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Abstract

Offline Multi-agent Reinforcement Learning (MARL) is valuable in scenarios where online
interaction is impractical or risky. While independent learning in MARL offers flexibility and
scalability, accurately assigning credit to individual agents in offline settings poses challenges
because interactions with an environment are prohibited. In this paper, we propose a
new framework, namely Multi-Agent Causal Credit Assignment (MACCA), to address
credit assignment in the offline MARL setting. Our approach, MACCA, characterizing
the generative process as a Dynamic Bayesian Network, captures relationships between
environmental variables, states, actions, and rewards. Estimating this model on offline data,
MACCA can learn each agent’s contribution by analyzing the causal relationship of their
individual rewards, ensuring accurate and interpretable credit assignment. Additionally,
the modularity of our approach allows it to integrate with various offline MARL methods
seamlessly. Theoretically, we proved that under the setting of the offline dataset, the
underlying causal structure and the function for generating the individual rewards of agents
are identifiable, which laid the foundation for the correctness of our modeling. In our
experiments, we demonstrate that MACCA not only outperforms state-of-the-art methods
but also enhances performance when integrated with other backbones.

1 Introduction
Offline Reinforcement learning (RL) has gained significant popularity in recent years. It can be particularly
valuable in situations where online interaction is impractical or infeasible, such as the high cost of data
collection or the potential danger involved (Levine et al., 2020). In the multi-agent setting, offline multi-
agent reinforcement learning (MARL) has identified and addressed some of the challenges inherited from
offline single-agent RL, such as distributional shift and partial observability (Du et al., 2023). For example,
ICQ (Yang et al., 2021) focuses on the vulnerability of multi-agent systems to extrapolation errors, and
CQL (Kumar et al., 2020) aims to mitigate overestimation in Q-values, which can lead to suboptimal policy
learning. The independent learning paradigm in MARL is appealing due to its flexibility and scalability,
making it a promising approach to solving complex problems in dynamic environments. While independent
learning in MARL has its merits, it will significantly hinder algorithm efficiency when the offline dataset
only includes team rewards. This presents a credit assignment problem, aiming to assign credit to individual
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agents within partial observability and emergent behavior. While plain reward regression methods directly
map joint state-action pairs to a single scalar reward, they inherently lack interpretability, as they do not
reveal which specific dimensions of states or actions drive each agent’s individual contributions. In contrast,
employing a causal model explicitly captures these critical dependencies, providing clarity on each agent’s
causal influence and enabling more effective and interpretable credit assignment.

In offline MARL, addressing the issue of credit assignment is challenging. Agents are reliant on static,
pre-collected datasets, often spanning a variety of behavior policies and actions across different time periods.
This diversity in data distributions increases the difficulty of assigning credits, given that the nuances of agent
contributions are lost in the plethora of policies. Recent credit assignment methods, such as SQDDPG (Wang
et al., 2020) and SHAQ (Wang et al., 2022a), are primarily conceived for online scenarios where continuous
feedback aids in refining credit assignments. However, when restricted to static offline data in offline MARL,
they miss out on the essential dynamism and agility needed to accurately understand the intricate interplay
within the dataset. Moreover, in offline settings, methods like SHAQ, which rely on the Shapley value, and
SQDDPG, which employs a Shapley-like approach for individual Q-value estimation, face inherent challenges.
Computing the Shapley value or its approximations demands consideration of every potential agent coalition,
a process that is computationally intensive. In offline MARL, such approximations can lead to imprecise
credit assignments due to a loss in precision, potential data inconsistencies from the static nature of past
interactions, and scalability issues, especially when numerous agents operate in intricate environments.

Figure 1: The graphic representation of the causal
structure within the MACCA framework. The nodes
and edges represent the causal relationships among var-
ious environmental variables, i.e., different dimensions
of these variables for each agent within the team reward
Multi-agent MDP context. These dimensions include
the different dimensions of the state si··· ,t, action ai··· ,t,
individual reward rit for agent i, and the team reward
Rt. The individual reward rit (shown with blue filling)
is unobservable, and the aggregation of rit equals Rt.

In this paper, we propose a new framework,
namely Multi-Agent Causal Credit Assignment
(MACCA), to address credit assignment in an offline
MARL setting. MACCA equates the importance of
the credit assignment and how the agent makes the
contribution by causal modeling. MACCA first mod-
els the generation of individual rewards and team
reward from the causal perspective, and construct
a graphical representation, as shown in Figure 1,
over the involved environment variables, including
all the dimensions of states and actions of all agents,
the individual rewards and the team rewards. Our
method treats team reward as the causal effect of all
the individual rewards and provides a way to recover
the underlying parametric model, supported by the
theoretical evidence of identifiability. In this way,
MACCA offers the ability to distinguish the credit
of each agent and gain insights into how their states
and actions contribute to the individual rewards and
further to the team reward. This is achieved through
a learned parameterized generative model that de-
composes the team reward into individual rewards.
The causal structure within the generative process
further enhances our understanding by providing in-
sights into the specific contributions of each agent. With the support of theoretical identifiability, we identify
the unknown causal structure and individual reward function in such a causal generative process. Additionally,
our method offers a clear explanation for actions and states leading to individual rewards, promoting policy
optimization and invariance. This clarity enhances agent behavior comprehension and aids in refining policies.
The inherent modularity of MACCA ensures its compatibility with a range of policy learning methods,
positioning it as a versatile and promising MARL solution for various real-world contexts.

We summarize the main contributions of this paper as follows. First, we reformulate team reward decomposition
by introducing a Dynamic Bayesian Network (DBN) to describe the causal relationship among states, actions,
individual rewards, and team reward. We provide theoretical evidence of identifiability to learn the causal
structure and function within the generation of individual rewards and team rewards. Second, our proposed
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Figure 2: The illustration of the MACCA method. The offline data generation process begins on the left
side, where data is recorded from the environment. MACCA then constructs a causal model consisting of a
DBN represented in grey and an individual reward predictor depicted in blue. The DBN is used to sample
scales from each agent, denoted as ci,·→·

t and highlighted in green. Meanwhile, the individual reward predictor
takes the joint state, action, and these masks as input to generate the individual reward estimate r̂it. During
the policy learning phase, each agent utilizes their observation and individual reward estimate as inputs,
which are then passed through their respective policy network to generate the next-state actions.

method can recover the parameterized underlying generative process. Lastly, the empirical results on both
discrete and continuous action settings, all three environments, demonstrate that MACCA outperforms
current state-of-the-art methods in solving the credit assignment problem caused by team rewards.

2 Related Work
In this section, we review the close-related topics, i.e., Offline MARL and Multi-agent Credit Assignment
and Causal Reinforcement Learning.

Offline MARL. Recent research (Pan et al., 2022; Kostrikov et al., 2022; Jiang & Lu, 2021) efforts have
delved into offline MARL, identified and addressed some of the issues inherited from offline single-agent
RL (Agarwal et al., 2020; Yu et al., 2020; Yang et al., 2022; Wang et al., 2023). For instance, ICQ (Yang
et al., 2021) focuses on the vulnerability of multi-agent systems to extrapolation errors, while MABCQ (Jiang
& Lu, 2021) examines the problem of mismatched transition distributions in fully decentralized offline MARL.
However, these studies all assume using a global state and evaluate the action of the agents relying on the
team rewards. Other approaches (Tseng et al., 2022) have a long term progress in online fine-tuning for offline
MARL training but have not taken into account the learning slowdown caused by credits of agents to the
entire team. For the learning framework, the two most popular recent paradigms are Centralized Training
with Decentralized Execution (CTDE) and Independent Learning (IL). Recent research (de Witt et al., 2020;
Lyu et al., 2021) shows the benefits of decentralized paradigms, which lead to more robust performance
compared to a centralized value function.

Multi-agent Credit Assignment. Multi-agent Credit Assignment is the study to decompose the team
reward to each individual agent in the cooperative multi-agent environments (Chang et al., 2003; Du et al.,
2019; Chen et al., 2023). Recent works (Sunehag et al., 2018; Foerster et al., 2018; Wang et al., 2020;
Rashid et al., 2020; Li et al., 2021) focus on value function decompose under online MARL manner. For
instance, COMA (Foerster et al., 2018) is a representative method that uses a centralized critic to estimate
the counterfactual advantage of an agent action, which is an on-policy algorithm. This means it requires the
corresponding data distribution and samples consistent with the current policy for updates. However, in
an offline setting, agents are limited to previously collected data and can’t interact with the environment.
This data, often from varying behavioral policies, might not align with the current policy. Therefore, COMA
cannot be directly extended to the offline setting without changing its on-policy features (Levine et al., 2020).
In online off-policy settings, state-of-the-art credit assignment algorithms such as SHAQ (Wang et al., 2022a)
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and SQDDPG (Wang et al., 2020) utilize an agent’s approximate Shapley value for credit assignment. In
the experiment section, we conduct a comparative analysis with these methods, and the results for MACCA
demonstrate superior performance. Note that we focus on explicitly decomposing the team reward into
individual rewards in an offline setting under the casual structure we learned, and these decomposed rewards
will be used to reconstruct the offline dataset first and further the policy learning phase. Recent work
by Zhang et al. (2024) proposes a causality-inspired spatial-temporal return decomposition approach for
multi-agent RL, which further highlights how alternative causal structures can be leveraged to improve credit
assignment. However, unlike Zhang et al., their method still assumes access to semi-online or interventional
data to disentangle individual contributions, whereas MACCA operates purely on static offline data and
comes with a formal identifiability guarantee.

Causal Reinforcement Learning. Plenty of work explores solving diverse RL problems with causal
structures. Most research emphasizes the transferability of RL agents. For instance, Huang et al. (2021)
learn factored representations and domain-specific change factors, while Feng et al. (2022) extend these ideas
to handle non-stationary environments. More recently, Wang et al. (2022b) and Pitis et al. (2022) propose
removing unnecessary dependencies in causal dynamics models to enhance generalization to unseen states. Hu
et al. (2023) exploit causal relationships between actions and reward components to reduce gradient variance
during policy learning, and Zhang et al. (2023) leverage causal structures to solve single-agent temporal credit
assignment problems. Additionally, causal modeling has been introduced into multi-agent tasks (Grimbly
et al., 2021; Jaques et al., 2019), model-based RL (Zhang & Bareinboim, 2016), and imitation learning (Zhang
et al., 2020). In the context of games, Hammond et al. (2023) extend Pearl’s causal hierarchy (Pearl, 2009b)
to game-theoretic scenarios, developing structural causal games to analyze causal effects and counterfactual
reasoning among fully observable, rational agents. However, unlike these prior approaches, our method
specifically addresses offline settings in partially observable Dec-POMDPs, requiring a causal-identifiability
proof to reliably recover individual rewards and causal structures from static datasets. Thus, MACCA
complements existing causal RL methods by uniquely targeting causal reward decomposition to facilitate
decentralized policy learning under partial observability and offline constraints.

3 Preliminaries
In this section, we review the widely-used MARL training framework, the Decentralized Partially Observable
Markov Decision Process, and briefly introduce Offline MARL.

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) (Oliehoek et al.,
2016) is defined by a tuple M = ⟨N,S,A,P,R,O, γ⟩. In this tuple, N represents the number of agents, S is
the state space, and A is the shared action spaces and ai ∈ A is the action for agent i. The state transition
function P(s′|s,a) specifies the probability of transitioning to a new state given the current state s and
joint actions a = (a1, . . . , aN ). The Rt = R(s,a) is the team reward given by the team reward function
and oi = O(s, i) is the local observation for agent i at global state s. Each agent use a policy πθ(ai|oi)
parameterized by θ to produce an action ai from the local observation oi, and optimize the discounted
accumulated team reward Jπ = E[

∑∞
t=0 γ

tR(st,at)], where at = (a1
t , . . . , a

N
t ) is the joint action at time step

t, and γ represents the discount factor.

We assume that the observed team reward Rt can be expressed as the sum of individual rewards, i.e.
Rt =

∑N
i=1 r

i
t. Although this does not hold for every cooperative task, it is exactly true (or nearly so) in

many common benchmarks (e.g. MPE, SMAC). Importantly, as we will demonstrate later via ablation studies,
MACCA remains effective even when the true reward is not strictly additive.

Offline MARL. Under offline setting, we consider a MARL scenario where agents sample from a fixed dataset
D = {sit, oit, ait, Rt, sit

′
, oit

′}. This dataset is generated from the behavior policy πb without any interaction
with the environments, meaning that the dataset is pre-collected offline. Here, sit, oit and ait represent the
state, observation and action of agent i at time t, while Rt is the team reward received at time t, and sit

′, oit
′

represents the next state and observation of agent i.

Dynamic Bayesian Networks (DBN) (Murphy, 2002) is a graphical model for representing the joint
distribution over a sequence of random variables across time. A DBN consists of repeated “time slices,”
where each slice t contains a set of variables (e.g. Xt), and edges within the slice encode contemporaneous
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dependencies. Between slices, directed edges specify how variables at time t influence variables at time t+ 1,
typically under a first-order Markov assumption:

P (X1:T ) = P (X1)
T∏
t=2

P
(
Xt | Xt−1

)
.

Each conditional distribution P (Xt | Xt−1) further factorizes according to the intra-slice structure at time t.
In this way, a DBN compactly encodes both temporal transitions and within-slice conditional independencies.

4 Offline MARL with Causal Credit Assignment
Credit assignment plays a crucial role in facilitating the effective learning of policies in offline cooperative
scenarios. In offline MARL, effectively assigning credit among agents is inherently challenging due to partial
observability and the static nature of the data. A traditional Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) implicitly captures temporal causality; however, it does not explicitly
specify which exact dimensions of an agent’s state or action affect its individual reward. A generic reward-
prediction network—such as a standard regression from joint states and actions directly to a single scalar
reward—cannot reveal which agent-specific state-action dimensions drive each agent’s contributions, leading
to limited interpretability and an absence of sparsity.

To overcome these limitations, we propose MACCA, a method leveraging a causal modeling approach.
Specifically, MACCA introduces a Dynamic Bayesian Network (DBN)(Murphy, 2002) to explicitly characterize
causal relationships among variables. By learning binary masks, MACCA clearly identifies which subsets of
the joint state-action variables causally influence each agent’s individual reward, ensuring interpretability
and sparsity. Moreover, our DBN formulation guarantees the identifiability of the true causal structure and
individual reward functions under standard assumptions—namely the faithfulness and Markov conditions (see
Proposition4.1). These critical properties significantly enhance the effectiveness of spatial credit assignment,
particularly in scenarios where individual agent rewards are unobservable and further interaction with the
environment is impossible.

In the following sections, we first present the underlying generative process within the offline MARL scenario,
which serves as the foundation of our method. Then, we describe how to recover the underlying generative
process and perform policy learning with the assigned individual rewards.

As shown in Figure 2, our method includes two main components: a causal model ψm and a policy model
ψπ. The overall objective, denoted as LMACCA, consists of two key terms: (1) a model estimation loss Lm,
which measures how accurately the individual reward predictor reconstructs the observed team reward from
predicted individual reward components, along with an ℓ1 penalty to enforce sparsity in causal masks, and (2)
an offline policy learning loss Jπ, computed based on standard offline RL algorithms (such as CQL, OMAR,
or ICQ), using the assigned individual rewards instead of the team reward. Thus, our combined loss function
can be expressed as:

LMACCA = Lm + Jπ, (1)

where the specific form of Jπ depends on the offline RL algorithm used (e.g., JCQL
π , JOMAR

π , or J ICQ
π in this

paper).

4.1 Underlying Generative Process in MARL
As a foundation of our method, we introduce a Dynamic Bayesian Network (DBN) (Murphy, 2002) to
characterize the underlying generative process. DBN is a special type of graphical model that captures the
temporal dependencies between variables, corresponding to state transitions across time steps in sequential
decision making. By leveraging the DBN structure, we can naturally account for the graph structure over
state, action, and reward variables, as well as their temporal dependencies, leading to a natural interpretation
of the explicit contribution of each dimension of state and action towards the individual rewards.

We denote the G as the DBN to represent the causal structure between the states, actions, individual rewards,
and team reward as shown in Figure 1, which is constructed over a finite number of random variables as
(si1,t, · · · , sidi

s,t
, ai1,t, · · · , aidi

a,t
, rit, Rt)

N,T
i,t=1, where the dis and dia correspond to the dimensions of the state and
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action of agent i respectively. Rt is the observed team reward at time step t. rit is the unobserved individual
reward at time step t. T is the maximum episode length of the environment. Then, the underlying generative
process is denoted as: {

rit = f
(
c i, s→r⊙ st, c i,a→r⊙ at, i, εi,t

)
,

Rt =
∑N
i=1 r

i
t,

(2)

where εi,t denotes an exogenous noise term that is independent and identically distributed across agents
and time—i.e. standard structural-causal-model noise—to account for variability beyond the deterministic
mapping f . Here, st = {s1

1,t, . . . , s
1
d1

s,t
, . . . , sN1,t, . . . , s

N
dN

s ,t
} and at = {a1

1,t, . . . , a
1
d1

a,t
, . . . , aN1,t, . . . , a

N
dN

a ,t
} are

the joint state and joint action of all N agents at time t, with Ds =
∑N
i=1 d

i
s and Da =

∑N
i=1 d

i
a denoting

their respective total dimensions. The operator ⊙ is element-wise multiplication, f is the unknown non-linear
individual reward function, and c i,s→r ∈ {0, 1}Ds , c i,a→r ∈ {0, 1}Da are binary masks (which may be
dynamic or static) that indicate which dimensions of st and at influence rit. In particular, if there is a causal
edge from the k-th dimension of st to agent j’s individual reward rjt in G, then c j,s→r(k) = 1. We emphasize
again that we assume an additive structure for the team reward (Rt =

∑N
i=1 r

i
t) to facilitate interpretable

and computationally efficient credit assignment. As discussed in Section 3, this assumption typically aligns
closely with standard cooperative MARL benchmarks, and importantly, MACCA remains effective even when
rewards are inherently non-additive.

Each binary mask c i, s→r
t ∈ {0, 1}Ds and c i,a→r

t ∈ {0, 1}Da serves two purposes: (1) it reveals the causal
parents of agent i’s individual reward, granting interpretability; and (2) it regularizes ψr so that, in an
offline dataset with mixed behavior policies, ψr does not latch onto spurious correlations among irrelevant
state–action dimensions. Without these masks, one would need to predict r̂it = ψr(s1:N,t, a1:N,t, i) over all
Ds + Da dimensions—making it impossible to recover “which features matter” or to prove identifiability.
The masks enable both sparsity and a clear DAG structure.
Proposition 4.1 (Identifiability of Causal Structure and Individual Reward Function). Suppose the joint
state st, joint action at, team reward Rt are observable while the individual rit for each agent are unobserved,
and they are from the Dec-POMDP, as described in Eq 2. Then under the Markov condition and faithfulness
assumption (refer to Appendix C), given the current time step’s team reward Rt, all the masks ci,s→r, ci,a→r,
as well as the function f are identifiable.

The proposition 4.1 demonstrates that we can identify causal representations from the joint action and state,
which serve as the causal parents of the individual reward function we want to fit. This allows us to determine
which agent should be responsible for which dimension and thus generate the corresponding individual reward
function for each agent. The objective for each agent changes to maximize the sum of individual rewards over
an infinite horizon. The proof is in Appendix D.

4.2 Causal Model Learning
In this section, we delve into identifying the unknown causal structure and reward function within the graph
G. This is achieved using the causal structure predictor ψg, and the individual reward predictor ψr. The set
ψg = {ψs→r

g , ψa→r
g } is to learn the causal structure. Specifically, ψs→r

g and ψa→r
g are employed to predict

the presence of edges in the masks described by Eq 2. We have

ĉi,s→r
t = ψs→r

g (st,at, i), ĉi,a→r
t = ψa→r

g (st,at, i), (3)

where, ĉi,s→r
t and ĉi,a→r

t are the predicted masks for agent i at timestep t. Note that these causal masks
are time-invariant and can change with state and action. We generate masks at each time step since we
consider the inherent complexity of the multi-agent scenario, which has high dimensionality and the dynamic
nature of the causal relationships that can evolve over time. Thus, we adopt ψs→r

g and ψa→r
g to generate

mask estimation at each time step t, within the joint state and joint action and agent id as the input. This
dynamic mask adaptation facilitates more accurate causal modelling. To further validate this estimation, we
have conducted ablation experiments at Section 5.3.
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The ψr is used for approximating the function f , and is constructed by stacked fully-connection layers. To
recover the underlying generative process, i.e., to optimize ψr, we minimize the following objective:

Lm = ED[Rt −
N∑
i=1

ψr(ĉi,s→r
t , ĉi,a→r

t , st,at, i)]2 + Lreg. (4)

The Lreg serves as an L1 regularization, akin to the purpose delineated in (Zhang & Spirtes, 2011). Its primary
objective is to clear redundant features during training, reduce the number of features that a given depends
on, and use the coefficients of other features completely set to zero, which fosters model interpretability and
mitigates the risk of overfitting. And it defines as:

Lreg = λ1
∑N
i=1 ∥ĉ

i,s→r
t ∥1 + λ2

∑N
i=1 ∥ĉ

i,a→r
t ∥1, (5)

where λ(·) are hyper-parameters. For more details, please refer to Appendix F.

4.3 Policy Learning with Assigned Individual Rewards.
For policy learning, we use the redistributed individual rewards r̃it to replace the observed team reward Rt.
Then, we carry out the policy optimizing over the offline dataset D.

Individual Rewards Assignment. We first assign individual rewards for each agent’s state-action-id
tuple ⟨st,at, i⟩ in the samples used for policy learning. During such an inference phase of individual rewards
predictor, we first utilize a hyperparameter, h, as an element-wise threshold to determine the existence of the
inference phase. Elements within the mask ĉi,s→r

t and ĉi,a→r
t will be set to 0 if their absolute value is less

than h, and 1 otherwise. Then, we assign an individual reward for each agent as,

r̂it = ψr(st,at, ĉi,s→r
t , ĉi,a→r

t , i). (6)

Offline Policy Learning. The process of individual reward assignment is flexible and is able to be inserted
into any policy training algorithm. We now describe three practical offline MARL methods, MACCA-CQL,
MACCA-OMAR and MACCA-ICQ. In all those methods, they use Q-Value to guide policy learning, for each
agent who estimates the Qi(oi, ai) = Eπ[

∑∞
t=0 γ

tRt] with the Bellman backup operator, we then replace the
team reward by learned individual reward r̂it as Q̂i(oi, ai) = Eπ[

∑∞
t=0 γ

tr̂it], then in the policy improvement
step, MACCA-CQL trains actors by minimizing:

JCQL
π = ED[(Q̂i(oi, ai)− yi)2] + αED[log

∑
ai

exp(Q̂i(oi, ai))− Eai∼π̂i
β
[Q̂i(oi, ai)]], (7)

where, yi = r̂it + γmink=1,2 Q̄
i,k(oi′, π̄i(oi′)) from Fujimoto et al. (2018) to minimize the temporal difference

error, Q̄i represents the target Q̂ for the agent i, α is the regularization coefficient, π̂βi is the empirical
behavior policy of agent i in the dataset. Similarly, MACCA-OMAR updates actors by minimizing:

JOMAR
π = −ED[(1− τ)Q̂i(oi, πi(oi))− τ(πi(oi)− âi)2], (8)

where âi is the action provided by the zeroth-order optimizer and τ ∈ [0, 1] denotes the coefficient. For the
MACCA-ICQ, it updates actors by minimizing:

J ICQ
π = ED[Lτ2(r̂(s, a) + γQ̄i(oi

′
, ai

′
)− Q̂i(oi, ai))], (9)

where Lτ2 is the squared loss based on expectile regression and the γ is the discount factor, which determines
the present value of future rewards. As MACCA uses individual reward to replace the team reward, we do not
directly decompose value function, unlike the prior offline MARL methods (Foerster et al., 2018; Wang et al.,
2020; 2022a), thus we do not require fitting an additional advantage value or Q-value estimator, simplifying
our method.
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Table 1: Average Normalized Score of MPE task with Team Reward
I-CQL OMAR MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

Exp(CN) 33.6 ± 22.9 44.7 ± 46.6 45.0 ± 23.1 85.4 ± 8.1 111.7 ± 4.3 90.4 ± 5.1
Exp(PP) 63.4 ± 38.6 99.9 ± 14.2 87.0 ± 12.3 94.9 ± 27.9 111.0 ± 21.5 114.4 ± 25.1
Exp(WORLD) 54.4 ± 17.3 98.7 ± 18.7 43.2 ± 15.7 89.3 ± 14.8 107.4 ± 11.0 93.2 ± 12.0
Med(CN) 19.7 ± 8.7 49.6 ± 14.9 30.8 ± 7.3 45.0 ± 8.8 67.9 ± 16.9 70.3± 10.4
Med(PP) 50.0 ± 15.6 57.4 ± 13.9 59.4 ± 11.1 61.1 ± 27.1 87.1 ± 12.2 77.4 ± 10.5
Med(WORLD) 25.7 ± 21.3 33.4 ± 12.8 35.6 ± 6.0 54.7 ± 11.0 63.6 ± 8.7 55.1 ± 3.5
Med-R(CN) 10.8 ± 7.7 26.8 ± 15.2 22.4 ± 9.3 15.9 ± 11.2 33.2 ± 12.6 28.6 ± 5.6
Med-R(PP) 18.3 ± 9.5 56.3 ± 16.6 44.2 ± 4.5 32.5 ± 15.1 69.0 ± 19.3 64.3 ± 7.8
Med-R(WORLD) 4.5 ± 10.1 28.9 ± 17.2 10.7 ± 2.8 34.8 ± 16.7 50.9 ± 14.2 39.9 ± 13.4
Rand(CN) 12.4 ± 9.1 22.9 ± 10.4 6.0 ± 3.1 22.2 ± 4.6 32.8 ± 9.5 28.13 ± 4.6
Rand(PP) 5.5 ± 2.8 12.0 ± 5.2 15.6 ± 3.4 14.7 ± 6.7 20.9 ± 8.3 30.3 ± 5.4
Rand(WORLD) 0.1 ± 4.5 6.2 ± 6.7 0.6 ± 2.4 8.7 ± 3.3 15.8 ± 6.1 10.1 ± 6.6

5 Experiments

Based on the above, our methods include MACCA-OMAR, MACCA-CQL and MACCA-ICQ. For base-
lines, we compare with both CTDE and independent learning paradigm methods, including I-CQL (Kumar
et al., 2020): conservative Q-learning in independent paradigm, OMAR (Pan et al., 2022): based on I-CQL,
but learning better coordination actions among agents using zeroth-order optimization, MA-ICQ (Yang
et al., 2021): Implicit constraint Q-learning within CTDE paradigm, SHAQ (Wang et al., 2022a) and
SQDDPG (Wang et al., 2020): variants of credit assignment method using Shapley value, which are the
SOTA on the online multi-agent RL, SHAQ-CQL: In pursuit of a more fair comparison, we integrated CQL
with SHAQ, which adopts the architectural framework of SHAQ while using CQL in the estimations of agents’
Q-values and the target Q-values, QMIX-CQL: conservative Q-learning within CTDE paradigm, following
QMIX structure to calculate the Qtot using a mixing layer, which is similar to the MA-ICQ framework.
We evaluate those performance in two environments: Multi-agent Particle Environments (MPE) (Lowe
et al., 2017) and StarCraft Micromanagement Challenges (SMAC) (Samvelyan et al., 2019). Through these
comparative evaluations, we want to highlight the relative effectiveness and superiority of the MACCA
approach. Furthermore, we conduct three ablations to investigate the interpretability and efficiency of our
method. For detailed information about the environments, please refer to Appendix E.

5.1 General Implementation

Offline Dataset. Following the approach outlined in Justin et al. (2020) and Pan et al. (2022), we classify
the offline datasets in all environments into four types: Random, generated by random initialization. Medium-
Reply, collected from the replay buffer until the policy reaches medium performance. Medium and Expert,
collected from partially trained to moderately performing policies and fully trained policies, respectively. The
difference between our setup and Pan et al. (2022) is that we hide individual rewards during training and store
the sum of these individual rewards in the dataset as the team reward. By creating these different datasets,
we aim to explore how different data qualities affect algorithms. For MPE, we adopt the normalized score as
a metric to assess performance. The normalized score is calculated by 100× (S−Srandom)/(Sexpert−Srandom)
following by Justin et al. (2020), where the S, Srandom, Sexpert are the evaluation return from the current
policy, random set behaviour policy, expert set behaviour policy respectively.

5.2 Main Results

Multi-agent Particle Environment (MPE). We evaluate our method in three distinct environments:
Cooperative Navigation (CN), Prey-and-Predator (PP), and Simple-World (WORLD). In the CN envi-
ronment, three agents aim to reach targets. Observations include position, velocity, and displacements to
targets and other agents. Actions are continuous in x and y. Rewards are based on distance to targets,
with collision penalties. In the PP environment, three predators chase a random prey. Their state includes
position, velocity, and relative displacements. Rewards are based on distance to the prey, with bonuses for
captures. The WORLD environment has four allies chasing two faster adversaries. As depicted in Table 1, It
can be seen that the algorithms based on MACCA perform better than their respective backbones.
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Table 2: Averaged win rate of MACCA-based algorithms and baselines in StarCraft II tasks
Map Dataset I-CQL OMAR MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

2s3z
(Easy)

Expert 0.70±0.09 0.86±0.08 0.80±0.01 0.88±0.07 0.99±0.05 0.95±0.01
Medium 0.20±0.03 0.17±0.01 0.16±0.07 0.27±0.02 0.55±0.03 0.51±0.03

Medium-Replay 0.11±0.07 0.35±0.08 0.31±0.04 0.25±0.03 0.53±0.01 0.59±0.04

5m_vs_6m
(Hard)

Expert 0.02±0.02 0.44±0.04 0.38±0.05 0.63±0.02 0.73±0.04 0.88±0.01
Medium 0.01±0.00 0.14±0.02 0.11±0.04 0.19±0.01 0.20±0.04 0.15±0.02

Medium-Replay 0.12±0.01 0.09±0.04 0.18±0.04 0.15±0.02 0.14±0.01 0.28±0.01

6h_vs_8z
(Super Hard)

Expert 0.00±0.00 0.18±0.08 0.04±0.01 0.59±0.01 0.75±0.07 0.60±0.03
Medium 0.01±0.01 0.12±0.06 0.01±0.01 0.17±0.00 0.20±0.02 0.22±0.04

Medium-Replay 0.03±0.02 0.01±0.01 0.07±0.04 0.14±0.02 0.22±0.01 0.25±0.05
MMM2

(Super Hard)
Expert 0.08±0.03 0.10±0.01 0.11±0.01 0.60±0.01 0.69±0.01 0.71±0.03

Medium 0.02±0.01 0.12±0.02 0.08±0.04 0.25±0.07 0.50±0.06 0.59±0.04

Table 3: Compare with online off-policy credit assignment baselines in SMAC
Map Dataset SHAQ SQDDPG SHAQ-CQL QMIX-CQL I-CQL MACCA-CQL

2s3z Expert 0.10±0.03 0.05±0.01 0.79±0.03 0.73±0.02 0.70±0.09 0.88±0.07
Medium 0.05±0.03 0.07±0.01 0.24±0.01 0.22±0.03 0.20±0.03 0.27±0.02

5m_vs_6m Expert 0.02±0.01 0.00±0.00 0.10±0.03 0.03±0.01 0.02±0.02 0.63±0.02
Medium 0.00±0.00 0.00±0.00 0.06±0.01 0.01±0.01 0.01±0.00 0.19±0.01

6h_vs_8z Expert 0.00±0.00 0.00±0.00 0.02±0.01 0.00±0.00 0.00±0.00 0.59±0.01
Medium 0.00±0.00 0.00±0.00 0.04±0.02 0.00±0.00 0.01±0.01 0.17±0.00

StarCraft Micromanagement Challenges (SMAC). In order to show the performance in the scale
scene, we specially selected maps with a large number of agents. To illustrate, the map 2s3z needs to control
5 agents, including 2 Stalkers and 3 Zealots, the map 6h_vs_8z needs to control 6 Hydralisks against 8
Zealots, and map MMM2 have 1 Medivac, 2 Marauders and 7 Marines. All experiments will run 3 random
seeds and the win rate was recorded, and the corresponding standard was calculated. Table 2 shows the
result. For most of the tasks, the MACCA-based method shows state-of-the-art performance compared to
their baseline algorithms.

Also, we considered testing online off-policy algorithms in the offline setting. To this end, we introduced
several baselines in SMAC for comparison with MACCA, as shown in Table 3. The table below shows the
results of the added baselines compared to SMAC tasks. It becomes apparent that when directly applied to
the offline setting, online off-policy credit assignment algorithms consistently yield suboptimal performance.
Our empirical findings underscore that while SHAQ-CQL indeed exhibits advancements QMIX-CQL, our
MACCA-CQL clinches the SOTA performance across all tasks.

5.3 Ablation Studies
The Impact of Learned Causal Structure. We varied the value of λ1 in Eq 5 to control the density of
the learned causal structure. Table 4 presents the average cumulative reward and the density of the causal
structure during the training process in the MPE-CN environment. The density of the causal structure ĉi,s→r

t ,
is calculated as ρsr =

∑N
i=1

1
di

s

∑di
s

k=1 si,s→r
k , where si,s→r

k represent is the value bigger than the threshold
h. The results indicate that as λ1 increases from 0 to 0.5, the causal structure becomes more sparse (ρsr
decreases), resulting in less policy improvement. This can be attributed to the fact that MACCA may not
have enough states to predict individual rewards, leading to misguided policy learning accurately. Conversely,
setting a relatively low λ1 may result in a denser structure that incorporates redundant dimensions, hindering
policy learning. Therefore, achieving a reasonable causal structure for the reward function can improve both
the convergence speed and the performance of policy training. We also provide the ablation for λ2, please
refer to Appendix.F.4. Table 5: Average normalized scores for ground truth

individual reward comparison in MPE-CN
OMAR MACCA-OMAR

With GT 114.9 ± 2.4 113.7 ± 2.3
Without GT 43.7 ± 46.6 111.7 ± 4.3

Ground Truth Individual Reward. In the MPE
CN expert dataset, we investigate the influence of
ground truth individual rewards on agent policy up-
dates. Two scenarios are compared: agents update
policies using ground truth individual rewards (GT), and agents primarily rely on team rewards (without GT).
Notably, OMAR with GT directly employs individual rewards for policy updates, while MACCA-OMAR with

9



Published in Transactions on Machine Learning Research (06/2025)

Table 4: The mean and the standard variance of average normalized score, density rate ρsr of ĉi,s→r
t with

diverse λ1 at different time step t in MPE-CN.
λ1 / t 1e4 3e4 5e4 1e5 2e5

0 -2.43 ± 8.01(0.98) -14.87± 7.71(0.90) -12.356± 5.83(0.81) 9.842± 18.89(0.77) 69.04 ± 19.69(0.72)
0.007 -7.88±5.36(0.94) 13.26±27.14(0.47) 60.18±26.14(0.28) 99.78± 19.50(0.15) 111.65± 4.28(0.13)
0.05 -3.66±12.14(0.90) 3.93±42.06(0.34) 10.04± 45.97(0.17) 23.61± 44.18(0.11) 75.81± 34.48(0.10)
0.5 -12.20±3.87(0.87) -16.19±5.53(0.24) -8.84± 7.16(0.11) 16.40± 21.04(0.07) 59.23± 35.29(0.01)

GT utilizes individual rewards as a supervisory signal, replacing team rewards in Eq 4. The results, presented
in Table 5, the small gap between MACCA+GT and OMAR+GT arises from the extra regularization
introduced by jointly learning ψg and ψr, a design choice that in fact improves generalization when ground
truth rit are unavailable. Thus, even though OMAR with GT slightly outperforms MACCA–OMAR when
GT is provided, MACCA–OMAR’s ability to learn r̂it without supervision is what enables major performance
gains over baselines that rely solely on team rewards. For further details on prediction accuracy convergence
versus GT, see Appendix F.6

Table 6: Average win rate in SMAC 5m_vs_6m map,
expert dataset.

Win Rate
MACCA (Fully Connected Graph) 0.38 ± 0.02
MACCA (Fixed Graph) 0.50 ± 0.01
MACCA (w.o h clipping) 0.66 ± 0.01
MACCA (w. h clipping) 0.73 ± 0.04

The Impact of Causal Graph Types. To
investigate the performance under different graph
types, we consider three settings. The Fully Con-
nected Graph assumes all variables are causally
connected, while The Fixed Graph learns a static
graph that is invariant to time by averaging the
predicted masks ĉi,·→r

t overall time steps dur-
ing training. Our proposed graph setting, as
described in Equation 3, learns a graph that depends on the current state st and action at. Table 6 presents
the results of MACCA-OMAR under these different graph types. The Fully Connected Graph yields subopti-
mal performance due to its inability to differentiate individual agent contributions. The Fixed Graph shows
marginal improvement over the Fully Connected Graph but remains limited in capturing the complex dynamic
multi-agent causal relationships that vary with time. In contrast, our proposed dynamic graph setting
achieves the highest performance by incorporating time-varying information. Additionally, we compared the
performance of our method with and without h clipping, where the threshold h filters the causal mask. The
results demonstrate that our method with h clipping outperforms the variant without it. This aligns with
established practices in earlier works on DAG structural learning (Zheng et al., 2018; Ng et al., 2020), which
show the importance of clipping to ensure edge weights converge to zero when working with finite datasets.
Appendix F.5 provides additional results of MACCA under different levels of h.

Visualization of Causal Structure. In Figure 3, we provide visualizations of two significant causal
structures within the CN environment of MPE. To observe the causal structure learning process more easily,
we initialize the ĉi,s→r

t as a normalized random number close to 1 and the ĉi,a→r
t close to 0. Over time, we

notice that the causal structure ĉi,s→r
t shifts its focus from considering all dimensions of the agent state

to primarily emphasizing the 4th to 10th dimensions of each agent. In this environment, the agent’s state
comprises 18 dimensions. Specifically, dimensions 0th to 4th us agent’s velocity and position, 5th to 9th capture
the distance between the agent and three distinct landmarks, 10th to 13th reflect the distances between the
agent and other agents, and dimensions 14th to 17th are related to communication, although not applicable in
this experiment and thus considered irrelevant. In other words, the dimensions 4th to 9th and 10th to 13th are
intuitively linked to individual rewards, aligning with the convergence direction of MACCA. With regard to
the causal structure ĉi,a→r

t , as each agent’s actions involve continuous motion without extraneous variables,
it converges to relevant states that contribute to individual credits for the team reward. The results support
the interpretability of relationships between variables through the causal structure.

Table 7: The win rate and loss of different train-
ing paradigms by using MACCA-OMAR in SMAC
5m_vs_6m, expert dataset

Win Rate Causal Model Loss
TCB 0.62 ± 0.08 0.80 ± 0.02
TCPA 0.73 ± 0.04 0.81 ± 0.01

Training paradigms In MACCA, we train the
causal model and policy alternately rather than train
the causal model at the beginning. The benefit of
alternated training is that the reward model is less
accurate at the early stage of training, which encour-
ages agents to extract diverse behaviours that go
beyond the dataset. Similar to (Hu et al., 2024), they discuss the usefulness of random rewards prior. We
conducted experiments as detailed in Table 7. Here, the TCB stands for training the causal model at the
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Figure 3: The figure visualizes the causal structure, showing the probability of causal edges from blue (high
probability) to yellow (low probability). (a) represents the causal structure ĉi,s→r

t between the state of all
agents (18 dimensions for each agent, 54 dimensions for joint state ) and the individual reward (1 dimension
for each agent). (b) represents the causal structure ĉi,a→r

t between the action of each agent (2 dimensions for
each agent, six dimensions for joint action) and the individual reward (1 dimension for each agent).

beginning, and the TCPA is training the causal model and policy alternately. The causal model is initially
trained with the same training time steps as the alternating setting, which is 10 million steps. According to
the result, for both paradigms, the reward model loss converged to comparable levels, and TCPA showed a
clear improvement in the win rate. Table 8: Performance on the sparse-reward variant of

MPE-CN. Despite the highly non-additive team reward,
MACCA significantly improves credit assignment and
overall policy performance.

Method Avg. Episode Reward
OMAR 0.18± 0.07
MACCA-OMAR 0.42± 0.13

Robustness to Non-Additive Rewards. On a
sparse-reward variant of MPE-CN—where Rt = 1
only if all three agents cover distinct landmarks and
Rt = 0 otherwise (so

∑
i r
i
t ̸= Rt)—MACCA still

outperforms the baseline (Table 8), demonstrating
that it can learn meaningful latent individual rewards
and effective policies even when the team reward is
not decomposable.

6 Conclusion
In conclusion, MACCA emerges as a valuable solution to the credit assignment problem in offline Multi-agent
Reinforcement Learning (MARL), providing an interpretable and modular framework for capturing the
intricate interactions within multi-agent systems. By leveraging the inherent causal structure of the system,
MACCA allows us to disentangle and identify the specific credits of individual agents to team rewards. This
enables us to accurately assign credit and update policies accordingly, leading to enhanced performance
compared to different baseline methods. The MACCA framework empowers researchers and practitioners to
gain deeper insights into the dynamics of multi-agent systems, facilitating the understanding of the causal
factors that drive cooperative behavior and ultimately advancing the capabilities of MARL in a variety of
real-world applications.

Limitation and Future Work. One limitation of the current work is that the experiments focused on
simulated environments rather than real-world scenarios. While the MPE and SMAC environments provide
controlled testbeds to evaluate the approach, the performance of MACCA in practical multi-agent applications
remains to be investigated. Future work could explore integrating the method with real robot systems or
testing it on datasets collected from real-world multi-agent interactions to further validate its practicality
and robustness.
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A Broader Impact Statements
The proposed work advances offline multi-agent reinforcement learning by introducing a general approach
to credit assignment that can be integrated with existing algorithms, yielding significant performance gains
in static-data settings. Beyond academic benchmarks, MACCA’s identifiable causal structures offer critical
value in real-world applications: for instance, multi-robot coordination in logistics or disaster-response
teams—where understanding each robot’s contribution is essential for fault diagnosis and task allocation;
autonomous driving fleets—where clear, interpretable attributions of responsibility among vehicles improve
accountability, safety, and regulatory compliance; and distributed control systems in domains such as smart
grids or algorithmic trading—where transparent, causally grounded decisions enhance reliability and risk
management. At the same time, we recognize risks inherent in learning causal models from biased or
incomplete offline datasets—misestimated causal relations could lead to unfair credit assignment or unsafe
behavior in high-stakes environments. To mitigate these risks, we emphasize rigorous dataset auditing
to detect sampling biases, validation of learned causal structures through simulation before deployment,
and cautious incremental rollout in mission-critical applications to ensure that decisions remain safe and
equitable.“‘

B Reproducibility Statements
To promote transparent and accountable research practices, we have prioritized the reproducibility of our
method. All experiments conducted in this study adhere to controlled conditions and well-known environments
and datasets, with detailed descriptions of the experimental settings available in Section 5 and Appendix E.
The implementation specifics for all the baseline methods and our proposed MACCA are thoroughly outlined
in Section 4 and Appendix F.

C Markov and Faithfulness Assumptions
A directed acyclic graph (DAG), G = (V ,E), can be deployed to represent a graphical criterion carrying
out a set of conditions on the paths, where V and E denote the set of nodes and the set of directed edges,
separately.
Definition C.1. (d-separation (Pearl, 2009a)). A set of nodes Z ⊆ V blocks the path p if and only if (1) p
contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z, or (2) p contains a
collider i→ m← j such that the middle node m is not in Z and such that no descendant of m is in Z. Let
X, Y and Z be disjunct sets of nodes. If and only if the set Z blocks all paths from one node in X to one
node in Y , Z is considered to d-separate X from Y , denoting as (X ⊥d Y | Z).
Definition C.2. (Global Markov Condition (Spirtes et al., 2000; Pearl, 2009a)). If, for any partition
(X,Y ,Z), X is d-separated from Y given Z, i.e. X ⊥d Y | Z. Then the distribution P over V satisfies the
global Markov condition on graph G, and can be factorizes as, P (X,Y | Z) = P (X | Z)P (Y | Z). That is,
X is conditionally independent of Y given Z, writing as X ⊥⊥ Y | Z.
Definition C.3. (Faithfulness Assumption (Spirtes et al., 2000; Pearl, 2009a)). The variables, which are not
entailed by the Markov Condition, are not independent of each other.

Under the above assumptions, we can apply d-separation as a criterion to understand the conditional
independencies from a given DAG G. That is, for any disjoint subset of nodes X,Y ,Z ⊆ V , (X ⊥⊥ Y | Z)
and X ⊥d Y | Z are the necessary and sufficient condition of each other.

D Proof of Identifiability
Proposition D.1 (Individual Reward Function Identifiability). Suppose the joint state st, joint action at,
team reward Rt are observable while the individual rit for each agent are unobserved, and they are from the
Dec-POMDP, as described in Eq 2. Then, under the Markov condition and faithfulness assumption, given the
current time step’s team reward Rt, all the masks cs→r,i, ca→r,i, as well as the function f are identifiable.

Assumption We assume that, ϵi,t in Eq 2 are i.i.d additive noise. From the weight-space view of Gaussian
Process (Williams & Rasmussen, 2006) and equation.6, equivalently, the causal models for rit can be represented
as follows,

rit = f(ci,s→r
t ⊙ st, c

i,a→r
t ⊙ at, i) + ϵr,t = Wf

Tϕr(st,at, i) + ϵi,t (10)
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where ∀i ∈ [1, N ], and ϕr denote basis function sets.

As st = {s1
1,t, ..., s

1
d1

s,t
, ..., sN1,t...., s

N
dN

s ,t
} and at = {a1

1,t, ..., a
1
d1

a,t
, ..., aN1,t...., a

N
dN

a ,t
}. We denote the variable set

in the system by V = {V0, ...,VT }, where Vt = st ∪ at ∪Rt, and the variables form a Bayesian network G.
Following AdaRL (Huang et al., 2021), there are possible edges only from sik,t ∈ st to rit, and from aij,t ∈ at
to rit in G, where k, j are dimension index in [1, ..., dNs ] and [1, ..., dNa ] respectively. In particular, the rit are
unobserved, while Rt =

∑N
i=1 r

i
t is observed. Thus, there are deterministic edges from each rit to Rt.

Proof of the Proposition B.1 We aim to prove that, given the team reward Rt, and the ci,s→r, ci,a→r

and rit are identifiable. Following the above assumption, we can rewrite the Eq 2 to the following,

Rt =
N∑
i=1

rit

=
N∑
i=1

[
Wf

Tϕr(st,at, i) + ϵi,t
]

= Wf
T

N∑
i=1

ϕr(st,at, i) +
N∑
i=1

ϵi,t.

(11)

For simplicity, we replace the components in Eq 11 by,

Φr,t =
N∑
i=1

ϕr(st,at, i),

Er,t =
N∑
i=1

ϵi,t.

(12)

Consequently, we derive the following equation,

Rt = Wf
TΦr,t(Xt) + Er,t, (13)

where Xt := [st,at, i]Ni=1 representing the concatenation of the covariates st , at and i, from i = 1 to N .

Then we can obtain a closed-form solution of Wf
T in Eq 13 by modelling the dependencies between the

covariates Xt and response variables Rt. One classical approach to finding such a solution involves minimizing
the quadratic cost and incorporating a weight-decay regularizer to prevent overfitting. Specifically, we define
the cost function as,

C(Wf ) = 1
2

∑
Xt,Rt∼D

(Rt −Wf
TΦr,t(Xt))2 + 1

2λ∥Wf∥2. (14)

where Xt and long-term returns Rt, which are sampled from the offline dataset D. λ is the weight-decay
regularization parameter. To find the closed-form solution, we differentiate the cost function with respect to
Wf and set the derivative to zero:

∂C(Wf )
∂Wf

→ 0. (15)

Solving Eq 15 will yield the closed-form solution for Wf , as

Wf = (λId + Φr,tΦr,tT )−1Φr,tRt = Φr,t(Φr,tTΦr,t + λIn)−1Rt. (16)

Therefore, Wf , which indicates the causal structure and strength of the edge, can be identified from the
observed data. In summary, given team reward Rt, the binary masks, ci,s→r, ci,a→r and individual rit are
identifiable.
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Considering the Markov condition and faithfulness assumption, we can conclude that for any pair of variables
Vk, Vj ∈ V , Vk and Vj are not adjacent in the causal graph G if and only if they are conditionally independent
given some subset of {Vl | l ̸= k, l ̸= j}. Additionally, since there are no instantaneous causal relationships
and the direction of causality can be determined if an edge exists, the binary structural masks ci,s→r and
ci,a→r defined over the set V are identifiable with conditional independence relationships (Huang et al.,
2022). Consequently, the functions f in Equation 2 are also identifiable.

E Environments Setting

We adopt the open-source implementations for the multi-agent particle environment (Lowe et al., 2017)1

and SMAC(Samvelyan et al., 2019)2. The tasks in the multi-agent particle environments are illustrated in
Figures 4(a)-(c). The Cooperative Navigation (CN) task involves 3 agents and 3 landmarks, requiring agents
to cooperate in covering the landmarks without collisions. In the Predator-Prey (PP) task, 3 predators
collaborate to capture prey that is faster than them. Finally, the WORLD task features 4 slower cooperating
agents attempting to catch 2 faster adversaries, with the adversaries aiming to consume food while avoiding
capture.

Agent 1

Agent 3

Agent 2

Landmark 1

Landmark 3

Landmark 2

Predator 1

Predator 3

Predator 2
Landmark 

(a) CN (b) PP (c) WORLD

Landmark 

Adversary 
Forest 

Landmark 

Adversary 1 

Forest 

Landmark 

Adversary 2 

Predator 1 
Predator 2 

Predator 3 Predator 4 

(d) Half-Cheetah

(e) 5m_vs_6m(d) 2s3z

Figure 4: Visualization of different environment in the experiments, (a)-(c): Multi-agent Particle Environ-
ments (MPE), (d)-(e): StarCraft Micromanagement Challenges (SMAC)

Datasets. During training, we utilize the team reward as input, while for evaluation purposes, we compare
the performance with the ground truth individual reward. As a result, the expert and random scores for the
Cooperative Navigation, Predator-Prey and World tasks are as follows: Cooperative Navigation - expert:
516.526, random: 160.042; Predator-Prey - expert: 90.637, random: -2.569; World - expert: 34.661, random:
-8.734;

1https://github.com/openai/multiagent-particle-envs
2https://github.com/oxwhirl/smac
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F Implementations
F.1 Algorithm

Algorithm 1 MACCA: Multi-Agent Causal Credit Assignment
1: for training step t = 1 to T do
2: Sample trajectories from D, save in minibatch B
3: for agent i = 1 to N do
4: Update the team reward Rt to r̂it in B (Eq 6)
5: Optimize ψm: ψm ← ψm − α∇ψm

Lm (Eq 4)
6: Update policy π with minibatch B (Eq 7, Eq 8 or Eq 9)
7: Reset B ← ∅

F.2 Model Structure
The parametric generative model ψm used in MACCA consists of two parts: ψg and ψr. The function of ψg
is to predict the causal structure, which determines the relationships between the environment variables. The
role of ψr is to generate individual rewards based on the joint state and action information. This prediction
is achieved through a network architecture that includes three fully-connected layers with an output size of
256, followed by an output layer with a single output. Each hidden layer is activated using the rectified linear
unit (ReLU) activation function.

During the training process, the generative model is optimized to learn the causal structure and generate
individual rewards that align with the observed team rewards. The model parameters are updated using
Adam, to minimize the discrepancy between the predicted sum of individual rewards and the team rewards.
The training process involves iteratively adjusting the parameters to improve the accuracy of the predictions.

For a more detailed overview of the training process, including the specific loss functions and optimization
algorithms used, please refer to Figure 2. The Figure provides a step-by-step illustration of the training
pipeline, helping to visualize the flow of information and the interactions between different components of the
generative model.

Table 9: The Common Hyperparameters.
hyperparameters value hyperparameters value
steps per update 100 optimizer Adam

batch size 1024 learning rate 3× 10−4

hidden layer dim 64 γ 0.95
evaluation interval 1000 evaluation episodes 10

Table 10: Hyperparameters for OMAR, CQL and MACCA
OMAR τ CQL α MACCA λ1 MACCA λ2 MACCA rlr MACCA h

Expert 0.9 5.0 7e-3 7e-3 5e-2 0.1
Medium 0.7 0.5 5e-3 5e-3 5e-2 0.1

Medium-Replay 0.7 1.0 5e-3 7e-3 5e-2 0.1
Random 0.99 1.0 1e-7 1e-3 5e-2 0.1

F.3 Hyper-parameters
The common hyperparameters are shown in Table.9. The neural network used in training is initialized from
scratch and optimized using the Adam optimizer with a learning rate of 3× 10−4. The policy learning process
involves varying initial learning rates based on the specific algorithm, while the hyperparameters for policy
learning, including a discount factor of 0.95, are consistent across all tasks.
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The training procedure differs across tasks. For MPE, the training duration ranges from 20,000 to 60,000
iterations, with longer training for behavior policies that perform poorly. The number of steps per update is
set to 100.

During each training iteration, trajectories are sampled from the offline data, and the generated individual
reward is replaced with the team reward for policy updates. The training of ψcau is performed concurrently
with ψrew. Validation is conducted after each epoch, and the average metrics are computed using 5 random
seeds for reliable evaluation.

The hyperparameters specific to training MACCA models can be found in Table 10. All experiments were
conducted on a high-performance computing (HPC) system featuring 128 Intel Xeon processors running at
2.2 GHz, 5 TB of memory, and an Nvidia A100 PCIE-40G GPU. This computational setup ensures efficient
processing and reliable performance throughout the experiments.

F.4 Ablation for λ2

We have conducted ablation experiments on λ2 and show the results in the Table 11.

Table 11: The mean and the standard variance of average normalized score, sparsity rate ρar of ĉi,a→r
t with

diverse λ2 at different time step t in MPE-CN.
λ2 / t 1e4 5e4 1e5 2e5

0 17.4 ± 15.2(0.98) 93.1 ± 6.4 (1.0) 105 ± 3.5 (1.0) 107.7 ± 10.2 (1.0)
0.007 19.9 ± 12.4 (0.8 90.2 ± 7.1 (1.0) 108.8 ± 4.0 (1.0) 111.7 ± 4.3(1.0)
0.5 13.3 ± 11.1 (0.68) 100.5 ± 14.0 (0.84) 102.9 ± 16.4 (0.87) 108.4 ± 6.4 (0.98)
5.0 2.3 ± 9.8 (0.0) -1.3 ± 25.4 (0.34) 70.4 ± 18.0 (0.62) 100.1 ± 7.4 (0.75)

F.5 Ablation for h
The selection of h can influence the sparsity of the causal graph. h can be selected by parameter sweeping.
For simplicity, we use h = 0.1 for all tasks in the experiments, which leads to strong performance. we conduct
additional experiments under different h in SMAC 5m_vs_6m Medium Dataset with MACCA-OMAR. The
results are as follows,

Table 12: The mean and the standard variance of the average normalized score, sparsity rate ρar of ĉi,a→r
t

with diverse h in SMAC 5m_vs_6m.
h Win Rate ρsr ρar Causal Model Loss
0 0.12 ± 0.02 1.0 ± 0.0 1.0 ± 0.0 0.15 ± 0.05

0.01 0.14 ±0.03 0.96 ± 0.12 0.72 ± 0.12 0.07 ± 0.01
0.05 0.16 ±0.02 0.81 ± 0.07 0.66 ± 0.04 0.09 ± 0.04
0.1 0.20 ± 0.04 0.73 ± 0.04 0.54± 0.08 0.05 ± 0.02
0.5 0.17 ± 0.01 0.52 ± 0.10 0.43 ± 0.07 0.12 ± 0.06

The causal graph become more sparse (fewer edges between nodes) with the increase of h. The performance
of win rate goes up with the increase of h but decrease after h > 0.1, due to potential inclusion of redudance
information.

F.6 Prediction Accuracy After Convergence (By Dataset Quality)
After convergence, we measure per-agent errors between redistributed rewards r̂it and true rit. Table 13 shows
MSE and MAE (averaged over time and three random seeds) for Expert, Medium, Medium-Replay, and
Random datasets.
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Table 13: Per-Agent Prediction Errors After Convergence
Dataset Quality MSE MAE
Expert 0.12± 0.02 0.65± 0.10
Medium 0.24± 0.05 1.12± 0.15
Medium-Replay 0.38± 0.08 1.78± 0.20
Random 1.60± 0.12 4.45± 0.30

These results indicate that, once MACCA has converged, the redistributed rewards closely track the true
individual rewards in high-quality data (Expert), with an MSE of only 0.12 and MAE of 0.65. As dataset
quality degrades—Medium, Medium-Replay, and Random—the errors increase proportionally, reflecting
noisier or more random behavior, yet remain within reasonable bounds. Even on the Random dataset, where
behavior is least structured, an MAE of 2.45 demonstrates that ψr still captures meaningful individual-reward
signals after training.

F.7 Computational Resources and Training Times
All experiments were conducted on a heterogeneous computing cluster running Ubuntu Linux. The hardware
configuration included a mix of CPU models (Dual Intel Xeon E5-2650, E5-2680 v2, and E5-2690 v3) with a
total of 180 CPU cores and 500 GB of system memory. For GPU acceleration, we utilized three NVIDIA A30
GPUs.

The average wall-clock training time (for 10 million environment steps) of each MACCA variant is summarized
in Table 14. These timings include both causal model learning and policy optimization under the alternating
training scheme; the causal model component accounts for approximately 8–15% of the total time.

Environment MACCA Variant Training Time (hrs)
MPE (CN, PP, WORLD) MACCA-OMAR 4.2
SMAC (2s3z) MACCA-OMAR 7.8
SMAC (5m_vs_6m) MACCA-OMAR 9.5
SMAC (6h_vs_8z) MACCA-OMAR 11.2
SMAC (MMM2) MACCA-OMAR 12.0

Table 14: Average wall-clock training time for each MACCA-OMAR run (10 million environment steps).
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