r MAML and v a r i a n t s . ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− c l a s s e s ’ , help = ’ number o f c l a s s e s p e r i n n e r t a s k ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− s h o t s ’ , help = ’ number o f examples p e r c l a s s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−−meta − s h o t s ’ , help = ’ s h o t s f o r meta u p d a t e ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− i n n e r − i t e r s ’ , help = ’ i n n e r i t e r a t i o n s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− l e a r n i n g − r a t e ’ , help = ’ i n n e r loop l e a r n i n g r a t e ’ , d e f a u l t =None , type = f l o a t)
p a r s e r . add a rgumen t (’−−meta − s t e p ’ , help = ’ o u t e r l oop l e a r n i n g r a t e ’ , d e f a u l t =None , type = f l o a t)
p a r s e r . add a rgumen t (’−−meta − b a t c h ’ , help = ’ meta − t r a i n i n g b a t c h s i z e ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−−meta − i t e r s ’ , help = ’ meta − t r a i n i n g i t e r a t i o n s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− eva l − i t e r s ’ , help = ’ e v a l u a t i o n i n n e r i t e r a t i o n s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− eva l − samples ’ , help = ’ e v a l u a t i o n sample s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− eva l − i n t e r v a l ’ , help = ’ e v a l u a t i o n i n t e r v a l d u r i n g t r a i n i n g ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− eva l − i n t e r v a l − sample ’ , help = ’ e v a l u a t i o n samples d u r i n g t r a i n i n g ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− ibp − eps ’ , help = ’ IBP n e i g h b o r h o o d s i z e ’ , d e f a u l t =0 , type = f l o a t)
p a r s e r . add a rgumen t (’−−sof tmax −temp ’ , help = ’ so f tmax t e m p e r a t u r e ’ , d e f a u l t =None , type = f l o a t)
p a r s e r . add a rgumen t (’−−only − e v a l u a t i o n ’ , help = ’ f o r on ly e v a l u a t i o n ’ , a c t i o n = ’ s t o r e t r u e ’ , d e f a u l t = F a l s e)
p a r s e r . add a rgumen t (’−− c h e c k p o i n t ’ , help = ’ l o a d saved c h e c k p o i n t from p a t h ’ , d e f a u l t =None)
p a r s e r . add a rgumen t (’−− t e s t − i t e r s ’ , help = ’ number o f e v a l u a t i o n s ’ , d e f a u l t =None , type = i n t)
p a r s e r . add a rgumen t (’−− be ta −a ’ , help = ’ b e t a d i s t r e b u t i o n p a r a m e t e r a ’ , d e f a u l t =None , type = f l o a t)
p a r s e r . add a rgumen t (’−− be ta −b ’ , help = ’ b e t a d i s t r i b u t i o n p a r a m e t e r b ’ , d e f a u l t =None , type = f l o a t)
p a r s e r . add a rgumen t (’−−mixup ’ , help = ’ s e t t o use mixup t a s k ’ , a c t i o n = ’ s t o r e t r u e ’ , d e f a u l t = F a l s e)
p a r s e r . add a rgumen t (’−− ibp − l a y e r s ’ , help = ’ number l a y e r t o pe r fo rm IBP / IBI ’ , d e f a u l t =None , type = i n t)
re turn p a r s e r

def model kwargs (p a r s e d a r g s) :

Parame te r s used f o r i n i t i a l i z i n g t h e l e a r n e r .

re turn {
’ u p d a t e l r ’ : p a r s e d a r g s . l e a r n i n g r a t e ,
’ m e t a s t e p s i z e ’ : p a r s e d a r g s . m e t a s t e p ,
’ b e t a a ’ : p a r s e d a r g s . b e t a a ,
’ b e t a b ’ : p a r s e d a r g s . b e t a b ,
’ so f tmax temp ’ : p a r s e d a r g s . so f tmax temp

}

def t r a i n k w a r g s (p a r s e d a r g s) :

Parame te r s used f o r t r a i n i n g .

re turn {
’ o r d e r ’ : p a r s e d a r g s . o r d e r ,
’ n u m c l a s s e s ’ : p a r s e d a r g s . c l a s s e s ,
’ num sho t s ’ : p a r s e d a r g s . s h o t s ,
’ m e t a s h o t s ’ : p a r s e d a r g s . m e t a s h o t s ,
’ i n n e r i t e r s ’ : p a r s e d a r g s . i n n e r i t e r s ,
’ m e t a b a t c h s i z e ’ : p a r s e d a r g s . m e t a b a t c h ,
’ m e t a i t e r s ’ : p a r s e d a r g s . m e t a i t e r s ,
’ e v a l i n n e r i t e r s ’ : p a r s e d a r g s . e v a l i t e r s ,
’ e v a l i n t e r v a l ’ : p a r s e d a r g s . e v a l i n t e r v a l ,
’ e v a l i n t e r v a l s a m p l e ’ : p a r s e d a r g s . e v a l i n t e r v a l s a m p l e ,
’ i b p e p s i l o n ’ : p a r s e d a r g s . i b p e p s ,
’ mixup ’ : p a r s e d a r g s . mixup ,
’ i b p l a y e r s ’ : p a r s e d a r g s . i b p l a y e r s

}

def e v a l u a t e k w a r g s (p a r s e d a r g s) :

Parame te r s used f o r e v a l u a t i o n over m u l t i p l e t a s k s .

re turn {
’ n u m c l a s s e s ’ : p a r s e d a r g s . c l a s s e s ,
’ num sho t s ’ : p a r s e d a r g s . s h o t s ,
’ e v a l i n n e r i t e r s ’ : p a r s e d a r g s . e v a l i t e r s ,
’ num samples ’ : p a r s e d a r g s . e v a l s a m p l e s

}

def main () :

a r g s = a r g u m e n t p a r s e r () . p a r s e a r g s ()

t o r c h . m a n u a l s e e d (a r g s . s eed)
random . seed (a r g s . s eed)
np . random . seed (a r g s . s eed)

E d i t he re a c c o r d i n g t o need .
DATA DIR = ’ / home/<userName>/<w o r k i n g D i r e c t o r y >/ d a t a / ’ + a r g s . d a t a s e t

C re a t e d i r e c t o r y f o r s t o r i n g r e s u l t s and i n i t i a t e l o g g i n g .
i f os . p a t h . e x i s t s (os . p a t h . j o i n (DATA DIR , ’ v a l ’)) :

v a l p r e s e n c e = True
p r i n t (” V a l i d a t i o n s e t i s p r e s e n t . ”)

e l s e :
v a l p r e s e n c e = F a l s e
p r i n t (” V a l i d a t i o n s e t i s n o t found . E x i t i n g . ”)
s y s . e x i t ()

t i m e s t r i n g = d a t e t i m e . now () . s t r f t i m e (”%m%d%Y %H:%M:%S”)

30

Under review as a conference paper at ICLR 2023

o u t p u t f o l d e r = a r g s . d a t a s e t + ’ ’ + a r g s . a l g o r i t h m + ’ o u t p u t f o l d e r ’ + t i m e s t r i n g
o u t p u t f i l e = o u t p u t f o l d e r + ’ / ’ + ’ l o g ’ + t i m e s t r i n g + ’ . t x t ’

i f not os . p a t h . e x i s t s (o u t p u t f o l d e r) :
os . m a k e d i r s (o u t p u t f o l d e r)

w i th open (o u t p u t f i l e , ’ a+ ’) a s fp :
p r i n t (’\n ’ . j o i n (f ’{k}={v} ’ f o r k , v in vars (a r g s) . i t e m s ()) , f i l e = fp)

d e v i c e = t o r c h . d e v i c e (’ cuda ’)

I n s t a n t i a t e t h e d a t a s e t .
t r a i n s e t , v a l s e t , t e s t s e t = r e a d d a t a s e t (DATA DIR , v a l p r e s e n c e)

I n s t a n t i a t e t h e l e a r n e r
model=NetworkModel (a r g s . c l a s s e s)

l e a r n e r = L e a r n e r (model , dev i ce , ** model kwargs (a r g s))

Per form t r a i n i n g or e v a l u a t i o n as per need .
i f a r g s . o n l y e v a l u a t i o n i s F a l s e :

t r a i n (l e a r n e r , t r a i n s e t , v a l s e t , o u t p u t f i l e , o u t p u t f o l d e r , ** t r a i n k w a r g s (a r g s))
e l s e :

a s s e r t a r g s . c h e c k p o i n t i s not None , ’ For e v a l u a t i n g w i t h o u t t r a i n i n g p l e a s e p r o v i d e a c h e c k p o i n t ’
p r i n t (’ E v a l u a t i n g . . . ’)

r e s f i l e = o u t p u t f o l d e r + ’ / ’ + ’ t e s t p e r f o r m a n c e ’ + t i m e s t r i n g + ’ . t x t ’
w i th open (r e s f i l e , ’ a+ ’) a s fp :

p r i n t (’ E v a l u l a t i o n c h e c k p o i n t : ’ + a r g s . c h e c k p o i n t , f i l e = fp)

c h e c k p o i n t m o d e l = t o r c h . l o a d (a r g s . c h e c k p o i n t , m a p l o c a t i o n = ’ cuda : 0 ’)
l e a r n e r . n e t . l o a d s t a t e d i c t (c h e c k p o i n t m o d e l [’ m o d e l s t a t e ’])
l e a r n e r . me ta op t im . l o a d s t a t e d i c t (c h e c k p o i n t m o d e l [’ m e t a o p t i m s t a t e ’])

t r a i n a c c u r a c y , v a l a c c u r a c y , t e s t a c c u r a c y = [] , [] , []
t r a i n c n f , v a l c n f , t e s t c n f = [] , [] , []

f o r i i in range (a r g s . t e s t i t e r s) :

t r a i n a c c , t r a i n d i v = b u l k e v a l u a t e (l e a r n e r , t r a i n s e t , ** e v a l u a t e k w a r g s (a r g s))
v a l a c c , v a l d i v = b u l k e v a l u a t e (l e a r n e r , v a l s e t , ** e v a l u a t e k w a r g s (a r g s))
t e s t a c c , t e s t d i v = b u l k e v a l u a t e (l e a r n e r , t e s t s e t , ** e v a l u a t e k w a r g s (a r g s))

t r a i n a c c u r a c y . append (t r a i n a c c)
v a l a c c u r a c y . append (v a l a c c)
t e s t a c c u r a c y . append (t e s t a c c)

t r a i n c n f . append (t r a i n d i v)
v a l c n f . append (v a l d i v)
t e s t c n f . append (t e s t d i v)

wi th open (r e s f i l e , ’ a+ ’) a s fp :
p r i n t (’ T e s t i t e r a t i o n : ’ + s t r (i i + 1) , f i l e = fp)
p r i n t (’ T r a i n a c c u r a c y : ’ + s t r (t r a i n a c c u r a c y [− 1]) + ’ +/ − ’ + s t r (t r a i n c n f [− 1]) , f i l e = fp)
p r i n t (’ V a l i d a t i o n a c c u r a c y : ’ + s t r (v a l a c c u r a c y [− 1]) + ’ +/ − ’ + s t r (v a l c n f [− 1]) , f i l e = fp)
p r i n t (’ T e s t a c c u r a c y : ’ + s t r (t e s t a c c u r a c y [− 1]) + ’ +/ − ’ + s t r (t e s t c n f [− 1]) + ’\n ’ , f i l e = fp)

s a v e p a t h = o u t p u t f o l d e r + ’ / ’ + ’ r e s u l t s ’ + ’ . npz ’
t r a i n a c c u r a c y = np . a r r a y (t r a i n a c c u r a c y)
v a l a c c u r a c y = np . a r r a y (v a l a c c u r a c y)
t e s t a c c u r a c y = np . a r r a y (t e s t a c c u r a c y)

t r a i n c n f = np . a r r a y (t r a i n c n f)
v a l c n f = np . a r r a y (v a l c n f)
t e s t c n f = np . a r r a y (t e s t c n f)

np . s a v e z (s a v e p a t h , t r a i n a c c u r a c y = t r a i n a c c u r a c y , v a l a c c u r a c y = v a l a c c u r a c y ,
t e s t a c c u r a c y = t e s t a c c u r a c y , t r a i n c o n f i d e n c e = t r a i n c n f , v a l c o n f i d e n c e = v a l c n f ,
t e s t c o n f i d e n c e = t e s t c n f)

i f n a m e == ’ m a i n ’ :
main ()

Model: “src/models.py”
import t o r c h
import t o r c h . nn as nn
import t o r c h . nn . f u n c t i o n a l a s F
import numpy as np

A r e g u l a r 4−CONV ne twork
c l a s s NetworkModel (nn . Module) :

def i n i t (s e l f , k way) :

I n i t i a l i z e t h e ne twork l a y e r s .

super (NetworkModel , s e l f) . i n i t ()

s e l f . conv1 = nn . Conv2d (3 , 64 , k e r n e l s i z e =3 , s t r i d e =1 , padd ing = (1 , 1))
s e l f . b a t c h 1 = nn . BatchNorm2d (6 4 , t r a c k r u n n i n g s t a t s = F a l s e)

31

Under review as a conference paper at ICLR 2023

s e l f . conv2 = nn . Conv2d (6 4 , 64 , k e r n e l s i z e =3 , s t r i d e =1 , padd ing = (1 , 1))
s e l f . b a t c h 2 = nn . BatchNorm2d (6 4 , t r a c k r u n n i n g s t a t s = F a l s e)

s e l f . conv3 = nn . Conv2d (6 4 , 64 , k e r n e l s i z e =3 , s t r i d e =1 , padd ing = (1 , 1))
s e l f . b a t c h 3 = nn . BatchNorm2d (6 4 , t r a c k r u n n i n g s t a t s = F a l s e)

s e l f . conv4 = nn . Conv2d (6 4 , 64 , k e r n e l s i z e =3 , s t r i d e =1 , padd ing = (1 , 1))
s e l f . b a t c h 4 = nn . BatchNorm2d (6 4 , t r a c k r u n n i n g s t a t s = F a l s e)

s e l f . l i n 1 = nn . L i n e a r (64*5*5 , k way)

def f o r w a r d (s e l f , x) :

A forward f u n c t i o n o n l y f o r r e f e r e n c e .

x = F . r e l u (F . max pool2d (s e l f . b a t c h 1 (s e l f . conv1 (x)) , 2))
x = F . r e l u (F . max pool2d (s e l f . b a t c h 2 (s e l f . conv2 (x)) , 2))
x = F . r e l u (F . max pool2d (s e l f . b a t c h 3 (s e l f . conv3 (x)) , 2))
x = F . r e l u (F . max pool2d (s e l f . b a t c h 4 (s e l f . conv4 (x)) , 2))

x = x . view (−1 , 64*5*5)
x = s e l f . l i n 1 (x)

re turn x

def f u n c t i o n a l f o r w a r d (s e l f , x ,
w e i g h t d i c t ,
l a y e r i n d e x =None ,
m i x u p f l a g =None ,
k way=None ,
b e t a a =None ,
b e t a b =None) :

A f u n c t i o n a l fo rward t h a t w i l l a c t u a l l y be used f o r a l l r e q u i r e m e n t s .
I t o n l y u s e s f u n c t i o n a l s t h u s e x p l i c i t l y needs t h e w e i g h t s t o be p a s s e s .
The f u n c t i o n a l s can use t h e r e g u l a r l a y e r f u n c t i o n or t h e i r IBP form as r e q u i r e d .

r o b u s t = True
i f l a y e r i n d e x i s None :

y , r o b u s t = None , F a l s e

Block 1
x = r o b u s t c o n v f o r w a r d (

x , w e i g h t d i c t [’ conv1 . w e ig h t ’] , w e i g h t d i c t [’ conv1 . b i a s ’] , s t r i d e =1 , padd ing = (1 , 1) , r o b u s t = r o b u s t)
x = r o b u s t b a t c h n o r m f o r w a r d (

x , w e i g h t d i c t [’ b a t c h 1 . w e ig h t ’] , w e i g h t d i c t [’ b a t c h 1 . b i a s ’] , r o b u s t = r o b u s t)
x = F . max pool2d (x , k e r n e l s i z e =2 , s t r i d e =2)
x = F . r e l u (x)

i f l a y e r i n d e x == 1 :
y , x , r o b u s t = i n t r a c l a s s m i x u p (x , m i x u p f l a g , k way , b e t a a , b e t a b)

Block 2
x = r o b u s t c o n v f o r w a r d (

x , w e i g h t d i c t [’ conv2 . w e ig h t ’] , w e i g h t d i c t [’ conv2 . b i a s ’] , s t r i d e =1 , padd ing = (1 , 1) , r o b u s t = r o b u s t)
x = r o b u s t b a t c h n o r m f o r w a r d (

x , w e i g h t d i c t [’ b a t c h 2 . w e ig h t ’] , w e i g h t d i c t [’ b a t c h 2 . b i a s ’] , r o b u s t = r o b u s t)
x = F . max pool2d (x , k e r n e l s i z e =2 , s t r i d e =2)
x = F . r e l u (x)

i f l a y e r i n d e x == 2 :
y , x , r o b u s t = i n t r a c l a s s m i x u p (x , m i x u p f l a g , k way , b e t a a , b e t a b)

Block 3
x = r o b u s t c o n v f o r w a r d (

x , w e i g h t d i c t [’ conv3 . w e ig h t ’] , w e i g h t d i c t [’ conv3 . b i a s ’] , s t r i d e =1 , padd ing = (1 , 1) , r o b u s t = r o b u s t)
x = r o b u s t b a t c h n o r m f o r w a r d (

x , w e i g h t d i c t [’ b a t c h 3 . w e ig h t ’] , w e i g h t d i c t [’ b a t c h 3 . b i a s ’] , r o b u s t = r o b u s t)
x = F . max pool2d (x , k e r n e l s i z e =2 , s t r i d e =2)
x = F . r e l u (x)

i f l a y e r i n d e x == 3 :
y , x , r o b u s t = i n t r a c l a s s m i x u p (x , m i x u p f l a g , k way , b e t a a , b e t a b)

Block 4
x = r o b u s t c o n v f o r w a r d (

x , w e i g h t d i c t [’ conv4 . w e ig h t ’] , w e i g h t d i c t [’ conv4 . b i a s ’] , s t r i d e =1 , padd ing = (1 , 1) , r o b u s t = r o b u s t)
x = r o b u s t b a t c h n o r m f o r w a r d (

x , w e i g h t d i c t [’ b a t c h 4 . w e ig h t ’] , w e i g h t d i c t [’ b a t c h 4 . b i a s ’] , r o b u s t = r o b u s t)
x = F . max pool2d (x , k e r n e l s i z e =2 , s t r i d e =2)
x = F . r e l u (x)

i f l a y e r i n d e x == 4 :
y , x , r o b u s t = i n t r a c l a s s m i x u p (x , m i x u p f l a g , k way , b e t a a , b e t a b)

Map t o number o f c l a s s e s .
x = x . view (−1 , 64*5*5)
x = F . l i n e a r (

x , w e ig h t = w e i g h t d i c t [’ l i n 1 . w e ig h t ’] , b i a s = w e i g h t d i c t [’ l i n 1 . b i a s ’])

re turn y , x

32

Under review as a conference paper at ICLR 2023

def r o b u s t c o n v f o r w a r d (x , weight , b i a s , s t r i d e , padding , r o b u s t) :

C o n v o l u t i o n f u n c t i o n t h a t can p r o p a g a t e i n t e r v a l bounds .

i f r o b u s t i s F a l s e :
Regu lar c o n v o l u t i o n
x = F . conv2d (x , weight , b i a s , s t r i d e , padd ing)
re turn x

C o n v o l u t i o n p r o p a g a t i n g i n t e r v a l bounds .
b s i z e = x . shape [0] / / 3

i n p u t p = x [: b s i z e]
i n p u t o = x [b s i z e : 2 * b s i z e]
i n p u t n = x [2* b s i z e :]

u = (i n p u t p + i n p u t n) / 2
r = (i n p u t p − i n p u t n) / 2

o u t u = F . conv2d (u , weight , b i a s , s t r i d e , padd ing)
o u t r = F . conv2d (r , t o r c h . abs (we ig h t) , None , s t r i d e , padd ing)
o u t o = F . conv2d (i n p u t o , weight , b i a s , s t r i d e , padd ing)

re turn t o r c h . c a t ([o u t u + o u t r , ou t o , o u t u − o u t r] , 0)

def r o b u s t b a t c h n o r m f o r w a r d (x , weight , b i a s , r o b u s t) :

Batch n o r m a l i z a t i o n f u n c t i o n t h a t can p r o p a g a t e i n t e r v a l bounds .

i f r o b u s t i s F a l s e :
Regu lar b a t c h n o r m a l i z a t i o n .
x = F . ba t ch no rm (x , runn ing mean =None , r u n n i n g v a r =None ,

we ig h t = weight , b i a s = b i a s , t r a i n i n g =True)
re turn x

Batch n o r m a l i z a t i o n p r o p a g a t i n g i n t e r v a l bounds .
b s i z e = x . shape [0] / / 3
eps = 1e −5

i n p u t p = x [: b s i z e]
i n p u t o = x [b s i z e : 2 * b s i z e]
i n p u t n = x [2* b s i z e :]

E q u i v a l e n t t o i n p u t o . mean ((0 , 2 , 3))
mean = i n p u t o . t r a n s p o s e (0 , 1) . c o n t i g u o u s () . view (

i n p u t o . shape [1] , − 1) . mean (1)
v a r = i n p u t o . t r a n s p o s e (0 , 1) . c o n t i g u o u s () . view (

i n p u t o . shape [1] , − 1) . v a r (1 , u n b i a s e d = F a l s e)

Element −wise m u l t i p l i e r
m u l t i p l i e r = t o r c h . r s q r t (v a r + eps)
m u l t i p l i e r = m u l t i p l i e r * we ig h t

o f f s e t = (− m u l t i p l i e r * mean) + b i a s

m u l t i p l i e r = m u l t i p l i e r . unsqueeze (0) . unsqueeze (2) . unsqueeze (3)
o f f s e t = o f f s e t . unsqueeze (0) . unsqueeze (2) . unsqueeze (3)

Because t h e s c a l e migh t be n e g a t i v e , we need t o a p p l y a s t r a t e g y s i m i l a r t o l i n e a r
u = (i n p u t p + i n p u t n) / 2
r = (i n p u t p − i n p u t n) / 2

o u t u = t o r c h . mul (u , m u l t i p l i e r) + o f f s e t
o u t r = t o r c h . mul (r , t o r c h . abs (m u l t i p l i e r))
o u t o = t o r c h . mul (i n p u t o , m u l t i p l i e r) + o f f s e t

re turn t o r c h . c a t ([o u t u + o u t r , ou t o , o u t u − o u t r] , 0)

def i n t r a c l a s s m i x u p (y , m i x u p f l a g , k way , b e t a a , b e t a b) :

Per form i n t e r v a l bound i n t e r p o l a t i o n

r o b u s t = F a l s e
b s i z e = y . shape [0] / / 3
u = y [: b s i z e]
l = y [2* b s i z e :]
o = y [b s i z e : 2 * b s i z e]

i f m i x u p f l a g i s True :

num sho t s = b s i z e / / k way
mixup params = np . r e p e a t (np . random . b e t a (b e t a a , b e t a b , k way) , num sho t s)
mixup params = t o r c h . t e n s o r (mixup params , d t y p e = t o r c h . f l o a t) . view (b s i z e , 1 , 1 , 1) . t o (y . d e v i c e)

r a n d e x t = np . r e p e a t (np . random . r a n d i n t (0 , 2 , k way) , num sho t s)
r a n d e x t = t o r c h . t e n s o r (r a n d e x t , d t y p e = t o r c h . f l o a t) . view (b s i z e , 1 , 1 , 1) . t o (y . d e v i c e)

mixup params c = 1 − mixup params
r a n d e x t c = 1 − r a n d e x t

u l o = (mixup params c *o +

33

Under review as a conference paper at ICLR 2023

mixup params * r a n d e x t *u +
mixup params * r a n d e x t c * l)

x = t o r c h . c a t ([o , u l o] , 0)
re turn y , x , r o b u s t

re turn y , o , r o b u s t

Learner: “src/learners.py”
import random

import t o r c h
import t o r c h . nn . f u n c t i o n a l a s F
from t o r c h import opt im
import numpy as np

import t o r c h . opt im as opt im
from copy import deepcopy
from c o l l e c t i o n s import O r d e r e d D i c t

c l a s s L e a r n e r :

Base Learner c l a s s f o r MAML and IBP / I B I v a r i a n t s .

def i n i t (s e l f , model , dev i ce , u p d a t e l r , m e t a s t e p s i z e , b e t a a , b e t a b , so f tmax t emp) :

I n i t i a l i z a t i o n .
s e l f . d e v i c e = d e v i c e
s e l f . n e t = model . t o (s e l f . d e v i c e)
s e l f . me ta op t im = opt im . Adam(s e l f . n e t . p a r a m e t e r s () , l r = m e t a s t e p s i z e)
s e l f . u p d a t e l r = u p d a t e l r
s e l f . b e t a a , s e l f . b e t a b = b e t a a , b e t a b
s e l f . so f tmax t emp = so f tmax temp

def t r a i n s t e p (s e l f ,
d a t a s e t ,
o r d e r ,
n u m c l a s s e s ,
num shots ,
m e t a s h o t s ,
i n n e r i t e r s ,
m e t a b a t c h s i z e ,
i b p e p s i l o n ,
mixup ,
i b p l a y e r s) :

T r a i n i n g f u n c t i o n f o r MAML, MAML+IBP , and MAML+I B I l e a r n e r s .

For r e c o r d k e e p i n g
u p p e r l o s s r e c , l o w e r l o s s r e c , t a s k l o s s r e c , t o t a l l o s s r e c = 0 , 0 , 0 , 0

T r i i g e r s FOMAML and v a r i a n t s i f r e q u i r e d .
c r e a t e g r a p h , r e t a i n g r a p h = True , True
i f o r d e r == 1 :

c r e a t e g r a p h , r e t a i n g r a p h = F a l s e , F a l s e

s e l f . me ta op t im . z e r o g r a d ()

i f mixup i s True :
r a n d o m t a s k = np . random . r and (0 , m e t a b a t c h s i z e)

I t e r a t e over t a s k s i n a meta−b a t c h
f o r t a s k i n d in range (m e t a b a t c h s i z e) :

f a s t w e i g h t = O r d e r e d D i c t (s e l f . n e t . n a m e d p a r a m e t e r s ())

t r a i n s e t , t e s t s e t = s p l i t t r a i n t e s t (
s a m p l e m i n i d a t a s e t (d a t a s e t , n u m c l a s s e s , num sho t s + m e t a s h o t s) , t e s t s h o t s = m e t a s h o t s)

S u p p o r t s e t
i n p u t s , l a b e l s = z i p (* t r a i n s e t)
i n p u t s = t o r c h . s t a c k (i n p u t s) . t o (s e l f . d e v i c e)
l a b e l s = t o r c h . t e n s o r (l a b e l s) . t o (s e l f . d e v i c e)

Fix o r d e r i n g
l a b e l s , s o r t i n d e x = t o r c h . s o r t (l a b e l s)
i n p u t s = i n p u t s [s o r t i n d e x]

i n p u t s c a t = t o r c h . c a t ([i n p u t s + i b p e p s i l o n , i n p u t s , i n p u t s − i b p e p s i l o n] , 0)

Fas t a d a p t a t i o n s t e p s
f o r in range (i n n e r i t e r s) :

i f mixup i s True and t a s k i n d == r a n d o m t a s k :
For MAML+I B I

, l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (i n p u t s c a t , f a s t w e i g h t ,
i b p l a y e r s , mixup , n u m c l a s s e s , s e l f . b e t a a , s e l f . b e t a b)

b s i z e = l o g i t s . shape [0] / / 2
l o g i t s o = l o g i t s [: b s i z e]

34

Under review as a conference paper at ICLR 2023

l o g i t s u l o = l o g i t s [b s i z e :]

f a s t l o s s = (F . c r o s s e n t r o p y (l o g i t s o , l a b e l s) +
F . c r o s s e n t r o p y (l o g i t s u l o , l a b e l s)) / 2

e l s e :
For MAML and MAML+IBP

, l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (i n p u t s , f a s t w e i g h t ,
None , F a l s e , None , None , None)

f a s t l o s s = F . c r o s s e n t r o p y (l o g i t s , l a b e l s)

f a s t g r a d i e n t s = t o r c h . a u t o g r a d . g r ad (f a s t l o s s , f a s t w e i g h t . v a l u e s () ,
c r e a t e g r a p h = c r e a t e g r a p h)

f a s t w e i g h t = O r d e r e d D i c t (
(name , param − s e l f . u p d a t e l r * g rad pa ram)
f o r ((name , param) , g r ad pa ram) in z i p (f a s t w e i g h t . i t e m s () , f a s t g r a d i e n t s))

Query s e t
i n p u t s , l a b e l s = z i p (* t e s t s e t)
i n p u t s = t o r c h . s t a c k (i n p u t s) . t o (s e l f . d e v i c e)
l a b e l s = t o r c h . t e n s o r (l a b e l s) . t o (s e l f . d e v i c e)

Fix o r d e r i n g
l a b e l s , s o r t i n d e x = t o r c h . s o r t (l a b e l s)
i n p u t s = i n p u t s [s o r t i n d e x]

i f i b p l a y e r s i s None :
V a n i l l a MAML

, l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (i n p u t s , f a s t w e i g h t ,
None , F a l s e , None , None , None)

t o t a l l o s s = F . c r o s s e n t r o p y (l o g i t s , l a b e l s)
t a s k l o s s r e c = t a s k l o s s r e c + t o t a l l o s s . i t em ()
t o t a l l o s s r e c = t o t a l l o s s r e c + t o t a l l o s s . i t em ()

e l s e :
For MAML+IBP and MAML+I B I
i n p u t s c a t = t o r c h . c a t ([i n p u t s + i b p e p s i l o n , i n p u t s , i n p u t s − i b p e p s i l o n] , 0)

i f mixup i s True and t a s k i n d == r a n d o m t a s k :
For MAML+I B I
i b p e s t i m a t e , l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (

i n p u t s c a t , f a s t w e i g h t , i b p l a y e r s , mixup , n u m c l a s s e s ,
s e l f . b e t a a , s e l f . b e t a b)

b s i z e = l o g i t s . shape [0] / / 2
l o g i t s o = l o g i t s [: b s i z e]
l o g i t s u l o = l o g i t s [b s i z e :]

t a s k l o s s = (F . c r o s s e n t r o p y (l o g i t s o , l a b e l s) +
F . c r o s s e n t r o p y (l o g i t s u l o , l a b e l s)) / 2

e l s e :
For MAML+IBP
i b p e s t i m a t e , l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (

i n p u t s c a t , f a s t w e i g h t , i b p l a y e r s , F a l s e , None , None , None)

t a s k l o s s = F . c r o s s e n t r o p y (l o g i t s , l a b e l s)

Find t h e p r o p a g a t e d bounds
b s i z e = i b p e s t i m a t e . shape [0] / / 3

i b p e s t i m a t e u = i b p e s t i m a t e [: b s i z e]
i b p e s t i m a t e o = i b p e s t i m a t e [b s i z e : 2 * b s i z e]
i b p e s t i m a t e l = i b p e s t i m a t e [2* b s i z e :]

C a l c u l a t e $\mathca l{L} {UB}$ and $\mathca l{L} {LB} .
u p p e r l o s s = F . m s e l o s s (i b p e s t i m a t e u , i b p e s t i m a t e o)
l o w e r l o s s = F . m s e l o s s (i b p e s t i m a t e l , i b p e s t i m a t e o)

Dynamic w e i g h t i n g o f l o s s e s
c o n c a t l o s s = t o r c h . c a t ([t a s k l o s s . unsqueeze (0) ,

u p p e r l o s s . unsqueeze (0) , l o w e r l o s s . unsqueeze (0)] , 0)

w e i g h t s = F . so f tmax (c o n c a t l o s s / s e l f . so f tmax temp , dim =0)
t o t a l l o s s = t o r c h . sum (c o n c a t l o s s * w e i g h t s)

Record k e e p i n g
u p p e r l o s s r e c = u p p e r l o s s r e c + u p p e r l o s s . i t em ()
l o w e r l o s s r e c = l o w e r l o s s r e c + l o w e r l o s s . i t em ()
t a s k l o s s r e c = t a s k l o s s r e c + t a s k l o s s . i t em ()
t o t a l l o s s r e c = t o t a l l o s s r e c + t o t a l l o s s . i t em ()

t o t a l l o s s . backward (r e t a i n g r a p h = r e t a i n g r a p h)

Averag ing t h e l o s s over meta b a t c h e s
f o r params in s e l f . n e t . p a r a m e t e r s () :

params . g rad = params . g rad / m e t a b a t c h s i z e

u pd a t e t h e meta l e a r n e r p a r a m e t e r s
s e l f . me ta op t im . s t e p ()
s e l f . me ta op t im . z e r o g r a d ()

35

Under review as a conference paper at ICLR 2023

u p p e r l o s s r e c = u p p e r l o s s r e c / m e t a b a t c h s i z e
l o w e r l o s s r e c = l o w e r l o s s r e c / m e t a b a t c h s i z e
t a s k l o s s r e c = t a s k l o s s r e c / m e t a b a t c h s i z e
t o t a l l o s s r e c = t o t a l l o s s r e c / m e t a b a t c h s i z e

re turn u p p e r l o s s r e c , l o w e r l o s s r e c , t a s k l o s s r e c , t o t a l l o s s r e c

def e v a l u a t e (s e l f ,
d a t a s e t ,
n u m c l a s s e s ,
num shots ,
i n n e r i t e r s) :

Run a s i n g l e e v a l u a t i o n o f t h e model .

P r e s e r v e c u r r e n t l y t r a i n e d model .
o l d s t a t e = deepcopy (s e l f . n e t . s t a t e d i c t ())
f a s t w e i g h t = O r d e r e d D i c t (s e l f . n e t . n a m e d p a r a m e t e r s ())

t r a i n s e t , t e s t s e t = s p l i t t r a i n t e s t (s a m p l e m i n i d a t a s e t (d a t a s e t , n u m c l a s s e s , num sho t s + 1))

S u p p o r t s e t
i n p u t s , l a b e l s = z i p (* t r a i n s e t)
i n p u t s = (t o r c h . s t a c k (i n p u t s)) . t o (s e l f . d e v i c e)
l a b e l s = (t o r c h . t e n s o r (l a b e l s)) . t o (s e l f . d e v i c e)

Fas t a d a p t a t i o n
f o r in range (i n n e r i t e r s) :

, l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (i n p u t s , f a s t w e i g h t ,
None , F a l s e , None , None , None)

f a s t l o s s = F . c r o s s e n t r o p y (l o g i t s , l a b e l s)
f a s t g r a d i e n t s = t o r c h . a u t o g r a d . g r ad (f a s t l o s s , f a s t w e i g h t . v a l u e s ())

f a s t w e i g h t = O r d e r e d D i c t (
(name , param − s e l f . u p d a t e l r * g rad pa ram)
f o r ((name , param) , g r ad pa ram) in z i p (f a s t w e i g h t . i t e m s () , f a s t g r a d i e n t s))

Query s e t
i n p u t s , l a b e l s = z i p (* t e s t s e t)
i n p u t s = (t o r c h . s t a c k (i n p u t s)) . t o (s e l f . d e v i c e)
l a b e l s = (t o r c h . t e n s o r (l a b e l s)) . t o (s e l f . d e v i c e)

I n f e r e n c e
, l o g i t s = s e l f . n e t . f u n c t i o n a l f o r w a r d (i n p u t s , f a s t w e i g h t ,

None , F a l s e , None , None , None)
t e s t p r e d s = (F . so f tmax (l o g i t s , dim = 1)) . argmax (dim =1)

Accuracy
n u m c o r r e c t = t o r c h . eq (t e s t p r e d s , l a b e l s) . sum ()

R e t ur n ne twork t o o r i g i n a l s t a t e f o r s a f e t y .
s e l f . n e t . l o a d s t a t e d i c t (o l d s t a t e)

re turn n u m c o r r e c t . i t em ()

def s a m p l e m i n i d a t a s e t (d a t a s e t , n u m c l a s s e s , num sho t s) :

Sample a few s h o t t a s k from a d a t a s e t .

s h u f f l e d = l i s t (d a t a s e t)
random . s h u f f l e (s h u f f l e d)
f o r c l a s s i d x , c l a s s o b j in enumerate (s h u f f l e d [: n u m c l a s s e s]) :

f o r sample in c l a s s o b j . sample (num sho t s) :
y i e l d (sample , c l a s s i d x)

def m i n i b a t c h e s (samples , b a t c h s i z e , num ba tches) :

Genera te mini −b a t c h e s from some da ta .

sample s = l i s t (s amples)
c u r b a t c h = []
b a t c h c o u n t = 0
whi le True :

random . s h u f f l e (samples)
f o r sample in samples :

c u r b a t c h . append (sample)
i f l e n (c u r b a t c h) < b a t c h s i z e :

c o n t in u e
y i e l d c u r b a t c h
c u r b a t c h = []
b a t c h c o u n t += 1
i f b a t c h c o u n t == num ba tches :

re turn

def s p l i t t r a i n t e s t (samples , t e s t s h o t s = 1) :

S p l i t a few −s h o t t a s k i n t o a t r a i n and a t e s t s e t .

t r a i n s e t = l i s t (s amples)
t e s t s e t = []
l a b e l s = s e t (i t em [1] f o r i t em in t r a i n s e t)

36

Under review as a conference paper at ICLR 2023

f o r in range (t e s t s h o t s) :
f o r l a b e l in l a b e l s :

f o r i , i t em in enumerate (t r a i n s e t) :
i f i t em [1] == l a b e l :

d e l t r a i n s e t [i]
t e s t s e t . append (i t em)
break

i f l e n (t e s t s e t) < l e n (l a b e l s) * t e s t s h o t s :
r a i s e I n d e x E r r o r (’ n o t enough examples o f each c l a s s f o r t e s t s e t ’)

re turn t r a i n s e t , t e s t s e t

Training function: “src/train model.py”
import os
import numpy as np

import t o r c h
from . l e a r n e r s import L e a r n e r

def t r a i n (l e a r n e r ,
t r a i n s e t ,
v a l s e t ,
m o d e l o u t p u t f i l e =None ,
m o d e l s a v e p a t h =None ,
o r d e r =None ,
n u m c l a s s e s =None ,
num sho t s =None ,
m e t a s h o t s =None ,
i n n e r i t e r s =None ,
m e t a b a t c h s i z e =None ,
m e t a i t e r s =None ,
e v a l i n n e r i t e r s =None ,
e v a l i n t e r v a l =None ,
e v a l i n t e r v a l s a m p l e =None ,
i b p e p s i l o n =None ,
mixup= F a l s e ,
i b p l a y e r s =None) :

T r a i n a model on a d a t a s e t .
t r a i n a c c u r a c y , v a l a c c u r a c y = [] , []
u p p e r l o s s s t o r e , l o w e r l o s s s t o r e , t a s k l o s s s t o r e , t o t a l l o s s s t o r e = [] , [] , [] , []

Loop over t h e t r a i n i n g s t e p s .
f o r i in range (m e t a i t e r s + 1) :

Find c u r r e n t v a l u e o f i n t e r v a l c o e f f i c i e n t .
c u r i b p e p s i l o n = e p s s c h e d u l e r (i , m e t a i t e r s , i b p e p s i l o n)

T r a i n t h e l e a r n e r f o r a s t e p .
u p p e r l o s s , l o w e r l o s s , t a s k l o s s , t o t a l l o s s = l e a r n e r . t r a i n s t e p (t r a i n s e t , o r d e r = o r d e r ,

n u m c l a s s e s = n u m c l a s s e s , num sho t s = num shots ,
m e t a s h o t s = m e t a s h o t s ,
i n n e r i t e r s = i n n e r i t e r s ,
m e t a b a t c h s i z e = m e t a b a t c h s i z e ,
i b p e p s i l o n = c u r i b p e p s i l o n ,
mixup=mixup ,
i b p l a y e r s = i b p l a y e r s)

Record l o s s e s
u p p e r l o s s s t o r e . append (u p p e r l o s s)
l o w e r l o s s s t o r e . append (l o w e r l o s s)
t a s k l o s s s t o r e . append (t a s k l o s s)
t o t a l l o s s s t o r e . append (t o t a l l o s s)

i f i % e v a l i n t e r v a l == 0 :

Per form i n t e r m e d i a t e e v a l u a t i o n .
t o t a l c o r r e c t = 0
f o r in range (e v a l i n t e r v a l s a m p l e) :

t o t a l c o r r e c t = t o t a l c o r r e c t + l e a r n e r . e v a l u a t e (t r a i n s e t ,
n u m c l a s s e s = n u m c l a s s e s , num sho t s = num shots ,
i n n e r i t e r s = e v a l i n n e r i t e r s)

t r a i n a c c u r a c y . append (t o t a l c o r r e c t / (e v a l i n t e r v a l s a m p l e * n u m c l a s s e s))

s a v e p a t h = m o d e l s a v e p a t h + ’ / i n t e r m e d i a t e ’ + s t r (i) + ’ model . p t ’

t o r c h . s ave ({ ’ m o d e l s t a t e ’ : l e a r n e r . n e t . s t a t e d i c t () ,
’ m e t a o p t i m s t a t e ’ : l e a r n e r . me ta op t im . s t a t e d i c t ()} ,
s a v e p a t h)

t o t a l c o r r e c t = 0
f o r in range (e v a l i n t e r v a l s a m p l e) :

t o t a l c o r r e c t = t o t a l c o r r e c t + l e a r n e r . e v a l u a t e (v a l s e t ,
n u m c l a s s e s = n u m c l a s s e s , num sho t s = num shots ,
i n n e r i t e r s = e v a l i n n e r i t e r s)

v a l a c c u r a c y . append (t o t a l c o r r e c t / (e v a l i n t e r v a l s a m p l e * n u m c l a s s e s))

w i th open (m o d e l o u t p u t f i l e , ’ a+ ’) a s fp :
p r i n t (’ b a t c h %d : t r a i n =%f v a l=%f ’ % (i ,

t r a i n a c c u r a c y [− 1] , v a l a c c u r a c y [− 1]) , f i l e = fp)

37

Under review as a conference paper at ICLR 2023

I n t e r m e d i a t e r e c o r d k e e p i n g .
r e s s a v e p a t h = m o d e l s a v e p a t h + ’ / ’ + ’ i n t e r m e d i a t e a c c u r a c i e s . npz ’
l o s s s a v e p a t h = m o d e l s a v e p a t h + ’ / ’ + ’ i n t e r m e d i a t e s l o s s e s . npz ’

np . s a v e z (r e s s a v e p a t h , t r a i n a c c u r a c y =np . a r r a y (t r a i n a c c u r a c y) ,
v a l a c c u r a c y =np . a r r a y (v a l a c c u r a c y))

np . s a v e z (l o s s s a v e p a t h , u p p e r l o s s =np . a r r a y (u p p e r l o s s s t o r e) ,
l o w e r l o s s =np . a r r a y (l o w e r l o s s s t o r e) , t a s k l o s s =np . a r r a y (t a s k l o s s s t o r e) ,
t o t a l l o s s =np . a r r a y (t o t a l l o s s s t o r e))

def e p s s c h e d u l e r (i , m e t a i t e r s , i b p e p s i l o n) :

S c h e d u l e t h e v a l u e o f i n t e r v a l c o e f f i c i e n t .

i f i < m e t a i t e r s * 0 . 9 :
re turn (i / (m e t a i t e r s * 0 . 9)) * i b p e p s i l o n

re turn i b p e p s i l o n

Inference function: “src/eval model.py”
”””
H e l p e r s f o r e v a l u a t i n g models .
”””
import numpy as np
from . l e a r n e r s import L e a r n e r

def b u l k e v a l u a t e (l e a r n e r ,
d a t a s e t ,
n u m c l a s s e s =5 ,
num sho t s =5 ,
e v a l i n n e r i t e r s =10 ,
num samples =10000) :

For e v a l u a t i n g t h e l e a r n e r on a s e t o f t a s k s .
t o t a l c o r r e c t = []
f o r in range (num samples) :

t o t a l c o r r e c t . append (l e a r n e r . e v a l u a t e (d a t a s e t ,
n u m c l a s s e s = n u m c l a s s e s , num sho t s = num shots ,
i n n e r i t e r s = e v a l i n n e r i t e r s))

t o t a l a c c u r a c i e s = np . a r r a y (t o t a l c o r r e c t) / n u m c l a s s e s
t e s t a c c u r a c y = t o t a l a c c u r a c i e s . sum () / num samples
t e s t c n f = np . s t d (t o t a l a c c u r a c i e s)

For c o n f i d e n c e i n t e r v a l 0.95%
z s c o r e = 1 . 9 6
t e s t c n f = z s c o r e * (t e s t c n f / (np . s q r t (num samples)))

re turn t e s t a c c u r a c y , t e s t c n f

38

	Introduction
	Related works
	Preliminaries
	Proposed Method
	Few-shot learning with interval bounds
	Interval bound–based task interpolation

	Experiments
	Conclusion and future works
	Prototype-based metric-learning:
	Algorithms of MAML and ProtoNet coupled with IBP and IBI
	Detailed Theoretical Analysis
	Details of datasets used in this study
	Implementation details
	Hyperparameters used in IBP and IBI
	Names and functions of hyperparameters
	Hyperparameter search space and tuning
	Full results

	Codes

