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Abstract

Extending context window sizes allows large language models (LLMs) to process longer se-
quences and handle more complex tasks. Rotary Positional Embedding (RoPE) has become
the de facto standard due to its relative positional encoding properties that benefit long-
context training. However, we observe that using RoPE with BFloat16 format results
in numerical issues, causing it to deviate from its intended relative positional encoding,
especially in long-context scenarios. This issue arises from BFloat16’s limited precision and
accumulates as context length increases, with the first token contributing significantly to this
problem. Despite its limitations, BFloat16 remains desirable for its computational efficiency,
particularly given the substantial memory overhead required to extend the context window.
To improve long-context training under BFloat16, we develop AnchorAttention, a plug-
and-play attention method that enhances long-context capabilities, and speeds up training.
AnchorAttention reduces unnecessary attention computations, maintains semantic coher-
ence, and boosts computational efficiency by treating the first token as a shared anchor with
a consistent position ID, making it visible to all documents within the training context. Ex-
periments on three types of LLMs demonstrate that AnchorAttention significantly improves
long-context performance and reduces training time by over 50% compared to standard full
attention mechanisms, while preserving the original LLM’s capabilities on general tasks.1

∗Work done during Haonan Wang’s internship at Sea AI Lab. †Correspondence to Tianyu Pang.
1AnchorContext: The implementation of AnchorAttention supports several popular models, using the FlashAttention2 and

FlexAttention, and is available at https://github.com/haonan3/AnchorContext.
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Figure 1: Effects of positional shifts on attention computations under different settings. Left: Attention
difference D (Eq. 4) plotted against varying positional shift ∆1 (with ∆2 = 16 fixed). Pretrained models
under BFloat16 (blue line) exhibit significant discrepancies compared to Float32 (yellow line) and random
initialization (green line), indicating that the relative positional encoding property of RoPE is broken un-
der BFloat16 and that pretraining amplifies this effect. Middle: Per-token attention differences between
∆1 = 0 and ∆2 = 16, highlighting the first token accounts for most of the attention difference observed.
Right: Attention logit difference (Eq. 5) for the first token as sequence length increases, showing increased
discrepancies with longer sequences.

1 Introduction
In recent years, natural language processing has seen a surge in models that handle increasingly long se-
quence (Yang et al., 2024; Dubey et al., 2024; Jiang et al., 2023; Team et al., 2024). A 128K token context
window allows large language models (LLMs) to handle complex tasks such as multi-document question
answering (Wang et al., 2024a), repository-level code comprehension (Jimenez et al., 2024), and many-shot
learning by capturing long-range dependencies (Agarwal et al., 2024), leading to more coherent and contex-
tually relevant outputs (Mazumder & Liu, 2022).

In order to achieve long-context capabilities in LLMs, Rotary Position Embedding (RoPE) (Su et al., 2021)
have emerged as the dominant backbone for positional encoding (Liu et al., 2023b). The success of RoPE
is often attributed to its trigonometric (rotational) properties and its relative positional encoding, which
enable models to avoid out-of-distribution (OOD) rotation angles (Wang et al., 2024b; Chen et al., 2023a;
Peng et al., 2023; LocalLLaMA, 2023; Men et al., 2024). Theoretically, by adjusting the rotary frequencies,
extended context position IDs (OOD) can be mapped to in-distribution ranges that have been sufficiently
trained. In addition, due to its relative positional encoding properties, interpolating into the original familiar
range allows the model to recognize the relative positions of input tokens in the extended context. As a
result, a relatively small amount of additional training over long contexts enables LLMs to adapt to extended
context lengths (Zhao et al., 2024a; Fu et al., 2024; Zhang, 2023). However, minimal long-context training
remains challenging due to the quadratic increase in GPU memory consumption with context length (Xiong
et al., 2023). To address this issue, Brain Floating Point (BFloat16)(Wang & Kanwar, 2019), commonly used
during pre-training, is also adopted in the long-context training phase. Its use reduces memory bandwidth
requirements without significantly impacting model accuracy(Kalamkar et al., 2019), making it ideal for
managing the computational demands of long-context models.

Despite the computational advantages of BFloat16, we have identified a critical issue: when combined
with BFloat16, the relative positional encoding properties of RoPE are broken, especially
in long-context scenarios. As shown in Figure 1, this breakdown occurs because of BFloat16’s limited
precision. As the training window size increases, numerical errors accumulate, exacerbating the issue and
resulting in a more substantial discrepancy. In contrast, this degradation disappears when using Float32,
which maintains the integrity of RoPE’s relative positional encoding. Our empirical observations confirm
that this breakdown diminishes the benefits RoPE offers for long-context training.
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Abstract

1 Introduction

T1T2A

In recent years, natural language processing has seen a surge in models that handle increasingly long se-
quences . A 128K token context window allows large language models (LLMs) to handle complex tasks such
as multi-document question answering , repository-level code comprehension , and many-shot learning by
capturing long-range dependencies, leading to more coherent and contextually relevant outputs.

Transformer architectures incorporate Positional Embeddings, such as sinusoidal embeddings Vaswani et al.
(2017), to encode sequence order information, which is essential for processing sequential data. A widely
adopted variant, Rotary Position Embeddings (RoPE) Su et al. (2021), has gained popularity due to it
(1) encoding relative positional relationships allowing models to generalize better to sequences longer than
those seen during training, (2) encouraging the decay of attention coe�cients with distance to focus more on
neighboring semantic information , and (3) achieving relative positional encoding with high computational
e�ciency Press et al. (2021).

BFloat16 (Brain Floating Point) Wang & Kanwar (2019) has become the standard floating-point format for
training large-scale deep learning models. It o�ers a balance between computational e�ciency and numerical
precision Kalamkar et al. (2019). Its adoption reduces memory bandwidth and accelerates training without
significantly impacting model accuracy, making it ideal for the pre-training of LLM and extensive models
with large context windows .

Despite the advantages of BFloat16, we identify a critical issue: when combined with RoPE, the
positional embeddings lose their relative properties. This degradation occurs because BFloat16’s
limited precision a�ects the rotational transformations in RoPE, leading to inaccurate position encoding.
The problem is most pronounced for the first token in a sequence, where the positional encoding deviates
significantly from its intended value. As the training window size increases, the numerical errors accumulate,
exacerbating the issue and leading to a more substantial impact on model performance.

To enhance the training of long-context models, we propose AnchorAttention—a general, straightforward,
and easily integrated approach that improves long-context capabilities while accelerating the training process.
The core innovation of AnchorAttention lies in treating the first token as an anchor: we always assign it
the initial position embedding and mask out redundant attention between documents. Unlike existing
methods that rely on full attention—where every token attends to all previous tokens, resulting in linearly
increasing errors—or intra-document causal masking that assigns di�erent position IDs to the starting tokens
of di�erent documents, AnchorAttention ensures that all documents share the same first token with a position
ID consistently set to zero. Moreover, AnchorAttention decreases errors by employing document masking,
which reduces the number of tokens participating in attention. This approach confines attention visibility
to within individual documents, thereby preserving semantic coherence.

In summary, the main contributions of this paper are as follows:
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Figure 2: Illustrations of different attention paradigms. Left: Standard intra-document attention. Middle:
Our improved version, intra-document attention with position ID reset per document. Right: AnchorAt-
tention incorporating a shared anchor token, A.

To improve long-context training, we investigated the source of the breakdown in RoPE’s relative posi-
tional encoding and observed that the first token in the attention window contributes most significantly
to this deviation. However, current methods do not explicitly consider this issue in their design. In the
full attention mechanism, each token attends to all previous ones, resulting in cumulative deviations as
the window size grows. Standard intra-document attention (Figure 2, left) uses cross-document masking,
effectively converting the large window into multiple smaller ones. This approach introduces multiple first
tokens for each small window, and assigning different position IDs to these first tokens causes inconsistencies
in the model’s positional understanding. Empirically, we found that simply resetting the position IDs to
maintain consistency across windows (our version of intra-document attention, Figure 2, middle) improves
long-context performance. This confirms that position ID inconsistencies are a key issue. Yet, resetting
position IDs introduces a new problem: the model can only learn the full spectrum of rotational angles when
processing data sequences that reach or exceed the maximum context length. Building on these insights,
we propose AnchorAttention—a versatile and plug-and-play attention method that enhances long-context
capabilities while accelerating the training process. As illustrated in Figure 2 (Right), the core innovation
of AnchorAttention lies in treating the first token as a shared anchor: we always assign it the first position
ID, making it visible to all documents within the context window while ensuring that tokens from different
documents are invisible to each other. By having all documents share the same initial token, AnchorAt-
tention eliminates inconsistencies while allowing the model to learn the full rotational span from sequences
shorter than the context length. Additionally, AnchorAttention reduces the number of tokens involved in
attention computations by not attending to all previous tokens, which helps prevent the rolling accumula-
tion of numerical errors. Experimental results demonstrate that training with AnchorAttention consistently
outperforms full attention, standard intra-document attention, and our improved intra-document attention
on the long-context benchmark RULER, across lengths from 8K to 128K. On real-world long-context bench-
marks like LongBench, AnchorAttention improves in-context learning performance while largely preserving
the model’s capabilities on general tasks such as MMLU and HellaSwag.

In summary, the main contributions of this paper are as follows:

• We found that the relative properties of RoPE are compromised under BFloat16 precision.
• We identified that the first token of a sequence contributes to the deviation of RoPE’s relative properties,

which should be preserved in theory. Moreover, this deviation becomes more pronounced with larger
training window sizes.

• Based on these observations, we introduce a practical approach, AnchorAttention, for long-context
continuous training, which improves the model’s ability to handle long contexts, utilizes less than 50% of
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the training time required by standard attention training, and requires minimal modifications to existing
training pipelines.

2 Discrepancies in RoPE’s Relative Positional Encoding

2.1 Background of Rotary Position Embedding (RoPE)

Modern LLMs are primarily based on the Transformer (Vaswani et al., 2017) architecture. One of its core
components is the attention mechanism, which can be written as:

Aij = q⊤
i kj (1)

ATTN(X) = softmax(A + M−∞), (2)

where the attention logit matrix A ≜ (Aij) ∈ RT ×T , the query and key vectors take the form qi = WQxi

and kj = WKxj , respectively. WQ, WK ∈ Rd×d are the query and key matrices, and xi, xj represent the
i-th and j-th token of X ∈ RT ×d. In the attention score matrix, ATTN(X), we ignore the scaling factor
1/

√
d introduced by Vaswani et al. (2017) to simplify notation. The causal mask, M−∞ ∈ RT ×T , where

M−∞
ij = −∞ if i < j and M−∞

ij = 0 otherwise, prevents each token from attending to future tokens by
setting the upper triangular part of A to negative infinity.

Transformer architectures employ positional embeddings to encode sequence order information, which is
essential for processing sequential data. RoPE (Su et al., 2021) are the currently most widely adopted
encodings, especially in LLMs. RoPE acts on the query and key by splitting them into 2-dimensional chunks
and rotating each chunk at a different frequency, which applies the rotation matrix into the calculation of
the attention logit in Eq. 1, which can be written as:

Aij = (Ri,θqi︸ ︷︷ ︸
Applied before FlashAttention2, Float32

)⊤ Rj,θkj︸ ︷︷ ︸ = q⊤
i Rj−i,θkj =

Computed within FlashAttention2, BFloat16︷ ︸︸ ︷
q⊤

i Rm,θkj ,

where m = j − i is the relative distance of i and j. We leave the details of rotation matrix R in Appendix A.
RoPE achieves efficient relative position encoding by implementing it as absolute position encoding. This
is done by applying a rotation matrix directly to the key and query vectors, specifically Ri,θqi and Rj,θkj ,
mirroring the operation of absolute position encoding. Note, the rotation matrix is applied outside the
FlashAttention2 (Dao, 2024) module using Float32 precision. But, the inner product of the key and query
occurs within the FlashAttention2 module and must be cast to BFloat16, as required by FlashAttention2.
And, the selection of rotation angles satisfies θi = base−2i/d, the typical base value for current LLMs is
10,000.

2.2 BFloat16 Disrupts RoPE’s Relative Properties, Especially with Long Context

The RoPE is theoretically designed to depend solely on the relative positional distance m = j − i between
tokens. A key implication is that adding a constant positional shift ∆ to every position index should not
alter the attention computation. Formally, it can be expressed as:

A(i+∆)(j+∆) = (Ri+∆,θ qi)⊤ (Rj+∆,θ kj) = q⊤
i R(j+∆)−(i+∆),θ kj = q⊤

i Rm,θ kj = Aij , (3)

where Aij is the attention logit between positions i and j, Rm,θ is the rotation matrix corresponding to the
relative distance m (derivation in Appendix A). However, a key question is, does this relative property hold
in practice?
We empirically investigate the impact of positional shifts on attention computations. In order to clarify
our analysis, we redefine the attention computation as ATTNl,h(X, ∆), representing the attention matrix
produced by the h-th head in the l-th transformer layer when a positional shift ∆ is applied. Specifically, if
the original position indices are [0, 1, . . . , L−1], after applying the shift they become [∆, ∆+1, . . . , ∆+L−1].
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We measure the difference in attention due to two different positional shifts ∆1 and ∆2 using the following
metric:

D(X, ∆1, ∆2) =
∑
l,h

L∑
j=1

n ⊙

(
L∑

i=1

∣∣ATTNl,h
i,j (X, ∆1) − ATTNl,h

i,j (X, ∆2)
∣∣) , (4)

This metric measures the cumulative difference in attention scores across all layers and heads. And the
normalization vector n =

[
1
L , 1

L−1 , . . . , 1
]

is applied element-wise (denoted by ⊙) to account for the varying
number of elements in lower triangular matrices due to causal masking.

Experimental Setup. In Figure 1 (left), we set ∆2 = 16 and vary ∆1 over the list
[0, 2, 4, 6, 8, 10, 12, 14, 15, 17, 18, 20, 22, 50, 100, 200, 500, 1000, 2000]. The blue line represents results obtained
using the pretrained parameters of LLaMA-2-7B with BFloat16 precision. The yellow line shows results using
the same pretrained parameters, but converted to Float32 precision. The green line corresponds to results
when using random initialized parameters (initialized with kaiming_uniform_ in PyTorch by default) in
BFloat16 precision. For each case, we compute the difference D, averaging over 50 text sequences, each with
a length of T = 4096. Note, we shop the ∆1 = 16 to improve visualization. As expected, the difference
is zero when both ∆1 and ∆2 are equal. More detailed visualizations and discussions are provided in the
Appendix B.

Results Discussion. We observed that when using BFloat16 precision, the positional shift ∆ affects the
attention computations of the pretrained LLaMA-2-7B. In contrast, when all computations are performed with
Float32 precision, this effect disappears (as shown by the blue vs. green lines). Additionally, when comparing
pretrained parameters to randomly initialized ones, both under BFloat16 precision (blue vs. yellow lines),
we found that pretraining amplifies the discrepancy. These findings suggest that under BFloat16 precision,
the RoPE deviates (slightly) from its theoretically claimed relative positional encoding, and this property
breaks down after the model is pretrained.

Furthermore, we delve into the details of the attention difference between ∆1 = 0 and ∆2 = 16 for each
individual token (i.e., without summing over trow in our metric for per-token study). We visualize these
per-token differences in Figure 1 (middle). The results clearly indicate that the first token contributes most
significantly to the attention difference. When the first token is excluded, the remaining tokens retain the
relative positional property.
In the previous experiments, we fixed the sequence length at T = 4, 096. To investigate how se-
quence length affects the attention logit difference, we extended our study to sequence lengths of
[64, 128, 256, 512, 1024, 2048, 4096, 8192]. In this trial, we measured the attention logits instead of the at-
tention scores because the softmax operation over varying sequence lengths would render the results for the
first token incomparable across different lengths. For clarity, we define the attention logit difference as:

Dlogit = 1
T

∑
l,h

T∑
i=1

∣∣Al,h
i,j=1(∆1) − Al,h

i,j=1(∆2)
∣∣ , (5)

where Al,h
ij (∆) is the attention logit matrix with positional shift ∆ for the l-th layer’s h-th head. We

keep ∆1 = 0 and ∆2 = 16 to measure the metric Dlogit averaged over 50 sequences with different context
lengths. Figure 1 (right) summarizes these results. We observe that as the sequence length increases, the
attention logit difference for the first token also increases. This indicates that longer sequences exacerbate
the discrepancies in the first token.

Summary of the Section: Under BFloat16 precision, the relative property of RoPE is broken. The
discrepancies are primarily sourced from the first token, which significantly contributes to the break-
down. Additionally, as the context length increases, the impact of these discrepancies becomes more
pronounced.
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3 AnchorAttention

In the previous section, we demonstrated that BFloat16 precision compromises the relative positional en-
coding of RoPE, with discrepancies becoming more pronounced as sequence length increases. Nevertheless,
BFloat16 remains desirable in practice due to its computational efficiency, which is especially crucial for
long-context extensions. The most effective strategy in these scenarios involves continuing pre-training on
long-context data (Fu et al., 2024; Gao et al., 2024). However, this approach is challenging because attention
mechanisms incur a quadratic computational cost relative to sequence length. To mitigate the increasing
errors with longer sequences while retaining the advantages of BFloat16, we propose AnchorAttention.

3.1 Training Long-Context Models with Small Window Sizes

Training a long-context model typically requires processing long sequences. However, this direct way exac-
erbates precision errors under BFloat16, as shown by Figure 1 (Right) with the number of processed tokens
increasing, the discrepancy will exacerbate. Reducing the sequence length could mitigate the precision issues,
but it seems contradictory to train a long-context model with short window sizes. To reconcile this, we re-
visit techniques from the literature and we found that the intra-document attention (Zhao et al., 2024b) that
mask out cross-document attention (as shown in Figure 2 Left) can be used to train a long-context model
with less sequence length compared with full attention. Besides, empirically, the intra-document attention
has been successfully applied in open-source LLM, like LLaMA-3 series. A recent work by Gao et al. (2024)
also verifies the effectiveness of intra-document attention show that masking out attention across document
boundaries improves both the short and long-context performance.

3.2 Does the Discrepancy in RoPE under BFloat16 Impact Long-context Performance?

Previously, we identified a deviation in the relative positional encoding of RoPE when utilizing BFloat16, as
evidenced by differences in attention scores. This observation prompts the question: does this discrepancy
significantly affect long-context performance? Especially, considering intra-document attention appears to
mitigate discrepancies in attention scores, the impact of BFloat16 might be negligible on long-context ca-
pabilities, when the model is trained with intra-document attention. To investigate this, we compare two
types of position indices. The first assigns position IDs continuously from the start to the end of the se-
quence (Figure 2 Left), following the common practice in intra-document attention Zhao et al. (2024b); Gao
et al. (2024). The second resets the position index to 1 within each document (Figure 2 Middle). Theoreti-
cally, both positioning schemes should yield identical results. This comparison is used to assess whether the
deviation in relative positional encoding further leads to measurable differences in long-context performance.

Figure 3: Resetting position IDs improves per-
formance, contradicting theoretical predictions
of RoPE.

Experimental Setup. We conducted experiments by training
a 128K model based on the LLaMA-2-7B architecture using the
Slimpajama dataset with intra-document attention and evalu-
ated them on the widely used long-context evaluation bench-
mark RULER. These experiments compared scenarios with and
without resetting the position IDs, aiming to assess the impact
of position ID assignment on model performance. We defer the
training and evaluation protocols to Section 5.
Results Discussion. The results are presented in Figure 3.
We observe that resetting position IDs consistently enhances
the model’s long-context performance. In contrast, the con-
ventional approach, which not resetting position IDs (Figure 2
Left), results in inferior performance. This performance differ-
ence may arise from assigning different position IDs to the first
token of each document, introducing inconsistencies that can
potentially confuse the model. By resetting the position IDs,
we maintain a consistent positional relationship (first position
ID is on the first token). Note, this analysis is based on the
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hypothesis that RoPE functions in some way as an absolute positional encoding mechanism under BFloat16
precision. Further research is necessary to rigorously validate this assumption and fully understand its
implications.

3.3 A Little Goes A Long Way: A Shared Anchor Token for Efficient Long-Context Training

Restarting position IDs enhances model performance but introduces a significant drawback: the model can
only learn the full spectrum of rotational angles when processing sequences that reach or exceed the context
length. This limitation hinders the model’s ability to generalize to longer context length scenarios because,
as we increase the context window size, collecting sufficient long sequences to fill the entire context window
becomes impractical due to the scarcity of such lengthy data.

To address this challenge, we propose AnchorAttention, an attention mechanism that introduces a shared
common anchor token visible to all documents within the long context window. Additionally, redundant
attention connections across documents are ignored, allowing the model to focus on coherent information.
An illustration of AnchorAttention is provided in Figure 2 (Right).

In AnchorAttention, the anchor token A serves as the common starting point for all documents. This design
is motivated by our observation that the first token is responsible for deviations from relative positional
encoding in RoPE; except for the first token, the subsequent tokens can preserve the desired relative positional
encoding properties. By introducing a shared anchor token with a fixed position ID (the starting ID), the
model is no longer confused about the relationship between the beginning of a document and the starting
position ID. Specifically, we designate the beginning-of-sequence token, <bos>, as this common anchor.
Since the <bos> token typically lacks explicit semantic meaning, any precision errors caused by BFloat16
concentrated on this token have minimal impact on overall model performance.

Furthermore, with the shared anchor, we eliminate the need to restart position IDs to ensure that the model
correctly interprets the relationship between the beginning of sentences and the starting position ID. This
allows us to use continuous position IDs from the start to the end of the window length (the non-resetting
scheme, as shown in Figure 2, Right). Consequently, a full spectrum of rotational angles can be trained in
each iteration. Compared to the intra-document attention approach, our method does not heavily depend
on abundant long sequences that can fill the entire training window length to train the full rotational span.
This reduces the dependency on collecting and upsampling long-sequence data.

Summary of the Section:
1. Deviations in RoPE’s relative positional encoding observed in attention scores under BFloat16 pre-

cision also affect the model’s ability to handle long sequences effectively.
2. Resetting position IDs within intra-attention mechanisms improves long-context performance by

maintaining consistent positional relationships.
3. A Little Goes A Long Way: Introducing a shared anchor token provides a simple yet powerful solution

for long-context training.

4 Long-Context Extension Protocol

In this section, we focus on the optimized training strategies and robust evaluation metrics, detailing the se-
lection of base models, the long-context training dataset, specific training configurations, and the benchmark
setup.

4.1 Base Model, Dataset and Training Configuration

Base Models. In our experiments, we primarily use the LlaMA-2-7B model as the base model. To
assess the effectiveness of our proposed methods across different pretrained models, we also evaluate
Llama-3-8B (Dubey et al., 2024), Qwen-1.5 (1.8B) (Yang et al., 2024), and Mistral-7B-v0.3 (Jiang et al.,

7



Published in Transactions on Machine Learning Research (02/2025)

2023) in Section 5.3. These models represent a range of architectures and base model pretraining paradigms,
allowing us to test the generality of our approach.

Dataset. We use the SlimPajama dataset (Soboleva et al., 2023) for long-context training, an open-source
replication of the LLaMA pretraining data mixture (Touvron et al., 2023). The dataset includes diverse text
sources, such as Common Crawl (CC), C4, GitHub, ArXiv, Books, Wikipedia (Wiki), and StackExchange.
In addition to the original SlimPajama, we apply the data mixture method from Fu et al. (2024), which
upsamples long sequences within each source while maintaining the overall distribution of the original dataset.
This upsampling aims to better expose the model to long-context scenarios during training.

In our experiments, we sample 2 billion tokens from both the original and upsampled SlimPajama
datasets. We refer to the datasets with sequence lengths of 64K and 128K tokens as SlimPajama-64K
and SlimPajama-128K, respectively. The upsampled dataset is denoted as UpSampledMix-128K. Detailed
statistics and discussions on data engineering are provided in Appendix C.

Training Configuration. Our training hyperparameters are primarily based on (Zhang, 2023). All models
are trained on 8 NVIDIA A100 GPUs. We set the learning rate to 2 × 10−5 and use the AdamW optimizer
with weight decay of 0.1, β1 = 0.9, and β2 = 0.95. Each model is trained for 2000 steps, which corresponds
to approximately 1 epoch over the 2 billion token dataset. The batch size is set to 8, equating to 0.5 million
tokens per batch for 64K context and 1 million tokens for 128K context lengths. Table 1 summarizes the
training configurations.

Table 1: The training Configuration.

Long-context Continuous Training

Data UpSampledMix / SlimPajama128K/ SlimPajama64K

UpSampledMix-128K: 58% CC, 20% C4, 7% GitHub, 6% ArXiv, 5% Books, 4% Wiki, 2% StackExchange

SlimPajama-128K: 53% CC, 27% C4, 5% GitHub, 5% ArXiv, 4% Books, 3% Wiki, 3% StackExchange

SlimPajama-64K: 54% CC, 25% C4, 5% ArXiv, 5% GitHub, 4% Books, 3% Wiki, 3% StackExchange

Model Initialization: Llama-2-7B / Llama-3-8B / Qwen-1.5-1.8B / Mistral-7B-v0.3
RoPE: 16K: 1 × 106, 64K: 5 × 106, 128K: 1 × 107

Attention: Full attention/ Intra-doc attention / Intra-doc attention with Reset
AnchorAttention / AnchorAttention with Tag

Optim. AdamW (weight decay = 0.1, β1 = 0.9, β2 = 0.95)
LR: 2e − 5 Steps: 2000 steps
Batch size: 8 (0.5M token for 64K, 1M tokens for 128K)

4.2 Controllable Study with Meaningful Evaluations

Measuring Long-Context Ability with Appropriate Metrics. To conclusively evaluate the effective-
ness of our proposed attention mechanism in enhancing the long-context capabilities of base models, it is
important to use robust and suitable evaluation metrics.

Perplexity (PPL) is commonly used to evaluate long-context language models; however, recent studies ques-
tion its reliability for assessing long-text understanding. Hu et al. (2024) show that PPL poorly correlates
with a model’s ability to comprehend long-range dependencies because it primarily measures local informa-
tion capture. Additionally, Fang et al. (2024) provide empirical evidence that PPL overlooks key tokens
crucial for understanding long-context inputs, leading to unreliable assessments. Moreover, Gao et al. (2024)
find that while increasing the amount of long data improves PPL, exclusively using long data can significantly
degrade downstream long-context performance. In line with these observations, we also found that while
PPL remains unchanged after the initial training steps, performance on the RULER benchmark (Hsieh
et al., 2024) continues to improve (in Figure 4), further indicating that PPL may not adequately reflect
enhancements in long-context performance.

Existing benchmarks for long-context language models—such as HELMET (Yen et al., 2024), Long-
Bench (Bai et al., 2023), LongBench-Cite (Zhang et al., 2024a), InfiniteBench (Zhang et al., 2024c), and
NoCha (Karpinska et al., 2024)—heavily rely on instruction-following abilities, making them unsuitable for
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evaluating long-context base models. Moreover, tasks in LongBench (Bai et al., 2023) can be adequately
addressed with a context length of 16K tokens. While 16K tokens represent a medium-length context, this
does not fully challenge models like ours that can handle 64K or even 128K tokens. Despite these limita-
tions, we still evaluated our models on LongBench because it includes real-world long-context tasks, and its
few-shot in-context learning (ICL) tasks are appropriate for assessing base models. Notably, the effectiveness
of few-shot ICL in evaluating base models is also observed in concurrent work by Gao et al. (2024).

To more thoroughly assess our model’s long-context capabilities, we employ the RULER benchmark (Hsieh
et al., 2024), which is specifically designed for extensive context lengths. RULER evaluates abilities such as
(1) locating specific data within vast content, (2) tracing relationships across broad contexts, (3) aggregating
and quantifying dispersed information, and (4) distinguishing relevant details from extraneous information
in complex queries. The benchmark includes tasks across various categories—Needle-in-a-Haystack (NIAH),
Variable Tracing (VT), Common and Frequent Words (Aggregation), and Question Answering (QA)—each
targeting different aspects of long-context processing that more accurately represent the capabilities of models
like ours.

Figure 4: RULER performance varies during long-context training, we recommend reporting the averaged
RULER performance rather than just the final training step. PPL remains unchanged after the first several
steps, failing to reflect improvements in long-context ability.

However, unlike the official evaluation, which measures overall performance across all 13 tasks, we exclude
two tasks (and NIAH-Multikey 3 and Common Word Extraction) for the LLaMA-2-7B model. This exclusion
is based on the assumption that long-context training primarily extends a model’s existing abilities from its
original context window to longer sequences, and on the observation that LLaMA-2-7B struggled with these
two tasks even within its original 4K context window. It is therefore unreasonable to expect the model
to acquire new skills in extended contexts that it could not perform within its original window. (Detailed
results for both LLaMA-2-7B and LLaMA-2-7B-Chat across all 13 tasks along with a comprehensive discus-
sion are provided in Appendix D). Note that for other advanced models (LLaMA-3-8B, Mistral-7B-v0.3,
Qwen-1.5-1.8B) in the cross-architecture evaluation section (Section 5.3), we use all 13 tasks.

Moreover, unlike previous studies that report RULER performance at a single checkpoint, we suggest report-
ing the average RULER performance across five checkpoints, saving a checkpoint every 10 steps over the last
50 training steps. Although retraining the model five times with different random seeds is another reasonable
method for averaging performance, it would significantly increase the experimental cost. To demonstrate
the necessity of averaging over multiple checkpoints, we evaluate the RULER performance of LLaMA-2-7B
trained with standard full attention on the original SlimPajama with a 16K window size. As shown in
Figure 4, the performance on the 16K RULER benchmark exhibits fluctuations during training. To prevent
cherry-picking specific checkpoints, we suggests that future research report the averaged performance across
several checkpoints.
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LLLM General Ability. To ensure that continual pretraining preserves the models’ core abilities within
their initial context length, we use the MMLU (Hendrycks et al., 2021) and HellaSwag (Zellers et al., 2019)
benchmarks. MMLU assesses knowledge and reasoning across 57 diverse subjects, including STEM, human-
ities, social sciences, philosophy, law, and medicine, providing a broad measure of general understanding.
HellaSwag tests commonsense reasoning by having models choose the most plausible continuation of a sce-
nario, challenging their contextual prediction skills. These benchmarks are standard choices for evaluating
foundational abilities, and we observe minimal performance differences between the base and chat models,
supporting their suitability for evaluating base model capabilities.

4.3 Optimizing Positional Embeddings for Long-Context Training

To find the optimal positional embedding for long-context training, we trained LLaMA-2-7B on the
SlimPajama-64K dataset, chunked into sequences of 64K tokens. We evaluated three methods: RoPE (Su
et al., 2021), NTK-aware (LocalLLaMA, 2023), and YaRN (Peng et al., 2023). Following (Men et al.,
2024), we varied the base value in the embedding formula θi = base−2i/d (Equation 6), corresponding to the
rope-theta parameter in Transformers (Wolf et al., 2020). NTK-aware and YaRN depend on the relative
scale s = Tnew/Torigin, where Torigin is the original context size (4K context length) and Tnew is the extended
size (64K context length), so we set s = 16. Following (Fu et al., 2024), which suggests that 1B tokens
suffice for learning long-context abilities, we use 1B tokens in each training to balance training time and the
evaluation of multiple models.

Table 2 shows the performance from 4K to 64K tokens on the RULER benchmark. Vanilla RoPE with a
suitable base value performs best within the training context length, outperforming NTK-aware and YaRN
methods at 64K context length. To measure performance beyond the training context length (generalization),
we evaluated the models on the 128K RULER benchmark (Table 4). YaRN embeddings generalize better to
unseen longer contexts; while vanilla RoPE performs well within the trained length, its performance declines
at longer contexts. Recognizing the importance of the RoPE base value, we further studied rope-theta
selection by training models with a 32K context length to save computational resources. As shown in
Table 3, performance peaks at a specific theta value, with marginal gains beyond that point and slight
declines when increasing theta further, aligned with observations from (Liu et al., 2023b; Men et al., 2024).
Based on these findings, we adapt base theta values with context lengths: 1M for 32K, 5M for 64K, 10M for
128K, and 50M for 256K. This approach ensures optimal performance across different context lengths.

Table 2: Long-context models trained with vanilla
RoPE outperform those with NTK or YaRN when
evaluated within the extended context window size.
The Free⋆ indicates models evaluated directly with-
out training.

Base 64K 32K 16K 8K 4K

Fr
ee

⋆ RoPE 10K - - - - 85.29
YaRN 10K 0.18 1.09 6.02 18.38 29.06

R
oP

E 1M 66.89 70.79 77.02 84.64 90.42
5M 68.81 72.68 81.03 85.79 89.28
10M 69.43 71.01 81.01 85.28 88.13

Ya
R

N 1M 64.22 65.69 73.28 79.98 85.02
5M 63.48 64.47 75.29 79.90 84.01
10M 58.91 62.03 70.68 75.62 83.04

N
T

K

10K 47.32 53.05 60.62 72.42 81.61
1M 62.47 70.49 75.87 83.48 86.41
5M 61.45 68.52 75.90 78.47 85.17
10M 58.75 65.95 72.27 77.43 83.99

Table 3: An appropriate base is crucial for long-
context training; using values that are too large or
too small can degrade performance.

Base 32K 16K 8K 4K Avg.
500 8.52 16.43 21.18 37.06 20.80
10K 15.21 28.79 43.61 83.03 42.66
200K 68.91 76.67 85.64 88.00 79.81
600K 74.61 81.79 85.03 89.36 82.70
900K 75.05 81.62 85.22 88.65 82.64
5M 76.09 77.15 85.66 87.00 81.48
1B 73.97 76.48 81.09 82.33 78.47

Table 4: Evaluating beyond the extended context
window, YaRN show advantages.

Base 128K 64K

RoPE 1M 35.93 (-30.95) 66.88
5M 53.98 (-14.83) 68.81

YaRN
10K 27.25 (-22.84) 50.09
1M 57.07 (-7.15) 64.22
5M 53.30 (-11.18) 64.48
10M 50.85 (-8.06) 58.91

NTK
10K 24.31 (-23.01) 47.32
1M 35.53 (-26.94) 62.47
5M 41.87 (-19.58) 61.45
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Summary of the Section:
1. The RULER benchmark is effective for evaluating the long-context training of base models. But, it

is advisable to average performance over last several checkpoints to mitigate variance.
2. (Vanilla) RoPE is effective, but you need to carefully select the base value.

• Vanilla RoPE with a properly chosen base value excels within the training context length but
may underperform beyond it.

• YaRN offers better generalization to contexts longer than the training window.
• A good base value for ALL (RoPE-based) positional embeddings is critical to achieve optimal

performance; values that are too large or too small can degrade performance.

5 Experimental Results

5.1 AnchorAttention Performance on RULER

We continued pretraining the LLaMA-2-7B model on three datasets—SlimPajama-64K, SlimPajama-128K,
and UpSampledMix-128K—using various attention mechanisms, including Full Attention, Intra-Document
Attention, and our proposed AnchorAttention. We then evaluated their performance on the RULER bench-
mark (Table 5). We observed that resetting positional IDs generally improved the performance of Intra-
Document Attention, except in some cases where the differences were negligible (e.g., at 4K tokens for the
SlimPajama-64K and UpSampledMix-128K datasets). Our proposed AnchorAttention consistently outper-
formed Full Attention and Intra-Document Attention across all datasets and sequence lengths, particularly
excelling at longer contexts. On all three datasets, AnchorAttention achieved top scores at every length,
consistently outperforming other baseline methods. We also observed that the UpSampledMix-128K dataset
improves model performance when training with Full Attention and Intra-Document Attention mechanisms.
However, when using our proposed AnchorAttention for long-context training, the performance gap between
models trained on SlimPajama-128K and UpSampledMix-128K is significantly reduced. This suggests the
potential for AnchorAttention to reduce dependency on carefully upsampled data, simplifying future data
preparation processes.

5.2 What Works and Doesn’t in AnchorAttention: Domain Tagging and Interleaved Chunks

We further investigate two data utilization strategies that may enhance the performance of AnchorAttention:
domain tagging and interleaved chunks, as illustrated in Figure 5.

Domain Tagging: This strategy prepends each training text sequence with a domain identifier (e.g.,
“Wikipedia” or “CommonCrawl”), masking out the loss from these tags during training. This allows the
model to recognize and potentially prioritize information from specific domains. Previous studies (Allen-Zhu
& Li, 2024; Zhang et al., 2024b) suggest that domain tagging can optimize knowledge storage and aid in
selective learning, retaining information while avoiding conflicts.

Interleaved Chunks: Documents are segmented into multiple chunks at random split points, shuffled, and
recombined into new sequences, with the original order of chunks within each document preserved (e.g., the
second chunk of a document always appears after the first chunk in the newly organized data sequence).
Zhao et al. (2024a) employed this technique to generate synthetic long-context data, effectively training
models to handle extended contexts.

In Table 5, our experimental results show that incorporating interleaved chunks (AnchorAttention + Inter-
leaved Chunks) consistently degrades performance compared to the base AnchorAttention. To investigate
whether this is due to an incompatibility between AnchorAttention and interleaved chunks, we conducted
additional experiments using intra-document attention with interleaved chunks on the SlimPajama-64K and
SlimPajama-128K datasets. This combination also resulted in worse performance, even falling below that of
the baseline Full Attention method. Notably, previous work (Zhao et al., 2024a) demonstrated that inter-
leaved chunks combined with Full Attention can improve performance. Therefore, we hypothesize that the
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Abstract

1 Introduction

T1T2A

In recent years, natural language processing has seen a surge in models that handle increasingly long se-
quences . A 128K token context window allows large language models (LLMs) to handle complex tasks such
as multi-document question answering , repository-level code comprehension , and many-shot learning by
capturing long-range dependencies, leading to more coherent and contextually relevant outputs.

Transformer architectures incorporate Positional Embeddings, such as sinusoidal embeddings Vaswani et al.
(2017), to encode sequence order information, which is essential for processing sequential data. A widely
adopted variant, Rotary Position Embeddings (RoPE) Su et al. (2021), has gained popularity due to it
(1) encoding relative positional relationships allowing models to generalize better to sequences longer than
those seen during training, (2) encouraging the decay of attention coe�cients with distance to focus more on
neighboring semantic information , and (3) achieving relative positional encoding with high computational
e�ciency Press et al. (2021).

BFloat16 (Brain Floating Point) Wang & Kanwar (2019) has become the standard floating-point format for
training large-scale deep learning models. It o�ers a balance between computational e�ciency and numerical
precision Kalamkar et al. (2019). Its adoption reduces memory bandwidth and accelerates training without
significantly impacting model accuracy, making it ideal for the pre-training of LLM and extensive models
with large context windows .

Despite the advantages of BFloat16, we identify a critical issue: when combined with RoPE, the
positional embeddings lose their relative properties. This degradation occurs because BFloat16’s
limited precision a�ects the rotational transformations in RoPE, leading to inaccurate position encoding.
The problem is most pronounced for the first token in a sequence, where the positional encoding deviates
significantly from its intended value. As the training window size increases, the numerical errors accumulate,
exacerbating the issue and leading to a more substantial impact on model performance.

To enhance the training of long-context models, we propose AnchorAttention—a general, straightforward,
and easily integrated approach that improves long-context capabilities while accelerating the training process.
The core innovation of AnchorAttention lies in treating the first token as an anchor: we always assign it
the initial position embedding and mask out redundant attention between documents. Unlike existing
methods that rely on full attention—where every token attends to all previous tokens, resulting in linearly
increasing errors—or intra-document causal masking that assigns di�erent position IDs to the starting tokens
of di�erent documents, AnchorAttention ensures that all documents share the same first token with a position
ID consistently set to zero. Moreover, AnchorAttention decreases errors by employing document masking,
which reduces the number of tokens participating in attention. This approach confines attention visibility
to within individual documents, thereby preserving semantic coherence.

In summary, the main contributions of this paper are as follows:
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In recent years, natural language processing has seen a surge in models that handle increasingly long se-
quences . A 128K token context window allows large language models (LLMs) to handle complex tasks such
as multi-document question answering , repository-level code comprehension , and many-shot learning by
capturing long-range dependencies, leading to more coherent and contextually relevant outputs.

Transformer architectures incorporate Positional Embeddings, such as sinusoidal embeddings Vaswani et al.
(2017), to encode sequence order information, which is essential for processing sequential data. A widely
adopted variant, Rotary Position Embeddings (RoPE) Su et al. (2021), has gained popularity due to it
(1) encoding relative positional relationships allowing models to generalize better to sequences longer than
those seen during training, (2) encouraging the decay of attention coe�cients with distance to focus more on
neighboring semantic information , and (3) achieving relative positional encoding with high computational
e�ciency Press et al. (2021).

BFloat16 (Brain Floating Point) Wang & Kanwar (2019) has become the standard floating-point format for
training large-scale deep learning models. It o�ers a balance between computational e�ciency and numerical
precision Kalamkar et al. (2019). Its adoption reduces memory bandwidth and accelerates training without
significantly impacting model accuracy, making it ideal for the pre-training of LLM and extensive models
with large context windows .

Despite the advantages of BFloat16, we identify a critical issue: when combined with RoPE, the
positional embeddings lose their relative properties. This degradation occurs because BFloat16’s
limited precision a�ects the rotational transformations in RoPE, leading to inaccurate position encoding.
The problem is most pronounced for the first token in a sequence, where the positional encoding deviates
significantly from its intended value. As the training window size increases, the numerical errors accumulate,
exacerbating the issue and leading to a more substantial impact on model performance.

To enhance the training of long-context models, we propose AnchorAttention—a general, straightforward,
and easily integrated approach that improves long-context capabilities while accelerating the training process.
The core innovation of AnchorAttention lies in treating the first token as an anchor: we always assign it
the initial position embedding and mask out redundant attention between documents. Unlike existing
methods that rely on full attention—where every token attends to all previous tokens, resulting in linearly
increasing errors—or intra-document causal masking that assigns di�erent position IDs to the starting tokens
of di�erent documents, AnchorAttention ensures that all documents share the same first token with a position
ID consistently set to zero. Moreover, AnchorAttention decreases errors by employing document masking,
which reduces the number of tokens participating in attention. This approach confines attention visibility
to within individual documents, thereby preserving semantic coherence.

In summary, the main contributions of this paper are as follows:
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Figure 5: Illustrations of domain tagging and interleaved chunks. Left: AnchorAttention with domain
tagging, where T1 denotes the domain of document d1. Middle: Intra-document attention with interleaved
chunks; documents are split into shuffled, interleaved chunks, preserving the original order within each
document. Right: AnchorAttention with interleaved chunks.

cross-document attention masking is incompatible with interleaved chunks. Our proposed AnchorAttention
generally improves performance over the baseline Full Attention but is less effective than using raw data, the
coherence of documents preserved, with AnchorAttention. Regarding domain tagging, adding domain tags
(AnchorAttention + Tag) does not consistently improve upon the base AnchorAttention. For example, on
the SlimPajama-64K dataset, it achieves a slightly higher score at 64K tokens (73.88 vs. 73.25), but at 32K
tokens, it performs slightly worse. Similar trends are observed on the SlimPajama-128K and UpSampledMix-
128K datasets; AnchorAttention + Tag sometimes surpasses AnchorAttention at specific token lengths, but
the base AnchorAttention generally performs better overall. Overall, those observations suggest that incor-
porating domain tagging can sometimes improve long-context performance, interleaved chunks consistently
degrade performance when used with cross-document attention masking.

5.3 Cross-Model Evaluation of AnchorAttention for Long-Context Performance

To evaluate the generalizability of AnchorAttention across various model architectures, we assessed its long-
context performance on multiple pretrained models. As shown in Table 6, our proposed AnchorAtten-
tion mechanism consistently outperforms the standard Full Attention across different models and context
lengths, particularly with longer sequences. For all three models, LLaMA-3-8B, Mistral-7B-v0.3, and
Qwen-1.5-1.8B, AnchorAttention yields higher scores across most sequence lengths. Note, the Qwen series
does not utilize a bos token, we use the eos token as the shared anchor in our implementation. In the
case of the LLaMA-3-8B model with a context length of 128K tokens, AnchorAttention achieves a score of
51.49 compared to 34.02 with Full Attention. Incorporating domain tags (AnchorAttention + Tag) some-
times further improves performance, as observed with the Mistral-7B-v0.3 model at 128K tokens, where
the score increases to 49.61. These results confirm that AnchorAttention effectively enhances long-context
performance across different model architectures, demonstrating its robustness and broad applicability.

5.4 General Performance on Medium- and Short-Context Tasks

Enhancing long-context capabilities in language models often introduces a trade-off with performance on
medium- and short-context tasks, as highlighted by previous research (Xiong et al., 2023). Our objective is
not only to improve long-context understanding but also to ensure that our models retain strong performance
on tasks with shorter contexts. To evaluate this balance, we tested our models on LongBench (a medium-
context evaluation), as well as HellaSwag and MMLU (short-context benchmarks). Table 7 summarizes
these results. The findings show that models trained with AnchorAttention better preserve general abilities
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Table 5: Results on 64K and 128K Tokens Datasets. Highest scores across all methods are shown in
boldface. Within the Intra-Doc Attention category, the higher scores are underlined. AnchorAttention and
its variants, outperforming other methods, are highlighted with a background color .

Attention Mechanism 128K 64K 32K 16K 8K 4K
SlimPajama-64K
Full Attention \ 66.40 71.78 77.63 83.86 89.84
Intra-Doc Attention \ 69.97 74.70 79.15 83.50 89.62

+ Reset \ 70.03 74.18 80.27 84.51 89.52
+ Interleaved Chunks \ 60.59 66.52 71.70 79.70 84.71

AnchorAttention \ 73.25 75.97 82.91 85.48 90.69
+ Tag \ 73.88 74.21 82.46 85.13 89.93

+ Interleaved Chunks \ 66.77 69.73 77.81 85.35 89.31
SlimPajama-128K
Full Attention 62.75 70.56 71.38 81.65 83.61 88.85
Intra-Doc Attention 64.31 70.87 72.07 82.60 84.11 88.98

+ Reset 65.75 73.34 73.30 82.82 84.43 90.01
+ Interleaved Chunks 53.74 61.08 65.51 75.25 80.59 82.71

AnchorAttention 66.15 77.69 74.28 83.67 86.41 90.60
+ Tag 65.46 74.67 75.77 83.07 84.07 89.09

UpSampledMix-128K
Full Attention 63.70 71.45 72.69 82.57 84.55 90.08
Intra-Doc Attention 63.96 74.52 76.53 82.46 86.61 90.35

+ Reset 64.10 74.55 77.73 82.82 87.16 89.98
AnchorAttention 65.24 76.11 79.51 86.54 87.43 90.44

+ Tag 66.85 73.52 77.18 81.62 84.90 89.01

Table 6: Attention Mechanism Performance Across Different Models and Token Sizes

Attention Mechanism 128K 64K 32K 16K 8K 4K
LLaMA-3-8B
Full Attention 34.02 61.80 72.09 79.99 82.43 83.68
AnchorAttention 51.49 70.99 83.06 86.90 88.09 88.72

+ Tag 49.67 70.37 84.14 87.13 88.36 88.97
Mistral-7B-v0.3
Full Attention 45.64 49.05 54.49 64.06 69.99 72.80
AnchorAttention 47.46 61.26 68.53 73.47 76.06 78.94

+ Tag 49.61 56.80 64.13 69.47 74.65 77.34
Qwen-1.5-1.8B
Full Attention 33.56 41.77 47.01 56.15 61.33 67.26
AnchorAttention 34.32 44.31 48.63 56.90 62.62 68.61

+ Tag 35.84 43.91 50.70 57.39 61.96 67.41

from the pretraining stage compared to those using full attention or intra-document attention. Importantly,
even when compared to the original LLaMA-2-7B, models with AnchorAttention remain competitive on short-
context tasks. On the HellaSwag dataset, the AnchorAttention model trained on SlimPajama-64K achieves
a score of 70.78, closely matching the original LLaMA-2-7B’s score of 71.39. On the MMLU benchmark,
the AnchorAttention + Tag variant attains a score of 42.85, nearing the baseline of 46.66. These results
indicate that while significantly improving long-context capabilities, AnchorAttention effectively maintains
performance on medium- and short-context tasks without substantial trade-offs. Additionally, incorporating
domain tagging effectively preserves the general abilities of large language models.
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Table 7: Results on LongBench ICL, HellaSwag, and MMLU datasets.

Attention Mechanism LongBench ICL HellaSwag MMLU
LLaMA-2-7B 6.22 71.39 46.66
SlimPajama-64K
Full Attention 62.51 68.50 33.93
Intra-Doc Attention 62.79 71.01 36.94

+ Reset 63.76 70.12 37.92
AnchorAttention 65.38 70.78 40.32

+ Tag 66.02 69.10 40.67
SlimPajama-128K
Full Attention 50.72 69.46 37.93
Intra-Doc Attention 51.22 69.93 39.49

+ Reset 50.07 69.88 37.42
AnchorAttention 51.85 70.51 41.63

+ Tag 51.89 70.37 42.85
UpSampledMix-128K
Full Attention 48.96 67.64 40.58
Intra-Doc Attention 49.51 70.86 41.27

+ Reset 50.18 70.97 40.79
AnchorAttention 50.17 70.11 41.15

+ Tag 50.70 68.97 42.03

5.5 Infrastructure and Engineering

Efficient implementation is crucial for training long-context language models. We introduce AnchorContext, a
codebase that offers the AnchorAttention mechanism compatible with various models, including the LLaMA
series, Mistral series, and Qwen2 series. To enhance compatibility with a wider range of frameworks, it
provides two computational engine options: FlexAttention (which will be natively supported in PyTorch
2.5.0) and FlashAttention (currently the most commonly used).

To ensure the reliability of our experimental conclusions, we focused on comparing our method with existing
techniques in terms of accuracy, speed, and ease of integration:

Accuracy. Distributed training can introduce numerical errors that affect model outputs, making it essential
to assess whether a method maintains numerical consistency across different computational setups. We
evaluated the numerical accuracy of our method by measuring the differences in logits (the outputs of the
forward pass) when processing the same training data sequence with a context length of 32K on 8 A100 GPUs.
Specifically, we compared the outputs of models using: 1. FlashAttention2 alone (the baseline, without
distributed training), 2. Zigzag-Ring attention (from the EasyContext implementation (Zhang, 2023)) in a
distributed setting, 3. Our AnchorContext based on sequence parallelism with DeepSpeed-Ulysses (Jacobs
et al., 2023) in a distributed setting.
As shown in Table 8, the Zigzag-Ring attention exhib-
ited a maximum logits difference of up to 0.75 compared
to the baseline, indicating numerical discrepancies intro-
duced by the distributed computation. In contrast, our
AnchorContext implementation showed zero difference in
logits when compared to using FlashAttention2 without
any distributed training, highlighting its numerical accu-
racy.

Table 8: Our distributed computation achieves
zero logits difference over 32K sequence length.

Zigzag-Ring
(EasyContext)

Our Impl.
(AnchorContext)

Full Attn 0.75 0
AnchorAttn - 0

Speed and Efficiency. Our method is not only accurate but also significantly faster. By integrating
FlashAttention2 and optimizing the attention mechanism within our AnchorContext framework, we achieve
higher GPU utilization and faster training times. Figure 6 illustrates the estimated number of days required
to process 1 billion tokens at various context lengths. It demonstrates that our AnchorAttention substantially
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reduces training time compared to Full Attention when using the same sequence parallelism and DeepSpeed-
Ulysses configurations, showcasing the efficiency gains of our approach.

Ease of Integration. Designed with practicality in mind, our AnchorAttention seamlessly integrates into
other training codebase that using FlashAttention (Dao, 2024) and Hugging Face transformers (Wolf et al.,
2020). The flexibility of our AnchorContext approach allows for effortless adoption, enabling researchers to
incorporate it to much substantial modifications to their codebase.

Supporting Advanced Experiments. Moreover, the combination of our method with FlexAttention
mechanisms can support more advanced experiments. For example, it facilitates flexible attention masks
needed by interleaved chunks, as illustrated in Figure 6. This flexibility empowers researchers to explore
novel ideas and push the boundaries of long-context models.

Figure 6: Estimated training time required to process 1 billion tokens at various context lengths using dif-
ferent attention mechanisms. Our AnchorAttention reduce more than 50% of time needed by Full Attention.

6 Related Work

Positional Embedding. Positional Embedding is essential for Transformers (Vaswani et al., 2017) to
capture the sequential order of input tokens. Early methods used absolute or learned positional embed-
dings (Vaswani et al., 2017; Devlin, 2018), but they often struggled to generalize to longer sequences. Rel-
ative positional embeddings (Shaw et al., 2018; Ke et al., 2021) were introduced to handle variable-length
sequences more effectively. Recently, Rotary Positional Embedding (RoPE) (Su et al., 2021) has become
popular in LLMs (Touvron et al., 2023; Dubey et al., 2024; Jiang et al., 2023; Yang et al., 2024; Abdin
et al., 2024) for its ability to extend inference context length with minimal fine-tuning (Liu et al., 2023b;
Chen et al., 2023a; LocalLLaMA, 2023; Peng et al., 2023; Men et al., 2024; Fu et al., 2024). Building on
RoPE, methods like Position Interpolation (Chen et al., 2023a), NTK Interpolation (LocalLLaMA, 2023),
YaRN (Peng et al., 2023), Resonance RoPE(Wang et al., 2024b), and CLEX (Chen et al., 2024) have been
proposed to enhance long-context capabilities. In a different direction, we investigate how the precision of
BFloat16 could compromise the relative position properties of RoPE.

Extending Language Model Context Lengths. Although training-free methods have shown promise
in extending context lengths Xiao et al. (2023); Han et al. (2023); Ruoss et al. (2023), recent studies indi-
cate that dedicating additional training to handle long contexts yields significantly better results Fu et al.
(2024); Xiong et al. (2023); Gao et al. (2024). The long-context training poses challenges: the quadratic
computational complexity and performance degradation beyond the pre-training context length. To address
these issues, various approaches have been proposed. Some methods extend context windows by training
with modified RoPE (Chen et al., 2023a; LocalLLaMA, 2023; Peng et al., 2023; Men et al., 2024), adjusting
the RoPE base to enable models to handle longer contexts with minimal training. Other strategies manip-
ulate attention patterns to efficiently handle extended contexts (Chen et al., 2023b; Xiao et al., 2023; 2024;
Bertsch et al., 2024; Jin et al., 2024; Ge et al., 2024; Yin et al., 2024), redesigning the attention mechanism
to prioritize computational resources on the most relevant parts of the input, thus reducing overhead for
longer sequences. Additional efforts reduce the computational complexity of attention through techniques
like sparse attention (Lou et al., 2024; Ge et al., 2024), group query attention (Ainslie et al., 2023), with
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optimize implementation (Dao, 2024). To further overcome hardware limitations, methods like Sequence
Parallelism (Li et al., 2021) distribute sequences across multiple devices, while Ring Attention (Liu et al.,
2023a) and DeepSpeed-Ulysses (Jacobs et al., 2023) enhance efficiency by optimizing communication strate-
gies when processing segmented sequences. Our work adopts the continuous long-context training approach
with efficient implementation, but specifically focuses on attention design to mitigate issues in RoPE caused
by BFloat16 precision.

7 Conclusion

In this paper, we identified a critical issue where the combination of Rotary Position Embedding (RoPE)
and BFloat16 precision breaks the relative positional encoding properties of RoPE, particularly in long-
context scenarios. Our analysis revealed that the first token in the sequence contributes significantly to this
breakdown, and the problem worsens as the training window size increases due to cumulative numerical
errors. To address this, we proposed AnchorAttention, a novel attention mechanism that treats the first
token as a shared anchor across all documents within the context window. By assigning the same position ID
to this anchor token and ensuring it is visible to all documents while keeping tokens from different documents
invisible to each other, AnchorAttention maintains consistency in positional encoding. This approach not
only preserves the integrity of RoPE’s relative positional properties but also reduces the number of tokens
involved in attention computations, mitigating the accumulation of numerical errors. Our experiments
demonstrated that AnchorAttention consistently outperforms full attention and standard intra-document
attention methods on long-context benchmarks like RULER, across context lengths ranging from 8K to 128K
tokens. Additionally, on real-world long-context benchmarks such as LongBench, AnchorAttention improved
in-context learning performance while largely preserving the model’s capabilities on general tasks like MMLU
and HellaSwag. Importantly, AnchorAttention requires minimal modifications to existing training pipelines
and reduces training time by more than 50% compared to standard attention training.

8 Future Work

In our empirical analysis, we measured the average attention difference over multiple sequences. We also
examined the per-sample attention differences, with visualizations provided in the Appendix B. The differ-
ences were consistent across samples, and we observed that even a simple function could approximate the
difference. Notably, the first token contributes the most to this discrepancy, leading us to hypothesize that
the position ID of the first token acts as an absolute position. Future work is needed to more rigorously
investigate the properties of the first position and its impact on positional encoding. Additionally, given the
observed significance of the first token in an input sequence, we speculate a potential relationship between
this phenomenon and the well-documented attention sinks and massive activation (Xiao et al., 2023; Han
et al., 2023; Gu et al., 2024; Guo et al., 2024a; Sun et al., 2024; Guo et al., 2024b). Further research is re-
quired to explore this connection and to understand how it might affect attention mechanisms in long-context
language models.

Broader Impact Statement

The development of AnchorAttention addresses a critical challenge in natural language processing by enabling
large language models (LLMs) to effectively handle long-context sequences. This advancement has the
potential to significantly improve applications that require understanding and processing extensive textual
data, such as financial document analysis, long-form content generation, and multi-document summarization.
By enhancing the ability of LLMs to maintain coherence and context over long sequences, we contribute to
the creation of more capable and contextually aware AI systems.

Limitations

Although we try to ablate the major components of our proposed attention mechanism, due to resource
limitations, we cannot exhaust all aspects, such as study its effectiveness for pretraining, optimization hy-
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perparameters and additional data mixtures. We also limit ourselves to the 10B-scale model size regime
with 2B tokens, which may limit the generalizability of our findings.
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A Rotary Positional Embedding (RoPE) and Relative Positional Encoding

Rotary Positional Embedding (RoPE) is a method employed to infuse positional information into transformer
models by modifying the query (q) and key (k) vectors within the attention mechanism. RoPE enhances the
model’s ability to capture positional relationships through the following steps:

A.1 Mechanism of RoPE

1. Splitting into 2-Dimensional Chunks: The query and key vectors are partitioned into 2-
dimensional segments. This segmentation allows each pair of dimensions to undergo independent
rotational transformations.

2. Applying Rotational Transformations: Each 2-dimensional chunk is rotated by an angle deter-
mined by a frequency parameter θ. Specifically, for the i-th chunk, a rotation matrix Ri,θ is applied.
This introduces positional information based on the token’s position in the sequence.

The rotation matrix Ri,θ for the i-th chunk is defined as a block diagonal matrix composed of individual
2-dimensional rotation matrices, where the d denotes the number of hidden dimension of each head, such as
128 for LLaMA-2-7B:

Ri,θ =


cos(iθ0) − sin(iθ0) 0 0 · · · 0 0
sin(iθ0) cos(iθ0) 0 0 · · · 0 0

0 0 cos(iθ1) − sin(iθ1) · · · 0 0
0 0 sin(iθ1) cos(iθ1) · · · 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 · · · cos(iθd/2−1) − sin(iθd/2−1)
0 0 0 0 · · · sin(iθd/2−1) cos(iθd/2−1)

 (6)

A.2 Incorporating RoPE into Attention Mechanism

In the attention mechanism, logits are computed based on the similarity between queries and keys. With
RoPE, the rotated queries and keys are utilized in this computation as follows:

A(i,j) = (Ri,θ qi)⊤ (Rj,θ kj) = q⊤
i R⊤

i,θRj,θkj (7)

A.3 Encoding Relative Positional Information

To explain how RoPE encodes relative positional information, consider the product of the rotation matrices
R⊤

i,θRj,θ. Using trigonometric identities for sine and cosine of angle differences:

sin(α − β) = sin α cos β − cos α sin β

cos(α − β) = cos α cos β + sin α sin β

Focusing on a single 2-dimensional block, the product is computed as:

R⊤
i,θRj,θ =

[
cos(iθ0) sin(iθ0)

− sin(iθ0) cos(iθ0)

] [
cos(jθ0) − sin(jθ0)
sin(jθ0) cos(jθ0)

]
=
[

cos ((i − j)θ0) sin ((i − j)θ0)
− sin ((i − j)θ0) cos ((i − j)θ0)

]
= R⊤

m,θ

Here, m = i − j represents the relative position between the query and key. This derivation demonstrates
that the product R⊤

i,θRj,θ depends solely on the relative position (i − j), rather than the absolute positions
of i and j individually.
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Figure 7: Detailed visualization of attention score differences under BFloat16 for individual samples.

B Detailed Analysis of Attention Discrepancies with RoPE under BFloat16

In Section 2, we primarily measured the attention differences averaged over multiple sequences. To provide a
more detailed perspective, we present visualizations for individual samples. Figure 7 (left) shows the attention
score differences for five samples, offering a detailed view compared to the averaged version represented by
the blue line in Figure 1 (left).

As illustrated in Figure 7 (left), the attention score differences are highly consistent across different samples.
The curves are nearly identical, exhibiting only slight biases for each sample. Given the starting differences
(∆1 = 0 and ∆2 = 16), we can accurately predict the attention differences for various ∆1 values.

Furthermore, while Section 2 focuses on fixing ∆2 = 16 and varying ∆1 to study attention differences, we
extend our analysis by fixing ∆1 = 0 and varying ∆2. The results are summarized in Figure 7 (right). We
observe that the attention difference curve shifts along the x-axis as ∆2 changes. These findings demonstrate
that the attention score differences are highly predictable.

Building on our previous observation that the first token’s positional encoding deviates significantly, we
became curious about its role in establishing positional references for subsequent tokens. Empirical findings
led us to hypothesize that the position ID of the first token functions as an absolute position. A more detailed
discussion of this hypothesis will be explored in future work.

C Data Statistics

We present the mixture ratios and token contributions from each domain in our dataset. The Mixture Ratio
is calculated by dividing the number of sequences from each domain by the total number of sequences. The
Token Ratio is determined by dividing the token count of each domain by the total token count of the
dataset.

For reference, the original SlimPajama token mixture ratios are as follows: the dataset consists of 82% web
data (67% from CommonCrawl and 15% from C4), 4.5% code (GitHub), 4.5% Wikipedia, 4.5% books, 2.5%
ArXiv, and 2.0% StackExchange. Since this dataset closely mirrors that used to pretrain the LLaMA models,
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Table 9: Domain and Token Distributions

C4 Arxiv Github StackExchange CommonCrawl Wikipedia Books
– Up-sampled Data Mixture

12
8K Mixture Ratio 52.34% 1.01% 3.68% 4.56% 33.40% 4.79% 0.21%

Token Ratio 19.53% 5.86% 6.61% 1.64% 58.14% 3.51% 4.69%

– Original SlimPajama

12
8K Mixture Ratio 55.32% 0.30% 3.65% 5.06% 31.01% 4.59% 0.06%

Token Ratio 26.50% 4.64% 5.05% 3.18% 53.42% 3.34% 3.88%

64
K Mixture Ratio 55.05% 0.40% 3.66% 4.97% 31.23% 4.58% 0.10%

Token Ratio 25.43% 5.22% 5.05% 2.95% 54.24% 3.24% 3.86%

there is less concern about distribution shift during continual pretraining; therefore, many recent works have
utilized it.

Comparing the data we used for training, as shown in Table 9, we observe several key differences:

• C4 Dataset: Our up-sampled data mixture has a slightly lower Mixture Ratio for C4 (52.34% vs.
55.32% in SlimPajama) but a more pronounced decrease in Token Ratio (19.53% vs. 26.50%). This
indicates that while the number of sequences from C4 is comparable, they are shorter on average in
our dataset.

• CommonCrawl: We increased the Mixture Ratio for CommonCrawl (33.40% vs. 31.01%) and
observed a higher Token Ratio (58.14% vs. 53.42%). This suggests that CommonCrawl sequences
in our dataset are not only more numerous but also longer, contributing significantly to the total
token count.

• ArXiv and Books: The representation of ArXiv and Books is enhanced in our up-sampled mixture.
ArXiv’s Mixture Ratio increased from 0.30% to 1.01%, and its Token Ratio from 4.64% to 5.86%.
Similarly, Books saw an increase in Mixture Ratio from 0.06% to 0.21% and in Token Ratio from
3.88% to 4.69%. These increases aim to enrich the dataset with more scholarly and literary content.

• StackExchange and Wikipedia: The proportions of StackExchange and Wikipedia remain rela-
tively consistent between the two datasets, ensuring stable representation of community-driven and
encyclopedic knowledge.

• GitHub (Code Data): The Mixture Ratios for GitHub are similar (3.68% in our dataset vs. 3.65%
in SlimPajama), but the Token Ratio is slightly higher in our dataset (6.61% vs. 5.05%), indicating
longer code sequences that could benefit code understanding tasks.

Overall, our up-sampled data mixture places greater emphasis on longer sequences from CommonCrawl and
increases the diversity of content by up-sampling underrepresented domains like ArXiv and Books. This
rebalancing is designed to enhance the model’s ability to generalize across various content types and improve
its performance on tasks requiring knowledge from specific domains.

Figure 8: Training Data Sequence Length Distribution
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Llama2 7B 100.0 100.0 99.8 97.2 87.8 44.0 99.1 99.35 59.0 24.46 91.73 61.2 43.0
+ Chat 95.2 100.0 99.8 93.2 90.0 70.2 95.8 98.7 88.4 34.26 85.93 64.8 39.4
+ Yarn 64K 73.0 24.4 8.0 18.0 5.8 0.8 5.9 6.35 54.2 18.16 57.8 38.6 27.6
+ Chat + Yarn 64K 67.4 48.8 32.4 30.2 16.4 4.8 48.0 34.75 54.16 43.48 82.07 41.2 25.0

Table 10: Results of different models across various tasks on 4, 000 context length.

D LLaMA-2-7B RULER Performance

In Table 10, we use the base template for all models. Compared to the results reported in (Hsieh et al., 2024),
we observe that Llama 2 7B’s performance on the Common Word Extraction (CWE) task is unstable. When
the context length is set to 4,000 (less than 4,096), a slightly different context example is provided (refer
to the generate_input_output function in scripts/data/synthetic/common_words_extraction.py in
RULER 2). As shown in Table 11, when the context length is set to 4, 096, we can reproduce the reported
results. However, the inclusion of a slightly different example disrupts the Llama 2 7B model’s ability to
accurately count words, highlighting the instability of the CWE task for evaluating Llama 2 7B. Consequently,
we omit this task from the long-context evaluation.

Furthermore, based on our hypothesis that continued training of large language models primarily improves
their ability to handle longer contexts rather than introducing new capabilities, we have excluded the NIAH
Multikey 3 and CWE tasks from our evaluation. This decision is supported by the observation that even
within the pretraining context length, Llama 2 7B is unable to effectively solve these tasks.

4,000 4,096
LLaMA-2-7B 24.46 76.8

Table 11: Performance of LLaMA-2-7B on Common Word Extraction (CWE) with different context lengths.

E Longbench full result

2https://github.com/NVIDIA/RULER/tree/0193bdd0abf6da542775f72b53352be8971d03f6
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Code Completion ICL Multi-Doc QA Single-Doc QA Summarization Synthetic
SlimPajama-64K
Full Attention 60.52 62.51 9.68 17.34 16.09 2.87
Cross-Doc Attention 62.95 62.79 9.51 16.82 16.73 2.94

- reset 62.76 63.76 9.30 16.40 14.61 3.74
AnchorAttention 62.04 65.38 9.72 18.60 17.56 4.24

- tag 63.53 66.02 9.51 18.28 15.30 5.24
SlimPajama-128K
Full Attention 54.17 50.72 6.36 16.43 13.30 2.04
Cross-Doc Attention 54.59 51.22 6.42 15.59 13.92 3.63

- reset 52.51 50.07 6.30 16.64 14.45 4.18
AnchorAttention 54.14 51.85 6.32 17.74 12.67 3.89

- tag 55.81 51.89 5.93 17.67 12.43 3.41
UpSampledMix-128K
Full Attention 53.13 48.96 6.12 14.66 12.77 4.13
Cross-Doc Attention 54.16 49.51 5.72 14.62 14.38 2.57

- reset 54.29 50.18 5.57 14.30 15.23 2.55
AnchorAttention 53.90 50.17 6.30 18.29 13.78 6.13

- tag 55.13 49.70 5.65 16.90 15.53 4.20

Table 12: Performance Metrics across Different Attention Mechanisms and Datasets.
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