
Published as a conference paper at ICLR 2024

LEARNING LARGE DAGS IS HARDER THAN YOU THINK:
MANY LOSSES ARE MINIMAL FOR THE WRONG DAG

Jonas Seng
Technical University of Darmstadt
jonas.seng@tu-darmstadt.de

Matej Zečević
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ABSTRACT

Structure learning is a crucial task in science, especially in fields such as medicine
and biology, where the wrong identification of (in)dependencies among random
variables can have significant implications. The primary objective of structure
learning is to learn a Directed Acyclic Graph (DAG) that represents the underlying
probability distribution of the data. Many prominent DAG learners rely on least
square losses or log-likelihood losses for optimization. It is well-known from
regression models that least square losses are heavily influenced by the scale of
the variables. Recently it has been demonstrated that the scale of data also affects
performance of structure learning algorithms, though with a strong focus on linear
2-node systems and simulated data. Moving beyond these results, we provide
conditions under which square-based losses are minimal for wrong DAGs in d-
dimensional cases. Furthermore, we also show that scale can impair performance
of structure learners if relations among variables are non-linear for both square
based and log-likelihood based losses. We confirm our theoretical findings through
extensive experiments on synthetic and real-world data.

1 INTRODUCTION

Given a finite data sample from an unknown probability distribution, structure learning algorithms aim
to recover the graphical structure underlying the data generating process that lead to said unknown
probability distribution (for an introduction to probabilistic graphical models see (Koller & Friedman,
2009)). The use of a Directed Acyclic Graph (DAG) as a representation of choice is prevalent
in many applications, particularly in Bayesian Networks (BN; see (Pearl & Russell, 2000)).The
directedness and acyclicity of DAGs provide significant advantages in proving foundational results,
including research in causality, see (Pearl, 2009). In DAGs, a node corresponds to a random variable
and each edge marks a direct statistical dependence between two random variables. The absence
of an edge encodes (in)direct independencies between random variables. Since DAGs compactly
encode statistical (in)dependencies, structure learning algorithms learning DAGs are widely deployed
throughout Machine Learning applications. Different approaches have been proposed to solve the
non-trivial task of recovering the independence structure from a finite data sample. Some use
statistical independence-tests to infer a graph, others use score-functions which are being optimized
during learning (Mooij et al., 2020; Peters et al., 2017). In recent years, score based methods
became appealing with the development of NOTEARS (NT; (Zheng et al., 2018)) a novel score-based
structure learning algorithm with a continuous and differentiable DAG-constraint which avoids the
combinatorial nature of constructive constraints. Often the score for these methods is chosen s.t. it
maximizes the (log-)likelihood of the data given the model. Under the frequently made Gaussian
noise assumption, this reduces to minimizing the mean squared error (MSE). To highlight that the
MSE is taken w.r.t. the entire graphical model, we call this score model mean squared error (MMSE).
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Loh & Bühlmann (2014) showed that least square based losses are unsuited for structure identification
of DAGs when the variances of exogenous noise variables remain unknown. Reisach et al. (2021)
recently had analyzed specifically the behaviour of NT and similar methods and found evidence
that they might exploit these variances during structure learning, thus confirming the results of
Loh & Bühlmann (2014) in low-dimensional linear cases. However, both works only considered
linear dependencies among the variables in low dimensions and square based losses. Also, real
world problems usually involve dozens or more variables and many structure learners optimize log-
likelihood or similar losses (e.g. BIC, ELBO). Thus investigating conditions under which optimizing
MMSE leads to wrong DAGs in d-dimensional cases as well as analyzing whether losses like BIC and
ELBO are more appropriate choices for structure learning is of high interest for many practitioners.
Consequently our contribution will (1) generalize the above mentioned results to d-dimensional
and non-linear cases, (2) provide exact conditions under which MMSE fails to identify the correct
structure and (3) show that all log-likelihood based losses are susceptible to scaling under appropriate
assumptions, both theoretically and empirically.
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Figure 1: Network Structure can flip decisions.
Fitting two DAGs G1 (without the red edge) and
G2 (with the red edge) on the same data sampled
from pGt

changes the probability of assigning a
treatment (t = 1) given the exact same evidence.

Medical Example. To highlight the importance
of identifying the correct DAG given data, we
provide the following example: Assume a dis-
tribution pGt

which is defined as in App. A and
factorizes following the Bayesian Network Gt

shown in Fig. 1. Further assume we sample
data X from pGt

. The variables ix, iy denote
whether a patient got infected with disease x
or y respectively, s denotes if a patient shows
symptoms typical for x and y, e denotes an
exposure to a virus and t denotes if we con-
duct a treatment. Given two graphs G1 and
G2 s.t. G1 = Gt (i.e., G1 is without red edge
in Fig. 1 and G2 with red edge), fitting both

graphs to X yields different probabilities whether the same patient should receive a treatment:
pG1

(t = 1|ix = 1, iy = 0) = 0.49 < 0.51 = pG2
(t = 1|ix = 1, iy = 0). It is common to choose a

threshold value of 0.5 to decide which action should be taken for variables with a binary domain,
thus using G2 instead of G1 would flip the decision from not giving a treatment to giving a treatment
based on the same evidence. Thus recovering the wrong graph structure can have a severe impact on
decision making.

We proceed by stating assumptions made throughout our paper and briefly revisit widely used structure
learning algorithms which we use in our experiments. Then, we establish novel theoretical findings on
how scale influences MMSE and log-likelihood based scores in structure learning contexts. Finally,
we conduct experiments and empirically support our theoretical results before giving a conclusion.

2 BACKGROUND AND RELATED WORK

To the best of our knowledge, Loh & Bühlmann (2014) were the first raising the awareness that
MSE-like losses are not suitable for the identification of graph structures from data when the variances
of exogenous noise variables are unknown. Reisach et al. (2021) recently has shown that structure
learning algorithms like NT suffer from performance degradation when data is standardized. Kaiser &
Sipos (2021) independently reported similar results. Other important works discussing identifiability
and its relation to variance include Peters & Bühlmann (2014); Park (2020); Weichwald et al. (2020).

2.1 ASSUMPTIONS

We consider a distribution p(X1, . . . , Xd) defined over random variables X1, . . . , Xd associated with
a DAG G representing the independencies of variables X1, . . . , Xd in p. The following assumptions
are made: (A1) Immiscible Structures: G is either single chain, fork or collider with d variables. We
also make the common assumption (A2) Additive Noise Model with Invertable Functions: Each
variable Xi can be written as Xi = f(PAG

Xi
,N (0, σ)) where f is a linear or non-linear function

that is invertable w.r.t. the noise, PAG
Xi

refers to the parent variables of Xi and N (0, σ) denotes a
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zero-mean Gaussian with standard deviation σ. We assume to obtain n i.i.d. samples from p, denoted
as X ∈ Rn×d.
Remark 1. Note that each DAG is composed of chains, forks and colliders. It is possible that a node
Xi of a DAG is e.g. both a fork and a collider. If we do not allow for such structures, each DAG can
be decomposed into subgraphs fulfilling (A1) Immiscible Structures. This decomposition allows us
to reason about far more complex graphs than chains, forks and colliders.

2.2 DETAILS ON DAG LEARNERS INVESTIGATED IN THIS WORK

We briefly present four prominent score based structure learning algorithms which often optimize a
square based or log-likelihood based loss. We consider these methods throughout our work as they
are widely used and/or constitute the foundation of many more recent algorithms (Lee et al., 2020;
Lorch et al., 2021; Wei et al., 2020; Zhang et al., 2022).

GES (Chickering, 2003). Greedy Equivalence Search (GES) is a score based structure learner
which can identify the correct structure of a Bayesian Network up to Markov equivalence. It consists
of two phases: Starting from an empty graph, edges are added to optimize some score/loss L. A
second phase aims to remove as many edges as possible until L cannot be improved anymore as the
first phase might add to many edges. Often L is the Bayesian Information Criterion (BIC). Note
that GES does not necessarily learn a DAG as it aims to find Markov Equivalence Classes (MECs).
However, having variables on different scales assigns higher scores to certain DAGs in a MEC. We
consider the highest scoring DAGs as the solution of GES.

NT (Zheng et al., 2018). Given data X ∈ Rn×d from a distribution p(X1, . . . , Xd) induced by an
unknown DAG G, NT aims to recover G’s structure by solving a constraint optimization problem
where G is represented by a weighted adjacency matrix G := W ∈ Rd×d and the optimization
problem is defined as argminW∈Rd×d ||X−XW||2F + λ||W||1 + αh(W). Here, W is the learnt
adjacency representing G, λ is a regularization parameter to favour sparser graphs, h a continuous
and differentiable DAG-constraint and α the Lagrange multiplier. The continuous nature of the
optimization problem allows efficient gradient based optimization.

DAG-GNN (Yu et al., 2019). DAG-GNN (DG) extends NT to learn structures even if relation-
ships are non-linear as long as they are invertible by stating structure learning as an encoding-
decoding problem. The encoder aims to learn the inverse function describing the noise variables
Z = {Z1, . . . , Zd} as a function of the observed variables X = {X1, . . . , Xd} while the decoder
aims to learn the forward-function describing the relationship between noise Z and variables X .
Encoder- and decoder-parameters as well as the adjacency W are learned during ELBO optimization
with acyclicity-constraint, resulting in an augmented Lagrangian. For more details refer to App. D.1.

GraN-DAG (Lachapelle et al., 2020) Given data X from random variables X1, . . . , Xd GraN-
DAG (GND) models relationships among variables via a dedicated neural network (NN) for each Xj

given X−j where X−j refers to all variables except Xj . By following the so called neural network
paths through the NNs, the authors derive an adjacency W based on the parameters of all NNs. Then,
inspired by NT, W – and hence the NN parameters – is constrained s.t. W is a DAG, i.e. h(W) = 0
which is formulated as a Lagrangian augmented optimization problem, solved via gradient descent.

Note that we only consider score based structure learners in this work since constrained based
algorithms are based on independence tests which typically do not depend on variable scales. See
App. C.9 for details.

3 INFLUENCE OF SCALE ON DAG LEARNERS

In this section we will prove conditions under which structure learners optimizing least square
and log-likelihood losses are guaranteed to predict a DAG that differs from the ground truth DAG,
sometimes even with different d-separation statements. Note that there are exactly three structures
that any DAG is composed of: (1) chain structures consist of d single-link structures where one
single-link structure is followed by another, i.e. X1 → X2 → ...→ Xd, (2) fork structures share the
same d-separation statements as chains do, however their graph structure is slightly different and is
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defined as X1 ← ... ← Xi−1 ← Xi → Xi+1 → ... → Xd and finally (3) colliders are defined as
X1 → X2 → · · · → Xi ← Xi+1 ← · · · ← Xd.

3.1 DATA GENERATING PROCESS

For our analysis we make the following assumptions about the data generating process: (1) The data
X contains samples from each variable in a DAG G, (2) X is sampled from a distribution pG which
is Markovian w.r.t. G and (3) each dependence among variables in G can be represented as a function
f : PAXi

→ Xi that is a linear or non-linear function with additive Gaussian noise where PAXi
are

the parents of a variable Xi. Also we assume that the variance of each variable in X only depends
on the unit of measurement. For example, when measuring distances, the scale is determined by
whether metres (m) or kilometres (km) are measured (e.g. 1km vs 1000m). As a specific unit (e.g.
km) often can be expressed in terms of another unit scaled by a constant factor (e.g. km = 1000 ·m),
we represent measuring on different scales as a linear scaling operation done on data X: For data
samples XT

i of variable Xi, different measuring units can be expressed as XT
i := c ·XT

i . Note that
the structure of the data generating process is invariant w.r.t. the measurement scale.

3.2 EXTENDING VARIANCE SENSITIVITY RESULTS TO d DIMENSIONS

For our theoretical analysis let us define the Model MSE (MMSE) of a model fW,θ parameterized by
θ and respecting (in)dependence structure imposed by adjacency W representing a DAG as:
Definition 1. Given an adjacency matrix W ∈ Rd×d of a DAG of d nodes, fW,θ : Rd → Rd and
data X ∈ Rn×d we define the Model MSE (MMSE) as MMSE(X, fW,θ) :=

1
2n ||X− fW,θ(X)||2F .

Remark 2. Note that structure learners use constraints such as that the learned graph is a DAG.
Often these constraints are expressed as regularization terms. Throughout this section we assume
that all such constraints are fulfilled and only consider the space of valid solutions.

Note that due to (A2) Additive Noise Model with Invertable Functions fW,θ can be written as a
vector of functions fW,θ = ⟨f1,θ, . . . , fd,θ⟩ where XT

j = fj,θ(XPj ) holds for index set Pj = PaXj

selecting all parents of Xj according to W. We will use this property in our subsequent propositions.

3.2.1 SQUARE BASED LOSSES

We start our theoretical analysis by showing that MMSE is scale dependent given (A2) holds:
Proposition 1. Given n samples X ∈ Rn×d from a distribution p(X1, . . . , Xd) over real-valued
random variables X1, . . . , Xd, an adjacency W ∈ Rd×d representing a DAG and a function fW,θ

respecting (A2) Additive Noise Model with Invertable Functions, the MMSE is proportional to the
sum of MSEs of each node in the graph:

MMSE(X,W) =
1

2n
||X− fW,θ(X)||2F ∝

∑
i∈Z

Var(XT
i ) +

∑
i∈N

MSE(XT
i , fi,θ(X

T
Pi
)). (1)

In the above proposition, Z denotes the set of node-indices without parents, N denotes the node-
indices of nodes with parents and MSE(XT

i , fi,θ(X
T
Pi
)) denotes the mean squared error between

XT
i and fi,θ(X

T
Pi
). A proof can be found in App. B. Since the MMSE contains variance terms, it

is susceptible to the scale of variables. Knowing conditions when a minimal MMSE corresponds
to a wrong DAG would be crucial to understand the behavior of structure learners. Therefore, let
us consider only linear dependencies among variables in G, i.e. fW,θ(X) = XW where W is a
weighted adjacency. Our first key result states that, given a chain graph and data from its associated
distribution, the MMSE of a reversed version of said chain is smaller than the ground truth if variables
can be sorted by its scale:
Proposition 2. Consider a chain graph G = X1 → · · · → Xd and G′ = X1 ← · · · ← Xd, a
distribution p(X1, . . . , Xd) over zero-mean random variables X1, . . . , Xd induced by G and i.i.d.
data X ∈ Rn×d from p. If Var(XT

1 ) > · · · > Var(XT
d ) holds, then MMSE(X, G′) < MMSE(X, G).

Proof (Sketch). The main observation leading to the proof is that (1) the MMSE of a graph with
d variables is the sum of d MSEs and (2) when writing the MSEs in terms of the variances and
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covariances of the variables only two things change in the MMSE for a reversed chain: (a) instead of
Var(XT

1 ) only Var(XT
d ) is added to the sum of MSEs and (b) the regression coefficients between

variables Xi and Xi+1 are computed as Cov(XT
i ,XT

i+1)

Var(XT
i+1)

instead of Cov(XT
i ,XT

i+1)

Var(XT
i )

, rendering them
smaller due to the symmetry of covariance. Since the weight’s magnitude and the variance of the
exogenous variable decide whether the original DAG or the reversed chain receives a smaller MMSE,
the reversed graph will receive a lower loss. The full proof is given in App. B.

Also, if there is no strict order of the variables in terms of their scale, optimizing MMSE leads to a
wrong graph as the following proposition shows:

Proposition 3. Consider a d-dimensional chain graph G = X1 → · · · → Xd, a distribution p
factorizing according to G and data X sampled from p induced by G. Then Var(XT

1 ) > Var(XT
d )−∑d−1

i=1

Cov(XT
i ,XT

i+1)
2

Var(XT
i+1)

+
Cov(XT

i ,XT
i+1)

2

Var(XT
i )

suffices to make MMSE smaller for the reverse chain.

Proof (Sketch). Due to the symmetry of the covariance and the replacement of Var(XT
1 ) with

Var(XT
d ) MMSE will be minimized if the condition Var(XT

1 ) > Var(XT
d )−

∑d−1
i=1

Cov(XT
i ,XT

i+1)
2

Var(XT
i+1)

+

Cov(XT
i ,XT

i+1)
2

Var(XT
i )

holds. Note that the strong statement of the reverse chain being preferred over all
other possible DAGs is not made, i.e. only the reverse chain is preferred over the ground truth chain.
Still, a flip on e.g. the last edge could yield an even lower MMSE. We give empirical evidence for
this conjecture in Sec. 4. A full proof is given in App. B.

Similar to how scale dictates that MMSE is minimal for the reversed chain, MMSE gets minimal for a
fork structure instead of a chain structure if the conditions derived in the following proposition hold:

Proposition 4. Given a chain graph G = X1 → · · · → Xd and data X ∈ Rn×d sampled
from a distribution p(X1, . . . , Xd) induced by G, a fork originating at node Xj receives a lower
MMSE if the scale of the variables is such that Var(XT

i ) > Var(XT
i+1) ∀i ∈ {1, . . . , j − 1} and

Var(XT
i ) < Var(XT

i+1) ∀i ∈ {j + 1, . . . , d− 1}.

Proof (Sketch). The key observation is that one can consider the outgoing paths of Xj as chains. In
this case, the right-going path from Xj will receive the same MMSE as in a chain graph if we ignore
the rest of the graph. For the left-going path from Xj the same reasoning applies as for reversing a
chain-graph then. See App. B for a full proof.

Prop. 2-4 can be generalized to a Markov Equivalence Classes (MEC):

Proposition 5. Consider a DAG G with nodes X1, . . . , Xd, its MECM(G) and data X ∈ Rn×d

sampled from a distribution p(X1, . . . , Xd) induced by G. Then the graph G′ ∈M(G) will receive
a lower MMSE than all other graphs in the same MEC if the edges of G′ are oriented s.t. they point
from lower-variances variables towards strictly higher-variance variables.

The proof follows the same reasoning as the more special cases in Prop. 2, 4, see App. B.

Proposition 6. Given a chain X1 → · · · → Xd and data X from a distribution p(X1, . . . , Xd), a
DAG having Xj as a collider and an edge between Xj−1 and Xj+1 gets a smaller MMSE than a
DAG without additional edge if Var(XT

1 ) < · · · < Var(XT
j ) and Var(XT

j+1) > · · · > Var(XT
d ).

Proof (Sketch). The path X1 → · · · → Xj−1 is the same as in the original graph, thus the MSEs
are the same. By Prop. 2 a chain Xd → · · · → Xj will receive a lower MSE than vice versa. The
additional edge can be explained by the fact that Xj−1 and Xj+1 are dependent in X, the collider
however would induce an independence between these variables. Thus, to further minimize the
MMSE, an edge between Xj−1 and Xj+1 is required. See App. B for the full proof.

The above proposition shows that DAG learners using optimizing MMSE predict a collider and an
additional edge if variables are scaled appropriately, effectively encoding different independencies.
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3.2.2 LOG-LIKELIHOOD BASED LOSSES

As Prop. 2-6 only apply to the MMSE-loss under the assumption of linear dependencies among
variables, we will now generalize our results to non-linear dependencies in two ways: First, we will
show that the log-likelihood is as susceptible to scaling as MMSE under Gaussian noise assumption.
Second, we generalize this result to log-likelihood based losses and show that popular losses such as
the Bayesian Information Criterion (BIC) and Evidence Lower Bound (ELBO) are also susceptible to
scaling under Gaussian noise assumption:

Proposition 7. Assuming (1) a distribution p over random variables X1, . . . , Xd which factorizes
according to some DAG G which is represented by an adjacency W, (2) Gaussian, additive noise
ϵj for each Xj in the graph, (3) possibly non-linear transformations fj s.t. Xj = fj(PaXj ) + ϵj ,
(4) data X ∈ Rn×d sampled from p and (5) a solution space of DAG adjacency matrices W, then
optimizing the MMSE is equivalent to optimizing the log-likelihood.

Proof (Sketch). Given data X, the log-likelihood w.r.t. a DAG and parameterized functions fj,θ for
each Xj predicting parameters for a distribution over Xj given PaXj

can be recursively written as∑n
i=1

∑d
j=1 log p̂

(
XT

i,j |fj,θ(XPj )
)

where Pj = PaXj refers to the parents of Xj according to W,
fj,θ refers to a model parameterized by θ predicting parameters for the distribution p over Xj given
its parents. Assuming p̂ is Gaussian, the log-likelihood reduces to the MMSE from Definition 1 and
reads

∑n
i=1

∑d
j=1

(
XT

i,j −fj,θ(XPj )
)2

. Note that fj,θ can be any function, thus also non-linear.

We note, however, that in contrast to the linear case, it is not trivial to derive conditions under
which the optimum of the log-likelihood render a wrong DAG without additional assumptions about
functions fj,θ. We leave the derivation of such conditions for future work.

As the log-likelihood term appears in many scores/losses used for structure learning, we extend Prop.
7 to a more general case. To that end, we define the family of log-likelihood based losses as:

Definition 2. The family of log-likelihood losses for a distribution p, parameters θ and a data vector
x ∈ Rn is defined as L(x, θ) =

∑n
i=1 log p(xi|θ) + h(·) where h(·) is some arbitrary function.

Proposition 8. Under the same assumptions of Prop. 7, the family of log-likelihood losses reduces to
square based losses and thus is susceptible to variable scale.

The proof for Prop. 8 immediately follows from Prop. 7 as it extends the regular log-likelihood
by an additive term. We now show that BIC and ELBO as two widely used instantiations of the
log-likelihood loss family are susceptible to variable scaling.

Proposition 9. We assume the assumptions of Prop. 7 and further assume an encoder q(Z|X)
mapping observed random variables to latents Z, decoder p(X|Z) mapping latents Z to observation
space X and a prior p(Z). Further, we assume the encoder and decoder to be defined as in Yu et al.
(2019). Then, ELBO can be written in terms of the MMSE in Def. 1 and thus is susceptible to scaling.

Proof (Sketch). The ELBO can be written as−DKL(q(Z|X)||p(Z))+Eq(Z|X)

[
log(p(X|Z))

]
. Here,

Z is a multivariate latent and X a multivariate random variable over the input space. Since
Eq(Z|X)

[
log(p(X|Z))

]
is an approximation of the log-likelihood of the seen data given the la-

tents and as the log-likelihood w.r.t. a DAG model with adjacency W can be written as the sum of
log-likelihoods of each variable Xj in the DAG, the reconstruction loss of the ELBO reduces to the
MMSE due to the Gaussian noise assumption.

Proposition 10. Under the same assumptions of Prop. 7, BIC can be written in terms of the MMSE
in Def. 1 and thus is susceptible to scaling.

Proof. The proof directly follows from Prop. 7 and Def. 2 as BIC w.r.t. an adjacency W and
models fj,θ can be defined as the sum of the log-likelihood and additive regularization preferring

simpler models: BIC(X) = k log(n) − 2
(∑d

j=1

∑n
i=1 log(p(Xi,j |fj,θ(XPj

))
)

. Here, k refers
to the number of model parameters, n the number of samples, the rest as above and Pj = PaXi

is an index set selecting the parents of Xj . It is easy to see that the BIC is an instantiation of the
log-likelihood loss family and hence is susceptible to scaling under Gaussian noise assumption.

6



Published as a conference paper at ICLR 2024

3.3 REDUCING VARIANCE SENSITIVITY

As shown above, numerous losses, assuming Gaussian noise, exhibit high sensitivity to the scaling of
the measured variables. Free variance terms in losses proportional to MMSE are a major source of
misleading information: Nodes lacking parental connections are treated as ”not explainable“ and their
variance is unjustly included in the loss. Hence the graph minimizing free variance terms as far as
possible will be rated a good candidate. Also, it is well known that variance influences MSE. However,
we argue that a good score should only measure how well structural dependencies among variables
in a dataset are captured by some DAG and nodes without parents should be treated as unmodelled
noise. Consequently, enhancing the resilience of structure learning algorithms can be achieved by:
(1) Scaling all variables to have equal variance and (2) excluding free variance terms from the loss,
leading to Scale Robust Loss (SRL) defined as Ls(X;W) = L(X;W) −

∑
i∈Z Var(XT

i ). Here,
Z is the set of nodes without parents as above and L a square based or log-likelihood based loss
with fixed variance Gaussian noise assumption. Normalization makes MSE independent of scale. By
excluding free variances, we ensure that the loss exclusively represents the quality of dependencies
encoded by a DAG. Note, however, that SRL can only be used for discrete structure learners as it
requires us to know which nodes have no parents. As continuous structure learners operate in a
continuous parameter space representing graphs and usually Wij ̸= 0 for all i, j in early stages of
optimization, each node has at least one parent. The task of devising effective strategies to bolster the
resilience of such structure learners against scaling is a matter we defer to future research endeavors.

4 EXPERIMENTAL EVALUATION

Table 1: Predictions of structure learners is deter-
mined by scale. We generated 10,000 data points from
10-variable ground truth DAGs (ch=chain, fo=fork or
co=collider) with additive Gaussian noise. Variable de-
pendencies were linear (lin) or non-linear (cos=cosine
function used). We simulated different measurement
scales by multiplying each variable with a different
scale, experiments were repeated 30 times with dif-
ferent data from the same distribution to account for
stochastic effects. GESR means GES with SRL.

Predicted Graph
ch fo co

G
ro

un
d

Tr
ut

h
G

ra
ph

ch

lin (NT) 100% 100% 100%
lin (GES) 100% 100% 0%

lin (GESR) 50% 50% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

fo

lin (NT) 100% 100% 100%
lin (GES) 0% 100% 100%

lin (GESR) 50% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

co

lin (NT) 100% 100% 100%
lin (GES) 0% 0% 100%

lin (GESR) 0% 0% 0%
cos (DG) 100% 100% 100%

cos (GND) 100% 100% 100%

After laying the theoretical foundations, we
aim to empirically answer the following
questions: (Q1) Can we empirically confirm
our theoretical findings? (Q2) How severe
are the effects of variable scales if only a
subset of variables is measured on differ-
ent scale? (Q3) What happens if assumption
(A1)1 Immiscible Structures does not hold?
(Q4) Do scales affect the prediction of struc-
ture learners on real world data?

Confirming theoretical findings (Q1): To
validate our theoretical results, we artificially
created data from {3, 10}-node chains, forks
and colliders with (non)-linear relations be-
tween the variables and additive noise from
standard normal distribution (see App. C).
We applied scaling operations on each vari-
able in the data to simulate measuring on dif-
ferent scales. Scaling was done to match our
assumptions, i.e. the order of variables w.r.t.
their variance coincides with a certain DAG
we expect the structure learners to predict.
For example, in Fig. 2(b)/Fig. 2(c) we sam-
pled data from a chain X1 → · · · → X10

and expected a collider/fork at X6 to be pre-
dicted due to scaling the variables s.t. the
nodes can be sorted by variance according to
their topological order with X6 having the
largest/smallest variance. Given data from

each structure (chain, fork, collider), we tested each possible structure to be predicted by the structure
learners due to scaling. For each pair of ground truth, expected prediction and linear/non-linear cases,
we used 3 different scales. Each of them was tested 10 times to account for stochastic effects. We

1We did not relax (A2) Additive Noise Model with Invertable Functions as it is a common assumption in
the literature (Yu et al., 2019).
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(a) GND prediction, non-linear dependencies (b) NT prediction, linear dependencies

(c) DG prediction, non-linear dependencies (d) GES prediction, linear dependencies

Figure 2: Predictions of structure learners impaired by measurement scales. Given a chain
as ground truth, NT/GND/DG/GES predict the wrong graph if certain variables are measured on
different scales (marked blue). This holds in both, linear (a, c) and non-linear cases (b). The following
color coding was used: means edge in ground truth,→→→ means predicted edge,→→→ means edge
appears in ground truth and prediction. (Best viewed in color.)

observed that our expectations were fulfilled in 100% of the cases for NT/DG/GND. Due to its greedy
strategy, the prediction of GES did not match our expectation in some cases. However, GES still
predicted a graph different to ground truth due to variable scales. SRL improves robustness of GES
against scale even further. Thus we empirically confirm our theoretical findings and conclude that
scale has severe effects structure learners optimizing a square based loss (see Tab. 1 and App. C).

Subset of Variables (Q2): Usually only some variables are measured on different scales. For
example, an internet provider could measure the provided download speed in GBit/s and upload
speed in MBit/s as often download speed is more important to customers. To investigate how severe
the effect of different scales is if just a subset of variables is scaled, we reuse the experimental setup
from Q1. However, this time scaling was applied to only a subset of variables: Let X ∈ Rn×d denote
a dataset with n samples from d variables and X(A) ∈ Rn×|A| denote a dataset where a subset
A ⊂ {X1, . . . , Xd} of variables was measured on different scale. We conducted experiments with
d ∈ {3, 10} for linear and non-linear relationships among the variables. We found that it is enough
to measure a single variable on different scale which has at least two neighbor nodes in the ground
truth DAG to provoke severe effects. For example, in Fig. 2(b) we expected a collider in X6 to
be predicted instead of the ground truth chain only by scaling data from X6 by a factor of 12. We
empirically confirmed that all structure learners except GES predict a fork/collider in 100% of the
cases if one variable is measured on different scale, for both linear and non-linear dependencies. GES
introduces forks/colliders in ∼ 40% of the cases, however often on different nodes.

Ablation of (A1) Immiscible Structures (Q3): To see if assumption (A1) is strictly required for
scale to have severe effects on predictive performance, we generated 20 random DAGs with 10 nodes
and artificially generated data as above. None of the random DAGs constituted a single chain, fork
or collider, thus violating assumption (A1). We then identified 3-node substructures in each DAG,
each making up a chain, fork or collider. We simulated measurements on different scales in these
sub-graphs s.t. we expected structure learners to predict a chain/fork/collider-substructure although
this substructure is not present in the ground truth. This was done by scaling all variables of the
identified substructure (Case 1) or by only scaling one variable (Case 2). Again, each simulation was
tested 10 times on data from the same distribution to account for possible stochastic effects. In both
cases we found that the identified substructures are severely affected by scale for NT, DG and GND.
This holds in 100% of the cases for both linear and non-linear dependencies. For example, in Fig.
3(a) we expected structure learners to predict a collider in X1 instead of the fork structure in the
ground truth only because X1 was measured on a scale with factor of 4 larger than the original data.
We also discovered that in both cases, many substructures were wrongly recovered without a direct
connection to the substructure measured on different scale. We suspect that this is due to the more
complex dependence-structure in high dimensional cases. GES was surprisingly robust against scale
without SRL, we only encountered changes in the graph’s independence statements in ∼ 20% of the
cases. The conjecture is that GES benefits from the complex structure and its greedy strategy to find
graphs: By greedily searching, graphs being sensitive w.r.t. scale might already be excluded from the
candidate set in early stages. We conclude that different scales have severe effects even if (A1) does
not hold, however GES seems to be rather robust. For more detailed results refer to App. C.
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Figure 3: Prediction of NT severley impaired by measurement scale complex graphs. Even in
cases with complex dependencies among variables, NT predicts a collider in X1 (Fig. (a)) and Akt
(Fig. (b)) when data is measured on different scales. (marked blue). Color coding is as in Fig. 2.

Real World Data (Q4): Since generated data might not accurately resemble real-world data, we
also conduct our experiments with a real world dataset provided in Sachs et al. (2005). As the
ground truth graph of this dataset is unknown, the following protocol was used: (1) run a Structure
Learning (SL) algorithm on the original data and obtain a graph G predicted by the SL-algorithm, (2)
identify a substructure (chain, fork or collider) to alter measurement scale and construct expected
graph G′, (3) run the same SL-algorithm on the scaled dataset and (4) assess the similarity between
the predicted graph Ĝ after rescaling and G′ as well as the similarity between G and the expected
graph G′. For evaluation: If the substructure we expected to obtain is present in Ĝ, we consider
the scale to have severe effect. If this is not the case, the scale is considered non-decisive for the
considered substructure. As we know from Q2 that different measurement scales have unintentional
side effects in complex systems, we also measure the similarity s(G,G′) and s(Ĝ,G′) where s is
the Structural Hamming Distance (SHD). With that we aim to capture the severity of side effects
imposed by measurement scale. We again observed that in 100% of our simulations severe effects
were present due to scale except for GES, as shown in App. C. Fig. 3(b) illustrates measurement on
different scales s.t. Akt was turned into a collider. GES, again, is more robust against scale and did
predict a chain/fork substructure in Ĝ if said substructure was a collider in G. In Tab. 8, 9 in App.
C we provide measures for the severity of side effects using SHD for different structure learners:
Graphs predicted on data with different measurement scales have a higher SHD w.r.t. G′ although our
expectations were fulfilled, i.e. Ĝ and G′ share at least one substructure. Hence other substructures
must contribute to the higher SHD, i.e. different measurement scales also lead to worse predictions
w.r.t. SHD. To sum up, we have shown that in real world scenarios – where we have no control
about assumptions – predictions of structure learners can be severely impaired by measurements on
different scales, at the same time leading to a decrease in performance w.r.t. SHD.

5 CONCLUSION

We formally proved that measurement scale can decide which DAGs will minimize the MMSE
or log-likelihood based losses such as ELBO and BIC. Hence, predictions of structure learning
algorithms which make use of these loss functions should be treated with care. We empirically
confirmed our theoretical results in extensive experiments using state of the art structure learners
and have shown that discrete structure learners are robust against scale when data is normalized and
variances are excluded from the loss.

Limitations and Future Work. Although our work provides proofs that measurement scale can
determine the DAG minimizing MMSE, ELBO and BIC for d-dimensional chain-, fork- and collider-
structures, a further theoretical analysis of more complex structures with less assumptions – such as
in our experiments – would be interesting. Additionally, we did not incorporate other dynamics in the
optimization process in our proofs, such as regularization or other hyperparameters controlling the
learning algorithm. An interesting next direction can be to check the theoretical properties for other
families of losses. Also, deriving scale-independent score functions is of high importance for reliable
score based structure learning.
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Code: Our implementation is accessible on GitHub at https://github.com/J0nasSeng/
FooLS. We have used publicly available software and libraries to guarantee accessibility and have
comprehensively described the architecture, software, versions, and hyperparameters in App. C.
Our code is deterministic, incorporating seeds for all random number generators to guarantee the
replicability of results. We attempted to include most of the code used to create the result tables and
figures in this manuscript.

Datasets: This study only utilizes publicly available datasets which have been correctly cited.
Furthermore, the authors contribute to an open source repository containing all the datasets used in
this work, which will be made available upon acceptance.

Algorithm Details: We have provided thorough descriptions and formulations of our architecture
in the main text, supplemented by additional clarifications, and implementation details in Sec. C,
ensuring a clear understanding of our contributions and facilitating reproduction. This documentation
is intended to provide researchers with all the necessary information for an accurate replication of
our experiments.

ACKNOWLEDGEMENTS

This work was supported from the National High-Performance Computing project for Computational
Engineering Sciences (NHR4CES). Furthermore, it benefited from the Hessian Ministry of Higher
Education Research, Science and the Arts (HMWK) via the DEPTH group CAUSE of the Hessian
Center for AI (hessian.ai) and the cluster project “The Third Wave of AI”. The Eindhoven University
of Technology authors received support from their Department of Mathematics and Computer Science
and the Eindhoven Artificial Intelligence Systems Institute.

REFERENCES

David Maxwell Chickering. Optimal structure identification with greedy search. 3:507–554, 2003.

Marcus Kaiser and Maksim Sipos. Unsuitability of notears for causal graph discovery. arXiv preprint
arXiv:2104.05441, 2021.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.
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